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t. A new adaptive tessellation methodfor general Catmull-Clark subdivision surfa
es ispresented. Development of the new method is basedon the observation that optimum adaptive tessellationfor rendering purpose is a re
ursive error evaluationand globalization pro
ess. The adaptive tessellationpro
ess is done by generating an ins
ribing poly-hedron to approximate the limit surfa
e for ea
hindividual pat
h. The ins
ribing polyhedron is gener-ated through an adaptive subdivision on the pat
h'sparameter spa
e driven by a re
ursive error evaluationpro
ess. This approa
h generates less fa
es in theresulting approximating mesh while meeting the givenpre
ision requirement. The 
ra
k problem is avoidedthrough globalization of new verti
es generated in theadaptive subdivision pro
ess of the parameter spa
e.No 
ra
k-dete
tion or 
ra
k-elimination is needed inthe adaptive tessellation pro
ess. Therefore, no meshelement splitting to eliminate 
ra
ks is ne
essary.The new adaptive tessellation method 
an pre
iselymeasure the error for every point of the limit surfa
e.Hen
e, it has 
omplete 
ontrol of the a

ura
y of thetessellation result.Keywords: subdivision, Catmull-Clark surfa
es,adaptive tessellation, surfa
e evaluation1 Introdu
tionCatmull-Clark subdivision s
heme provides a power-ful method for building smooth and 
omplex surfa
es.Given a 
ontrol mesh, a Catmull-Clark subdivision sur-fa
e (CCSS) is generated by iteratively re�ning (sub-dividing) the 
ontrol mesh to form new and �ner 
on-trol meshes [2℄. The mesh re�ning pro
ess 
onsistsof de�ning new verti
es and 
onne
ting the new ver-ti
es to form new edges and fa
es of a new 
ontrolmesh. A CCSS is the limit surfa
e of the re�ned 
on-

trol meshes. The limit surfa
e is 
alled a subdivisionsurfa
e be
ause the mesh re�ning pro
ess is a gener-alization of the uniform B-spline surfa
e subdivisionte
hnique. Subdivision surfa
es 
an model/represent
omplex shape of arbitrary topology be
ause there isno limit on the shape and topology of the 
ontrol meshof a subdivision surfa
e [3℄. But the number of fa
es inthe uniformly re�ned meshes in
reases exponentiallywith respe
t to subdivision depth. Adaptive tessel-lation redu
es the number of fa
es needed to yield asmooth approximation to the limit surfa
e and, 
on-sequently, makes the rendering pro
ess more eÆ
ient.See Figure 1 for an example where the 
ontrol meshof a Gargoyle is uniformly re�ned only twi
e and yetthe resulting mesh is already quite dense (Figure 1(a)),while the meshes generated by adaptively tessellatingthe same model 4, 3, and 2 times ( Figure 1(b), 1(
),and 1(d), respe
tively) have a higher or similar pre
i-sion but with mu
h less fa
es.1.1 Previous WorkA number of adaptive tessellation methods for sub-division surfa
es have been proposed. Most of themare mesh re�nement based, i.e., approximating thelimit surfa
e by adaptively re�ning the 
ontrol mesh.This approa
h requires the assignment of a subdivi-sion depth to ea
h region of the surfa
e �rst. In [20℄,a subdivision depth is 
al
ulated for ea
h pat
h of thegiven CCSS with respe
t to a given error toleran
e �.In [9℄, a subdivision depth is estimated for ea
h vertexof the given CCSS by 
onsidering fa
tors su
h as 
ur-vature, visibility, membership to the silhouette, andproje
ted size of the pat
h. The approa
h used in [20℄is error 
ontrollable. An error 
ontrollable approa
hfor Loop surfa
e is proposed in [11℄, whi
h 
al
ulatesa subdivision depth for ea
h pat
h of a Loop surfa
e byestimating the distan
e between two bounding linearfun
tions for ea
h 
omponent of the 3D representation.Several other adaptive tessellation s
hemes have1



(a) Uniform (b) Adaptive (
) Adaptive (d) Adaptive (e) TriangulatedFigure 1: Adaptive tessellation of a surfa
e with arbitrary topology.been presented as well [15, 14, 10℄. In [10℄, two meth-ods of adaptive tessellation for triangular meshes areproposed. The adaptive tessellation pro
ess for ea
hpat
h is based on angles between its normal and nor-mals of adja
ent fa
es. A set of new error metri
stailored to the parti
ular needs of surfa
es with sharp
reases is introdu
ed in [14℄.In addition to various adaptive tessellation s
hemes,there are also appli
ations of these te
hniques. D. Roseet al. used adaptive tessellation method to render ter-rain [18℄ and K. M�uller et al. 
ombined ray tra
ingwith adaptive subdivision surfa
es to generate somerealisti
 s
enes [13℄. Adaptive tessellation is su
h animportant te
hnique that an API has been designed forits general usage [17℄. A
tually hardware implemen-tation of this te
hnique has been reported re
ently aswell [12℄.A problem with mesh-re�nement-based, adaptivetessellation te
hniques is the possible over-tessellationproblem. Ea
h region, su
h as a pat
h, where a sub-division depth is assigned is uniformly subdivided tothe level spe
i�ed by the subdivision depth. Sin
e thesubdivision depth is 
omputed based on the largestpossible 
urvature of the region, parts of the regionwhi
h do not 
arry su
h a large 
urvature will be un-ne
essarily subdivided.Another problem is the so 
alled 
ra
k-preventionrequirement. Be
ause the number of new verti
es gen-erated on the boundary of a region depends on thesubdivision depth, 
ra
ks (or, gaps) would o

ur be-tween adja
ent regions if these regions are assigneddi�erent subdivision depths. Hen
e, su
h an adap-tive tessellation method needs spe
ial me
hanism toeliminate 
ra
ks. This is usually done by performingadditional subdivision or splitting steps on the regionwith lower subdivision depth. As a result, many un-ne
essary mesh elements are generated.

