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Abstract. A voxelization technique and its applications for objects with
arbitrary topology are presented. It converts a free-form object from its
continuous geometric representation into a set of voxels that best approx-
imates the geometry of the object. Unlike traditional 3D scan-conversion
based methods, our voxelization method is performed by recursively sub-
dividing the 2D parameter space and sampling 3D points from selected
2D parameter space points. Moreover, our voxelization of 3D closed ob-
jects is guaranteed to be leak-free when a 3D flooding operation is per-
formed. This is ensured by proving that our voxelization results satisfy
the properties of separability, accuracy and minimality.

1 Introduction

Volume graphics [5] represents a set of techniques aimed at modeling, manip-
ulating and rendering of geometric objects, which have proven to be, in many
aspects, superior to traditional computer graphics approaches. The main draw-
backs of volume graphics techniques are their high memory and processing time
demands. However, with the progress in both computers and specialized volume
rendering hardware, these drawbacks are gradually losing their significance.

Subdivision surfaces have become popular recently in graphical modeling, vi-
sualization and animation because of their capability in modeling complex shape
of arbitrary topology [1], their relatively high visual quality, and their stabil-
ity and efficiency in numerical computation. Subdivision surfaces can model/
represent complex shape of arbitrary topology because there is no limit on the
shape and topology of the control mesh of a subdivision surface. In this paper we
propose a voxelization method for free-form solids represented by Catmull-Clark
subdivision surfaces. Instead of direct sampling of 3D points, the new method
is based on recursive sampling of 2D parameter space points of a surface patch.
Hence the new method is more efficient and less sensitive to numerical error.

A 3D discrete space is a set of integral grid points in 3D Euclidean space
defined by their Cartesian coordinates (x, y, z), with x, y, z ∈ Z. A voxel is a
unit cube centered at the integral grid point. Usually a voxel is assigned a value
of 0 or 1. The voxels assigned an ‘1’, called the ‘black’ voxels, represent opaque
objects. Those assigned a ‘0’, called the ‘white’ voxels, represent the transparent
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background. Two voxels are said to be 26-adjacent [4] if they share a vertex,
an edge, or a face. Every given voxel has 26 such adjacent voxels: eight share a
vertex (corner) with the given voxel, twelve share an edge, and six share a face.
Accordingly, face-sharing voxels are said to be 6-adjacent [4], and edge-sharing
and face-sharing voxels are said to be 18-adjacent [4].

Given a control mesh, a Catmull-Clark subdivision surface (CCSS) is gen-
erated by iteratively refining (subdividing) the control mesh to form new and
finer control meshes [1]. The number of faces in the uniformly refined meshes
increases exponentially with respect to subdivision depth. Hence it is not prac-
tical to sample 3D points directly on subdivided surfaces. Fortunately, parame-
trization techniques have become available recently [2,3]. Therefore efficient and
accurate sampling for voxelization is not a problem any more. Recent parame-
trization techniques show that every 3D point (its position, normal and partial
derivatives) on the limit surface can be explicitly and accurately calculated [2,3].

2 Related Voxelization Techniques

Voxelization techniques can be classified into two major categories. The first
category consists of methods that extend the standard 2D scan-line algorithm
and employ numerical considerations to guarantee that no gaps appear in the
resulting discretization. Most work on voxelization focused on voxelizing 3D
polygon meshes [6,7,8,9] by using 3D scan-conversion algorithm. Although this
type of methods can be extended to voxelize parametric curves, surfaces and
volumes, it is difficult to deal with freefrom surfaces of arbitrary topology.

The other widely used approach for voxelizing free-form solids is to use spa-
tial enumeration algorithms which employ point or cell classification methods in
either an exhaustive fashion or by recursive subdivision [10]. However, 3D space
subdivision techniques for models decomposed into cubic subspaces are compu-
tationally expensive and thus inappropriate for medium or high resolution grids.
The voxelization technique that we will be presenting uses recursive subdivision.
The difference is the new method performs recursive subdivision on 2D parame-
ter space, not on the 3D object. Hence expensive distance computation between
3D points is avoided.

