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ien
eUniversity of Kentu
ky, Lexington, Kentu
ky 40506-0046Abstra
t. A voxelization te
hnique and its appli
ations for obje
ts with arbitrary topology are presented. Thevoxelization te
hnique 
onverts a free-form obje
t from its 
ontinuous geometri
 representation into a set of voxelsthat best approximates the geometry of the obje
t. Unlike traditional 3D s
an-
onversion based methods, thevoxelization pro
ess in the new method is performed by re
ursively subdividing the 2D parameter spa
e andsampling 3D points from sele
ted 2D parameter spa
e points. Be
ause the new method 
an 
al
ulate every 3Dpoint position expli
itly and a

urately, uniform sampling on surfa
es with arbitrary topology is not a problemany more. Moreover, dis
retization of 3D 
losed obje
ts in the new method is guaranteed to be leak-free when a3D 
ooding operation is performed. This is ensured by showing the voxelization results satisfy the properties ofseparability, a

ura
y and minimality. In addition, a 3D volume 
ooding algorithm using dynami
 programmingte
hniques is presented whi
h signi�
antly speeds up the volume 
ooding pro
ess. Hen
e the new method issuitable for visualization of 
omplex s
enes, measuring obje
t volume, mass, surfa
e area, determining interse
tion
urves of multiple surfa
es and performing a

urate Boolean/CSG operations. These 
apabilities are demonstratedby test examples shown in the paper.Keywords: voxelization, subdivision, Catmull-Clark surfa
es, visualization, parametrization.1 Introdu
tionVolume graphi
s [9℄ represents voxel-based te
hniques aimed at modeling, manipulating and rendering of geometri
obje
ts. These te
hqniques have proven to be superior to traditional 
omputer graphi
s approa
hes in manyaspe
ts. The main advantages of volume graphi
s in
lude: (1) de
oupling of voxelization from rendering, (2)uniformity of representation, and (3) support of Boolean, blo
k and CSG operations. Two drawba
ks of volumegraphi
s te
hniques are their high memory and pro
essing time demands. However, with the progress in both
omputers and spe
ialized volume rendering hardware, these drawba
ks are gradually losing their signi�
an
e.To be represented by the voxel raster, a geometri
 obje
t has to go through a pro
ess 
alled voxelization. Thispro
ess is 
on
erned with 
onverting a geometri
 obje
t from its 
ontinuous geometri
 representation into a setof voxels that best approximates the 
ontinuous obje
t. Traditional voxelization methods (also referred to as 3Ds
an-
onversion) mimi
 the 2D s
an-
onversion pro
ess that pixelizes (rasterizes) 2D geometri
 obje
ts. Hen
etraditional voxelization methods work well for polygon based 3D obje
ts. For surfa
es with arbitrary topology,voxelization using 3D s
an-
onversion is not eÆ
ient, nor a

urate.Subdivision surfa
es have be
ome popular re
ently in graphi
al modeling, visualization and animation be
auseof their 
apability in modeling/representing 
omplex shape of arbitrary topology [1℄, their relatively high visualquality, and their stability and eÆ
ien
y in numeri
al 
omputation. Subdivision surfa
es 
an model/represent
omplex shape of arbitrary topology be
ause there is no limit on the shape and topology of the 
ontrol mesh of asubdivision surfa
e. With parametrization te
hniques for subdivision surfa
es be
oming available [2, 5℄ and withthe fa
t that non-uniform B-spline and NURBS surfa
es are spe
ial 
ases of subdivision surfa
es be
oming known[7℄, we now know that subdivision surfa
es 
over both parametri
 forms and dis
rete forms. Parametri
 forms aregood for design and representation, dis
rete forms are good for ma
hining and tessellation (in
luding FE meshgeneration). Hen
e, we have a representation s
heme that is good for all graphi
s and CAD/CAM appli
ations.1



In this paper we propose a voxelization method for free-form solids represented by Catmull-Clark subdivisionsurfa
es. The new method is based on re
ursive sampling of 2D parameter spa
e points of a surfa
e pat
h, insteadof dire
t sampling of 3D points. Hen
e the new method is more eÆ
ient and less sensitive to numeri
al error.Note that a voxelization pro
ess does not render the voxels but merely generates a database of the dis
rete dig-itization of the 
ontinuous obje
t [8℄. Some previous voxelization methods use quad-trees to store the voxelizationresult. This approa
h 
an save memory spa
e but might sa
ri�
e in 
omputation time when used for appli
ationssu
h as Boolean operations or interse
tion 
urves determination. Nevertheless, with 
heap and giga-byte memory
hips be
oming available, storage requirement is no longer a major issue in the design of an algorithm. People
are more about the eÆ
ien
y of the algorithm. The new method stores the voxelization result dire
tly in a Cubi
Frame Bu�er for fast operation purpose.2 Ba
kground2.1 3D Dis
rete Spa
eA 3D dis
rete spa
e is a set of integral grid points in 3D Eu
lidean spa
e de�ned by their Cartesian 
oordinates(x; y; z), with x; y; z 2 Z. A voxel is a unit 
ube 
entered at the integral grid point. Usually a voxel is assigned avalue of 0 or 1. The voxels assigned an `1', 
alled the `bla
k' voxels, represent opaque obje
ts. Those assigned a `0',
alled the `white' voxels, represent the transparent ba
kground. Outside the s
ope of this paper is a non-binaryapproa
h where the voxel values are mapped onto the interval [0,1℄ representing either partial 
overage, variabledensities, or graded opa
ities. Due to its larger dynami
 range of values, this approa
h 
an support higher qualityrendering.Two voxels are said to be 26-adja
ent (See Fig. 1(
)) if they share a vertex, an edge, or a fa
e. Every givenvoxel has 26 su
h adja
ent voxels: eight share a vertex (
orner) with the given voxel, twelve share an edge, andsix share a fa
e. A