1.2 OverviewIn this paper, we will present a new adaptive tessella-tion method to address the above two problems. Thenew method is developed for CCSS's. The possibleover-tessellation problem is addressed by driving thetessellation pro
ess by a re
ursive error evaluation pro-
ess within ea
h pat
h of the surfa
e and the 
ra
kprevention requirement is addressed by using a global-ization te
hnique in the subdivision pro
ess to avoidthe need of 
ra
k-dete
tion and 
ra
k-elimination. Toensure the over-tessellation problem is 
ompletely ad-dressed, we present an error evaluation pro
ess that
an pre
isely measure the error for every point of thelimit surfa
e so that a

ura
y of the tessellation re-sult 
an be 
ompletely 
ontrolled. Test results showthat, with these new te
hniques, number of fa
es inthe resulting approximating mesh is signi�
antly re-du
ed and, 
onsequently, rendering of CCSS's 
an bemade mu
h more eÆ
ient.The remaining part of the paper is arranged as fol-lows. In Se
tion 2, motivation and basi
 idea of thenew method are presented. The evaluation te
hniquesfor a CCSS are shown in Se
tion 3. The error evalu-ation pro
ess used in the adaptive tessellation pro
essis shown in Se
tion 4. The globalization te
hnique isshown in Se
tion 5. A dis
ussion of absolute 
atnessvs. relative 
atness is given in Se
tion 6. Implemen-tation issues and test results are presented in Se
tion7. The 
on
luding remarks are given in Se
tion 8.2 Basi
 IdeaGiven the 
ontrol mesh of a CCSS and an error toler-an
e, �, the goal is to generate an approximating poly-hedron mesh 
lose enough to the limit surfa
e S(u; v),i.e., within the error toleran
e of S(u; v), but with as2



(a) Cir
ums
ribed(mesh re�nement base) (b) Ins
ribed (param-eter spa
e re�nementbased)Figure 2: Ins
ribed and Cir
ums
ribed Approxima-tion.
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(b)(a)Figure 3: Adaptive subdivision on parameter spa
esof pat
hes.few mesh fa
es as possible, so that the rendering pro-
ess of S(u; v) 
an be performed eÆ
iently. An ap-proximating polyhedron mesh with the least numberof mesh fa
es is 
alled an optimum approximating poly-hedron mesh. We assume ea
h fa
e of the 
ontrol meshis a quadrilateral and ea
h fa
e has at most one extra-ordinary vertex (a vertex with a valen
e di�erent from4). If this is not the 
ase, simply perform Catmull-Clark subdivision on the 
ontrol mesh of the CCSStwi
e.Our �rst goal is to avoid the possible over-tessellation problem dis
ussed in Se
tion 1.1. It is easyto see that, to a
hieve su
h a goal, tessellation pro
esswithin ea
h pat
h should also be performed based onthe 
atness of ea
h lo
al region. This 
an be a

om-plished by doing adaptive subdivision on the parameterspa
e of ea
h pat
h that is driven by a re
ursive errorevaluation pro
ess. Contrary to the mesh re�nementbased approa
hes whi
h generate approximating poly-hedra from "outside" the limit surfa
e that usuallydo not interpolate the limit surfa
e (see Figure 2(a)for an example in the 
urve 
ase), the approximatingpolyhedron generated by this approa
h is an ins
ribingpolyhedron whose verti
es interpolate the limit surfa
e(see Figure 2(b) for an example in the 
urve 
ase).The pro
ess is illustrated below.

