
Near-Optimum Adaptive Tessellation of General Catmull-ClarkSubdivision SurfaesShuhua Lai Fuhua (Frank) ChengUniversity of Kentuky University of Kentukyshuhua�sr.uky.edu heng�s.uky.eduhttp://www.sr.uky.edu/�shuhua/ http://www.s.uky.edu/�heng/Abstrat. A new adaptive tessellation methodfor general Catmull-Clark subdivision surfaes ispresented. Development of the new method is basedon the observation that optimum adaptive tessellationfor rendering purpose is a reursive error evaluationand globalization proess. The adaptive tessellationproess is done by generating an insribing poly-hedron to approximate the limit surfae for eahindividual path. The insribing polyhedron is gener-ated through an adaptive subdivision on the path'sparameter spae driven by a reursive error evaluationproess. This approah generates less faes in theresulting approximating mesh while meeting the givenpreision requirement. The rak problem is avoidedthrough globalization of new verties generated in theadaptive subdivision proess of the parameter spae.No rak-detetion or rak-elimination is needed inthe adaptive tessellation proess. Therefore, no meshelement splitting to eliminate raks is neessary.The new adaptive tessellation method an preiselymeasure the error for every point of the limit surfae.Hene, it has omplete ontrol of the auray of thetessellation result.Keywords: subdivision, Catmull-Clark surfaes,adaptive tessellation, surfae evaluation1 IntrodutionCatmull-Clark subdivision sheme provides a power-ful method for building smooth and omplex surfaes.Given a ontrol mesh, a Catmull-Clark subdivision sur-fae (CCSS) is generated by iteratively re�ning (sub-dividing) the ontrol mesh to form new and �ner on-trol meshes [2℄. The mesh re�ning proess onsistsof de�ning new verties and onneting the new ver-ties to form new edges and faes of a new ontrolmesh. A CCSS is the limit surfae of the re�ned on-

trol meshes. The limit surfae is alled a subdivisionsurfae beause the mesh re�ning proess is a gener-alization of the uniform B-spline surfae subdivisiontehnique. Subdivision surfaes an model/representomplex shape of arbitrary topology beause there isno limit on the shape and topology of the ontrol meshof a subdivision surfae [3℄. But the number of faes inthe uniformly re�ned meshes inreases exponentiallywith respet to subdivision depth. Adaptive tessel-lation redues the number of faes needed to yield asmooth approximation to the limit surfae and, on-sequently, makes the rendering proess more eÆient.See Figure 1 for an example where the ontrol meshof a Gargoyle is uniformly re�ned only twie and yetthe resulting mesh is already quite dense (Figure 1(a)),while the meshes generated by adaptively tessellatingthe same model 4, 3, and 2 times ( Figure 1(b), 1(),and 1(d), respetively) have a higher or similar prei-sion but with muh less faes.1.1 Previous WorkA number of adaptive tessellation methods for sub-division surfaes have been proposed. Most of themare mesh re�nement based, i.e., approximating thelimit surfae by adaptively re�ning the ontrol mesh.This approah requires the assignment of a subdivi-sion depth to eah region of the surfae �rst. In [20℄,a subdivision depth is alulated for eah path of thegiven CCSS with respet to a given error tolerane �.In [9℄, a subdivision depth is estimated for eah vertexof the given CCSS by onsidering fators suh as ur-vature, visibility, membership to the silhouette, andprojeted size of the path. The approah used in [20℄is error ontrollable. An error ontrollable approahfor Loop surfae is proposed in [11℄, whih alulatesa subdivision depth for eah path of a Loop surfae byestimating the distane between two bounding linearfuntions for eah omponent of the 3D representation.Several other adaptive tessellation shemes have1



(a) Uniform (b) Adaptive () Adaptive (d) Adaptive (e) TriangulatedFigure 1: Adaptive tessellation of a surfae with arbitrary topology.been presented as well [15, 14, 10℄. In [10℄, two meth-ods of adaptive tessellation for triangular meshes areproposed. The adaptive tessellation proess for eahpath is based on angles between its normal and nor-mals of adjaent faes. A set of new error metristailored to the partiular needs of surfaes with sharpreases is introdued in [14℄.In addition to various adaptive tessellation shemes,there are also appliations of these tehniques. D. Roseet al. used adaptive tessellation method to render ter-rain [18℄ and K. M�uller et al. ombined ray traingwith adaptive subdivision surfaes to generate somerealisti senes [13℄. Adaptive tessellation is suh animportant tehnique that an API has been designed forits general usage [17℄. Atually hardware implemen-tation of this tehnique has been reported reently aswell [12℄.A problem with mesh-re�nement-based, adaptivetessellation tehniques is the possible over-tessellationproblem. Eah region, suh as a path, where a sub-division depth is assigned is uniformly subdivided tothe level spei�ed by the subdivision depth. Sine thesubdivision depth is omputed based on the largestpossible urvature of the region, parts of the regionwhih do not arry suh a large urvature will be un-neessarily subdivided.Another problem is the so alled rak-preventionrequirement. Beause the number of new verties gen-erated on the boundary of a region depends on thesubdivision depth, raks (or, gaps) would our be-tween adjaent regions if these regions are assigneddi�erent subdivision depths. Hene, suh an adap-tive tessellation method needs speial mehanism toeliminate raks. This is usually done by performingadditional subdivision or splitting steps on the regionwith lower subdivision depth. As a result, many un-neessary mesh elements are generated.