ordingly, fa
e-sharing voxels are said to be 6-adja
ent (See Fig. 1(a)), and edge-sharing andfa
e-sharing voxels are said to be 18-adja
ent (See Fig. 1(b)).The pre�x N is used to de�ne the adja
en
y relation, with N= 6, 18, or 26. A sequen
e of voxels having thesame value (e.g., `bla
k') is 
alled an N -path if all 
onse
utive pairs are N -adja
ent. A set of voxels are said tobe N -
onne
ted if there is an N -path between every pair of its voxels. It is easy to see that N -
onne
tedness isan equivalent relation. Given three disjoint sets of voxels A, B and C, A is said to N -separate B and C if anyN -path from a voxel of B to a voxel of C interse
ts A.
(a) 6-adja
ent (b) 18-adja
ent (
) 26-adja
entFigure 1: N -adja
en
y, N 2 f6; 18; 26g.2.2 Catmull-Clark Subdivision Surfa
esCatmull-Clark subdivision s
heme provides a powerful method for building smooth and 
omplex surfa
es. Givena 
ontrol mesh, a Catmull-Clark subdivision surfa
e (CCSS) is generated by iteratively re�ning (subdividing) the
ontrol mesh to form new and �ner 
ontrol meshes [1℄. The mesh re�ning pro
ess 
onsists of de�ning new verti
esand 
onne
ting the new verti
es to form new edges and fa
es of a new 
ontrol mesh. A CCSS is the limit surfa
e2



of the re�ned 
ontrol meshes. The limit surfa
e is 
alled a subdivision surfa
e be
ause the mesh re�ning pro
essis a generalization of the uniform B-spline surfa
e subdivision te
hnique. The valen
e of a mesh vertex is thenumber of mesh edges adja
ent to the vertex. A mesh vertex is 
alled an extra-ordinary vertex if its valen
e isdi�erent from four. A mesh fa
e with an extra-ordinary vertex is 
alled an extra-ordinary fa
e. The valan
e of anextra-ordinary fa
e is the valen
e of its extra-ordinary vertex. In the following, for the sake of simpli
ity, a meshfa
e and the 
orresponding surfa
e pat
h will be treated the same and denoted by the same notation.As we 
an see the number of fa
es in the uniformly re�ned meshes in
reases exponentially with respe
t tosubdivision depth. Hen
e it is impossible to a

urately sample 3D points dire
tly on subdivided surfa
es. Fortu-nately, parametrization te
hniques for subdivision surfa
es have be
ome available re
ently [2, 3, 4, 5℄. ThereforeeÆ
ient and a

urate sampling for voxelization is not a problem any more. Given an extra-ordinary fa
e S, ifthe valen
e of its extra-ordinary vertex is n, then the surfa
e pat
h 
orresponding to this extra-ordinary fa
e isin
uen
ed by 2n+ 8 
ontrol verti
es. One 
an use these 
ontrol points to expli
itly and a

urately evaluate theposition, normal and parti
al derivatives for any point of the limit surfa
e pat
h. We will review the most re
entparametrization te
hniques for CCSS in the next se
tion.3 Related Work3.1 Voxelization Te
hniquesVoxelization te
hniques 
an be 
lassi�ed into two major 
ategories. The �rst 
ategory 
onsists of methods thatextend the standard 2D s
an-line algorithm and employ numeri
al 
onsiderations to guarantee that no gapsappear in the resulting dis
retization. As we know polygons are fundamental primitives in 3D surfa
e graphi
sin that they approximate arbitrary surfa
es as a mesh of polygonal pat
hes. Hen
e, early work on voxelizationfo
used on voxelizing 3D polygon meshes [10, 11, 12, 13, 14℄ by using 3D s
an-
onversion algorithm. Althoughthis type of methods 
an be extended to voxelize parametri
 
urves, surfa
es and volumes [15℄, it is diÆ
ult todeal with freefrom surfa
es of arbitrary topology.The other widely used approa
h for voxelizing free-form solids is to use spatial enumeration algorithms whi
hemploy point or 
ell 
lassi�
ation methods in either an exhaustive fashion or by re
ursive subdivision [18, 19, 20,21℄. However, 3D spa
e subdivision te
hniques for models de
omposed into 
ubi
 subspa
es are 
omputationallyexpensive and thus inappropriate for medium or high resolution grids. The voxelization te
hnique that we willbe presenting uses re
ursive subdivision. The di�eren
e is the new method performs re
ursive subdivision on 2Dparameter spa
e, not on the 3D obje
t. Hen
e expensive distan
e 
omputation between 3D points is avoided.Like 2D pixelization, voxelization is a powerful te
hnique for representing and modeling 
omplex 3D obje
ts.This is proved by many su