For a pat
h of S(u; v) de�ned on [u1; u2℄�[v1; v2℄, weapproximate it with the base quadrilateral formed byits four verti
es V1 = S(u1; v1), V2 = S(u2; v1), V3 =S(u2; v2) and V4 = S(u1; v2). If the distan
e (error)(to be de�ned below) between the pat
h and its basequadrilateral is small than �, the pat
h is 
onsidered
at enough and is repla
ed with the base quadrilateralin the tessellation pro
ess. Otherwise, we perform amidpoint subdivision on the parameter spa
e by settingu12 = u1 + u22 and v12 = v1 + v22to get four subpat
hes: [u1; u12℄� [v1; v12℄, [u12; u2℄�[v1; v12℄, [u12; u2℄ � [v12; v2℄, [u1; u12℄ � [v12; v2℄, andrepeat the 
atness testing (error evaluation) pro
esson ea
h of the subpat
hes. The pro
ess is re
ursivelyrepeated until the distan
es (errors) between all thesubpat
hes and their 
orresponding base quadrilater-als are smaller than �. The verti
es of the resultingsubpat
hes are then used as verti
es of the ins
ribingpolyhedron that approximates the limit surfa
e. Forexample, if the four re
tangles in Figure 3(a) are theparameter spa
es of four adja
ent pat
hes of S(u; v),and if the re
tangles shown in Figure 3(b) are the pa-rameter spa
es of the resulting subpat
hes when theabove re
ursive 
atness testing (error evaluation) pro-
ess stops, then the limit surfa
e will be evaluated atthe points marked with small solid 
ir
les to form ver-ti
es of an ins
ribing approximating polyhedron of thelimit surfa
e.This is a simple and straightforward pro
ess, it is byno means new, but the result 
ould be very signi�
ant.Note that ea
h fa
e in the ins
ribed approximatingpolyhedron for a pat
h is built with the expe
tationthat it is just 
lose enough to the limit surfa
e but withthe maximum possible size. Therefore, if the re
ursiveerror evaluation pro
ess 
an indeed provide pre
ise er-ror estimate, then the approximating polyhedron meshgenerated by this pro
ess is optimum or near-optimum(in 
ase some fa
es from di�erent sides of a 
ommonboundary of two pat
hes 
an be merged into a biggerfa
e with the same error size). So, the point now is,
an we pre
isely evaluate the error for any part of aCCSS? To ensure that the approximating polyhedronmesh is pre
isely 
onstru
ted, we must also be ableto pre
isely evaluate a CCSS at any given parameterpoint. It is known how to do these tasks for regularpat
hes of a CCSS. We will show that these tasks arepossible for extra-ordinary pat
hes of a CCSS as wellin Se
tions 3 and 4.Our se
ond goal is to avoid the 
ra
k prevention re-quirement dis
ussed in Se
tion 1.1. Due to the fa
tthat adja
ent pat
hes are usually approximated by3
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ks between adja
ent pat
hes (sub-pat
hes).base quadrilaterals from di�erent levels of the mid-point subdivision pro
ess, 
ra
ks 
ould o

ur betweenadja
ent pat
hes. For instan
e, in Figure 4, the leftpat
h is approximated by one base quadrilateral butthe right pat
h is approximated by 7 base quadrilat-erals. Consider the boundary shared by the left pat
hand the right pat
h. On the left side, that boundaryis approximated by a line segment de�ned by two ver-ti
es, A2 and A5. But on the right side, the boundaryis approximated by a polyline de�ned by four verti
es,A2, C4, B4, and A5. They do not 
oin
ide unless C4and B4 lie on the line segment de�ned by A2 and A5.But this usually is not the 
ase. Hen
e, a 
ra
k wouldappear between the left pat
h and the right pat
h.The points shown in Figure 4 are points of the limitsurfa
e, not points in the parameter spa
e of the limitsurfa
e.Fortunately Cra
ks 
an be removed simply by re-pla
ing edges of the base quadrilaterals with appropri-ate polylines in the tessellation pro
ess. Namely, ea
hedge of a base quadrilateral should be repla
ed with apolyline de�ned with all the new verti
es 
omputed forthat edge of the 
orresponding pat
h or subpat
h. Forexample, in Figure 4, all the dashed lines should berepla
ed with the 
orresponding polylines. In parti
u-lar, edge A2A5 of the base quadrilateral A1A2A5A6should be repla
ed with the polyline A2C4B4A5. Asa result, the left pat
h is approximated by the poly-gon A1A2C4B4A5A6, instead of the base quadrilat-eral A1A2A5A6, in the tessellation pro
ess. For ren-dering purpose this is �ne be
ause graphi
s systemslike OpenGL 
an handle polygons with any number ofverti
es and the verti
es do not have to be 
o-planar.Note that, with the above approa
h, there is no need toperform 
ra
k dete
tion at all be
ause the resulting ap-proximating polyhedron 
ontains on 
ra
ks. Besides,sin
e this pro
ess does not in
rease the number of fa
esin an approximating polyhedron, the resulting approx-imating polyhedron is optimum or near-optimum forthe entire CCSS.

The point here is, how do we know whi
h poly-line should be used to repla
e an edge of a basequadrilateral? Currently, all the subdivision surfa
eparametrization and evaluation te
hniques are pat
hbased [4, 6, 7℄. Hen
e, no matter whi
h method is usedin the tessellation pro
ess, a pat
h 
annot see verti
esevaluated by other pat
hes from its own (lo
al) stru
-ture even though the verti
es are on its own boundary.For example, in Figure 4, verti
es C4 and B4 are onthe shared boundary of the left and the right pat
hes.But the left pat
h 
an not see these verti
es from itsown stru
ture be
ause these verti
es are not evaluatedby this pat
h. So, the key here is how 
an one makeadja
ent pat
hes visible to ea
h other so that new ver-ti
es 
omputed by one pat
h for the shared boundary
an be a