1.2 OverviewIn this paper, we will present a new adaptive tessella-tion method to address the above two problems. Thenew method is developed for CCSS's. The possibleover-tessellation problem is addressed by driving thetessellation proess by a reursive error evaluation pro-ess within eah path of the surfae and the rakprevention requirement is addressed by using a global-ization tehnique in the subdivision proess to avoidthe need of rak-detetion and rak-elimination. Toensure the over-tessellation problem is ompletely ad-dressed, we present an error evaluation proess thatan preisely measure the error for every point of thelimit surfae so that auray of the tessellation re-sult an be ompletely ontrolled. Test results showthat, with these new tehniques, number of faes inthe resulting approximating mesh is signi�antly re-dued and, onsequently, rendering of CCSS's an bemade muh more eÆient.The remaining part of the paper is arranged as fol-lows. In Setion 2, motivation and basi idea of thenew method are presented. The evaluation tehniquesfor a CCSS are shown in Setion 3. The error evalu-ation proess used in the adaptive tessellation proessis shown in Setion 4. The globalization tehnique isshown in Setion 5. A disussion of absolute atnessvs. relative atness is given in Setion 6. Implemen-tation issues and test results are presented in Setion7. The onluding remarks are given in Setion 8.2 Basi IdeaGiven the ontrol mesh of a CCSS and an error toler-ane, �, the goal is to generate an approximating poly-hedron mesh lose enough to the limit surfae S(u; v),i.e., within the error tolerane of S(u; v), but with as2



(a) Cirumsribed(mesh re�nement base) (b) Insribed (param-eter spae re�nementbased)Figure 2: Insribed and Cirumsribed Approxima-tion.
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(b)(a)Figure 3: Adaptive subdivision on parameter spaesof pathes.few mesh faes as possible, so that the rendering pro-ess of S(u; v) an be performed eÆiently. An ap-proximating polyhedron mesh with the least numberof mesh faes is alled an optimum approximating poly-hedron mesh. We assume eah fae of the ontrol meshis a quadrilateral and eah fae has at most one extra-ordinary vertex (a vertex with a valene di�erent from4). If this is not the ase, simply perform Catmull-Clark subdivision on the ontrol mesh of the CCSStwie.Our �rst goal is to avoid the possible over-tessellation problem disussed in Setion 1.1. It is easyto see that, to ahieve suh a goal, tessellation proesswithin eah path should also be performed based onthe atness of eah loal region. This an be aom-plished by doing adaptive subdivision on the parameterspae of eah path that is driven by a reursive errorevaluation proess. Contrary to the mesh re�nementbased approahes whih generate approximating poly-hedra from "outside" the limit surfae that usuallydo not interpolate the limit surfae (see Figure 2(a)for an example in the urve ase), the approximatingpolyhedron generated by this approah is an insribingpolyhedron whose verties interpolate the limit surfae(see Figure 2(b) for an example in the urve ase).The proess is illustrated below.