essful appli
ations of volume graphi
s te
hniques in re
ently reported resear
h work.For example, voxelization 
an be used for visualization of 
omplex obje
ts or s
ene [19℄. It 
an also be usedfor measuring integral properties of solids, su
h as mass, volume and surfa
e area [21℄. Most importantly, it
an be used for interse
tion 
urve 
al
ulation and performing a

urate Boolean operations. For example, in[20, 22℄, a series of Boolean operations are performed on obje
ts represented by a CSG tree. Voxelization is su
han important te
hnique that several hardware implementations of this te
hnique have been reported re
ently[16, 17℄.3.2 Evaluation of a CCSS Pat
hSeveral approa
hes [2, 3, 4, 5℄ have been proposed for exa
t evaluation of an extraordinary pat
h at any parameterspa
e point (u; v). The parametrization te
hnique presented in [5℄ will be used here. The representation s
heme ofthis parametrization te
hnique is expli
it and uses only one half of the eigen basis fun
tions in the representation.Therefore, it is 
omputationally more eÆ
ient and 
an be used to 
ompute tangents and normal for any point ofthe limit surfa
e exa
tly and expli
itly. Some most related results of [5℄ are summarized below.The parametrization/evaluation approa
h in [5℄ is presented for general Catmull-Clark subdivision surfa
e.That is, the new vertex point V0 of V after one subdivision is 
omputed as follows:V0 = �nV + �n( nXi=1 Ei)=n+ 
n( nXi=1 Fi)=n3



where �n, �n and 
n are positive numbers and �n + �n + 
n = 1. The new fa
e points and edge points are
omputed the same way though.The parametrization and evaluation of a surfa
e pat
h 
an be written expli
itly as follows [5℄.S(u; v) =W TKm n+5Xj=0 �m�1j Mb;j G (1)where n is the valan
e of the extraordinary pat
h, W is a ve
tor 
ontaining the 16 B-spline power basis fun
tionsand K is a 
onstant diagonal matrix. G is the ve
tor of the 2n+ 8 
ontrol points of the pat
h. In addition, mand b are two real numbers dependent on (u; v) and 
an be 
al
ulated dire
tly from (u; v) [5℄. � and Mb;j areindependent of (u; v) and their exa
t expressions are given in [5℄. One 
an 
ompute the derivatives of S(u; v) toany order simply by di�erentiating W (u; v) in Eq. (1) a