essed by the other pat
h. We will show inSe
tion 5 that this is possible through a globalizationte
hnique. For 
onvenien
e of subsequent referen
e,the pro
ess of repla
ing edges of base quadrilateralswith new polylines is 
alled a base quadrilateral re-pla
ement pro
ess.Note that in previous methods for adaptive tessel-lation of subdivision surfa
es [20, 9, 10, 14℄, the mostdiÆ
ult part is 
ra
k prevention. With the above ap-proa
h, this part be
omes the simplest part to handleand implement.3 Evaluation of a CCSS Pat
hIn this se
tion we show how to evaluate an extra-ordinary CCSS pat
h and its tangents at a given pointof the parameter spa
e. These te
hniques are neededin the 
onstru
tion of the approximating polyhedronand the error evaluation pro
ess. Several approa
hes[4, 5, 6, 7℄ have been presented for exa
t evaluation ofan extra-ordinary pat
h at any parameter point (u; v).We use the parametrization te
hnique presented in [7℄here. This method is more eÆ
ient for both surfa
eand tangent evaluation be
ause it employs less eigenbasis fun
tions in its representation.The parametrization te
hnique presented in [7℄works for general CCSS's, i.e., for a given vertex pointV, a new vertex point V0 is 
omputed as:V0 = �nV + �n nXi=1 Ei + 
n nXi=1 Fiwhere �n, �n and 
n are positive numbers and �n +�n+
n = 1, and it is based on an 
�partition of theparameter spa
e [4, 7℄. The value of an extra-ordinary4
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Figure 5: Control verti
es of an extra-ordinary pat
hand their labeling.pat
h is evaluated as follows:S(u; v) = W TKm n+5Xj=0 �m�1j Mb;j G (1)where n is the valan
e of the extra-ordinary pat
h 1,W is a ve
tor 
ontaining the 16 B-spline power basisfun
tions:W T (u; v) = [1; u; v; u2; uv; v2; u3; u2v; uv2; v3;u3v; u2v2; uv3; u3v2; u2v3; u3v3℄ ;K is a diagonal matrix:K = Diag(1; 2; 2; 4; 4; 4; 8; 8; 8; 8; 16; 16; 16; 32; 32; 64);and m and b are de�ned as follows:m(u; v) = minfdlog 12ue; dlog 12 veg ;b(u; v) =8<: 1; if 2mu � 1 and 2mv < 12; if 2mu � 1 and 2mv � 13; if 2mu < 1 and 2mv � 1 :�j , 0 � j � n+5, are eigenvalues of the Catmull-Clarksubdivision metrix and Mb;j , 1 � b � 3, 0 � j � n+5,are matri
es of dimension 16� (2n+ 8). �j and Mb;jare independent of (u; v) and their exa
t expressionsare given in [7℄. G is the ve
tor of 
ontrol points (SeeFig. 5 for their labeling):G = [V;E1; � � � ;En;F1; � � � ;Fn; I1; � � � ; I7℄:One 
an 
ompute the derivatives of S(u; v) to anydegree simply by di�erentiating W (u; v) in Eq. (1)a

ordingly. For example,��uS(u; v) = (�W�u )T Km n+5Xj=0 �m�1j Mb;j G: (2)1Eq. (1) works for regular pat
hes as well, i.e., when n = 4.

The value and tangents at an extra-ordinary vertex aresimply the limit points of the 
orresponding equationsin (2) when (u; v)! (0; 0):S(0; 0) = [1; 0; � � � ; 0℄ �M2;n+1 �GDu = [0; 1; 0; 0; � � � ; 0℄ �M2;2 �GDv = [0; 0; 1; 0; � � � ; 0℄ �M2;2 �G (3)where Du and Dv are the dire
tion ve
tors of �S(0;0)�uand �S(0;0)�v , respe
tively.4 Flatness Testing (Error Eval-uation)In the 
atness testing pro
ess, to measure the dif-feren
e between a pat
h (or subpat
h) and its basequadrilateral, we need to parametrize the base quadri-lateral as well. The base quadrilateral 
an beparametrized with a simple bilinear interpolation:Q(u; v) = v2�vv2�v1 ( u2�uu2�u1V1 + u�u1u2�u1V2)+ v�v1v2�v1 ( u2�uu2�u1V4 + u�u1u2�u1V3) (4)where u1 � u � u2, v1 � v � v2. The di�eren
ebetween the pat
h (or subpat
h) and the base quadri-lateral at (u; v) is de�ned asd(u; v) = k Q(u; v)� S(u; v) k2= (Q(u; v)� S(u; v)) � (Q(u; v)� S(u; v))T(5)where k � k is the se
ond norm andAT is the transposeof A. The distan
e between the pat
h (or subpat
h)and the base quadrilateral is the maximum of all thedi�eren
es:D = maxf pd(u; v) j (u; v) 2 [u1; u2℄� [v1; v2℄ g:To measure the distan
e between a pat
h (or sub-pat
h) and the 
orresponding base quadrilateral, weonly need to measure the norms of all lo
al minimaand maxima of d(u; v). Note that Q(u; v) and S(u; v)are both C1-
ontinuous, and d(V1), d(V2), d(V3) andd(V4) are equal to 0. Therefore, by Mean Value The-orem, the lo
al minima and maxima must lie eitherinside [u1; u2℄�[v1; v2℄ or on the four boundary 
urves.In other words, they must satisfy at least one of the5