For a path of S(u; v) de�ned on [u1; u2℄�[v1; v2℄, weapproximate it with the base quadrilateral formed byits four verties V1 = S(u1; v1), V2 = S(u2; v1), V3 =S(u2; v2) and V4 = S(u1; v2). If the distane (error)(to be de�ned below) between the path and its basequadrilateral is small than �, the path is onsideredat enough and is replaed with the base quadrilateralin the tessellation proess. Otherwise, we perform amidpoint subdivision on the parameter spae by settingu12 = u1 + u22 and v12 = v1 + v22to get four subpathes: [u1; u12℄� [v1; v12℄, [u12; u2℄�[v1; v12℄, [u12; u2℄ � [v12; v2℄, [u1; u12℄ � [v12; v2℄, andrepeat the atness testing (error evaluation) proesson eah of the subpathes. The proess is reursivelyrepeated until the distanes (errors) between all thesubpathes and their orresponding base quadrilater-als are smaller than �. The verties of the resultingsubpathes are then used as verties of the insribingpolyhedron that approximates the limit surfae. Forexample, if the four retangles in Figure 3(a) are theparameter spaes of four adjaent pathes of S(u; v),and if the retangles shown in Figure 3(b) are the pa-rameter spaes of the resulting subpathes when theabove reursive atness testing (error evaluation) pro-ess stops, then the limit surfae will be evaluated atthe points marked with small solid irles to form ver-ties of an insribing approximating polyhedron of thelimit surfae.This is a simple and straightforward proess, it is byno means new, but the result ould be very signi�ant.Note that eah fae in the insribed approximatingpolyhedron for a path is built with the expetationthat it is just lose enough to the limit surfae but withthe maximum possible size. Therefore, if the reursiveerror evaluation proess an indeed provide preise er-ror estimate, then the approximating polyhedron meshgenerated by this proess is optimum or near-optimum(in ase some faes from di�erent sides of a ommonboundary of two pathes an be merged into a biggerfae with the same error size). So, the point now is,an we preisely evaluate the error for any part of aCCSS? To ensure that the approximating polyhedronmesh is preisely onstruted, we must also be ableto preisely evaluate a CCSS at any given parameterpoint. It is known how to do these tasks for regularpathes of a CCSS. We will show that these tasks arepossible for extra-ordinary pathes of a CCSS as wellin Setions 3 and 4.Our seond goal is to avoid the rak prevention re-quirement disussed in Setion 1.1. Due to the fatthat adjaent pathes are usually approximated by3
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CFigure 4: Craks between adjaent pathes (sub-pathes).base quadrilaterals from di�erent levels of the mid-point subdivision proess, raks ould our betweenadjaent pathes. For instane, in Figure 4, the leftpath is approximated by one base quadrilateral butthe right path is approximated by 7 base quadrilat-erals. Consider the boundary shared by the left pathand the right path. On the left side, that boundaryis approximated by a line segment de�ned by two ver-ties, A2 and A5. But on the right side, the boundaryis approximated by a polyline de�ned by four verties,A2, C4, B4, and A5. They do not oinide unless C4and B4 lie on the line segment de�ned by A2 and A5.But this usually is not the ase. Hene, a rak wouldappear between the left path and the right path.The points shown in Figure 4 are points of the limitsurfae, not points in the parameter spae of the limitsurfae.Fortunately Craks an be removed simply by re-plaing edges of the base quadrilaterals with appropri-ate polylines in the tessellation proess. Namely, eahedge of a base quadrilateral should be replaed with apolyline de�ned with all the new verties omputed forthat edge of the orresponding path or subpath. Forexample, in Figure 4, all the dashed lines should bereplaed with the orresponding polylines. In partiu-lar, edge A2A5 of the base quadrilateral A1A2A5A6should be replaed with the polyline A2C4B4A5. Asa result, the left path is approximated by the poly-gon A1A2C4B4A5A6, instead of the base quadrilat-eral A1A2A5A6, in the tessellation proess. For ren-dering purpose this is �ne beause graphis systemslike OpenGL an handle polygons with any number ofverties and the verties do not have to be o-planar.Note that, with the above approah, there is no need toperform rak detetion at all beause the resulting ap-proximating polyhedron ontains on raks. Besides,sine this proess does not inrease the number of faesin an approximating polyhedron, the resulting approx-imating polyhedron is optimum or near-optimum forthe entire CCSS.