ordingly. With the expli
it expression of S(u; v) andits partial derivatives, one 
an easily get the limit point of an extraordinary vertex in a general Catmull Clarksubdivision surfa
e: S(0; 0) = [1; 0; � � � ; 0℄ �M2;n+1 �Gand the �rst and se
ond derivatives:Du = [0; 1; 0; 0; 0; 0; 0; � � � ; 0℄ �M2;2 �GDv = [0; 0; 1; 0; 0; 0; 0; � � � ; 0℄ �M2;2 �GDuu = [0; 0; 0; 2; 0; 0; 0; � � � ; 0℄ �M2;2 �GDuv = [0; 0; 0; 0; 1; 0; 0; � � � ; 0℄ �M2;2 �GDvv = [0; 0; 0; 0; 0; 2; 0; � � � ; 0℄ �M2;2 �Gwhere M2;n+1 and M2;2 are 
onstant matri
es of dimension 16� (2n+8) [5℄, Du, Dv , Duu, Duv and Dvv are thedire
tion ve
tors of �S(0;0)�u , �S(0;0)�v , �2S(0;0)�u�u , �2S(0;0)�u�v and �2S(0;0)�v�v , respe
tively. The normal ve
tor at (0; 0) is the
ross produ
t of Du and Dv .4 Voxelization based on Re
ursive Parameter Spa
e Subdivision4.1 Basi
 IdeaGiven a free-form obje
t represented by a CCSS and a 
ubi
 frame bu�er of resolutionM1�M2�M3, the goal isto 
onvert the CCSS represented free-form obje
t (i.e. 
ontinuous geometri
 representation) into a set of voxelsthat best approximates the geometry of the obje
t. We assume ea
h fa
e of the 
ontrol mesh is a quadrilateral andea
h fa
e has at most one extra-ordinary vertex If this is not the 
ase, simply perform Catmull-Clark subdivisionon the 
ontrol mesh of the CCSS twi
e.We �rst 
onsider the voxelization pro
ess of a subpat
h, whi
h is a small portion of a pat
h. Given a subpat
hof S(u; v) de�ned on [u1; u2℄� [v1; v2℄, we voxelize it by assuming this given subpat
h is small enough (hen
e, 
atenough) so that voxels generated from this subpat
h are the same as the voxels generated from its four 
orners:V1 = S(u1; v1); V2 = S(u2; v1); V3 = S(u2; v2); V4 = S(u1; v2):Usually this assumption does not hold. Hen
e a test must be performed before the pat
h or subpat
h is voxelized.It is easy to see that if the voxels generated from its four 
orners are not N -adja
ent (N 2 f6; 18; 26g) to ea
hother, then there exist holes between them. In this 
ase, the pat
h or subpat
h is still not small enough. To makeit smaller, we perform a midpoint subdivision on the 
orresponding parameter spa
e by settingu12 = u1 + u22 and v12 = v1 + v22to get four smaller subpat
hes:S([u1; u12℄� [v1; v12℄); S([u12; u2℄� [v1; v12℄); S([u12; u2℄� [v12; v2℄); S([u1; u12℄� [v12; v2℄);and repeat the testing pro
ess on ea
h of the subpat
hes. The pro
ess is re
ursively repeated until all thesubpat
hes are small enough and 
an be voxelized using only their four 
orners.4
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(b)(a)Figure 2: Basi
 idea of parameter spa
e based re
ursive voxelization.The verti
es of the resulting subpat
hes after the re
ursive parameter spa
e subdivision are then used asverti
es for voxelization that approximates the limit surfa
e. For example, if the four re
tangles in Figure 2(a)are the parameter spa
es of four adja
ent subpat
hes of S(u; v), and if the re
tangles shown in Figure 2(b) are theparameter spa
es of the resulting subpat
hes when the above re
ursive testing pro
ess stops, then 3D points willbe evaluated at the 2D parameter spa
e points marked with small solid 
ir
les to form voxels that approximatethe limit surfa
e.To make things simple, we �rst normalize the input mesh to be of dimension [0;M1�1℄�[0;M2�1℄�[0;M3�1℄.Then for any 2D parameter spa
e point (u; v) generated from the re
ursive testing pro
ess (See Fig. 2), dire
t andexa
t evaluation is performed to get its 3D surfa
e position and normal ve
tor at S(u; v). To get the voxelized
oordinates (i; j; k) from S(u; v), simply seti = bS(u; v):x+ 0:5
; j = bS(u; v):y + 0:5
; k = bS(u; v):z + 0:5
: (2)On
e every single point marked in the re
ursive testing pro
ess is voxelized, the pro
ess for voxelizing the givenpat
h is �nished. The proof of the 
orre
tness of our voxelization results will be dis
ussed in the next se
tion.Sin
e the above pro
ess guarantees that shared boundary or vertex of pat
hes or subpat
hes will be voxelizedto the same voxel, we 
an perform voxelization of free-form obje
ts represented by a CCSS on a pat
h basis. Onething that should be pointed out is, to avoid sta
k over
ow, only small subpat
hes should be fed to the re
ursivesubdivision and testing pro
ess. This is espe
ially true when a high resolution 
ubi
 frame bu�er is given orsome polygons are very big in the given 
ontrol mesh. Generating small subpat
hes is not a problem for a CCSSon
e the parametrization te
hniques are available. For example, in our implementation, the size of subpat
hes(in the parameter spa
e) fed to re
ursive testing is 18 � 18 , i.e. ea
h pat
h is divided into 8� 8 subpat
hes beforethe voxelization pro
ess. In addition, feeding small-size subpat
hes to the re
ursive testing pro
ess ensures theassumption of our voxelization pro
ess to be satis�ed, be
ause the smaller the parameter size of a subpat
h, the
atter the subpat
h.4.2 Subpat
h TestingThe basi
 assumption of our voxelization algorithm is that ea
h subpat
h is small enough (hen
e, 
at enough)so that all the voxels generated from it are the same as the voxels generated using only the four 
orners of thissubpat
h. Now the problem is, for a given subpat
h, how to tell if the assumption is satis�ed or not. Usuallythis assumption does not hold. Hen
e a testing pro
ess must be performed before every pat
h or subpat
h isvoxelized. It is easy to see that if the voxels generated using its four 
orners are not N -adja
ent (N 2 f6; 18; 26g)to ea
h other, then there exist holes between them. In this 
ase, the pat
h or subpat
h is still not small enough.Conversely, we 
an say a given subpat
h satis�es our basi
 assumption if the voxels generated using its four
orners are N -adja
ent (N 2 f6; 18; 26g) to ea
h other, be
ause the given subpat
h is at least C1 
ontinuous,and is small enough (hen
e, 
at enough). Therefore we 
an tell if a subpat
h satis�es the basi
 assumptionor not by testing the N -adja
en
y (N 2 f6; 18; 26g) of the voxels generated by its four 
orners. For example,suppose �i, �j and �k are the maximum absolute di�eren
es of the voxels generated from the four 
ornersin x, y and z dire
tions, then for 6-adja
ent voxelization, we 
an say the given subpat
h satis�es our basi
assumption if (�i + �j + �k � 1). Similarly, for 18-adja
ent and 26-adja
ent voxelization, the 
orrespondingtesting requirements are (�i � 1 & �j � 1 & �k � 1 & �i +�j +�k � 2) and (�i � 1 & �j � 1 & �k � 1),respe
tively. 5



