
Voxelization of Free-form SolidsRepresented by Catmull-Clark Subdivision SurfaesShuhua Lai and Fuhua (Frank) ChengGraphis & Geometri Modeling Lab, Department of Computer SieneUniversity of Kentuky, Lexington, Kentuky 40506-0046Abstrat. A voxelization tehnique and its appliations for objets with arbitrary topology are presented. Thevoxelization tehnique onverts a free-form objet from its ontinuous geometri representation into a set of voxelsthat best approximates the geometry of the objet. Unlike traditional 3D san-onversion based methods, thevoxelization proess in the new method is performed by reursively subdividing the 2D parameter spae andsampling 3D points from seleted 2D parameter spae points. Beause the new method an alulate every 3Dpoint position expliitly and aurately, uniform sampling on surfaes with arbitrary topology is not a problemany more. Moreover, disretization of 3D losed objets in the new method is guaranteed to be leak-free when a3D ooding operation is performed. This is ensured by showing the voxelization results satisfy the properties ofseparability, auray and minimality. In addition, a 3D volume ooding algorithm using dynami programmingtehniques is presented whih signi�antly speeds up the volume ooding proess. Hene the new method issuitable for visualization of omplex senes, measuring objet volume, mass, surfae area, determining intersetionurves of multiple surfaes and performing aurate Boolean/CSG operations. These apabilities are demonstratedby test examples shown in the paper.Keywords: voxelization, subdivision, Catmull-Clark surfaes, visualization, parametrization.1 IntrodutionVolume graphis [9℄ represents voxel-based tehniques aimed at modeling, manipulating and rendering of geometriobjets. These tehqniques have proven to be superior to traditional omputer graphis approahes in manyaspets. The main advantages of volume graphis inlude: (1) deoupling of voxelization from rendering, (2)uniformity of representation, and (3) support of Boolean, blok and CSG operations. Two drawbaks of volumegraphis tehniques are their high memory and proessing time demands. However, with the progress in bothomputers and speialized volume rendering hardware, these drawbaks are gradually losing their signi�ane.To be represented by the voxel raster, a geometri objet has to go through a proess alled voxelization. Thisproess is onerned with onverting a geometri objet from its ontinuous geometri representation into a setof voxels that best approximates the ontinuous objet. Traditional voxelization methods (also referred to as 3Dsan-onversion) mimi the 2D san-onversion proess that pixelizes (rasterizes) 2D geometri objets. Henetraditional voxelization methods work well for polygon based 3D objets. For surfaes with arbitrary topology,voxelization using 3D san-onversion is not eÆient, nor aurate.Subdivision surfaes have beome popular reently in graphial modeling, visualization and animation beauseof their apability in modeling/representing omplex shape of arbitrary topology [1℄, their relatively high visualquality, and their stability and eÆieny in numerial omputation. Subdivision surfaes an model/representomplex shape of arbitrary topology beause there is no limit on the shape and topology of the ontrol mesh of asubdivision surfae. With parametrization tehniques for subdivision surfaes beoming available [2, 5℄ and withthe fat that non-uniform B-spline and NURBS surfaes are speial ases of subdivision surfaes beoming known[7℄, we now know that subdivision surfaes over both parametri forms and disrete forms. Parametri forms aregood for design and representation, disrete forms are good for mahining and tessellation (inluding FE meshgeneration). Hene, we have a representation sheme that is good for all graphis and CAD/CAM appliations.1



In this paper we propose a voxelization method for free-form solids represented by Catmull-Clark subdivisionsurfaes. The new method is based on reursive sampling of 2D parameter spae points of a surfae path, insteadof diret sampling of 3D points. Hene the new method is more eÆient and less sensitive to numerial error.Note that a voxelization proess does not render the voxels but merely generates a database of the disrete dig-itization of the ontinuous objet [8℄. Some previous voxelization methods use quad-trees to store the voxelizationresult. This approah an save memory spae but might sari�e in omputation time when used for appliationssuh as Boolean operations or intersetion urves determination. Nevertheless, with heap and giga-byte memoryhips beoming available, storage requirement is no longer a major issue in the design of an algorithm. Peopleare more about the eÆieny of the algorithm. The new method stores the voxelization result diretly in a CubiFrame Bu�er for fast operation purpose.2 Bakground2.1 3D Disrete SpaeA 3D disrete spae is a set of integral grid points in 3D Eulidean spae de�ned by their Cartesian oordinates(x; y; z), with x; y; z 2 Z. A voxel is a unit ube entered at the integral grid point. Usually a voxel is assigned avalue of 0 or 1. The voxels assigned an `1', alled the `blak' voxels, represent opaque objets. Those assigned a `0',alled the `white' voxels, represent the transparent bakground. Outside the sope of this paper is a non-binaryapproah where the voxel values are mapped onto the interval [0,1℄ representing either partial overage, variabledensities, or graded opaities. Due to its larger dynami range of values, this approah an support higher qualityrendering.Two voxels are said to be 26-adjaent (See Fig. 1()) if they share a vertex, an edge, or a fae. Every givenvoxel has 26 suh adjaent voxels: eight share a vertex (orner) with the given voxel, twelve share an edge, andsix share a fae. Aordingly, fae-sharing voxels are said to be 6-adjaent (See Fig. 1(a)), and edge-sharing andfae-sharing voxels are said to be 18-adjaent (See Fig. 1(b)).The pre�x N is used to de�ne the adjaeny relation, with N= 6, 18, or 26. A sequene of voxels having thesame value (e.g., `blak') is alled an N -path if all onseutive pairs are N -adjaent. A set of voxels are said tobe N -onneted if there is an N -path between every pair of its voxels. It is easy to see that N -onnetedness isan equivalent relation. Given three disjoint sets of voxels A, B and C, A is said to N -separate B and C if anyN -path from a voxel of B to a voxel of C intersets A.