The point here is, how do we know whih poly-line should be used to replae an edge of a basequadrilateral? Currently, all the subdivision surfaeparametrization and evaluation tehniques are pathbased [4, 6, 7℄. Hene, no matter whih method is usedin the tessellation proess, a path annot see vertiesevaluated by other pathes from its own (loal) stru-ture even though the verties are on its own boundary.For example, in Figure 4, verties C4 and B4 are onthe shared boundary of the left and the right pathes.But the left path an not see these verties from itsown struture beause these verties are not evaluatedby this path. So, the key here is how an one makeadjaent pathes visible to eah other so that new ver-ties omputed by one path for the shared boundaryan be aessed by the other path. We will show inSetion 5 that this is possible through a globalizationtehnique. For onveniene of subsequent referene,the proess of replaing edges of base quadrilateralswith new polylines is alled a base quadrilateral re-plaement proess.Note that in previous methods for adaptive tessel-lation of subdivision surfaes [20, 9, 10, 14℄, the mostdiÆult part is rak prevention. With the above ap-proah, this part beomes the simplest part to handleand implement.3 Evaluation of a CCSS PathIn this setion we show how to evaluate an extra-ordinary CCSS path and its tangents at a given pointof the parameter spae. These tehniques are neededin the onstrution of the approximating polyhedronand the error evaluation proess. Several approahes[4, 5, 6, 7℄ have been presented for exat evaluation ofan extra-ordinary path at any parameter point (u; v).We use the parametrization tehnique presented in [7℄here. This method is more eÆient for both surfaeand tangent evaluation beause it employs less eigenbasis funtions in its representation.The parametrization tehnique presented in [7℄works for general CCSS's, i.e., for a given vertex pointV, a new vertex point V0 is omputed as:V0 = �nV + �n nXi=1 Ei + n nXi=1 Fiwhere �n, �n and n are positive numbers and �n +�n+n = 1, and it is based on an 
�partition of theparameter spae [4, 7℄. The value of an extra-ordinary4
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Figure 5: Control verties of an extra-ordinary pathand their labeling.path is evaluated as follows:S(u; v) = W TKm n+5Xj=0 �m�1j Mb;j G (1)where n is the valane of the extra-ordinary path 1,W is a vetor ontaining the 16 B-spline power basisfuntions:W T (u; v) = [1; u; v; u2; uv; v2; u3; u2v; uv2; v3;u3v; u2v2; uv3; u3v2; u2v3; u3v3℄ ;K is a diagonal matrix:K = Diag(1; 2; 2; 4; 4; 4; 8; 8; 8; 8; 16; 16; 16; 32; 32; 64);and m and b are de�ned as follows:m(u; v) = minfdlog 12ue; dlog 12 veg ;b(u; v) =8<: 1; if 2mu � 1 and 2mv < 12; if 2mu � 1 and 2mv � 13; if 2mu < 1 and 2mv � 1 :�j , 0 � j � n+5, are eigenvalues of the Catmull-Clarksubdivision metrix and Mb;j , 1 � b � 3, 0 � j � n+5,are matries of dimension 16� (2n+ 8). �j and Mb;jare independent of (u; v) and their exat expressionsare given in [7℄. G is the vetor of ontrol points (SeeFig. 5 for their labeling):G = [V;E1; � � � ;En;F1; � � � ;Fn; I1; � � � ; I7℄:One an ompute the derivatives of S(u; v) to anydegree simply by di�erentiating W (u; v) in Eq. (1)aordingly. For example,��uS(u; v) = (�W�u )T Km n+5Xj=0 �m�1j Mb;j G: (2)1Eq. (1) works for regular pathes as well, i.e., when n = 4.

The value and tangents at an extra-ordinary vertex aresimply the limit points of the orresponding equationsin (2) when (u; v)! (0; 0):S(0; 0) = [1; 0; � � � ; 0℄ �M2;n+1 �GDu = [0; 1; 0; 0; � � � ; 0℄ �M2;2 �GDv = [0; 0; 1; 0; � � � ; 0℄ �M2;2 �G (3)where Du and Dv are the diretion vetors of �S(0;0)�uand �S(0;0)�v , respetively.4 Flatness Testing (Error Eval-uation)In the atness testing proess, to measure the dif-ferene between a path (or subpath) and its basequadrilateral, we need to parametrize the base quadri-lateral as well. The base quadrilateral an beparametrized with a simple bilinear interpolation:Q(u; v) = v2�vv2�v1 ( u2�uu2�u1V1 + u�u1u2�u1V2)+ v�v1v2�v1 ( u2�uu2�u1V4 + u�u1u2�u1V3) (4)where u1 � u � u2, v1 � v � v2. The di�erenebetween the path (or subpath) and the base quadri-lateral at (u; v) is de�ned asd(u; v) = k Q(u; v)� S(u; v) k2= (Q(u; v)� S(u; v)) � (Q(u; v)� S(u; v))T(5)where k � k is the seond norm andAT is the transposeof A. The distane between the path (or subpath)and the base quadrilateral is the maximum of all thedi�erenes:D = maxf pd(u; v) j (u; v) 2 [u1; u2℄� [v1; v2℄ g:To measure the distane between a path (or sub-path) and the orresponding base quadrilateral, weonly need to measure the norms of all loal minimaand maxima of d(u; v). Note that Q(u; v) and S(u; v)are both C1-ontinuous, and d(V1), d(V2), d(V3) andd(V4) are equal to 0. Therefore, by Mean Value The-orem, the loal minima and maxima must lie eitherinside [u1; u2℄�[v1; v2℄ or on the four boundary urves.In other words, they must satisfy at least one of the5
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Extra−ordinary subpatch
Extra−ordinary pointFigure 6: Partitioning of the unit square [7℄.following three onditions:8<: �d(u;v)�u = 0v = v1 or v = v2u1 � u � u2 8<: �d(u;v)�v = 0u = u1 or u = u2v1 � v � v28<: �d(u;v)�u = 0�d(u;v)�v = 0(u; v) 2 (u1; u2)� (v1; v2) (6)For a path (or subpath) that is not adjaent toan extraordinary point (i.e., (u1; v1) 6= (0; 0)), m is�xed and known (m(u; v) = minfdlog 12ue; dlog 12 veg).Hene Eq. (6) an be solved expliitly. With the validsolutions, we an �nd the di�erene for eah of themusing Eq. (5). Suppose the one with the biggest dif-ferene is (û; v̂). Then (û; v̂) is also the point with thebiggest distane between the path (or subpath) andthe orresponding base quadrilateral. The path (orsubpath) is onsidered at enough ifpd ( û; v̂) � � (7)where � is a given error tolerane. In suh a ase, thepath (or subpath) is replaed with the orrespondingbase quadrilateral in the tessellation proess.For a path (or subpath) that is adjaent to anextraordinary point (i.e. (u1; v1) = (0; 0) in Eq. (6)),m is not �xed and m tends to 1 (see Figure 6). Asa result, Eq. (6) an not be solved expliitly. Oneway to resolve this problem is to use nonlinear numer-ial method to solve these equations. But numerialapproah annot guarantee the error is less than � ev-erywhere. For preise error ontrol, a better hoieis needed. In the following, an alternative method isgiven for that purpose.Eq. (3) shows that S(u; v) and Q(u; v) both on-verge to S(0; 0) when (u; v) ! (0; 0). Hene, forany given error tolerane �, there exists an integerm� suh that if m � m�, then the distane be-tween S(u; v) and S(0; 0) is smaller than �=2 for any