Be
ause �i, �j and �k are intergers, the testing pro
ess is very fast. In addition, the subpat
h testing pro
essgenerates a optimum partition of a given pat
h or subpat
h in the voxelization pro
ess. For example Fig. 2(b)are the parameter spa
es of the resulting subpat
hes when the above re
ursive testing pro
ess stops. 3D pointswill only be evaluated at the 2D parameter spa
e points marked with small solid 
ir
les to form voxels thatapproximate the limit surfa
e. Hen
e our testing pro
ess adaptively partitions given subpat
hes and evaluates 3Dpositions only if they are absolutely needed in the voxelization pro
ess. As a result, 
ompared to other uniform 3Dpoints sampling approa
hes, the 
ost of our adaptive 3D points sampling and evalation (whi
h is the dominating
ost of a voxelization pro
ess) is redu
ed dramti
ally.The above testing pro
ess assumes when a given subpat
h is small enough, then it is also 
at enough. Certainly,this assumption might not hold in some very spe
ial 
ases. Hen
e other 
onditions, like 
atness of a subpat
h [6℄
an be in
luded in the subpat
h testing pro
ess as well. However, the voxelization pro
ess will be slowed downa lot in this way. All the examples we have tested show that it is good enough to use only the N -adja
en
y(N 2 f6; 18; 26g) in the testing pro
ess.4.3 Voxelization AlgorithmsThe above voxelization method, based on re
ursive subdivision of the parameter spa
e, is summarized into thefollowing algorithms: Voxelization and VoxelizeSubPat
h. The parameters to these algorithms are de�ned as fol-lows. S: 
ontrol mesh of a CCSS whi
h represents the given obje
t; N : an integer that spe
i�es the N -adja
en
yrelationship between adja
ent voxels; M1, M2, and M3: resolution of the Cubi
 Frame Bu�er; k: an integer thatspe
i�es the number of subpat
hes (k�k) that should be generated before fed to the re
ursive voxelization pro
ess.Voxelization(Mesh S, int N , int M1, int M2, int M3, int k)1. normalize S so that S is bounded by an axis-aligned 
ube of dimension [0;M1� 1℄� [0;M2� 1℄� [0;M3� 1℄2. for ea
h pat
h pid in S3. for u = 1k : 1; step size 1k4. for v = 1k : 1; step size 1k5. VoxelizeSubPat
h(N , pid, u� 1k , u, v � 1k , v);VoxelizeSubPat
h(int N , int pid, 
oat u1, 
oat u2, 
oat v1, 
oat v2)1. (i1; j1; k1) = Voxelize(S(pid; u1; v1));2. (i2; j2; k2) = Voxelize(S(pid; u2; v1));3. (i3; j3; k3) = Voxelize(S(pid; u2; v2));4. (i4; j4; k4) = Voxelize(S(pid; u1; v2));5. if(ju2 � u1j < 1=maxfM1;M2;M3g) return;6. �i = maxfjia � ibjg, with a and b 2 f1; 2; 3; 4g;7. �j = maxfjja � jbjg, with a and b 2 f1; 2; 3; 4g;8. �k = maxfjka � kbjg, with a and b 2 f1; 2; 3; 4g;9. if(N = 6 & �i +�j +�k � 1) return;10. if(N = 18 & �i � 1 & �j � 1 & �k � 1 & �i +�j +�k � 2) return;11. if(N = 26 & �i � 1 & �j � 1 & �k � 1) return;12. u12 = (u1 + u2)=2; v12 = (v1 + v2)=2;13. VoxelizeSubPat
h(N; pid; u1; u12; v1; v12);14. VoxelizeSubPat
h(N; pid; u12; u2; v1; v12);15. VoxelizeSubPat
h(N; pid; u12; u2; v12; v2);16. VoxelizeSubPat
h(N; pid; u1; u12; v12; v2);In algorithm `VoxelizeSubPat
h', 
orresponding surfa
e points for the four 
orners are evaluated using eq. (1),where pid tells us whi
h pat
h we are 
urrently working on. The routine `Voxelize' voxelizes points by using eq.(2). Lines 9, 10 and 11 are used to test if voxelizing the four 
orners of a subpat
h is enough to generate a 6-, 18-and 26-adja
ent voxelization, respe
tively, while Line 5 prevents the re
ursive pro
ess from non-stop dead loopin 
ase Lines 9, 10 and 11 are always not satis�ed. 6



5 Separability, A

ura
y and MinimalityLet S be a C1 
ontinuous surfa
e in R3. We denote by �S the dis
rete representation of S. �S is a set of bla
kvoxels generated by some digitalization method. There are three major requirements that �S should meet inthe voxelization pro
ess. First, separability [8, 13℄, whi
h requires to preserve the analogy between 
ontinuousand dis
rete spa
e and to guarantee that �S is not penetrable sin
e S is C1 
ontinuous. Se
ond, a

ura
y. Thisrequirement ensures that �S is the most a

urate dis
rete representation of S a

ording to some appropriate errormetri
. Third, minimality [8, 13℄, whi
h requires the voxelization should not 
ontain voxels that, if removed,make no di�eren
e in terms of separability and a

ura
y. The mathemati
al de�nitions for these requirements
an be found in [13℄, whi
h are based on [8℄.First we 
an see that voxelization results generated using our re
ursive subdivision method satisfy the require-ment of minimality. The reason is that voxels are sampled dire
tly from the obje
t surfa
e. The termination
ondition of our re
ursive sampling pro
ess (i.e., Line 9, 10, 11 in algorithm `VoxelizeSubPat
h') and the 
oor-dinates transformation in eq. (2) guarantee that every point in the surfa
e has one and only one image in theresulting voxelization. In other words,8 P 2 S; 9 Q 2 �S; su
h that P 2 Q: (3)Note that here P is a 3D point and Q is a voxel, whi
h is a unit 
ube. On the other hand, be
ause all voxels aremapped dire
tly from the obje
t surfa
e using eq. (2), we have8 Q 2 �S; 9 P 2 S; su
h that P 2 Q: (4)Hen
e no voxel 
an be removed from the resulting voxelization, i.e., the property of minimality is satis�ed. Inaddition, from eq. (3) and eq. (4) we 
an also 
on
lude that the resulting binary voxelization is the most a