(a) 6-adjaent (b) 18-adjaent () 26-adjaentFigure 1: N -adjaeny, N 2 f6; 18; 26g.2.2 Catmull-Clark Subdivision SurfaesCatmull-Clark subdivision sheme provides a powerful method for building smooth and omplex surfaes. Givena ontrol mesh, a Catmull-Clark subdivision surfae (CCSS) is generated by iteratively re�ning (subdividing) theontrol mesh to form new and �ner ontrol meshes [1℄. The mesh re�ning proess onsists of de�ning new vertiesand onneting the new verties to form new edges and faes of a new ontrol mesh. A CCSS is the limit surfae2



of the re�ned ontrol meshes. The limit surfae is alled a subdivision surfae beause the mesh re�ning proessis a generalization of the uniform B-spline surfae subdivision tehnique. The valene of a mesh vertex is thenumber of mesh edges adjaent to the vertex. A mesh vertex is alled an extra-ordinary vertex if its valene isdi�erent from four. A mesh fae with an extra-ordinary vertex is alled an extra-ordinary fae. The valane of anextra-ordinary fae is the valene of its extra-ordinary vertex. In the following, for the sake of simpliity, a meshfae and the orresponding surfae path will be treated the same and denoted by the same notation.As we an see the number of faes in the uniformly re�ned meshes inreases exponentially with respet tosubdivision depth. Hene it is impossible to aurately sample 3D points diretly on subdivided surfaes. Fortu-nately, parametrization tehniques for subdivision surfaes have beome available reently [2, 3, 4, 5℄. ThereforeeÆient and aurate sampling for voxelization is not a problem any more. Given an extra-ordinary fae S, ifthe valene of its extra-ordinary vertex is n, then the surfae path orresponding to this extra-ordinary fae isinuened by 2n+ 8 ontrol verties. One an use these ontrol points to expliitly and aurately evaluate theposition, normal and partial derivatives for any point of the limit surfae path. We will review the most reentparametrization tehniques for CCSS in the next setion.3 Related Work3.1 Voxelization TehniquesVoxelization tehniques an be lassi�ed into two major ategories. The �rst ategory onsists of methods thatextend the standard 2D san-line algorithm and employ numerial onsiderations to guarantee that no gapsappear in the resulting disretization. As we know polygons are fundamental primitives in 3D surfae graphisin that they approximate arbitrary surfaes as a mesh of polygonal pathes. Hene, early work on voxelizationfoused on voxelizing 3D polygon meshes [10, 11, 12, 13, 14℄ by using 3D san-onversion algorithm. Althoughthis type of methods an be extended to voxelize parametri urves, surfaes and volumes [15℄, it is diÆult todeal with freefrom surfaes of arbitrary topology.The other widely used approah for voxelizing free-form solids is to use spatial enumeration algorithms whihemploy point or ell lassi�ation methods in either an exhaustive fashion or by reursive subdivision [18, 19, 20,21℄. However, 3D spae subdivision tehniques for models deomposed into ubi subspaes are omputationallyexpensive and thus inappropriate for medium or high resolution grids. The voxelization tehnique that we willbe presenting uses reursive subdivision. The di�erene is the new method performs reursive subdivision on 2Dparameter spae, not on the 3D objet. Hene expensive distane omputation between 3D points is avoided.Like 2D pixelization, voxelization is a powerful tehnique for representing and modeling omplex 3D objets.This is proved by many suessful appliations of volume graphis tehniques in reently reported researh work.For example, voxelization an be used for visualization of omplex objets or sene [19℄. It an also be usedfor measuring integral properties of solids, suh as mass, volume and surfae area [21℄. Most importantly, itan be used for intersetion urve alulation and performing aurate Boolean operations. For example, in[20, 22℄, a series of Boolean operations are performed on objets represented by a CSG tree. Voxelization is suhan important tehnique that several hardware implementations of this tehnique have been reported reently[16, 17℄.3.2 Evaluation of a CCSS PathSeveral approahes [2, 3, 