CS375 HW 7 Solution Set (20 points)

Due date: April 3, 2024

1. (6 points)

The language generated by the following grammar is

$$
\left\{a b^{m}, a c b^{n} \mid m, n \in N\right\}
$$ (2 points)

$$
\mathrm{S} \rightarrow \mathrm{acB}|\mathrm{aB} \quad \mathrm{~B} \rightarrow \mathrm{bB}| \wedge
$$

This grammar is LL(2). (1 point)
Use left-factoring we can find an equivalent LL(k) grammar for this grammar where k is as small as possible. In the following, fill out the blank in the middle portion to make the resulting grammar such an $\operatorname{LL}(k)$ grammar.

S \rightarrow aT	$T \rightarrow c B \mid B$ or $T \rightarrow c B\|B\| \Lambda$ or $T \rightarrow b B\|c b B\| c \mid \Lambda$	$\mathrm{B} \rightarrow \mathrm{bB} \mid \Lambda$	(2 points)

What is the value of $k ? k=\quad 1 \quad$ (1 point)
2. (6 points)

The language generated by the following grammar is
(2 points)

$$
S \rightarrow \text { SaaS |c }
$$

This grammar is left recursive, hence, it is not $\operatorname{LL}(\mathrm{k})$ for any k.
Fill out the blank below to make the resulting grammar an equivalent grammar of the above grammar but with no left-recursion.

$$
\mathrm{S} \rightarrow \mathrm{cT}
$$

$$
\begin{aligned}
& T \rightarrow \operatorname{aaST} \mid \Lambda \\
& \quad \text { or } \\
& T \rightarrow \operatorname{aacTT} \mid \Lambda
\end{aligned}
$$

(2 points)

For any given string of this language, say 'caacaac', the left most letter is always ' c '. Since the first production of the new grammar ' $S \rightarrow c T$ ' is the unique first step, we don't need to scan any thing to use this production. Once this production is applied, we would automatically get a match for the first letter of the input screen. So our first scan starts with the second letter of the input string.
The 2 nd letter would be an ' a ', so the production to use would be ' $T \rightarrow$ aacTT'. This production gives a match of ' $a a c^{\prime}$ ', the 2 nd through the 4 th letters of the input string. So our next scan would be the 5th letter which would again be an 'a' and we would still have to use the production ' $T \rightarrow$ aacTT' for the next derivation step and which again gives a match of ' $a a c^{\prime}$ ', the 5 th through the 7 th letters. So our next scan would be the 8 th letter of the input string. In general, our n-th scan would be the ($2+3(\mathrm{n}-$ 1))-th letter of the input string which would always be an ' a ' unless it is ' Λ '. In such a case we apply the production ' $T \rightarrow \Lambda$ '. Otherwise, we apply the production ' $T \rightarrow$ aacTT' and get a match of ' $a a c^{\prime}$ ' the $(2+3(n-1))$-th through the $(2+3 n-1)$-th letters of the input string. Each time, we only need to scan one letter to determine the production needed for the next derivation step, so that is why it is $\operatorname{LL}(1)$.

3. (5 points; 1 point each blank)

The following given grammar is a left recursive grammar

$$
S \rightarrow S b a b \mid \text { ba } \mid b
$$

The language generated by this grammar is of the following form:

$$
\mathrm{L}=\left\{b a(b a b)^{m}, b(b a b)^{n} \mid m n \in N\right\}
$$

This left recursive grammar can be transformed to a right recursive grammar as follows:

This right recursive grammar is an LL (
2) grammar.
4. (6 points; 1 point each blank)

The following grammar is an indirect left recursive grammar

$$
\mathrm{S} \rightarrow \mathrm{Bb}|\mathrm{a} \quad \mathrm{~B} \rightarrow \mathrm{Sa}| \mathrm{b}
$$

Strings of the language generated by this grammar are of the following form:

$$
L=\left\{a(w)^{m}, b b(w)^{n} \mid w=\quad a b \quad m, n \in N\right\}
$$

This indirect left recursive grammar can be transformed to a right recursive grammar as follows:

This right recursive grammar is an LL (
1) grammar.

5. (7 points)

In slide 41 of the notes "Context-free Languages and Pushdown Automata IV", it is shown that the set of $\mathrm{LL}(\mathrm{k})$ languages is a proper subset of the set of deterministic C-F languages (or see the following figure). In particular, it points out that the language $\left\{a^{m}, a^{n} b^{n} \mid m, n \in N\right\}$ is a deterministic C-F, but not $\operatorname{LL}(\mathrm{k})$ for any k .

To show the language is not $\operatorname{LL}(\mathrm{k})$ for any k , note that a grammar for this language is

$$
S \rightarrow A \mid B \quad A \rightarrow \quad \mathrm{aA} \quad \Lambda \quad B \rightarrow \quad \text { abb } \quad \Lambda
$$

or

(4 points)
(you only need to answer one case here, either one). The language contains Λ as an element. Now consider the case $k=1$ and consider the input string ab. When the first symbol is scanned, we get an 'a'. This information alone is not enough for us to make a proper choice. So we don't even know what to do with the first step in the parsing process.
For $k=2$, if we consider the input string aabb, we face the same problem. For any $k>2$, the input string $a^{k} b^{k}$ would cause exactly the same problem. So this grammar is not $\mathrm{LL}(\mathrm{k})$ for any k.

On the other hand, by putting proper instructions into the blanks of the following figure, we get a deterministic final-state PDA that accepts the language $\left\{a^{m}, a^{n} b^{n} \mid m, n \in N\right\}$.

or

(3 points)
(again, you only need to answer one case here, either one). Hence, this language
is indeed deterministic C-F, but not $\operatorname{LL}(\mathrm{k})$ for any k .
6. (4 points)

Fill out the following blanks for the instructions of a Turing machine that accepts the language $\left\{a^{n} b \mid n \in N\right\}$. Use smallest possible non-negative integers to represent the states of the TM.

7. (6 points)

Fill out the following blanks for the instructions of a Turing machine that accepts the language $\left\{a^{n} b b \mid n \in N\right\}$. Use smallest possible non-negative integers to represent the states of the TM.