m=1

m=2

m=3

Extra−ordinary subpatch
Extra−ordinary pointFigure 6: Partitioning of the unit square [7℄.following three 
onditions:8<: �d(u;v)�u = 0v = v1 or v = v2u1 � u � u2 8<: �d(u;v)�v = 0u = u1 or u = u2v1 � v � v28<: �d(u;v)�u = 0�d(u;v)�v = 0(u; v) 2 (u1; u2)� (v1; v2) (6)For a pat
h (or subpat
h) that is not adja
ent toan extraordinary point (i.e., (u1; v1) 6= (0; 0)), m is�xed and known (m(u; v) = minfdlog 12ue; dlog 12 veg).Hen
e Eq. (6) 
an be solved expli
itly. With the validsolutions, we 
an �nd the di�eren
e for ea
h of themusing Eq. (5). Suppose the one with the biggest dif-feren
e is (û; v̂). Then (û; v̂) is also the point with thebiggest distan
e between the pat
h (or subpat
h) andthe 
orresponding base quadrilateral. The pat
h (orsubpat
h) is 
onsidered 
at enough ifpd ( û; v̂) � � (7)where � is a given error toleran
e. In su
h a 
ase, thepat
h (or subpat
h) is repla
ed with the 
orrespondingbase quadrilateral in the tessellation pro
ess.For a pat
h (or subpat
h) that is adja
ent to anextraordinary point (i.e. (u1; v1) = (0; 0) in Eq. (6)),m is not �xed and m tends to 1 (see Figure 6). Asa result, Eq. (6) 
an not be solved expli
itly. Oneway to resolve this problem is to use nonlinear numer-i
al method to solve these equations. But numeri
alapproa
h 
annot guarantee the error is less than � ev-erywhere. For pre
ise error 
ontrol, a better 
hoi
eis needed. In the following, an alternative method isgiven for that purpose.Eq. (3) shows that S(u; v) and Q(u; v) both 
on-verge to S(0; 0) when (u; v) ! (0; 0). Hen
e, forany given error toleran
e �, there exists an integerm� su
h that if m � m�, then the distan
e be-tween S(u; v) and S(0; 0) is smaller than �=2 for any

(u; v) 2 [0; 1=2m℄ � [0; 1=2m℄, and so is the distan
ebetween Q(u; v) and S(0; 0). Consequently, when(u; v) 2 [0; 1=2m℄ � [0; 1=2m℄, the distan
e betweenS(u; v) and Q(u; v) is smaller than �. The value ofm�, in most of the 
ases, is a relatively small numberand 
an be expli
itly 
al
ulated. In next subse
tion,we will show how to 
al
ulate m�.For other regions of the unit square withdlog 12 u2e � m < m� (see Figure 6), eq. (6) 
an beused dire
tly to �nd the di�eren
e between S(u; v) andQ(u; v) for any �xed m 2 (dlog 12 u2e;m�). Therefore,by 
ombining all these di�eren
es, we have the dis-tan
e between the given extra-ordinary pat
h (or sub-pat
h) and the 
orresponding base quadrilateral. Ifthis distan
e is smaller than �, we 
onsider the givenextra-ordinary pat
h (or subpat
h) to be 
at, and usethe base quadrilateral to repla
e the extra-ordinarypat
h (or subpat
h) in the tessellation pro
ess. Other-wise, repeatedly subdivide the pat
h (or subpat
h) andperform 
atness testing on the resulting subpat
hesuntil all the subpat
hes satisfy Eq. (7).4.1 Cal
ulating m�For a given � > 0, an integer k� will �rst be 
omputedso that if k is bigger than k�, then the subpat
h ofS(u; v) with 0 � u; v � 1=2k is 
ontained in a spherewith 
enter S(0; 0) and diameter � (
alled an �-sphere).A subpat
h is 
ontained in an �-sphere if all points ofthe subpat
h are �=2 away from S(0; 0).To �nd su
h k�, we need a few properties from [7℄.Re
all that an extra-ordinary pat
h S(u; v) 
an be ex-pressed as S(u; v) = n+5Xj=0 �b;j(u; v) �Gwhere �b;j are eigen basis fun
tions de�ned in [7℄and G is the ve
tor of 
ontrol points of S. The eigenbasis fun
tions satisfy the s
aling relation [4, 7℄, i.e.,�b;j(u=2k; v=2k) = �kj�b;j(u; v)for any positive integer k, where �j are eigen values ofthe Catmull-Clark subdivision matrix [7℄. The eigenvalues are indexed so that1 = �n+1 > �2 � �i > 0where 0 � i � n + 5 and i 6= n + 1. Also re
all that�b;j(0; 0) = 0 when j 6= n + 1, and �b;n+1(u; v) is a
onstant ve
tor, its value is independent of (u; v) [7℄.Hen
e, (�b;n+1(u; v)� �b;n+1(u0; v0)) �Gr = 06