4, 5℄ have been proposed for exat evaluation of an extraordinary path at any parameterspae point (u; v). The parametrization tehnique presented in [5℄ will be used here. The representation sheme ofthis parametrization tehnique is expliit and uses only one half of the eigen basis funtions in the representation.Therefore, it is omputationally more eÆient and an be used to ompute tangents and normal for any point ofthe limit surfae exatly and expliitly. Some most related results of [5℄ are summarized below.The parametrization/evaluation approah in [5℄ is presented for general Catmull-Clark subdivision surfae.That is, the new vertex point V0 of V after one subdivision is omputed as follows:V0 = �nV + �n( nXi=1 Ei)=n+ n( nXi=1 Fi)=n3



where �n, �n and n are positive numbers and �n + �n + n = 1. The new fae points and edge points areomputed the same way though.The parametrization and evaluation of a surfae path an be written expliitly as follows [5℄.S(u; v) =W TKm n+5Xj=0 �m�1j Mb;j G (1)where n is the valane of the extraordinary path, W is a vetor ontaining the 16 B-spline power basis funtionsand K is a onstant diagonal matrix. G is the vetor of the 2n+ 8 ontrol points of the path. In addition, mand b are two real numbers dependent on (u; v) and an be alulated diretly from (u; v) [5℄. � and Mb;j areindependent of (u; v) and their exat expressions are given in [5℄. One an ompute the derivatives of S(u; v) toany order simply by di�erentiating W (u; v) in Eq. (1) aordingly. With the expliit expression of S(u; v) andits partial derivatives, one an easily get the limit point of an extraordinary vertex in a general Catmull Clarksubdivision surfae: S(0; 0) = [1; 0; � � � ; 0℄ �M2;n+1 �Gand the �rst and seond derivatives:Du = [0; 1; 0; 0; 0; 0; 0; � � � ; 0℄ �M2;2 �GDv = [0; 0; 1; 0; 0; 0; 0; � � � ; 0℄ �M2;2 �GDuu = [0; 0; 0; 2; 0; 0; 0; � � � ; 0℄ �M2;2 �GDuv = [0; 0; 0; 0; 1; 0; 0; � � � ; 0℄ �M2;2 �GDvv = [0; 0; 0; 0; 0; 2; 0; � � � ; 0℄ �M2;2 �Gwhere M2;n+1 and M2;2 are onstant matries of dimension 16� (2n+8) [5℄, Du, Dv , Duu, Duv and Dvv are thediretion vetors of �S(0;0)�u , �S(0;0)�v , �2S(0;0)�u�u , �2S(0;0)�u�v and �2S(0;0)�v�v , respetively. The normal vetor at (0; 0) is theross produt of Du and Dv .4 Voxelization based on Reursive Parameter Spae Subdivision4.1 Basi IdeaGiven a free-form objet represented by a CCSS and a ubi frame bu�er of resolutionM1�M2�M3, the goal isto onvert the CCSS represented free-form objet (i.e. ontinuous geometri representation) into a set of voxelsthat best approximates the geometry of the objet. We assume eah fae of the ontrol mesh is a quadrilateral andeah fae has at most one extra-ordinary vertex If this is not the ase, simply perform Catmull-Clark subdivisionon the ontrol mesh of the CCSS twie.We �rst onsider the voxelization proess of a subpath, whih is a small portion of a path. Given a subpathof S(u; v) de�ned on [u1; u2℄� [v1; v2℄, we voxelize it by assuming this given subpath is small enough (hene, atenough) so that voxels generated from this subpath are the same as the voxels generated from its four orners:V1 = S(u1; v1); V2 = S(u2; v1); V3 = S(u2; v2); V4 = S(u1; v2):Usually this assumption does not hold. Hene a test must be performed before the path or subpath is voxelized.It is easy to see that if the voxels generated from its four orners are not N -adjaent (N 2 f6; 18; 26g) to eahother, then there exist holes between them. In this ase, the path or subpath is still not small enough. To makeit smaller, we perform a midpoint subdivision on the orresponding parameter spae by settingu12 = u1 + u22 and v12 = v1 + v22to get four smaller subpathes:S([u1; u12℄� [v1; v12℄); S([u12; u2℄� [v1; v12℄); S([u12; u2℄� [v12; v2℄); S([u1; u12℄� [v12; v2℄);and repeat the testing proess on eah of the subpathes. The proess is reursively repeated until all thesubpathes are small enough and an be voxelized using only their four orners.4