3 Voxelization of Solids Represented by CCSSs

Given a free-form object represented by a CCSS and a cubic frame buffer of
resolution M1 ×M2 ×M3, the goal is to convert the CCSS represented free-form
object (i.e. continuous geometric representation) into a set of voxels that best
approximates the geometry of the object.

With parametrization techniques for subdivision surfaces becoming available,
it is possible now to model and represent any continuous but topologically com-
plex object with an analytical representation [2,3]. Consequently, any point in
the surface can be explicitly calculated. On the other hand, for any given para-
meter space point (u, v), a surface point S(u, v) corresponding to this parameter
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space point can be exactly computed as well. Therefore, voxelization does not
have to be performed in 3D object space, as the previous recursive voxeliza-
tion methods did, one can do voxelization in 2D space by performing recursive
subdivision and testing on the 2D parameter space.

We first consider the voxelization process of a subpatch, which is a small
portion of a patch. Given a subpatch of S(u, v) defined on [u1, u2] × [v1, v2], we
voxelize it by assuming this given subpatch is small enough (hence, flat enough)
so that all the voxels generated from it are the same as the voxels generated
using its four corners:

V1 = S(u1, v1), V2 = S(u2, v1), V3 = S(u2, v2), V4 = S(u1, v2).

Usually this assumption does not hold. Hence a test must be performed before
the patch or subpatch is voxelized. It is easy to see that if the voxels generated
using its four corners are not N -adjacent (N ∈ {6, 18, 26}) to each other, then
there exist holes between them. In this case, the patch or subpatch is still not
small enough. To make it smaller, we perform a midpoint subdivision on the
corresponding parameter space by setting u12 = (u1+u2)/2 and v12 = (v1+v2)/2
to get four smaller subpatches:

S([u1, u12] × [v1, v12]), S([u12, u2] × [v1, v12]),
S([u12, u2] × [v12, v2]), S([u1, u12] × [v12, v2]),

and repeat the testing process on each of the subpatches. The process is recur-
sively repeated until all the subpatches are small enough and can be voxelized
using only their four corners. For simplicity, we first normalize the input mesh
to be of dimension [0, M1 − 1] × [0, M2 − 1] × [0, M3 − 1]. Then for any 2D para-
meter space point (u, v) generated from the recursive testing process, direct and
exact evaluation is performed to get its 3D surface position and normal vector
at S(u, v). To get the voxelized coordinates (i, j, k) from S(u, v), simply set

i = �S(u, v).x + 0.5�, j = �S(u, v).y + 0.5�, k = �S(u, v).z + 0.5�. (1)

Once every single point marked in the recursive testing process is voxelized,
the process for voxelizing the given patch is finished. The proof of the correctness
of our voxelization results will be discussed in the next section.

Since the above process guarantees that shared boundary or vertex of patches
or subpatches will be voxelized to the same voxel, we can perform voxelization
of free-form objects represented by a CCSS on patch basis.

The above voxelization method, based on recursive subdivision of the para-
meter space, is summarized into the following algorithms: Voxelization and Vox-
elizeSubPatch. The parameters of these algorithms are defined below. S: control
mesh of a CCSS which represents the given object; N : an integer that spec-
ifies the N -adjacent relationship between adjacent voxels; M1, M2, and M3:
resolution of the Cubic Frame Buffer; k: an integer that specifies the num-
ber of subpatches (k × k) that should be generated before fed to the recursive
voxelization process.
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Voxelization(Mesh S, int N , int M1, int M2, int M3, int k)
1. normalize S so that S is bounded by [0, M1 − 1] × [0, M2 − 1] × [0, M3 − 1]
2. for each patch pid in S
3. for u = 1

k : 1, step size 1
k

4. for v = 1
k : 1, step size 1

k
5. VoxelizeSubPatch(N , pid, u − 1

k , u, v − 1
k , v);

