CS375 Homework Assignment 7 (40 points)

Due date: April 3, 2024

1. (6 points)

The language generated by the following grammar is (2 points)

$$
\mathrm{S} \rightarrow \mathrm{acB}|\mathrm{aB} \quad \mathrm{~B} \rightarrow \mathrm{bB}| \wedge
$$

This grammar is LL(
). (1 point)
Use left-factoring we can find an equivalent LL(k) grammar for the above grammar where k is as small as possible. In the following, fill out the blank in the middle portion to make the resulting grammar such an $\operatorname{LL}(k)$ grammar.

2. (6 points)

The language generated by the following grammar is (2 points)

$$
S \rightarrow \text { SaaS |c }
$$

This grammar is left recursive, hence, it is not $\operatorname{LL}(k)$ for any k.
Fill out the blank below to make the resulting grammar equivalent to the above grammar but with no left recursion.

$$
\mathrm{S} \rightarrow \mathrm{cT}
$$

\square (2 points)

Is the resulting grammar $\operatorname{LL}(\mathrm{k})$?

No (1 point)

If your answer is YES, then what is the value of k ? $k=$ \square (1 point)
3. (5 points; 1 point each blank)

The following given grammar is a left recursive grammar

$$
S \rightarrow \text { Sbab | ba } \mid \mathrm{b}
$$

The language generated by this grammar is of the following form:

$$
\mathrm{L}=\left\{b a(b a b)^{m}, b(b a b)^{n} \mid m, n \in N\right\}
$$

This left recursive grammar can be transformed to a right recursive grammar as follows:

4. (6 points; 1 point each blank)

The following grammar is an indirect left recursive grammar

$$
\mathrm{S} \rightarrow \mathrm{Bb}|\mathrm{a} \quad \mathrm{~B} \rightarrow \mathrm{Sa}| \mathrm{b}
$$

Strings of the language generated by this grammar are of the following form:

$$
L=\left\{a(w)^{m}, b b(w)^{n} \mid w=\quad, m, n \in N\right\}
$$

This indirect left recursive grammar can be transformed to a right recursive grammar as follows:

This right recursive grammar is an $\operatorname{LL}(\square)$ grammar.
5. (7 points)

In slide 41 of the notes "Context-free Languages and Pushdown Automata IV", it is shown that the set of $\operatorname{LL}(\mathrm{k})$ languages is a proper subset of the set of deterministic

C-F languages (or see the following figure). In particular, it points out that the language $\left\{a^{m}, a^{n} b^{n} \mid m, n \in N\right\}$ is a deterministic C-F language, but not $\operatorname{LL}(\mathbf{k})$ for any k .

To show the language is not $\operatorname{LL}(\mathrm{k})$ for any k, note that a grammar for this language is

$$
S \rightarrow A \mid B \quad A \rightarrow \quad \square \quad \square \quad \square \rightarrow \quad \square
$$

or

(4 points)
(you only need to answer one case here, either one). The language contains Λ as an element. Now consider the case $k=1$ and consider the input string ab. When the first symbol is scanned, we get an 'a'. This information alone is not enough for us to make a proper choice. So we don't even know what to do with the first step in the parsing process.
For $\mathrm{k}=2$, if we consider the input string aabb, we face the same problem. For any $k>2$, the input string $a^{k} b^{k}$ would cause exactly the same problem. So this grammar is not $\mathrm{LL}(\mathrm{k})$ for any k .

On the other hand, by putting proper instructions into the blanks of the following figure, we get a deterministic final-state PDA that accepts the language $\left\{a^{m}, a^{n} b^{n} \mid m, n \in N\right\}$.

or

(3 points)
(again, you only need to answer one case here, either one). Hence, this language is indeed deterministic C-F, but not $\operatorname{LL}(\mathrm{k})$ for any k .

6. (4 points)

Fill out the following blanks for the instructions of a Turing machine that accepts the language $\left\{a^{n} b \mid n \in N\right\}$. Use smallest possible non-negative integers to represent the states of the TM.

7. (6 points)

Fill out the following blanks for the instructions of a Turing machine that accepts the language $\left\{a^{n} b b \mid n \in N\right\}$. Use smallest possible non-negative integers to represent the states of the TM.

- Solutions must be typed (word processed) and submitted both as a pdf file and a word file to Canvas before 23:59 on 04/03/2024.
- Don't forget to name your files as

CS375_2024s_HW7_LastName.docx / CS375_2024s_HW7_LastName.pdf