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(b)(a)Figure 2: Basi idea of parameter spae based reursive voxelization.The verties of the resulting subpathes after the reursive parameter spae subdivision are then used asverties for voxelization that approximates the limit surfae. For example, if the four retangles in Figure 2(a)are the parameter spaes of four adjaent subpathes of S(u; v), and if the retangles shown in Figure 2(b) are theparameter spaes of the resulting subpathes when the above reursive testing proess stops, then 3D points willbe evaluated at the 2D parameter spae points marked with small solid irles to form voxels that approximatethe limit surfae.To make things simple, we �rst normalize the input mesh to be of dimension [0;M1�1℄�[0;M2�1℄�[0;M3�1℄.Then for any 2D parameter spae point (u; v) generated from the reursive testing proess (See Fig. 2), diret andexat evaluation is performed to get its 3D surfae position and normal vetor at S(u; v). To get the voxelizedoordinates (i; j; k) from S(u; v), simply seti = bS(u; v):x+ 0:5; j = bS(u; v):y + 0:5; k = bS(u; v):z + 0:5: (2)One every single point marked in the reursive testing proess is voxelized, the proess for voxelizing the givenpath is �nished. The proof of the orretness of our voxelization results will be disussed in the next setion.Sine the above proess guarantees that shared boundary or vertex of pathes or subpathes will be voxelizedto the same voxel, we an perform voxelization of free-form objets represented by a CCSS on a path basis. Onething that should be pointed out is, to avoid stak overow, only small subpathes should be fed to the reursivesubdivision and testing proess. This is espeially true when a high resolution ubi frame bu�er is given orsome polygons are very big in the given ontrol mesh. Generating small subpathes is not a problem for a CCSSone the parametrization tehniques are available. For example, in our implementation, the size of subpathes(in the parameter spae) fed to reursive testing is 18 � 18 , i.e. eah path is divided into 8� 8 subpathes beforethe voxelization proess. In addition, feeding small-size subpathes to the reursive testing proess ensures theassumption of our voxelization proess to be satis�ed, beause the smaller the parameter size of a subpath, theatter the subpath.4.2 Subpath TestingThe basi assumption of our voxelization algorithm is that eah subpath is small enough (hene, at enough)so that all the voxels generated from it are the same as the voxels generated using only the four orners of thissubpath. Now the problem is, for a given subpath, how to tell if the assumption is satis�ed or not. Usuallythis assumption does not hold. Hene a testing proess must be performed before every path or subpath isvoxelized. It is easy to see that if the voxels generated using its four orners are not N -adjaent (N 2 f6; 18; 26g)to eah other, then there exist holes between them. In this ase, the path or subpath is still not small enough.Conversely, we an say a given subpath satis�es our basi assumption if the voxels generated using its fourorners are N -adjaent (N 2 f6; 18; 26g) to eah other, beause the given subpath is at least C1 ontinuous,and is small enough (hene, at enough). Therefore we an tell if a subpath satis�es the basi assumptionor not by testing the N -adjaeny (N 2 f6; 18; 26g) of the voxels generated by its four orners. For example,suppose �i, �j and �k are the maximum absolute di�erenes of the voxels generated from the four ornersin x, y and z diretions, then for 6-adjaent voxelization, we an say the given subpath satis�es our basiassumption if (�i + �j + �k � 1). Similarly, for 18-adjaent and 26-adjaent voxelization, the orrespondingtesting requirements are (�i � 1 & �j � 1 & �k � 1 & �i +�j +�k � 2) and (�i � 1 & �j � 1 & �k � 1),respetively. 5



