
 CS375 Sample Final Exam (100 points) (Spring 2024) 

Closed book & closed notes                                   April 20, 2024 

                                              Name_______________________________            
1. (5 points) 

Final-state acceptance and empty-stack acceptance are equivalent only for NPDA’s. They are not 

equivalent for DPDA’s. For DPDA’s the class of languages defined by final-state acceptance is 

bigger. Given the following final-state DPDA 

   

   and the following strings 

 

        Ʌ, ab, aa, aabb 

 

which of these strings are accepted by the given final-state DPDA? Put your answer in the 

following blank. 

 

 

                                                                          (2 points) 

 

If the given final-state DPDA is considered as an empty-stack DPDA (state 0 is no longer a final 

state), then which of the given strings are accepted by the empty-stack DPDA? Put your answer 

in the following blank. 

 

 

                                                                          (1 point) 

  

Now, consider the following two general questions. First, what is the language 𝐿1 accepted by 

the given final-state DPDA? Put your answer in the following blank.                   

 

          𝐿1 =                                                          (1 point) 

 

Second, what is the language 𝐿2 accepted by this DPDA when viewed as an empty-stack DPDA? 

Put your answer in the following blank. 

 

          𝐿2 =                                                          (1 point)  

 

 

 

 

 



𝐿1 obviously is bigger than 𝐿2. 

 

 

2. (4 points) 

The following empty-stack PDA accepts the language L = { w ϵ {a, b}* | 𝑛𝑎(w) = 2𝑛𝑏(w) } (assuming 

Λ ∈ 𝐿). 

 

   

 

 For this PDA, tell which one(s) of the following four possible type 3 instructions are legitimate 

type 3 for this empty-stack PDA?  

 

   

 

Put your answer in the following blank. 

 

 

 

 



 

 

3. (6 points) 

Given the following parse tree where S, A, B are non-terminals, a and b are terminals and Ʌ is 

the empty string, show the corresponding left-most derivation of the yield in the blanks on the right 

side.  (6 points) 

 

       (4 pts) 

 

Does the derivation show the grammar is an LL(1) grammar? 

 

          Yes          No   (1 point)  

 

Does the derivation show the grammar is an LL(2) grammar? 

 

          Yes          No   (1 point) 

    

 

4. (6 points) 

The following grammar is a C-F grammar for {𝑎𝑚+𝑛𝑏𝑚𝑐𝑛 | m,n ϵ N}   

                 S → aSc | B                 B → aBb | Ʌ 

If Ʌ, ac, ab, aabc, aaabbc and aaabcc are considered, which one(s) do not satisfy the LL(1) 

requirement? Put the one(s) which do not satisfy the LL(1) requirement in the following box.  (6 

points) 

 

  

 

 

5. (4 points) 

The following grammar is a left recursive grammar 

  

  

 



                 S → Scb | c 

This left recursive grammar can be transformed to a right recursive grammar as follows: 

 

              S  →  

 

              B  →           | 

 

 

This right recursive grammar is an LL(       ) grammar. 

             

6. (7 points) 

In slide 46 of the notes “Contest-free Languages and Pushdown Automata IV”, it is shown that 

the set of LL(k) languages is a proper subset of the set of deterministic C-F languages (see the 

following figure). In particular, it points out that the language {𝑎𝑛, 𝑎𝑛𝑏𝑛 | 𝑛 ∈ 𝑁 } is deterministic C-

F, but not LL(k) for any k. 

 

         

  

To show the language is not LL(k) for any k, note that the grammar for this language is  

          

    or 

         (4 points) 

   (you only need to answer one case here, either one). The language contains Ʌ as an element. 

Now consider the case k = 1 and consider the input string ab. When the first symbol is scanned, 

we get an ‘a’. This information alone is not enough for us to make a proper choice. So we don’t 

even know what to do with the first step in the parsing process. For k = 2, if we consider the input 

string aabb, we face the same problem. For any k > 2, the input string 𝑎𝑘𝑏𝑘 would cause exactly 

the same problem. So this grammar is not LL(k) for any k. 

 

 

  

 



On the other hand, by putting proper instructions into the blanks in the following figure, we get a 

deterministic final-state PDA that accepts the language {𝑎𝑛, 𝑎𝑛𝑏𝑛 | 𝑛 ∈ 𝑁 }. 

          

   or 

          (3 points) 

 

(again, you only need to answer one case here, either one). Hence, this language is indeed 

deterministic C-F, but not LL(k) for any k.   