(u; v) 2 [0; 1=2m℄ � [0; 1=2m℄, and so is the distanebetween Q(u; v) and S(0; 0). Consequently, when(u; v) 2 [0; 1=2m℄ � [0; 1=2m℄, the distane betweenS(u; v) and Q(u; v) is smaller than �. The value ofm�, in most of the ases, is a relatively small numberand an be expliitly alulated. In next subsetion,we will show how to alulate m�.For other regions of the unit square withdlog 12 u2e � m < m� (see Figure 6), eq. (6) an beused diretly to �nd the di�erene between S(u; v) andQ(u; v) for any �xed m 2 (dlog 12 u2e;m�). Therefore,by ombining all these di�erenes, we have the dis-tane between the given extra-ordinary path (or sub-path) and the orresponding base quadrilateral. Ifthis distane is smaller than �, we onsider the givenextra-ordinary path (or subpath) to be at, and usethe base quadrilateral to replae the extra-ordinarypath (or subpath) in the tessellation proess. Other-wise, repeatedly subdivide the path (or subpath) andperform atness testing on the resulting subpathesuntil all the subpathes satisfy Eq. (7).4.1 Calulating m�For a given � > 0, an integer k� will �rst be omputedso that if k is bigger than k�, then the subpath ofS(u; v) with 0 � u; v � 1=2k is ontained in a spherewith enter S(0; 0) and diameter � (alled an �-sphere).A subpath is ontained in an �-sphere if all points ofthe subpath are �=2 away from S(0; 0).To �nd suh k�, we need a few properties from [7℄.Reall that an extra-ordinary path S(u; v) an be ex-pressed as S(u; v) = n+5Xj=0 �b;j(u; v) �Gwhere �b;j are eigen basis funtions de�ned in [7℄and G is the vetor of ontrol points of S. The eigenbasis funtions satisfy the saling relation [4, 7℄, i.e.,�b;j(u=2k; v=2k) = �kj�b;j(u; v)for any positive integer k, where �j are eigen values ofthe Catmull-Clark subdivision matrix [7℄. The eigenvalues are indexed so that1 = �n+1 > �2 � �i > 0where 0 � i � n + 5 and i 6= n + 1. Also reall that�b;j(0; 0) = 0 when j 6= n + 1, and �b;n+1(u; v) is aonstant vetor, its value is independent of (u; v) [7℄.Hene, (�b;n+1(u; v)� �b;n+1(u0; v0)) �Gr = 06



for any (u; v) and (u0; v0) where r 2 fx; y; zg and Gris the x-, y- or z-omponent of G.Hene for any 1=2 � u � 1 or 1=2 � v � 1, and forany k we havejSr(u=2k; v=2k)� Sr(0; 0)j= jPn+5j=0 (�kj�b;j(u; v)� �b;j(0; 0)) �Grj�Pj 6=n+1 �kj j(�b;j(u; v) �Grj< �k2Pj 6=n+1 j(�b;j(u; v) �GrjSimilarly, the three onditions in Eqs. (6) an beused to �nd the maxima of j(�b;j(u; v) � Grj for anyj. Note that beause here (u; v) =2 [0; 1=2℄ � [0; 1=2℄,the orresponding m is equal to 1 (See �gure 6).Hene we an easily �nd the maximum in its domainf(u; v)j1=2 � u � 1 or 1=2 � v � 1g. Let the maxi-mum of j(�b;j(u; v) �Grj be Frj and Fr =Pj 6=n+1 Frj .Then, for any k > 0 we havejSr(u=2k; v=2k)� Sr(0; 0)j � �k2Fr:Therefore if (�k2Fx)2 + (�k2Fy)2 + (�k2Fz)2 � (�=2)2,we have k S(u=2k; v=2k)� S(0; 0) k� �=2:If we de�ne k� as followsk� = dlog�2 �2qF 2x + F 2y + F 2z ethen it is easy to see that when k � k�, the subpathS(u; v) with (u; v) 2 [0; 1=2k℄ � [0; 1=2k℄ is inside an�-sphere whose enter is S(0; 0).In addition, S(0; 0) is a �xed point and an be ex-pliitly evaluated for any path (see eq. 3), andQ(u; v)also has an expliit parametrization (See eq. (4)).Hene, similarly, by using the method of Eqs. (6),it is easy to �nd an integer ek�, suh that for any given� > 0, when k � ek�, we have k Q(u; v)�S(0; 0) k� �=2,where (u; v) 2 [0; 1=2k℄ � [0; 1=2k℄. One we have k�and ek�, simply set m� as the maximum of k� and ek�.m� = maxfk�; ek�gWith this m�, it is easy to see that when m � m�,we have k S(u; v) � Q(u; v) k� �, where (u; v) 2[0; 1=2m℄� [0; 1=2m℄.4.2 Flatness Testing RevisitedA potential problem with the base quadrilateral re-plaement proess is the new polygon that replaes the