Beause �i, �j and �k are intergers, the testing proess is very fast. In addition, the subpath testing proessgenerates a optimum partition of a given path or subpath in the voxelization proess. For example Fig. 2(b)are the parameter spaes of the resulting subpathes when the above reursive testing proess stops. 3D pointswill only be evaluated at the 2D parameter spae points marked with small solid irles to form voxels thatapproximate the limit surfae. Hene our testing proess adaptively partitions given subpathes and evaluates 3Dpositions only if they are absolutely needed in the voxelization proess. As a result, ompared to other uniform 3Dpoints sampling approahes, the ost of our adaptive 3D points sampling and evalation (whih is the dominatingost of a voxelization proess) is redued dramtially.The above testing proess assumes when a given subpath is small enough, then it is also at enough. Certainly,this assumption might not hold in some very speial ases. Hene other onditions, like atness of a subpath [6℄an be inluded in the subpath testing proess as well. However, the voxelization proess will be slowed downa lot in this way. All the examples we have tested show that it is good enough to use only the N -adjaeny(N 2 f6; 18; 26g) in the testing proess.4.3 Voxelization AlgorithmsThe above voxelization method, based on reursive subdivision of the parameter spae, is summarized into thefollowing algorithms: Voxelization and VoxelizeSubPath. The parameters to these algorithms are de�ned as fol-lows. S: ontrol mesh of a CCSS whih represents the given objet; N : an integer that spei�es the N -adjaenyrelationship between adjaent voxels; M1, M2, and M3: resolution of the Cubi Frame Bu�er; k: an integer thatspei�es the number of subpathes (k�k) that should be generated before fed to the reursive voxelization proess.Voxelization(Mesh S, int N , int M1, int M2, int M3, int k)1. normalize S so that S is bounded by an axis-aligned ube of dimension [0;M1� 1℄� [0;M2� 1℄� [0;M3� 1℄2. for eah path pid in S3. for u = 1k : 1; step size 1k4. for v = 1k : 1; step size 1k5. VoxelizeSubPath(N , pid, u� 1k , u, v � 1k , v);VoxelizeSubPath(int N , int pid, oat u1, oat u2, oat v1, oat v2)1. (i1; j1; k1) = Voxelize(S(pid; u1; v1));2. (i2; j2; k2) = Voxelize(S(pid; u2; v1));3. (i3; j3; k3) = Voxelize(S(pid; u2; v2));4. (i4; j4; k4) = Voxelize(S(pid; u1; v2));5. if(ju2 � u1j < 1=maxfM1;M2;M3g) return;6. �i = maxfjia � ibjg, with a and b 2 f1; 2; 3; 4g;7. �j = maxfjja � jbjg, with a and b 2 f1; 2; 3; 4g;8. �k = maxfjka � kbjg, with a and b 2 f1; 2; 3; 4g;9. if(N = 6 & �i +�j +�k � 1) return;10. if(N = 18 & �i � 1 & �j � 1 & �k � 1 & �i +�j +�k � 2) return;11. if(N = 26 & �i � 1 & �j � 1 & �k � 1) return;12. u12 = (u1 + u2)=2; v12 = (v1 + v2)=2;13. VoxelizeSubPath(N; pid; u1; u12; v1; v12);14. VoxelizeSubPath(N; pid; u12; u2; v1; v12);15. VoxelizeSubPath(N; pid; u12; u2; v12; v2);16. VoxelizeSubPath(N; pid; u1; u12; v12; v2);In algorithm `VoxelizeSubPath', orresponding surfae points for the four orners are evaluated using eq. (1),where pid tells us whih path we are urrently working on. The routine `Voxelize' voxelizes points by using eq.(2). Lines 9, 10 and 11 are used to test if voxelizing the four orners of a subpath is enough to generate a 6-, 18-and 26-adjaent voxelization, respetively, while Line 5 prevents the reursive proess from non-stop dead loopin ase Lines 9, 10 and 11 are always not satis�ed. 6



5 Separability, Auray and MinimalityLet S be a C1 ontinuous surfae in R3. We denote by �S the disrete representation of S. �S is a set of blakvoxels generated by some digitalization method. There are three major requirements that �S should meet inthe voxelization proess. First, separability [8, 13℄, whih requires to preserve the analogy between ontinuousand disrete spae and to guarantee that �S is not penetrable sine S is C1 ontinuous. Seond, auray. Thisrequirement ensures that �S is the most aurate disrete representation of S aording to some appropriate errormetri. Third, minimality [8, 13℄, whih requires the voxelization should not ontain voxels that, if removed,make no di�erene in terms of separability and auray. The mathematial de�nitions for these requirementsan be found in [13℄, whih are based on [8℄.First we an see that voxelization results generated using our reursive subdivision method satisfy the require-ment of minimality. The reason is that voxels are sampled diretly from the objet surfae. The terminationondition of our reursive sampling proess (i.e., Line 9, 10, 11 in algorithm `VoxelizeSubPath') and the oor-dinates transformation in eq. (2) guarantee that every