urateone with respe
t to the given resolution. Hen
e the property of a

ura
y is satis�ed as well.To prove that our voxelization results satisfy the separability property, we only need to show that there isno holes in the resulting voxelization. For simpli
ity, here we only 
onsider 6-separability, i.e., there does notexist a ray from a voxel inside the free-form solid obje
t to the outside of the free-form solid obje
t in x, y orz dire
tion that 
an penetrate our resulting voxelization without interse
ting any of the bla
k voxels. We provethe separability property by 
ontradi
tion. As we know violating separability means there exists at least a hole(voxel) Q in the resulting voxelization that is not in
luded int �S but is interse
ted by S and, there must alsoexist two 6-adja
ent neighbors of Q that are not in
luded in �S either and are on opposite sides of S. Be
auseS interse
ts with Q, there exist at least one point P on the surfa
e that interse
ts with Q. But the image of Pafter voxelization is not Q be
ause Q is a hole. However, the image of P after voxelization must exist be
ause ofthe termination 
ondition of our re
ursive sampling pro
ess (i.e., Line 8, 9, 10 in algorithm `VoxelizeSubPat
h').Moreover, a

ording to our voxelization method, P 
an only be voxelized into voxel Q be
ause of eq. (2). Hen
eQ 
annot be a hole, 
ontradi
ting our assumption. Therefore, we 
on
lude that �S is 6-separating.6 Volume Flooding with Dynami
 Programming6.1 Seed Sele
tionA seed must be designated before a 
ooding algorithm 
an be applied. In 2D 
ooding, a seed is usually givenby the user intera
tively. However, in 3D 
ooding, for a 
losed 3D obje
t, it is impossible for a user to designatea voxel as a seed by mouse-
li
king be
ause voxels inside a 
losed 3D obje
t are invisible. Hen
e an automati
method is needed to sele
t an inside voxel as a seed for volume 
ooding. On
e we 
an 
orre
tly 
hoose an insidevoxel, the by applying a 
ooding operation, all inside voxels 
an be obtained. To sele
t a voxel as a seed forvolume 
ooding, we need to tell if a voxel is inside or outside the 3D obje
t. This is not a trivial problem. Inthe past In-Out test for voxels is not eÆ
ient and not a

urate [21℄, espe
ially for topologi
ally 
ompli
ated 3Dobje
ts.With the availability of parametrization te
hniques for subdivision surfa
es, we now 
an 
al
ulate derivativesand normals exa
tly and expli
itly for ea
h point lo
ated on the 3D obje
t surfa
e. Hen
e the normal for ea
hvoxel 
an also be exa
tly 
al
ulated in the voxelization pro
ess. Be
ause the dire
tion of a normal is perpendi
ular7



to the surfa
e and points towards the outside of the surfa
e, the 
losest voxel in its opposite dire
tion must belo
ated either inside or on the surfa
e (Assume the voxelization resolution is high enough). For a given voxel(
alled start voxel), to 
hoose the 
losest voxel in its normal's opposite dire
tion, we just need to 
al
ulate thedot produ
t of its normal and one of the axis ve
tors. These ve
tors are: f1; 0; 0g, f�1; 0; 0g, f0; 1; 0g, f0;�1; 0g,f0; 0; 1g, f0; 0;�1g 
orresponding to x, �x, y, �y, z and �z dire
tion, respe
tively. The dire
tion with smallestdot produ
t is 
hosen for �nding an inside voxel. If the 
losest voxel in this 
hosen dire
tion is also a bla
k voxel(i.e., lo
ated on the 3D obje
t surfa
e), another start voxel has to be sele
ted and the above pro
ess is repeateduntil an inside voxel is found. The found inside voxel 
an be designated as a seed for inside volume 
ooding.Similarly, an outside voxel 
an also be found for outside volume 
ooding. In this 
ase, the seed voxel should notbe 
hosen from the normal's opposite dire
tion, but along the normal's dire
tion.
D

C

A

1P2P

3P

1N2N

3N
BFigure 3: A voxel with multiple pie
es of obje
t surfa
e in it.However, if the voxelization resolution is not high enough, the 
losest voxel in the normal's opposite dire
tionmight be an outside voxel. For example, in Figure 3, ABCD denotes a voxel and part of the obje
t surfa
e passesthrough this voxel. Di�erently, there are two pie
es of surfa
e that are not 
onne
ted but are all inside this voxel.If we 
hoose P1 as the start point in Figure 3 to �nd an inside voxel using the above seed sele
tion method, anoutside voxel will be wrongly 
hosen. Hen
e the above method is no longer appli
able in this 
ase. To resolvethe problem in this situation, higher voxelization resolution 
ould be used. However, no matter how high thevoxelization resolution is, we still 
annot guarantee 
ases like the one shown in Figure 3 will not o