 

 

7. (6 poinnts) 

Use left-factoring to find an equivalent LL(k) grammar for the following grammar with k being as 

small as possible. In this case, left-factoring will create a production that is always used as the 

first step in the left-most derivation and the common factor contained on the right side of the 

production will provide an automatic match on the first part of the input string.  (9 points; 1 point 

for each of the first six blanks) 

 

                    S → abA | abcS           A → aA | Ʌ 

 

The language generated by the given grammar is:  

         

                                      

 

   

The given grammar is LL(3). 

 

By factoring ab out from S → abA | abcS, the given grammar can be converted to 

 

S → abT   

 



   

                                                                       (1) 

 

This grammar can also be written as 

 

 

                                                                       (2) 

 

Grammars (1) and (2) are both LL(1). 

                  

 

8. (8 points) 

Fill out the following blanks for the instructions of a Turing machine that moves an input string over 

{a, b} to the right one cell position. The tape head initially is at the left end of the input string. The 

machine will move the entire string to the right one cell position and leave all remaining tape cells 

blank. The tape head ends at the right end of the output string.  (8 points) 

        

 

9. (9 points) 

Given an integer say 45, to find the sum of 45 with 8 in binary form (see the figure below), we can 

use the TM designed in slides 79-90 of the notes “Turing Machines and Equivalent Models I” twice 

to find the result. First, we use that TM to find the sum of the given number with 4, and then use 

that TM again to find the sum of the first sum with 4 again. A more effective way is to design a TM 

to do the addition with 8 directly. 

    

   



 

 

Such a TM can be designed by extending the TM designed in slides 79-90 of the notes “Turing 

Machines and Equivalent Models I”. The TM has 14 instructions and 6 states: 0, 1, 2, 3, 4, and 

halt. Five instructions of such a TM have been given in the first table below. Fill out the remaining 

blanks of the first table and also blanks in the second and third tables to show the remaining 

instructions of the TM  

 

      

 

and then fill out the blanks in the following chart to make it a complete state transition diagram for 

this TM. In the diagram, state H means the halt state.  

Note that there are several ways to define the remaining instructions of the TM, but make sure 

the instructions you choose fit into the following diagram naturally and logically.  

 



      

 

10. (12 points) 

Given a non-empty string, we can move the string two units to the left using three different 

approaches. The first approach is to use the TM introduced in slides 44-51 of the notes “Turing 

Machines and Equivalent Models-I” twice; the second approach is to move each letter of the string 

two units to the left directly; the third approach is to use a stack to assist the moving process.     

A TM that can move the string two units to the left directly requires 14 instructions and 11 states. 

In the following, eight instructions for such a TM are given in the tables. Fill out the remaining 

blanks to make the resulting instruction set the instruction set for such a TM and then fill out the 

blanks in the next chart to make it a complete state transition diagram for this TM. In the diagram, 

state H means the halt state.    

 

     
 

Note that there are several ways to define the remaining instructions of the TM, but make sure 

the instructions you choose fit into the following diagram naturally and logically.    



      

 

11. (6 points) 

We know how to design a TM to accept the language {𝑎𝑛𝑏𝑛 | 𝑛 ∈ 𝑁}. The state transition diagram 

of this TM is shown below. This TM has 8 instructions and 5 states: 0, 1, 2, 3 and halt. It uses an 

implicit stack to match the number of a’s in the string with the number of b’s in the string. 

       

 

One can extends the concept of this TM to design a new TM to accept the language {𝑎𝑛𝑏𝑛𝑐𝑛 | 𝑛 ∈

𝑁}. The new TM has 14 distinct instructions and 6 states: 0, 1, 2, 3, 4, and halt. It uses two implicit 

stacks to match the number of a’s in the string with the number of b’s and the number of c’s in the 

string. 

 

Fill out the blanks in the following diagram to make it a complete state transition diagram for the 

new TM. 

 



     
   

12. (2 points) 

   The ‘P versus NP’ problem is a major unsolved problem in computer science. It is an important 

problem because if we can prove that P = NP (i.e., all problems can be solved in polynomial time) 

then 

 

 

 

          

13. (3 points) 

To build a TM to perform addition on three non-zero positive numbers m, n, and p in unary form 

(see the first figure below for the case m=4, n=3 and p=3), a better approach is to perform the 

addition (n+p) first, and then perform m+(n+p). To perform the addition (n+p) first, on its way 

moving right, the TM will ignore the first ‘+’ sign (not change it to ‘1’), only change the second ‘+’ 

to ‘1’, then look for a ‘Ʌ’. When a ‘Ʌ’ is reached, the TM keeps that ‘Ʌ’, turns left and changes the 

‘1’ in the next cell to ‘∗’ (instead of ‘1’) and then turns left (see the second figure below). To perform 

m+(n+p), the TM then moves left to find the first ‘+’, changes it to ‘1’ and turns right (see the third 

figure below). It then moves right to find ‘∗’. Once ‘∗’ is reached, the TM converts ‘∗’ to ‘Ʌ’, turns 

left, changes the ‘1’ in the next cell to ‘Ʌ’, moves one unit to the left and stop.   