point in the surfae has one and only one image in theresulting voxelization. In other words,8 P 2 S; 9 Q 2 �S; suh that P 2 Q: (3)Note that here P is a 3D point and Q is a voxel, whih is a unit ube. On the other hand, beause all voxels aremapped diretly from the objet surfae using eq. (2), we have8 Q 2 �S; 9 P 2 S; suh that P 2 Q: (4)Hene no voxel an be removed from the resulting voxelization, i.e., the property of minimality is satis�ed. Inaddition, from eq. (3) and eq. (4) we an also onlude that the resulting binary voxelization is the most aurateone with respet to the given resolution. Hene the property of auray is satis�ed as well.To prove that our voxelization results satisfy the separability property, we only need to show that there isno holes in the resulting voxelization. For simpliity, here we only onsider 6-separability, i.e., there does notexist a ray from a voxel inside the free-form solid objet to the outside of the free-form solid objet in x, y orz diretion that an penetrate our resulting voxelization without interseting any of the blak voxels. We provethe separability property by ontradition. As we know violating separability means there exists at least a hole(voxel) Q in the resulting voxelization that is not inluded int �S but is interseted by S and, there must alsoexist two 6-adjaent neighbors of Q that are not inluded in �S either and are on opposite sides of S. BeauseS intersets with Q, there exist at least one point P on the surfae that intersets with Q. But the image of Pafter voxelization is not Q beause Q is a hole. However, the image of P after voxelization must exist beause ofthe termination ondition of our reursive sampling proess (i.e., Line 8, 9, 10 in algorithm `VoxelizeSubPath').Moreover, aording to our voxelization method, P an only be voxelized into voxel Q beause of eq. (2). HeneQ annot be a hole, ontraditing our assumption. Therefore, we onlude that �S is 6-separating.6 Volume Flooding with Dynami Programming6.1 Seed SeletionA seed must be designated before a ooding algorithm an be applied. In 2D ooding, a seed is usually givenby the user interatively. However, in 3D ooding, for a losed 3D objet, it is impossible for a user to designatea voxel as a seed by mouse-liking beause voxels inside a losed 3D objet are invisible. Hene an automatimethod is needed to selet an inside voxel as a seed for volume ooding. One we an orretly hoose an insidevoxel, the by applying a ooding operation, all inside voxels an be obtained. To selet a voxel as a seed forvolume ooding, we need to tell if a voxel is inside or outside the 3D objet. This is not a trivial problem. Inthe past In-Out test for voxels is not eÆient and not aurate [21℄, espeially for topologially ompliated 3Dobjets.With the availability of parametrization tehniques for subdivision surfaes, we now an alulate derivativesand normals exatly and expliitly for eah point loated on the 3D objet surfae. Hene the normal for eahvoxel an also be exatly alulated in the voxelization proess. Beause the diretion of a normal is perpendiular7



to the surfae and points towards the outside of the surfae, the losest voxel in its opposite diretion must beloated either inside or on the surfae (Assume the voxelization resolution is high enough). For a given voxel(alled start voxel), to hoose the losest voxel in its normal's opposite diretion, we just need to alulate thedot produt of its normal and one of the axis vetors. These vetors are: f1; 0; 0g, f�1; 0; 0g, f0; 1; 0g, f0;�1; 0g,f0; 0; 1g, f0; 0;�1g orresponding to x, �x, y, �y, z and �z diretion, respetively. The diretion with smallestdot produt is hosen for �nding an inside voxel. If the losest voxel in this hosen diretion is also a blak voxel(i.e., loated on the 3D objet surfae), another start voxel has to be seleted and the above proess is repeateduntil an inside voxel is found. The found inside voxel an be designated as a seed for inside volume ooding.Similarly, an outside voxel an also be found for outside volume ooding. In this ase, the seed voxel should notbe hosen from the normal's opposite diretion, but along the normal's diretion.