base quadrilateral might not satisfy the atness re-quirement. To ensure the atness requirement is alsosatis�ed by the polygons that replae the base quadri-laterals, we need to hange the test ondition in Eq.(7) to the following one:pd ( �u; �v) +pd ( û; v̂) � � (8)where (û; v̂) and (�u; �v) are solutions of Eq. (6) andthey satisfy the following onditions:� Among all the solutions of Eq. (6) that are lo-ated on one side of Q(u; v), i.e. solutions thatsatisfy (Q � S) � ((V1 � V3) � (V2 �V4)) � 0,d(û; v̂) is the biggest. If there does not existany solution suh that this ondition holds, thend(û; v̂) is set to 0� Among all the solutions of Eq. (6) that are lo-ated on the other side of Q(u; v), i.e. solutionsthat satisfy (Q�S) �((V1�V3)�(V2�V4)) < 0,d(�u; �v) is the biggest. If there does not exist anysolution suh this ondtion holds, then d(�u; �v) isset to 0From the de�nition of (û; v̂) and (�u; �v), we an see thatsatisfying Eq. (8) means that the path being testedis loated between two quadrilaterals that are � away.Note that all the evaluated points lie on the limitsurfae. Hene, for instane, in Fig. 4, pointsA2;C4;B4 and A5 of path A2A3A4A5 are alsopoints of path A1A2A5A6. With the new test on-dition in Eq. (8), we know that a path or subpath isat enough if it is loated between two quadrilateralsthat are � away. Beause boundary points A2;C4;B4and A5 are on the limit surfae, they must be lo-ated between two quadrilaterals that are � away. Sois the polygon A1A2C4B4A5A6. Now the path (orsubpath) and its approximating polygon are both lo-ated inside two quadrilaterals that are � away. Henethe overall error between the path (or subpath) andits approximating polygon is guaranteed to be smallerthan �.5 Making Pathes Visible toEah OtherIn this setion, we show how to use a globalizationproess to make adjaent pathes visible to eah other.To make adjaent pathes visible to eah otherand to make subsequent base quadrilateral replaementproess easier, one should assign a global index ID toeah evaluated vertex so that7



� all the evaluated verties with the same 3D posi-tion have the same index ID;� the index ID's are sorted in v and then in u, i.e., if(ui; vi) � (uj ; vj), then IDi � IDj , unless IDi orIDj has been used in previous path evaluation.This global indexing tehnique allows subsequentproessing to be performed on individual pathesbut still with a global visibility. We also need astep alled adaptive marking to failitate the basequadrilateral replaement proess. The purpose ofadaptive marking is to mark those points in uv spaewhere the limit surfae should be evaluated. Withthe help of the global index ID, this step an bedone on an individual path basis. Initially, all(u; v) points are marked white. If surfae evaluationshould be performed at a point and the resultingvertex is needed in the tessellation proess, then thatpoint is marked in blak. This proess an be easilyimplemented as a reursive funtion. A pseudo odefor this step is given below.AdaptiveMarking(P, u1, u2, v1, v2)1. Evaluate(P, u1, u2, v1, v2),2. AssignGlobalID(P, u1, u2, v1, v2),3. if (FlatEnough(P, u1, u2, v1, v2))4. MarkBlak(P, u1, u2, v1, v2)5. else6. u12 = (u1 + u2)=27. v12 = (v1 + v2)=28. AdaptiveMarking(P, u1, u12, v1, v12)9. AdaptiveMarking(P, u12, u2, v1, v12)10. AdaptiveMarking(P, u12, u2, v12, v2)11. AdaptiveMarking(P, u1, u12, v12, v2)This routine adaptively marks points in the param-eter spae of path P. Funtion `Evaluate' evaluateslimit surfae at the four orners of path or subpathPde�ned on [u1; u2℄�[v1; v2℄. Funtion `AssignGlobeID'assignes global index ID to the four orners of P.Funtion `FlatEnough' uses the method given in Se-tion 4 and Eq. (7) to tell if a path or subpath is atenough. Funtion `MarkBlak' marks the four ornersof path or subpath P de�ned on [u1; u2℄� [v1; v2℄ inblak. All the marked orner points will be used inthe tessellation proess. When a subpath is ready forthe base quadrilateral replaement proess, simply out-put in order all the marked points between orners ofthe base quadrilateral to form the polygon that shouldbe used for this base quadrilateral in the tessellationproess.