ur. Hen
eother approa
h is needed.Fortunately, voxels that have multiple pie
es of surfa
e passing through, like the one shown in Figure 3, 
an beeasily identi�ed in the voxelization pro
ess. To identify these voxels, we need to 
al
ulate normals for ea
h voxel.For example, in Figure 3, if surfa
e point P1 is mapped to voxel ABCD, then the normal at P1 whi
h is N1, isalso memorized as the normal of this voxel. Next time if another surfa
e point, say P2, is also mapped to voxelABCD, then the normal at P2 whi
h is N2, will be �rst 
ompared with the memorized normal of voxel ABCDby 
al
ulating their dot produ
t. If N1 �N2 > 0, then nothing need to be done. Otherwise, say surfa
e point P3,whi
h is mapped to the same voxel and its normal is N3, if N1 � N3 � 0, then this voxel is marked as a voxelthat has multiple pie
e passing through. On
e every voxel that has multiple pie
es of surfa
e passing through ismarked, we 
an easily solve the problem simply by not 
hoosing these marked voxels as the start voxels.6.2 3D Flooding using Dynami
 ProgrammingIn this se
tion we only 
onsider 
ooding algorithms using 6-separability, but the idea 
an be applied to N -separability with N = 18 or 26, Although 6-separability is used in the 
ooding pro
ess, the voxelization itself
an be N -adja
ent with N = 6; 18 or 26, On
e a seed is 
hosen, 3D 
ooding algorithms 
an be performed inorder to �ll all the voxels that are 6-
onne
ted with this seed voxel. The simplest 
ooding algorithm is re
ursive
ooding, whi
h re
ursively sear
h adja
ent voxels in 6 dire
tions for 6-
onne
ted voxels. This method soundsideally reasonable but does not work in real world be
ause even for a very low resolution, it would still 
ausesta
k over
ow.Another method that 
an be used for 
ooding is 
alled linear 
ooding, whi
h sear
hes adja
ent voxels that are6-
onne
ted with the given the seed voxel, linearly from the �rst voxel to the last voxel in the 
ubi
 frame bu�er,and marks all the found voxels with gray. The sear
h pro
ess is repeated until no more white (`0') voxels is foundthat are 6-
onne
ted with one of the gray voxels. Linear 
ooding is simple and does not require extra memoryin the 
ooding pro
ess. However, it is very slow, espe
ially when a high resolution is used in the voxelizationpro
ess. 8



In many appli
ations, 3D 
ooding operations are required to be fast with low extra memory 
onsumption.To make a 3D 
ooding algorithm appli
able and eÆ
ient, we 
an 
ombine the re
ursive 
ooding and the linear
ooding methods using the so 
alled dynami
 programming te
hnique.Dynami
 programming usually breaks a problem into subproblems, and these subproblems are solved and thesolutions are memorized, in 
ase they need to be solved again. This is the essentiality of dynami
 programming.To use dynami
 programming in our 3D 
ooding algorithm, we use a sub-routine FloodingXYZ whi
h marksinside voxels having the same x, y or z 
oordinates as the given seed voxel, and all marked voxels are memorizedby pushing them into a sta
k 
alled GRAYSTACK. Note here the sta
k has a limited spa
e, whose length isspe
i�ed by the user. When the sta
k rea
hes its maximal 
apa
ity, no gray voxels 
an be pushed into it. Hen
eit guarantees limited memory 
onsumption. The 3D 
ooding algorithm with dynami
 programming 
an improvethe 
ooding speed signi�
antly. For ordinary resolution, say, 512� 512� 512, a 
ooding operation 
an be donealmost in real time. The pseudo
ode for the 3D volume 
ooding algorithm is given as follows and the parameters(si, sj , sk) are the 
oordinates of the given seed voxel.VolumeFlooding(int si, int sj , int sk)1. FloodingXYZ(si, sj , sk);2. loop = 1;3. while(loop)4. while (GRAYSTACK is not empty)5. (i; j; k) = GRAYSTACK.Pop();6. FloodingXYZ(i; j; k)7. loop = 0;8. for(i = 0; i < M1; i++)9. for(j = 0; j < M2; j++)10. for(k = 0; k < M3; k++)11. if ( Voxel (i; j; k) is white and is 6-adja
ent with a gray voxel)12. FloodingXYZ(i; j; k);13. loop = 1;7 Appli
ations7.1 Visualization of Complex S
enesRay tra
ing is a 
ommonly used method in the �eld of visualization of volume graphi
s. This is due to its abilityto enhan
e spatial per
eption of the s
ene using te
hniques su
h as transparen
y, mirroring and shadow 
asting.However, there is a main disadvantage for ray tra
ing approa
h: large 
omputational demands. Hen
e rendingusing this method is very slow. Re
ently, surfa
e splatting te
hnique for point based rendering has be
ome popular[23℄. Surfa
e splatting requires the position and normal of every point to be known, but not their 
onne
tivity.With expli
it position and exa
t normal information for ea
h voxel in our voxelization results, now it is mu
heasier for us to render dis
rete voxels using surfa
e splatting te
hniques. The rendering is fast and high qualityresults 
an be obtained. For example, Fig. 4(a) is the given mesh, Fig. 4(b) is the 
orresponding limit surfa
e.After the voxelization pro
ess, Fig. 4(
) is generated only using basi
 point based rendering te
hniques withexpli
itly known normals to ea
h voxel. While Fig. 4(d) is rendered using splatting based te
hniques. The sizeof 
ubi
 frame bu�er used for Fig. 4(
) is 512 � 512 � 512. The voxelization resolution used for Fig. 4(d) is256 � 256 � 256. Although the resolution is mu
h lower, we 
an tell from Fig. 4, that the one using splattingte
hniques is smoother and 
loser to the 
orresponding obje
t surfa
e given in Fig. 4(b).7.2 Integral Properties MeasurementAnother appli
ation of voxelization is that it 
an be used to measure integral properties of solid obje
ts su
h asmass, volume and surfa
e area. Without dis
retization, these integral properties are very diÆ
ult to measure,espe
ially for free-form solids with arbitrary topology. 9



