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Abstract. A new adaptive tessellation method
for general Catmull-Clark subdivision surfaces is
presented. Development of the new method is based
on the observation that optimum adaptive tessellation
for rendering purpose is a recursive error evaluation
and globalization process. The adaptive tessellation
process is done by generating an inscribing poly-
hedron to approximate the limit surface for each
individual patch. The inscribing polyhedron is gener-
ated through an adaptive subdivision on the patch’s
parameter space driven by a recursive error evaluation
process. This approach generates less faces in the
resulting approximating mesh while meeting the given
precision requirement. The crack problem is avoided
through globalization of new vertices generated in the
adaptive subdivision process of the parameter space.
No crack-detection or crack-elimination is needed in
the adaptive tessellation process. Therefore, no mesh
element splitting to eliminate cracks is necessary.
The new adaptive tessellation method can precisely
measure the error for every point of the limit surface.
Hence, it has complete control of the accuracy of the
tessellation result.

Keywords: subdivision, Catmull-Clark surfaces,
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1 Introduction

Catmull-Clark subdivision scheme provides a power-
ful method for building smooth and complex surfaces.
Given a control mesh, a Catmull-Clark subdivision sur-
face (CCSS) is generated by iteratively refining (sub-
dividing) the control mesh to form new and finer con-
trol meshes [2]. The mesh refining process consists
of defining new vertices and connecting the new ver-
tices to form new edges and faces of a new control
mesh. A CCSS is the limit surface of the refined con-
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trol meshes. The limit surface is called a subdivision
surface because the mesh refining process is a gener-
alization of the uniform B-spline surface subdivision
technique. Subdivision surfaces can model/represent
complex shape of arbitrary topology because there is
no limit on the shape and topology of the control mesh
of a subdivision surface [3]. But the number of faces in
the uniformly refined meshes increases exponentially
with respect to subdivision depth. Adaptive tessel-
lation reduces the number of faces needed to yield a
smooth approximation to the limit surface and, con-
sequently, makes the rendering process more efficient.
See Figure 1 for an example where the control mesh
of a Gargoyle is uniformly refined only twice and yet
the resulting mesh is already quite dense (Figure 1(a)),
while the meshes generated by adaptively tessellating
the same model 4, 3, and 2 times ( Figure 1(b), 1(c),
and 1(d), respectively) have a higher or similar preci-
sion but with much less faces.

1.1 Previous Work

A number of adaptive tessellation methods for sub-
division surfaces have been proposed. Most of them
are mesh refinement based, i.e., approximating the
limit surface by adaptively refining the control mesh.
This approach requires the assignment of a subdivi-
sion depth to each region of the surface first. In [20],
a subdivision depth is calculated for each patch of the
given CCSS with respect to a given error tolerance e.
In [9], a subdivision depth is estimated for each vertex
of the given CCSS by considering factors such as cur-
vature, visibility, membership to the silhouette, and
projected size of the patch. The approach used in [20]
is error controllable. An error controllable approach
for Loop surface is proposed in [11], which calculates
a subdivision depth for each patch of a Loop surface by
estimating the distance between two bounding linear
functions for each component of the 3D representation.

Several other adaptive tessellation schemes have



(a) Uniform

(b) Adaptive

(e) Triangulated

Figure 1: Adaptive tessellation of a surface with arbitrary topology.

ods of adaptive tessellation for triangular meshes are
proposed. The adaptive tessellation process for each
patch is based on angles between its normal and nor-
mals of adjacent faces. A set of new error metrics
tailored to the particular needs of surfaces with sharp
creases is introduced in [14].

In addition to various adaptive tessellation schemes,
there are also applications of these techniques. D. Rose
et al. used adaptive tessellation method to render ter-
rain [18] and K. Miiller et al. combined ray tracing
with adaptive subdivision surfaces to generate some
realistic scenes [13]. Adaptive tessellation is such an
important technique that an API has been designed for
its general usage [17]. Actually hardware implemen-
tation of this technique has been reported recently as
well [12].

A problem with mesh-refinement-based, adaptive
tessellation techniques is the possible over-tessellation
problem. Each region, such as a patch, where a sub-
division depth is assigned is uniformly subdivided to
the level specified by the subdivision depth. Since the
subdivision depth is computed based on the largest
possible curvature of the region, parts of the region
which do not carry such a large curvature will be un-
necessarily subdivided.

been presented as well [15, 14, 10]. In [10], two meth-

Another problem is the so called crack-prevention
requirement. Because the number of new vertices gen-
erated on the boundary of a region depends on the
subdivision depth, cracks (or, gaps) would occur be-
tween adjacent regions if these regions are assigned
different subdivision depths. Hence, such an adap-
tive tessellation method needs special mechanism to
eliminate cracks. This is usually done by performing
additional subdivision or splitting steps on the region
with lower subdivision depth. As a result, many un-
necessary mesh elements are generated.