VoxelizeSubPatch(int N , int pid, float u1, float u2, float v1, float v2)
1. (i1, j1, k1) = Voxelize(S(pid, u1, v1)); (i2, j2, k2) = Voxelize(S(pid, u2, v1));
2. (i3, j3, k3) = Voxelize(S(pid, u2, v2)); (i4, j4, k4) = Voxelize(S(pid, u1, v2));
3. if(the size of this subpatch is smaller than a voxel) return;
4. Δi = max{|ia − ib|}, with a and b ∈ {1, 2, 3, 4};
5. Δj = max{|ja − jb|}, with a and b ∈ {1, 2, 3, 4};
6. Δk = max{|ka − kb|}, with a and b ∈ {1, 2, 3, 4};
7. if(N = 6 & Δi + Δj + Δk ≤ 1) return;
8. if(N = 18 & Δi ≤ 1 & Δj ≤ 1 & Δk ≤ 1 & Δi + Δj + Δk ≤ 2) return;
9. if(N = 26 & Δi ≤ 1 & Δj ≤ 1 & Δk ≤ 1) return;
10. u12 = (u1 + u2)/2; v12 = (v1 + v2)/2;
11. VoxelizeSubPatch(N, pid, u1, u12, v1, v12);
12. VoxelizeSubPatch(N, pid, u12, u2, v1, v12);
13. VoxelizeSubPatch(N, pid, u12, u2, v12, v2);
14. VoxelizeSubPatch(N, pid, u1, u12, v12, v2);

In algorithm ‘VoxelizeSubPatch’, corresponding surface points for the four
corners are directly evaluated using parametrization techniques in [2,3], where
pid tells us which patch we are currently working on. The routine ‘Voxelize’
voxelizes points by using eq. (1). Lines 7, 8 and 9 are used to test if voxelizing
the four corners of a subpatch is enough to generate a 6-, 18- and 26-adjacent
voxelization, respectively.

4 Separability, Accuracy and Minimality

Let S be a C1 continuous surface in R3. We denote by S̄ the discrete rep-
resentation of S. S̄ is a set of black voxels generated by some digitalization
method. There are three major requirements that S̄ should meet in the voxeliza-
tion process. First, separability [4,9], which requires preservation of the analogy
between continuous and discrete space and to guarantee that S̄ is not penetrable
since S is C1 continuous. Second, accuracy. This requirement ensures that S̄ is
the most accurate discrete representation of S according to some appropriate
error metric. Third, minimality [4,9], which requires the voxelization does not
contain voxels that, if removed, make no difference in terms of separability and
accuracy. The mathematical definitions for these requirements can be found in
[4,9].

First we can see that the voxelization results generated using our recursive
subdivision method satisfy the minimality property. The reason is that voxels
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are sampled directly from the object surface. The termination condition of our
recursive sampling process (i.e., Line 8, 9, 10 in algorithm ‘VoxelizeSubPatch’)
and the coordinates transformation in eq. (1) guarantee that every point in the
surface has one and only one image in the resulting voxelization. In other words,

∀ P ∈ S, ∃ Q ∈ S̄, such that P ∈ Q. (2)

Note that here P is a 3D point and Q is a voxel, which is a unit cube. On the
other hand, because all voxels are mapped directly from the object surface using
eq. (1), we have

∀ Q ∈ S̄, ∃ P ∈ S, such that P ∈ Q. (3)

Hence no voxel can be removed from the resulting voxelization, i.e., the property
of minimality is satisfied. In addition, from eq. (2) and eq. (3) we can also
conclude that the resulting voxelization is the most accurate one with respect to
the given resolution. Hence the property of accuracy is satisfied as well.