for any (u; v) and (u0; v0) where r 2 fx; y; zg and Gris the x-, y- or z-
omponent of G.Hen
e for any 1=2 � u � 1 or 1=2 � v � 1, and forany k we havejSr(u=2k; v=2k)� Sr(0; 0)j= jPn+5j=0 (�kj�b;j(u; v)� �b;j(0; 0)) �Grj�Pj 6=n+1 �kj j(�b;j(u; v) �Grj< �k2Pj 6=n+1 j(�b;j(u; v) �GrjSimilarly, the three 
onditions in Eqs. (6) 
an beused to �nd the maxima of j(�b;j(u; v) � Grj for anyj. Note that be
ause here (u; v) =2 [0; 1=2℄ � [0; 1=2℄,the 
orresponding m is equal to 1 (See �gure 6).Hen
e we 
an easily �nd the maximum in its domainf(u; v)j1=2 � u � 1 or 1=2 � v � 1g. Let the maxi-mum of j(�b;j(u; v) �Grj be Frj and Fr =Pj 6=n+1 Frj .Then, for any k > 0 we havejSr(u=2k; v=2k)� Sr(0; 0)j � �k2Fr:Therefore if (�k2Fx)2 + (�k2Fy)2 + (�k2Fz)2 � (�=2)2,we have k S(u=2k; v=2k)� S(0; 0) k� �=2:If we de�ne k� as followsk� = dlog�2 �2qF 2x + F 2y + F 2z ethen it is easy to see that when k � k�, the subpat
hS(u; v) with (u; v) 2 [0; 1=2k℄ � [0; 1=2k℄ is inside an�-sphere whose 
enter is S(0; 0).In addition, S(0; 0) is a �xed point and 
an be ex-pli
itly evaluated for any pat
h (see eq. 3), andQ(u; v)also has an expli
it parametrization (See eq. (4)).Hen
e, similarly, by using the method of Eqs. (6),it is easy to �nd an integer ek�, su
h that for any given� > 0, when k � ek�, we have k Q(u; v)�S(0; 0) k� �=2,where (u; v) 2 [0; 1=2k℄ � [0; 1=2k℄. On
e we have k�and ek�, simply set m� as the maximum of k� and ek�.m� = maxfk�; ek�gWith this m�, it is easy to see that when m � m�,we have k S(u; v) � Q(u; v) k� �, where (u; v) 2[0; 1=2m℄� [0; 1=2m℄.4.2 Flatness Testing RevisitedA potential problem with the base quadrilateral re-pla
ement pro
ess is the new polygon that repla
es the

base quadrilateral might not satisfy the 
atness re-quirement. To ensure the 
atness requirement is alsosatis�ed by the polygons that repla
e the base quadri-laterals, we need to 
hange the test 
ondition in Eq.(7) to the following one:pd ( �u; �v) +pd ( û; v̂) � � (8)where (û; v̂) and (�u; �v) are solutions of Eq. (6) andthey satisfy the following 
onditions:� Among all the solutions of Eq. (6) that are lo-
ated on one side of Q(u; v), i.e. solutions thatsatisfy (Q � S) � ((V1 � V3) � (V2 �V4)) � 0,d(û; v̂) is the biggest. If there does not existany solution su
h that this 
ondition holds, thend(û; v̂) is set to 0� Among all the solutions of Eq. (6) that are lo-
ated on the other side of Q(u; v), i.e. solutionsthat satisfy (Q�S) �((V1�V3)�(V2�V4)) < 0,d(�u; �v) is the biggest. If there does not exist anysolution su
h this 
ondtion holds, then d(�u; �v) isset to 0From the de�nition of (û; v̂) and (�u; �v), we 
an see thatsatisfying Eq. (8) means that the pat
h being testedis lo
ated between two quadrilaterals that are � away.Note that all the evaluated points lie on the limitsurfa
e. Hen
e, for instan
e, in Fig. 4, pointsA2;C4;B4 and A5 of pat
h A2A3A4A5 are alsopoints of pat
h A1A2A5A6. With the new test 
on-dition in Eq. (8), we know that a pat
h or subpat
h is
at enough if it is lo
ated between two quadrilateralsthat are � away. Be
ause boundary points A2;C4;B4and A5 are on the limit surfa
e, they must be lo-
ated between two quadrilaterals that are � away. Sois the polygon A1A2C4B4A5A6. Now the pat
h (orsubpat
h) and its approximating polygon are both lo-
ated inside two quadrilaterals that are � away. Hen
ethe overall error between the pat
h (or subpat
h) andits approximating polygon is guaranteed to be smallerthan �.5 Making Pat
hes Visible toEa
h OtherIn this se
tion, we show how to use a globalizationpro
ess to make adja
ent pat
hes visible to ea
h other.To make adja
ent pat
hes visible to ea
h otherand to make subsequent base quadrilateral repla
ementpro
ess easier, one should assign a global index ID toea
h evaluated vertex so that7



� all the evaluated verti
es with the same 3D posi-tion have the same index ID;� the index ID's are sorted in v and then in u, i.e., if(ui; vi) � (uj ; vj), then IDi � IDj , unless IDi orIDj has been used in previous pat
h evaluation.This global indexing te
hnique allows subsequentpro
essing to be performed on individual pat
hesbut still with a global visibility. We also need astep 
alled adaptive marking to fa
ilitate the basequadrilateral repla
ement pro
ess. The purpose ofadaptive marking is to mark those points in uv spa
ewhere the limit surfa
e should be evaluated. Withthe help of the global index ID, this step 
an bedone on an individual pat
h basis. Initially, all(u; v) points are marked white. If surfa
e evaluationshould be performed at a point and the resultingvertex is needed in the tessellation pro
ess, then thatpoint is marked in bla
k. This pro
ess 
an be easilyimplemented as a re
ursive fun
tion. A pseudo 
odefor this step is given below.AdaptiveMarking(P, u1, u2, v1, v2)1. Evaluate(P, u1, u2, v1, v2),2. AssignGlobalID(P, u1, u2, v1, v2),3. if (FlatEnough(P, u1, u2, v1, v2))4. MarkBla
k(P, u1, u2, v1, v2)5. else6. u12 = (u1 + u2)=27. v12 = (v1 + v2)=28. AdaptiveMarking(P, u1, u12, v1, v12)9. AdaptiveMarking(P, u12, u2, v1, v12)10. AdaptiveMarking(P, u12, u2, v12, v2)11. AdaptiveMarking(P, u1, u12, v12, v2)This routine adaptively marks points in the param-eter spa
e of pat
h P. Fun
tion `Evaluate' evaluateslimit surfa
e at the four 
orners of pat
h or subpat
hPde�ned on [u1; u2℄�[v1; v2℄. Fun
tion `AssignGlobeID'assignes global index ID to the four 
orners of P.Fun
tion `FlatEnough' uses the method given in Se
-tion 4 and Eq. (7) to tell if a pat
h or subpat
h is 
atenough. Fun
tion `MarkBla
k' marks the four 
ornersof pat
h or subpat
h P de�ned on [u1; u2℄� [v1; v2℄ inbla
k. All the marked 
orner points will be used inthe tessellation pro
ess. When a subpat
h is ready forthe base quadrilateral repla
ement pro
ess, simply out-put in order all the marked points between 
orners ofthe base quadrilateral to form the polygon that shouldbe used for this base quadrilateral in the tessellationpro
ess.