(a) Given Mesh (b) Obje
t Sur-fa
e (
) Point Based (d) SplattingBased (e) Di�eren
e

(f) Union (g) Di�eren
e

(h) Interse
tion Curve (i) Boolean Operations (j) Boolean Operations

(k) CSG Operations (l) Di�eren
e (m) Union (n) Di�eren
eFigure 4: Appli
ations of Voxelization
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Volume 
an be measured simply by 
ounting all the voxels inside or on the surfa
e boundary be
ause ea
h voxelis a unit 
ube. With eÆ
ient 
ooding algorithm, voxels inside or on the boundary 
an be pre
isely 
ounted. Butthe resulting measurement may not be a

urate be
ause boundary voxels do not o

upy all the 
orresponding unit
ubes. Hen
e for higher a

ura
y, higher voxelization resolution is needed. On
e the volume is known, it is easyto measure the mass simply by multiplying the volume with density. Surfa
e area 
an be measured similarly. Butusing this approa
h would lead to big error be
ause we do not know how surfa
es pass through their 
orrespondingvoxels. Fortunately, surfa
e area 
an be measured mu
h more pre
isely in the voxelization pro
ess. As we know,during the re
ursive voxelization pro
ess, if the re
ursive pro
ess stops, all the marked parameter points of apat
h or subpat
h (See Fig. 2) are points used for �nal voxelization. Hen
e all these quadrilaterals 
orrespondingto these marked parameter points 
an be used for measuring surfa
e area after these marked parameter spa
epoints are mapped to 3D spa
e. The 
atness of these quadrilaterals is required to be tested if high a

ura
y isneeded. The de�nition of pat
h 
atness and the 
atness testing method 
an be found in [6℄.7.3 Performing Boolean and CSG OperationsThe most important appli
ation of voxelization is to perform Boolean and CSG operations on free-form obje
ts.In solid modeling, an obje
t is formed by performing Boolean operations on simpler obje
ts or primitives. ACSG tree is used in re
ording the 
onstru
tion history of the obje
t and is also used in the ray-
asting pro
essof the obje
t. Surfa
e-surfa
e interse
tion (in
luding the in-on-out test) and ray-surfa
e interse
tion are the 
oreoperations in performing the Boolean and CSG operations. With voxelization, all of these problems be
ome mu
heasier set operations. For instan
e, Fig. 4(e) is generated by subtra
ting a heart model shown in Fig. 4(l) fromthe ro
ker arm model shown in Fig. 4(b). And Fig. 4(l) is the di�eren
e of a heart model and the ro
ker armmodel shown in Fig. 4(b). While Fig. 4(f) and Fig. 4(g) are the union and di�eren
e results of the 
ow modeland the ro
ker arm model shown in Fig. 4(b). And Fig. 4(m) and Fig. 4(n) are generated by uniting/subtra
tinga torus model from the blue model. Note that all these union and di�eren
e pairs are positioned the same waywhen Boolean operations are performed. Examples of performing multiple Boolean operations on models areshown in Fig. 4(i) and Fig. 4(j). A di�eren
e operation is �rst performed to remove some portions from ea
h ofthese 
ows and a union operation is then performed to join them together. A me
hani
al part is also generated inFig. 4(k) using CSG operations. Interse
tion 
urves 
an be similarly generated by sear
hing for 
ommon voxelsof obje
ts. The bla
k 
urves shown in Fig. 4(h), Fig. 4(e) and Fig. 4(l) are the interse
tion 
urves generatedfrom two di�erent obje
ts.8 SummaryA method to 
onvert a free-form obje
t from its 
ontinuous geometri
 representation to a set of voxels that bestapproximates the geometry of the obje
t is presented. Unlike traditional 3D s
an-
onversion based methods, thenew method does the voxelization pro
ess by re
ursively subdividing the 2D parameter spa
e and sampling 3Dsurfa
e points only at sele
ted 2D parameter spa
e positions. Be
ause of the 
apability to 
al
ulate every 3D pointposition expli
itly and a

urately, uniform sampling on surfa
es with arbitrary topology is not a problem for theapproa
h at all. Moreover, the new method guarantees that dis
retization of 3D 
losed obje
ts is leak-free whena 3D 
ooding operation is performed. This is ensured by proving that voxelization results of the new methodsatisfy the properties of separability, a

ura
y and minimality. In addition, a 3D volume 
ooding algorithm usingdynami
 programming te
hniques is presented whi
h signi�
antly speeds up the volume 
ooding pro
ess. Hen
ethe new method is suitable for visualization of 
omplex s
enes, measuring obje
t volume, mass, surfa
e area,determining interse
tion 
urve of multiple surfa
es and performing a

urate Boolean/CSG operations.A
knowledgement. Data sets for Figs. 4(h), 4(m) and 4(n) are downloaded from the web site:resear
h.mi
rosoft.
om/�hoppe.The data set for the 
ow model in Fig. 4 is downloaded from the web site:graphi
s.
s.uiu
.edu/�garland/resear
h/quadri
s.html.
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