1.2 Overview

In this paper, we will present a new adaptive tessella-
tion method to address the above two problems. The
new method is developed for CCSS’s. The possible
over-tessellation problem is addressed by driving the
tessellation process by a recursive error evaluation pro-
cess within each patch of the surface and the crack
prevention requirement is addressed by using a global-
ization technique in the subdivision process to avoid
the need of crack-detection and crack-elimination. To
ensure the over-tessellation problem is completely ad-
dressed, we present an error evaluation process that
can precisely measure the error for every point of the
limit surface so that accuracy of the tessellation re-
sult can be completely controlled. Test results show
that, with these new techniques, number of faces in
the resulting approximating mesh is significantly re-
duced and, consequently, rendering of CCSS’s can be
made much more efficient.

The remaining part of the paper is arranged as fol-
lows. In Section 2, motivation and basic idea of the
new method are presented. The evaluation techniques
for a CCSS are shown in Section 3. The error evalu-
ation process used in the adaptive tessellation process
is shown in Section 4. The globalization technique is
shown in Section 5. A discussion of absolute flatness
vs. relative flatness is given in Section 6. Implemen-
tation issues and test results are presented in Section
7. The concluding remarks are given in Section 8.

2 Basic Idea

Given the control mesh of a CCSS and an error toler-
ance, €, the goal is to generate an approximating poly-
hedron mesh close enough to the limit surface S(u, v),
i.e., within the error tolerance of S(u,v), but with as
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Figure 2: Inscribed and Circumscribed Approxima-
tion.
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Figure 3: Adaptive subdivision on parameter spaces
of patches.

few mesh faces as possible, so that the rendering pro-
cess of S(u,v) can be performed efficiently. An ap-
proximating polyhedron mesh with the least number
of mesh faces is called an optimum approximating poly-
hedron mesh. We assume each face of the control mesh
is a quadrilateral and each face has at most one extra-
ordinary vertex (a vertex with a valence different from
4). 1If this is not the case, simply perform Catmull-
Clark subdivision on the control mesh of the CCSS
twice.

Our first goal is to avoid the possible over-
tessellation problem discussed in Section 1.1. It is easy
to see that, to achieve such a goal, tessellation process
within each patch should also be performed based on
the flatness of each local region. This can be accom-
plished by doing adaptive subdivision on the parameter
space of each patch that is driven by a recursive error
evaluation process. Contrary to the mesh refinement
based approaches which generate approximating poly-
hedra from ”outside” the limit surface that usually
do not interpolate the limit surface (see Figure 2(a)
for an example in the curve case), the approximating
polyhedron generated by this approach is an inscribing
polyhedron whose vertices interpolate the limit surface
(see Figure 2(b) for an example in the curve case).
The process is illustrated below.

For a patch of S(u,v) defined on [uy, us] X [v1, ve], we
approximate it with the base quadrilateral formed by
its four vertices Vi = S(u1,v1), Vo = S(us,v1), V3 =
S(ug,v2) and V4 = S(u1,vs). If the distance (error)
(to be defined below) between the patch and its base
quadrilateral is small than e, the patch is considered
flat enough and is replaced with the base quadrilateral
in the tessellation process. Otherwise, we perform a
midpoint subdivision on the parameter space by setting

U1 + U9 V1 + Vo
U1 = T and V12 = B

to get four subpatches: [u1,u12] X [v1,v12], [u12, us] X
[711,1)12], [U12,U2] X [71127712]7 [U17U12] X [U127712]7 and
repeat the flatness testing (error evaluation) process
on each of the subpatches. The process is recursively
repeated until the distances (errors) between all the
subpatches and their corresponding base quadrilater-
als are smaller than e. The vertices of the resulting
subpatches are then used as vertices of the inscribing
polyhedron that approximates the limit surface. For
example, if the four rectangles in Figure 3(a) are the
parameter spaces of four adjacent patches of S(u,v),
and if the rectangles shown in Figure 3(b) are the pa-
rameter spaces of the resulting subpatches when the
above recursive flatness testing (error evaluation) pro-
cess stops, then the limit surface will be evaluated at
the points marked with small solid circles to form ver-
tices of an inscribing approximating polyhedron of the
limit surface.

This is a simple and straightforward process, it is by
no means new, but the result could be very significant.
Note that each face in the inscribed approximating
polyhedron for a patch is built with the expectation
that it is just close enough to the limit surface but with
the maximum possible size. Therefore, if the recursive
error evaluation process can indeed provide precise er-
ror estimate, then the approximating polyhedron mesh
generated by this process is optimum or near-optimum
(in case some faces from different sides of a common
boundary of two patches can be merged into a bigger
face with the same error size). So, the point now is,
can we precisely evaluate the error for any part of a
CCSS? To ensure that the approximating polyhedron
mesh is precisely constructed, we must also be able
to precisely evaluate a CCSS at any given parameter
point. It is known how to do these tasks for regular
patches of a CCSS. We will show that these tasks are
possible for extra-ordinary patches of a CCSS as well
in Sections 3 and 4.