6 Degree of FlatnessJust like numeri
al errors have two di�erent settings,the 
atness of a pat
h, whi
h 
an be viewed as a nu-meri
al error from the approximation point of view,has two di�erent aspe
ts as well, depending on if the
atness is 
onsidered in the absolute sense or relativesense. The 
atness of a pat
h is 
alled the absolute
atness (AF) if the pat
h is not transformed in anyway. In that 
ase, the value of � in Eqs. (7) and (8)is set to whatever pre
ision the 
atness of the pat
h issupposed to meet. AF should be 
onsidered for oper-ations that work on physi
al size of an obje
t su
h asma
hining or prototyping.For operations that do not work on the physi
al sizeof an obje
t, su
h as the rendering pro
ess, we need a
atness that does not depends on the physi
al size of apat
h. Su
h a 
atness must be AÆne transformationinvariant to be a 
onstant for any transformed versionof the pat
h. Su
h a 
atness is 
alled the relative 
at-ness of the pat
h. More spe
i�
ally, if Q is the basequadrilateral of pat
h S, the relative 
atness (RF) ofS with respe
t to Q is de�ned as follows:RF = dmaxfD1; D2gwhere d is the maximal distan
e between S and Q,and D1; D2 are lengths of the diagonal lines of Q.It is easy to see that RF de�ned this way is AÆnetransformation invariant. Note that when D1 and D2are �xed, smaller RE means smaller d. Hen
e, REindeed measures the 
atness of a pat
h. The di�eren
ebetween RF and AF is that RF measures the 
atnessof a pat
h in a global sense while AF measures 
atnessof a pat
h in a lo
al sense. Therefore, RF is moresuitable for operations that have data sets of varioussizes but with a 
onstant size display area su
h as therendering pro
ess. Using RF is also good for adaptivetessellation pro
ess be
ause it has the advantage ofkeeping the number of polygons low in the tessellationpro
ess.7 Implementation and Test Re-sultsThe proposed approa
h has been implemented in C++using OpenGL as the supporting graphi
s system onthe Windows platform. Some of the tested results areshown in Figures 1 and Figure 7. We also summarizethose tested results in Table 1. The 
olumn under-neath AjUjT in Table 1 indi
ates the type of tessel-lation te
hnique (Adaptive, Uniform or Triangulated8



after adaptive tessellation) used in the rendering pro-
ess. For instan
e, Fig. 1(a) is generated using uni-form subdivision, while Figs. 1(b), 1(
), 1(d) are tes-sellated with the adaptive te
hnique presented in thispaper, and Fig. 1(e) is the triangulated result of Fig.1(d). Also Fig. 7(e) and Fig. 7(p) are the triangulatedresults of Fig. 7(d) and Fig. 7(o), respe
tively. Theterm A/U ratio means the ratio of number of poly-gons in an adaptively tessellated CCSS to its 
ounterpart in a uniformly tessellated CCSS with the samea

ura
y. The term Depth means the number of iter-ative uniform subdivisions that have to be performedon the 
ontrol mesh of a CCSS to satisfy the errorrequirement. From Table 1 we 
an see that all theadaptively tessellated CCSS's have relatively low A/Uratios. This shows the proposed method indeed sig-ni�
antly redu
es the number of fa
es in the resultingmesh while satisfying the given error requirement.The `Error' 
olumn in Table 1 represents absoluteerror. We 
an easily see that, for the same model, thesmaller the error, the lower the A/U ratio. For exam-ple, Fig. 7(b) has lower A/U ratio than Fig. 7(
) andFig. 7(d) be
ause the former has smaller error toler-an
e than the last two. However, for the same model, ifthe di�eren
e of two error toleran
es is not big enough,the resulting adaptive tessellation would have the samesubdivision depth (see information on Figs. 7(g) and7(h) or Figs. 7(l) and 7(m) in Table 1). As a result,the one with smaller error toleran
e would have higherA/U ratio, be
ause the 
orresponding uniformly sub-divided meshes are the same. Another interesting fa
tis that Fig. 7(k) uses mu
h more polygons than Fig.7(l) does, while the former is less a

urate than thelatter. This shows the presented adaptive tessellationmethod is 
apable of providing a higher a