 

 

 

 



 

 
  Your task here is to fill out the three blanks in the following figure to make it a TM that can perform addition 

on three given non-zero positive numbers in unary form directly. 

 

    

 

14. (3 points) 

The TM that can perform the subtraction function 𝑓(𝑎 − 𝑏) = 𝑐 on two unary numbers a and b 

when a is bigger than or equal to b in notes “Turing Machines and Equivalent Models-II” can be 

modified to cover the case when b is bigger than a as well. Consider the following input string with 

a=2 and b=5. After two 1’s have been converted to ‘∗’ in both a and b, when the third 1 in b is 

converted to ‘∗’, we don’t have a 1 in a to convert, instead, we find a ‘Ʌ’ (see the second figure 

below). We change that ‘Ʌ’ to ‘0’ and turn right to find another 1 in b to convert to ‘∗’. Again, there 

is no 1 in a to match this ‘∗, but a ‘0’. We skip this ‘0’ to reach a ‘Ʌ’ on the left-hand side (see the 

third figure below). We convert this ‘Ʌ’ to 0 and turn right to find another 1 in b to convert to ‘∗’. We 

repeat the same process again, get one more 0 on the a side (we have three 0’s now) and turn 

right to find another 1 in b to convert. We don’t find any 1, but a ‘Ʌ’ (see the fourth figure below). 

That is, no more 1’s in b to convert. So we turn left to find the left end of the 0 string to stop. This 

is done by moving left to find a ‘Ʌ’ (see figure five below) and then turn right, move one cell to the 

right and stop (see figure six below).   

 



 

 

 

 

 

 

 

Your task here is to fill out the three blanks in the following figure to make it a TM that can subtract 

a bigger number from a smaller number as well. 



.  

             

15. (6 points) 

A TM that can perform multiplication on two positive unary numbers is developed based on the 

concept that “multiplication is extended addition”. For instance, 4 × 5  can be viewed as the 

addition of five 4’s in unary form (see the first figure below). The process is to repeatedly perform 

addition on these five 4’s two at a time (in unary form; see the second and the third figures below) 

until four additions have been performed.  

 

 

 

 

 

 



 

Your task here is to fill out the three blanks in the following TM that does multiplication of two given 

numbers m and n in unary form. Note that the portion circled by the red dotted curve is to perform 

the addition job (putting a copy of m 1’s at the end of n) and the portion circled by the blue dotted 

curve is the portion that does the counting (making sure n copies of m in unary form are put at the 

end of n.  

 

 

 

 

16. (6 points) 

A TM that can perform division on two positive unary numbers is developed based on the concept 

that “division is extended subtraction”. That concept and the implementation steps have been 

clearly described in the notes “Turing Machines and Equivalent Models-II’’. The main body of this 

TM is shown in the first figure below with the portions that perform Step 3 and Step 4 are shown 

in the second and the third figures separately. Your tasks here is to fill out the blanks in the second 

and the third figures so that these two portions can be connected to the proper nodes of the main 

body of the TM correctly. 

 



 

 

 
 

 

 

 

17. (4 points) 

   The Church-Turing Thesis has two versions. The following is the second version: 

 

 

 
Anything that is intuitively computable can be computed by a Turing 

machine. 



 

The first version is shown below. Fill out the blue blank in the following box to make it a complete 

statement.  

 

 

                                                                     (1 point) 

 

  The first version is an if and only if statement and the second version is not. Does this mean the 

other direction of the second version (‘Anything that can be computed by a Turing machine is 

intuitively computable’) is not true? 

 

            YES                      NO                    (1 point) 

 

  Justify your answer in the following text box. 

 

 

 

 

 

                                                                     (2 points) 

 

 

18. (3 points) 

Church-Turing Thesis is not a theorem, but a thesis. Why? Put your answer in the following test 

box. 

 

 

 

 

 

 

 

A problem can be solved by an                if and only if it can 

be solved by a Turing machine. 

 

  

 

 