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BFigure 3: A voxel with multiple piees of objet surfae in it.However, if the voxelization resolution is not high enough, the losest voxel in the normal's opposite diretionmight be an outside voxel. For example, in Figure 3, ABCD denotes a voxel and part of the objet surfae passesthrough this voxel. Di�erently, there are two piees of surfae that are not onneted but are all inside this voxel.If we hoose P1 as the start point in Figure 3 to �nd an inside voxel using the above seed seletion method, anoutside voxel will be wrongly hosen. Hene the above method is no longer appliable in this ase. To resolvethe problem in this situation, higher voxelization resolution ould be used. However, no matter how high thevoxelization resolution is, we still annot guarantee ases like the one shown in Figure 3 will not our. Heneother approah is needed.Fortunately, voxels that have multiple piees of surfae passing through, like the one shown in Figure 3, an beeasily identi�ed in the voxelization proess. To identify these voxels, we need to alulate normals for eah voxel.For example, in Figure 3, if surfae point P1 is mapped to voxel ABCD, then the normal at P1 whih is N1, isalso memorized as the normal of this voxel. Next time if another surfae point, say P2, is also mapped to voxelABCD, then the normal at P2 whih is N2, will be �rst ompared with the memorized normal of voxel ABCDby alulating their dot produt. If N1 �N2 > 0, then nothing need to be done. Otherwise, say surfae point P3,whih is mapped to the same voxel and its normal is N3, if N1 � N3 � 0, then this voxel is marked as a voxelthat has multiple piee passing through. One every voxel that has multiple piees of surfae passing through ismarked, we an easily solve the problem simply by not hoosing these marked voxels as the start voxels.6.2 3D Flooding using Dynami ProgrammingIn this setion we only onsider ooding algorithms using 6-separability, but the idea an be applied to N -separability with N = 18 or 26, Although 6-separability is used in the ooding proess, the voxelization itselfan be N -adjaent with N = 6; 18 or 26, One a seed is hosen, 3D ooding algorithms an be performed inorder to �ll all the voxels that are 6-onneted with this seed voxel. The simplest ooding algorithm is reursiveooding, whih reursively searh adjaent voxels in 6 diretions for 6-onneted voxels. This method soundsideally reasonable but does not work in real world beause even for a very low resolution, it would still ausestak overow.Another method that an be used for ooding is alled linear ooding, whih searhes adjaent voxels that are6-onneted with the given the seed voxel, linearly from the �rst voxel to the last voxel in the ubi frame bu�er,and marks all the found voxels with gray. The searh proess is repeated until no more white (`0') voxels is foundthat are 6-onneted with one of the gray voxels. Linear ooding is simple and does not require extra memoryin the ooding proess. However, it is very slow, espeially when a high resolution is used in the voxelizationproess. 8



In many appliations, 3D ooding operations are required to be fast with low extra memory onsumption.To make a 3D ooding algorithm appliable and eÆient, we an ombine the reursive ooding and the linearooding methods using the so alled dynami programming tehnique.Dynami programming usually breaks a problem into subproblems, and these subproblems are solved and thesolutions are memorized, in ase they need to be solved again. This is the essentiality of dynami programming.To use dynami programming in our 3D ooding algorithm, we use a sub-routine FloodingXYZ whih marksinside voxels having the same x, y or z oordinates as the given seed voxel, and all marked voxels are memorizedby pushing them into a stak alled GRAYSTACK. Note here the stak has a limited spae, whose length isspei�ed by the user. When the stak reahes its maximal apaity, no gray voxels an be pushed into it. Heneit guarantees limited memory onsumption. The 3D ooding algorithm with dynami programming an improvethe ooding speed signi�antly. For ordinary resolution, say, 512� 512� 512, a ooding operation an be donealmost in real time. The pseudoode for the 3D volume ooding algorithm is given as follows and the parameters(si, sj , sk) are the oordinates of the given seed voxel.VolumeFlooding(int si, int sj , int sk)1. FloodingXYZ(si, sj , sk);2. loop = 1;3. while(loop)4. while (GRAYSTACK is not empty)5. (i; j; k) = GRAYSTACK.Pop();6. FloodingXYZ(i; j; k)7. loop = 0;8. for(i = 0; i < M1; i++)9. for(j = 0; j < M2; j++)10. for(k = 0; k < M3; k++)11. if ( Voxel (i; j; k) is white and is 6-adjaent with a gray voxel)12. FloodingXYZ(i; j; k);13. loop = 1;7 Appliations7.1 Visualization of Complex SenesRay traing is a ommonly used method in the �eld of visualization of volume graphis. This is due to its abilityto enhane spatial pereption of the sene using tehniques suh as transpareny, mirroring and shadow asting.However, there is a main disadvantage for ray traing approah: large omputational demands. Hene rendingusing this method is very slow. Reently, surfae splatting tehnique for point based rendering has beome popular[23℄. Surfae splatting requires the position and normal of every point to be known, but not their onnetivity.With expliit position and exat normal information for eah voxel in our voxelization results, now it is muheasier for us to render