ura
y withless polygons.From Table 1 we 
an easily see that for di�erentmodels the absolute errors di�er very mu
h. There-fore, for di�erent models, 
omparing their absolute er-rors might not make any pra
ti
al sense be
ause ab-solute error is not aÆne transformation invariant. Inthe mean while, from Table 1, we 
an see that RFis a mu
h better and more understandable measure-ment for users to spe
ify the error requirement in theadaptive tessellation pro
ess.From Table 1, we 
an also see that triangulatedtessellations usually have higher A/U ratio, be
ausetriangulation in
reases the number of polygons by atlease 2 times. Hen
e triangulation will slow down therendering pro
ess while it does not improve a

ura
y.From the view point of rendering, triangulation is notreally ne
essary. But for some spe
ial appli
ations,su
h as Finite Element Analysis, triangulation is in-

dispensable. Performing triangulation on the resultingmesh of our adaptive tessellation pro
ess is straight-forward and fast.The proposed adaptive tessellation method is goodfor models that have large 
at or nearly 
at regions inits limit surfa
e and would save signi�
ant amount oftime in the �nal rendering pro
ess, but may not havelow A/U ratios when it is applied to surfa
es withextraordinary 
urvature distribution or surfa
es withvery dense 
ontrol meshes. One main disadvantageof all the 
urrent adaptive tessellation methods (in-
luding the method proposed here) is that they onlyeliminate polygons inside a pat
h. They do not takethe whole surfa
e into 
onsideration. For instan
e, allthe 
at sides of the ro
ker arm model in Fig. 7 arealready 
at enough, yet a lot of polygons are still gen-erated there.8 SummaryA new adaptive tessellation method for generalCatmull-Clark subdivision surfa
es is presented. Thenew method is developed for rendering purpose andis based on the observation that optimum adaptivetessellation for rendering purpose is a re
ursive er-ror evaluation and globalization pro
ess. The newmethod 
an pre
isely measure the error for every pointof the limit surfa
e and is performed on the basis ofindividual pat
hes. Hen
e, the approximating polyhe-dron mesh generated by this method is optimum forea
h pat
h of the CCSS. Furthermore, sin
e the newmethod does not in
rease the number of fa
es in orderto avoid the generation of 
ra
ks, the resulting approx-imating polyhedron mesh is a
tually near-optimum forthe entire CCSS. As the the new method does not re-quire 
ra
k dete
tion, it is also 
omputation eÆ
ient.The result of our work 
an be improved by runninga post-pro
essor to see if some fa
es from di�erentsides of a pat
h boundary 
an be merged into abigger fa
e with the same error size. However, sin
ethe improvement is not signi�
ant and the 
omputa-tion is 
ostly, it might not be worth the e�ort to do so.A
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(a) Uniform (b) Adaptive (
) Adaptive (d) Adaptive (e) Triangulated

(f) Uniform (g) Adaptive (h) Adaptive (i) Adaptive (j) Adaptive

(k) Uniform (l) Adaptive (m) Adaptive (n) Adaptive (o) Adaptive (p) Triangu-lated

(q) Uniform (r) Adaptive (s) Adaptive (t) Adaptive (u) AdaptiveFigure 7: Adaptive rendering on surfa
es with arbitrary topology.11



Table 1: Extra information on Figures 1 and 7Figure Obje
t AjUjT polygons A/U Ratio Depth Error RFFig. 1(a) Gargoyle U 16384 100.00% 2 0.0055 12%Fig. 1(b) Gargoyle A 14311 5.46% 4 0.0030 6%Fig. 1(
) Gargoyle A 5224 7.97% 3 0.0045 9%Fig. 1(d) Gargoyle A 2500 15.26% 2 0.0055 12%Fig. 1(e) Gargoyle T 6139 37.47% 2 0.0055 12%Fig. 7(a) Bunny U 65536 100.00% 3 0.0008 3%Fig. 7(b) Bunny A 32894 12.55% 4 0.0001 1%Fig. 7(
) Bunny A 9181 14.01% 3 0.0008 3%Fig. 7(d) Bunny A 3412 20.82% 2 0.0010 5%Fig. 7(e) Bunny T 7697 46.98% 2 0.0010 5%Fig. 7(f) Venus U 65536 100.00% 2 0.00095 8%Fig. 7(g) Venus A 29830 2.84% 4 0.00015 3%Fig. 7(h) Venus A 21841 2.08% 4 0.00035 4%Fig. 7(i) Venus A 9763 3.72% 3 0.00060 6%Fig. 7(j) Venus A 6178 9.43% 2 0.00095 8%Fig. 7(k) Ro
ker arm U 90624 100.00% 4 1.2 3%Fig. 7(l) Ro
ker arm A 36045 9.94% 5 0.85 1%Fig. 7(m) Ro
ker arm A 10950 3.02% 5 1.0 2%Fig. 7(n) Ro
ker arm A 5787 6.39% 4 1.2 3%Fig. 7(o) Ro
ker arm A 2091 12.80% 3 1.5 5%Fig. 7(p) Ro
ker arm T 4926 21.74% 3 1.5 5%Fig. 7(q) Beethoven U 65536 100.00% 2 0.041 10%Fig. 7(r) Beethoven A 20893 1.99% 4 0.006 4%Fig. 7(s) Beethoven A 15622 1.48% 4 0.026 6%Fig. 7(t) Beethoven A 7741 2.95% 3 0.035 8%Fig. 7(u) Beethoven A 5230 7.99% 2 0.041 10%
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