
- 273 -

Clipping Output Primitives

• The process of removing the invisible portions of the out-

put primitives while working with the world coordinate

system (WCS)

• Clipping is necessary to avoid the "wrap-around" and

"internal register overflow" problems

• Points and lines lying on the window border are consid-

ered inside.

Screen (or, part of the screen)

Window

x

y

• Clipping and mapping are the responsibility of the appli-

cation programmer



- 274 -

Primitives: points, lines, polygons, text

Point clipping:

(x, y)

(xmax, ymax)

(xmin, ymin)

To determine if a point (x, y) is inside a window defined by

(xmin, ymin), lower-left corner, and (xmax, ymax), upper-right

corner, simply test if

xmin ≤ x ≤ xmax

ymin ≤ y ≤ ymax



- 275 -

Line clipping: (Cohen-Sutherland algorithm)

• To avoid unnecessary computation, perform tests on triv-

ially accepted cases and trivially rejected cases first

• If both endpoints are inside the window, then the line seg-

ment is inside the window

• If both endpoints are to the left (x < xmin), to the right

(x > xmin), below (y < ymin), or above (y > ymin) the win-

dow, then the line segment is outside the window

y = ymin

y = ymax

x = xmaxx = xmin



- 276 -

To perform the tests efficiently, divide the world coordinate

system into 9 regions and assign each of them a four-bit

code

top bottom right left

bit 4 bit 3 bit 2 bit 1

0110

0010

10101001

0101

0001

1000

0100

0000

bit 1: sign bit of (x − xmin)

bit 2: sign bit of (xmax − y)

bit 3: sign bit of (y − ymin)

bit 4: sign bit of (ymax − y)



- 277 -

The Cohen-Sutherland Algorithm

1. Compute the codes for the endpoints of the line segment

to be clipped

2. Repeat until the line segment is either trivially accepted

or rejected

2.1[Trivial Acceptance Test]

If bitwise OR of the codes is 0000 (line segment is

inside the window), draw the line segment and stop.

3. [Trivial Rejection Test]

If bitwise AND of the codes is not 0000 (line segment

is outside the window), discard the line segment and

stop.

4. [Subdivide the segment]

4.1Pick an endpoint whose code is non-zero (the end-

point that is outside the window)

4.2Find the first non-zero bit: this corresponds to the

window edge which intersects the line segment

4.3Compute the intersection point and replace the out-

side endpoint with the intersection point



- 278 -

An Example

1111

/

1010

0101

A:

B:

0000

&

1010

0101

A:

B:

Use bit 2 of A (right clipping edge) to do the subdivision

y = m ⋅ xmax + b

Subdivide at C (Find y coordinate of C)

C

B

A

top bottom right left

bit 4 bit 3 bit 2 bit 1

0110

0010

10101001

0101

0001

1000

0100

0000



- 279 -

Example (con’t)

1101

/ &

1000C:

0000

B: 0101

1000C:

B: 0101

x = (ymax − b)/m

Subdivide at D (need to find x coordinate of D)

Use bit 4 of C (top clipping edge) to do the subdivision

D

C

B

top bottom right left

bit 4 bit 3 bit 2 bit 1

0110

0010

10101001

0101

0001

1000

0100

0000



- 280 -

Example (con’t)

0101

/ &

D: 0000

0000

B: 0101

D: 0000

B: 0101

y = m ⋅ xmin + b

Subdivide at E (need to find y coordinate of E)

E

Use bit 1 of B (left clipping edge) to do the subdivision

D

B

top bottom right left

bit 4 bit 3 bit 2 bit 1

0110

0010

10101001

0101

0001

1000

0100

0000



- 281 -

Example (con’t)

Segment ED is trivially accepted

/ E: 0000

E

D: 0000

D

0000

top bottom right left

bit 4 bit 3 bit 2 bit 1

0110

0010

10101001

0101

0001

1000

0100

0000



- 282 -

Polygon clipping:

• Can not simply use a line clipper since it may generate a

series of unconnected line segments

After clippingBefore clipping

• A polygon clipper should generate one or more closed

areas

After clippingBefore clipping



- 283 -

Sutherland-Hodgman Algorithm

• Polygon boundary is clipped as a whole against the four

edges of the window separately

Clip topClip leftClip bottomClip rightOriginal Polygon

• For each bounding edge of the window, traverse

(directed) edges of the polygon and output vertices

according to the following rules:

i

v2

v2

(d)(c)(b)(a)

right edge

are output
i and v2

v1

No output

v2

v1

i is output

i

v2

v1

outsideinside

v2 is output

v1



- 284 -

An Example
(clipping against the right edge of the window)

Output: v1v1′v2′v3v3′
Process v3v4

v3′

v2′v2′

v1′

v0

v1 v2

v3

v4

v5

v1′

v0

v1 v2

v3

v4

v5

v1′

Output: v1v1′

Output: v1v1′v2′v3

Process v2v3

v0

v1 v2

v3

v4

v5

v0

v1 v2

v3

v4

v5

Right clipping edge

Process v1v2

Output: v1

Start with v0v1



- 285 -

Example (con’t)

v5′

v5′

v3′

v3′

Result: v1v1′v2′v3v3′v5′v0

v3′

Output: v1v1′v2′v3v3′v5′v0

Process v5v0

Output: v1v1′v2′v3v3′
Process v4v5

v0

v2′

v1′v1 v2

v3

v4

v5

v2′

v1′

v0

v1 v2

v3

v4

v5

v1′

v0

v1 v2

v3



- 286 -

Disadvantage of S-H algorithm:

• Output is always a connected area

Remedy: using Weiler-Atherton’s approach

For clockwise processing of polygon vertices in S-H clip-

ping algorithm:

• For an outside-to-inside pair of vertices, follow the poly-

gon boundary

• For an inside-to-outside pair of vertices, follow the win-

dow coundary in a clockwise direction



- 287 -

(stop)

(resume)

v4′

v3′

(resume)
v2′

v0′

v5
v4

v3

v2

v1

v0



- 288 -

Text clipping:

Usually clip the bounding box (rectangle) of an individual

character or the entire string

• All-or-none character-clipping

After clipping

533533S

Before clipping

C

• All-or-none string-clipping

After clipping

533S

Before clipping

C