To prove that our voxelization results satisfy the separability property, we only
need to show that there is no holes in the resulting voxelization. For simplicity,
here we only consider 6-separability, i.e., there does not exist a ray from a voxel
inside the free-form solid object to the outside of the free-form solid object in x, y
or z direction that can penetrate our resulting voxelization without intersecting
any of the black voxels. We prove the separability property by contradiction. As
we know violating separability means there exists at least a hole (voxel) Q in
the resulting voxelization that is not included int S̄ but is intersected by S and,
there must also exist two 6-adjacent neighbors of Q that are not included in S̄
either and are on opposite sides of S. Because S intersects with Q, there exist
at least one point P on the surface that intersects with Q. But the image of P
after voxelization is not Q because Q is a hole. However, the image of P after
voxelization must exist because of the termination condition of our recursive
sampling process (i.e., Line 8, 9, 10 in algorithm ‘VoxelizeSubPatch’). Moreover,
according to our voxelization method, P can only be voxelized into voxel Q
because of eq. (1). Hence Q cannot be a hole, contradicting our assumption.
Therefore, we conclude that S̄ is 6-separating.

5 Applications

5.1 Visualization of Complex Scenes

Ray tracing is a commonly used method in the field of visualization of volume
graphics [6]. However, ray tracing is very slow due to its large computational
demands. Recently, surface splatting technique for point based rendering has
become popular [11]. Surface splatting requires the position and normal of every
point to be known, but not their connectivity. With explicit position and ex-
act normal information for each voxel in our voxelization results being avail-
able, now it is quite easy for us to render discrete voxels using surface splatting
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(a) Mesh (b) Surface (c) Point (d) Splat (e) Intersection Curve

(f) Boolean (g) Boolean (h) CSG (i) Intersection Curve

Fig. 1. Applications of Voxelization

techniques. The rendering is fast and high quality results can be obtained. For
example, Fig. 1(a) is the given mesh, Fig. 1(b) is the corresponding limit sur-
face. After the voxelization process, Fig. 1(c) is generated only using basic point
based rendering techniques with explicitly known normals to each voxel. While
Fig. 1(d) is rendered using splatting based techniques. The size of cubic frame
buffer used for Fig. 1(c) is 512 × 512 × 512. The voxelization resolution used for
Fig. 1(d) is 256 × 256 × 256. Although the resolution is much lower, we can tell
from Fig. 1, that the one using splatting techniques is smoother and closer to
the corresponding object surface given in Fig. 1(b).

5.2 Integral Properties Measurement

Another application of voxelization is that it can be used to measure integral
properties of solid objects such as mass, volume and surface area. Without dis-
cretization, these integral properties are very difficult to measure, especially for
free-form solids with arbitrary topology.

Volume can be measured simply by counting all the voxels inside or on the
surface boundary because each voxel is a unit cube. With efficient flooding al-
gorithm, voxels inside or on the boundary can be precisely counted. But the
resulting measurement may not be accurate because boundary voxels do not
occupy all the corresponding unit cubes. Hence for higher accuracy, higher vox-
elization resolution is needed. Once the volume is known, it is easy to measure
the mass simply by multiplying the volume with density. Surface area can be
measured similarly as well.
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5.3 Performing Boolean and CSG Operations

The most important application of voxelization is to perform Boolean and CSG
operations on free-form objects. In solid modeling, an object is formed by per-
forming Boolean operations on simpler objects or primitives. A CSG tree is
used in recording the construction history of the object and is also used in the
ray-casting process of the object. Surface-surface intersection (including the in-
on-out test) and ray-surface intersection are the core operations in performing
the Boolean and CSG operations. With voxelization, all of these problems sim-
ply become easier set operations. Examples of performing Boolean operations
on two objects are presented in Fig. 1(f) and Fig. 1(g), respectively. Fig. 1(f) is
the difference of a rocker arm shown in Fig. 1(b) and a heart shown in Fig. 1(g),
while Fig. 1(g) is the difference of a heart and a rocker arm shown in Fig. 1(b).
A mechanical part is also generated in Fig. 1(h) using CSG operations. Intersec-
tion curves can be similarly generated by searching for common voxels of objects.
The black curves shown in Fig. 1(f), Fig. 1(g), Fig. 1(i) and Fig. 1(e) are the
intersection curves generated from two different objects, respectively.
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