disrete voxels using surfae splatting tehniques. The rendering is fast and high qualityresults an be obtained. For example, Fig. 4(a) is the given mesh, Fig. 4(b) is the orresponding limit surfae.After the voxelization proess, Fig. 4() is generated only using basi point based rendering tehniques withexpliitly known normals to eah voxel. While Fig. 4(d) is rendered using splatting based tehniques. The sizeof ubi frame bu�er used for Fig. 4() is 512 � 512 � 512. The voxelization resolution used for Fig. 4(d) is256 � 256 � 256. Although the resolution is muh lower, we an tell from Fig. 4, that the one using splattingtehniques is smoother and loser to the orresponding objet surfae given in Fig. 4(b).7.2 Integral Properties MeasurementAnother appliation of voxelization is that it an be used to measure integral properties of solid objets suh asmass, volume and surfae area. Without disretization, these integral properties are very diÆult to measure,espeially for free-form solids with arbitrary topology. 9
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Volume an be measured simply by ounting all the voxels inside or on the surfae boundary beause eah voxelis a unit ube. With eÆient ooding algorithm, voxels inside or on the boundary an be preisely ounted. Butthe resulting measurement may not be aurate beause boundary voxels do not oupy all the orresponding unitubes. Hene for higher auray, higher voxelization resolution is needed. One the volume is known, it is easyto measure the mass simply by multiplying the volume with density. Surfae area an be measured similarly. Butusing this approah would lead to big error beause we do not know how surfaes pass through their orrespondingvoxels. Fortunately, surfae area an be measured muh more preisely in the voxelization proess. As we know,during the reursive voxelization proess, if the reursive proess stops, all the marked parameter points of apath or subpath (See Fig. 2) are points used for �nal voxelization. Hene all these quadrilaterals orrespondingto these marked parameter points an be used for measuring surfae area after these marked parameter spaepoints are mapped to 3D spae. The atness of these quadrilaterals is required to be tested if high auray isneeded. The de�nition of path atness and the atness testing method an be found in [6℄.7.3 Performing Boolean and CSG OperationsThe most important appliation of voxelization is to perform Boolean and CSG operations on free-form objets.In solid modeling, an objet is formed by performing Boolean operations on simpler objets or primitives. ACSG tree is used in reording the onstrution history of the objet and is also used in the ray-asting proessof the objet. Surfae-surfae intersetion (inluding the in-on-out test) and ray-surfae intersetion are the oreoperations in performing the Boolean and CSG operations. With voxelization, all of these problems beome muheasier set operations. For instane, Fig. 4(e) is generated by subtrating a heart model shown in Fig. 4(l) fromthe roker arm model shown in Fig. 4(b). And Fig. 4(l) is the di�erene of a heart model and the roker armmodel shown in Fig. 4(b). While Fig. 4(f) and Fig. 4(g) are the union and di�erene results of the ow modeland the roker arm model shown in Fig. 4(b). And Fig. 4(m) and Fig. 4(n) are generated by uniting/subtratinga torus model from the blue model. Note that all these union and di�erene pairs are positioned the same waywhen Boolean operations are performed. Examples of performing multiple Boolean operations on models areshown in Fig. 4(i) and Fig. 4(j). A di�erene operation is �rst performed to remove some portions from eah ofthese ows and a union operation is then performed to join them together. A mehanial part is also generated inFig. 4(k) using CSG operations. Intersetion urves an be similarly generated by searhing for ommon voxelsof objets. The blak urves shown in Fig. 4(h), Fig. 4(e) and Fig. 4(l) are the intersetion urves generatedfrom two di�erent objets.8 SummaryA method to onvert a free-form objet from its ontinuous geometri representation to a set of voxels that bestapproximates the geometry of the objet is presented. Unlike traditional 3D san-onversion based methods, thenew method does the voxelization proess by reursively subdividing the 2D parameter spae and sampling 3Dsurfae points only at seleted 2D parameter spae positions. Beause of the apability to alulate every 3D pointposition expliitly and aurately, uniform sampling on surfaes with arbitrary topology is not a problem for theapproah at all. Moreover, the new method guarantees that disretization of 3D losed objets is leak-free whena 3D ooding operation is performed. This is ensured by proving that voxelization results of the new methodsatisfy the properties of separability, auray and minimality. In addition, a 3D volume ooding algorithm usingdynami programming tehniques is presented whih signi�antly speeds up the volume ooding proess. Henethe new method is suitable for visualization of omplex senes, measuring objet volume, mass, surfae area,determining intersetion urve of multiple surfaes and performing aurate Boolean/CSG operations.Aknowledgement. Data sets for Figs. 4(h), 4(m) and 4(n) are downloaded from the web site:researh.mirosoft.om/�hoppe.The data set for the ow model in Fig. 4 is downloaded from the web site:graphis.s.uiu.edu/�garland/researh/quadris.html.
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