6 Degree of FlatnessJust like numerial errors have two di�erent settings,the atness of a path, whih an be viewed as a nu-merial error from the approximation point of view,has two di�erent aspets as well, depending on if theatness is onsidered in the absolute sense or relativesense. The atness of a path is alled the absoluteatness (AF) if the path is not transformed in anyway. In that ase, the value of � in Eqs. (7) and (8)is set to whatever preision the atness of the path issupposed to meet. AF should be onsidered for oper-ations that work on physial size of an objet suh asmahining or prototyping.For operations that do not work on the physial sizeof an objet, suh as the rendering proess, we need aatness that does not depends on the physial size of apath. Suh a atness must be AÆne transformationinvariant to be a onstant for any transformed versionof the path. Suh a atness is alled the relative at-ness of the path. More spei�ally, if Q is the basequadrilateral of path S, the relative atness (RF) ofS with respet to Q is de�ned as follows:RF = dmaxfD1; D2gwhere d is the maximal distane between S and Q,and D1; D2 are lengths of the diagonal lines of Q.It is easy to see that RF de�ned this way is AÆnetransformation invariant. Note that when D1 and D2are �xed, smaller RE means smaller d. Hene, REindeed measures the atness of a path. The di�erenebetween RF and AF is that RF measures the atnessof a path in a global sense while AF measures atnessof a path in a loal sense. Therefore, RF is moresuitable for operations that have data sets of varioussizes but with a onstant size display area suh as therendering proess. Using RF is also good for adaptivetessellation proess beause it has the advantage ofkeeping the number of polygons low in the tessellationproess.7 Implementation and Test Re-sultsThe proposed approah has been implemented in C++using OpenGL as the supporting graphis system onthe Windows platform. Some of the tested results areshown in Figures 1 and Figure 7. We also summarizethose tested results in Table 1. The olumn under-neath AjUjT in Table 1 indiates the type of tessel-lation tehnique (Adaptive, Uniform or Triangulated8



after adaptive tessellation) used in the rendering pro-ess. For instane, Fig. 1(a) is generated using uni-form subdivision, while Figs. 1(b), 1(), 1(d) are tes-sellated with the adaptive tehnique presented in thispaper, and Fig. 1(e) is the triangulated result of Fig.1(d). Also Fig. 7(e) and Fig. 7(p) are the triangulatedresults of Fig. 7(d) and Fig. 7(o), respetively. Theterm A/U ratio means the ratio of number of poly-gons in an adaptively tessellated CCSS to its ounterpart in a uniformly tessellated CCSS with the sameauray. The term Depth means the number of iter-ative uniform subdivisions that have to be performedon the ontrol mesh of a CCSS to satisfy the errorrequirement. From Table 1 we an see that all theadaptively tessellated CCSS's have relatively low A/Uratios. This shows the proposed method indeed sig-ni�antly redues the number of faes in the resultingmesh while satisfying the given error requirement.The `Error' olumn in Table 1 represents absoluteerror. We an easily see that, for the same model, thesmaller the error, the lower the A/U ratio. For exam-ple, Fig. 7(b) has lower A/U ratio than Fig. 7() andFig. 7(d) beause the former has smaller error toler-ane than the last two. However, for the same model, ifthe di�erene of two error toleranes is not big enough,the resulting adaptive tessellation would have the samesubdivision depth (see information on Figs. 7(g) and7(h) or Figs. 7(l) and 7(m) in Table 1). As a result,the one with smaller error tolerane would have higherA/U ratio, beause the orresponding uniformly sub-divided meshes are the same. Another interesting fatis that Fig. 7(k) uses muh more polygons than Fig.7(l) does, while the former is less aurate than thelatter. This shows the presented adaptive tessellationmethod is apable of providing a higher auray withless polygons.From Table 1 we an easily see that for di�erentmodels the absolute errors di�er very muh. There-fore, for di�erent models, omparing their absolute er-rors might not make any pratial sense beause ab-solute error is not aÆne transformation invariant. Inthe mean while, from Table 1, we an see that RFis a muh better and more understandable measure-ment for users to speify the error requirement in theadaptive tessellation proess.From Table 1, we an also see that triangulatedtessellations usually have higher A/U ratio, beausetriangulation inreases the number of polygons by atlease 2 times. Hene triangulation will slow down therendering proess while it does not improve auray.From the view point of rendering, triangulation is notreally neessary. But for some speial appliations,suh as Finite Element Analysis, triangulation is in-

dispensable. Performing triangulation on the resultingmesh of our adaptive tessellation proess is straight-forward and fast.The proposed adaptive tessellation method is goodfor models that have large at or nearly at regions inits limit surfae and would save signi�ant amount oftime in the �nal rendering proess, but may not havelow A/U ratios when it is applied to surfaes withextraordinary urvature distribution or surfaes withvery dense ontrol meshes. One main disadvantageof all the urrent adaptive tessellation methods (in-luding the method proposed here) is that they onlyeliminate polygons inside a path. They do not takethe whole surfae into onsideration. For instane, allthe at sides of the roker arm model in Fig. 7 arealready at enough, yet a lot of polygons are still gen-erated there.8 SummaryA new adaptive tessellation method for generalCatmull-Clark subdivision surfaes is presented. Thenew method is developed for rendering purpose andis based on the observation that optimum adaptivetessellation for rendering purpose is a reursive er-ror evaluation and globalization proess. The newmethod an preisely measure the error for every pointof the limit surfae and is performed on the basis ofindividual pathes. Hene, the approximating polyhe-dron mesh generated by this method is optimum foreah path of the CCSS. Furthermore, sine the newmethod does not inrease the number of faes in orderto avoid the generation of raks, the resulting approx-imating polyhedron mesh is atually near-optimum forthe entire CCSS. As the the new method does not re-quire rak detetion, it is also omputation eÆient.The result of our work an be improved by runninga post-proessor to see if some faes from di�erentsides of a path boundary an be merged into abigger fae with the same error size. However, sinethe improvement is not signi�ant and the omputa-tion is ostly, it might not be worth the e�ort to do so.Aknowledgement. Data sets for Figs. 1 and 7exept the roker arm are downloaded from the website: http://researh.mirosoft.om/�hoppe/ .Referenes[1℄ Austin SP, Jerard RB, Drysdale RL, Compari-son of disretization algorithms for NURBS sur-faes with appliation to numerially ontrolled9
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(a) Uniform (b) Adaptive () Adaptive (d) Adaptive (e) Triangulated

(f) Uniform (g) Adaptive (h) Adaptive (i) Adaptive (j) Adaptive

(k) Uniform (l) Adaptive (m) Adaptive (n) Adaptive (o) Adaptive (p) Triangu-lated

(q) Uniform (r) Adaptive (s) Adaptive (t) Adaptive (u) AdaptiveFigure 7: Adaptive rendering on surfaes with arbitrary topology.11



Table 1: Extra information on Figures 1 and 7Figure Objet AjUjT polygons A/U Ratio Depth Error RFFig. 1(a) Gargoyle U 16384 100.00% 2 0.0055 12%Fig. 1(b) Gargoyle A 14311 5.46% 4 0.0030 6%Fig. 1() Gargoyle A 5224 7.97% 3 0.0045 9%Fig. 1(d) Gargoyle A 2500 15.26% 2 0.0055 12%Fig. 1(e) Gargoyle T 6139 37.47% 2 0.0055 12%Fig. 7(a) Bunny U 65536 100.00% 3 0.0008 3%Fig. 7(b) Bunny A 32894 12.55% 4 0.0001 1%Fig. 7() Bunny A 9181 14.01% 3 0.0008 3%Fig. 7(d) Bunny A 3412 20.82% 2 0.0010 5%Fig. 7(e) Bunny T 7697 46.98% 2 0.0010 5%Fig. 7(f) Venus U 65536 100.00% 2 0.00095 8%Fig. 7(g) Venus A 29830 2.84% 4 0.00015 3%Fig. 7(h) Venus A 21841 2.08% 4 0.00035 4%Fig. 7(i) Venus A 9763 3.72% 3 0.00060 6%Fig. 7(j) Venus A 6178 9.43% 2 0.00095 8%Fig. 7(k) Roker arm U 90624 100.00% 4 1.2 3%Fig. 7(l) Roker arm A 36045 9.94% 5 0.85 1%Fig. 7(m) Roker arm A 10950 3.02% 5 1.0 2%Fig. 7(n) Roker arm A 5787 6.39% 4 1.2 3%Fig. 7(o) Roker arm A 2091 12.80% 3 1.5 5%Fig. 7(p) Roker arm T 4926 21.74% 3 1.5 5%Fig. 7(q) Beethoven U 65536 100.00% 2 0.041 10%Fig. 7(r) Beethoven A 20893 1.99% 4 0.006 4%Fig. 7(s) Beethoven A 15622 1.48% 4 0.026 6%Fig. 7(t) Beethoven A 7741 2.95% 3 0.035 8%Fig. 7(u) Beethoven A 5230 7.99% 2 0.041 10%
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