Our second goal is to avoid the crack prevention re-
quirement discussed in Section 1.1. Due to the fact
that adjacent patches are usually approximated by



Figure 4: Cracks between adjacent patches (sub-

patches).

base quadrilaterals from different levels of the mid-
point subdivision process, cracks could occur between
adjacent patches. For instance, in Figure 4, the left
patch is approximated by one base quadrilateral but
the right patch is approximated by 7 base quadrilat-
erals. Consider the boundary shared by the left patch
and the right patch. On the left side, that boundary
is approximated by a line segment defined by two ver-
tices, Ao and Aj. But on the right side, the boundary
is approximated by a polyline defined by four vertices,
A,, C4, By, and A;. They do not coincide unless Cy
and By lie on the line segment defined by As and As.
But this usually is not the case. Hence, a crack would
appear between the left patch and the right patch.
The points shown in Figure 4 are points of the limit
surface, not points in the parameter space of the limit
surface.

Fortunately Cracks can be removed simply by re-
placing edges of the base quadrilaterals with appropri-
ate polylines in the tessellation process. Namely, each
edge of a base quadrilateral should be replaced with a
polyline defined with all the new vertices computed for
that edge of the corresponding patch or subpatch. For
example, in Figure 4, all the dashed lines should be
replaced with the corresponding polylines. In particu-
lar, edge A>Aj5 of the base quadrilateral Aj A, As;Ag
should be replaced with the polyline AsCyB4sA5. As
a result, the left patch is approximated by the poly-
gon A1 A>sCyB4A;5Ag, instead of the base quadrilat-
eral A;AsA5Ag, in the tessellation process. For ren-
dering purpose this is fine because graphics systems
like OpenGL can handle polygons with any number of
vertices and the vertices do not have to be co-planar.
Note that, with the above approach, there is no need to
perform crack detection at all because the resulting ap-
proximating polyhedron contains on cracks. Besides,
since this process does not increase the number of faces
in an approximating polyhedron, the resulting approx-
imating polyhedron is optimum or near-optimum for
the entire CCSS.

The point here is, how do we know which poly-
line should be used to replace an edge of a base
quadrilateral? Currently, all the subdivision surface
parametrization and evaluation techniques are patch
based [4, 6, 7]. Hence, no matter which method is used
in the tessellation process, a patch cannot see vertices
evaluated by other patches from its own (local) struc-
ture even though the vertices are on its own boundary.
For example, in Figure 4, vertices C4 and B4 are on
the shared boundary of the left and the right patches.
But the left patch can not see these vertices from its
own structure because these vertices are not evaluated
by this patch. So, the key here is how can one make
adjacent patches visible to each other so that new ver-
tices computed by one patch for the shared boundary
can be accessed by the other patch. We will show in
Section 5 that this is possible through a globalization
technique. For convenience of subsequent reference,
the process of replacing edges of base quadrilaterals
with new polylines is called a base quadrilateral re-
placement process.

Note that in previous methods for adaptive tessel-
lation of subdivision surfaces [20, 9, 10, 14], the most
difficult part is crack prevention. With the above ap-
proach, this part becomes the simplest part to handle
and implement.

3 Evaluation of a CCSS Patch

In this section we show how to evaluate an extra-
ordinary CCSS patch and its tangents at a given point
of the parameter space. These techniques are needed
in the construction of the approximating polyhedron
and the error evaluation process. Several approaches
[4, 5, 6, 7] have been presented for exact evaluation of
an extra-ordinary patch at any parameter point (u, v).
We use the parametrization technique presented in [7]
here. This method is more efficient for both surface
and tangent evaluation because it employs less eigen
basis functions in its representation.

The parametrization technique presented in [7]
works for general CCSS’s, i.e., for a given vertex point
V., a new vertez point V' is computed as:

A% :anV+BniEi+7niFi

i=1 i=1

where a,,, £, and =, are positive numbers and «,, +
Bn+7vn = 1, and it is based on an 2 — partition of the
parameter space [4, 7]. The value of an extra-ordinary



Figure 5: Control vertices of an extra-ordinary patch
and their labeling.

patch is evaluated as follows:

n+5
S(u,0) = WK™ Y A" My, G (1)

Jj=0

where n is the valance of the extra-ordinary patch !,
W is a vector containing the 16 B-spline power basis
functions:

W7 (u,v) = 2 2,3 ,2 2,3

[1,u,v,u? uo,v?, u?, u?v, uv?, V3,

uwdv, u?v?, uvd, udv?, u?vd udv?]
K is a diagonal matrix:
K = Diag(1,2,2,4,4,4,8,8,8,8,16, 16, 16, 32, 32, 64),

and m and b are defined as follows:

m(u,v) = min{[logiul, [logiv]}

1, if 2"u>1 and 2Mv <1
blu,v) =< 2, if 2mu>1 and 2™v > 1
3, if 2"u<1 and 2mv>1.

Aj, 0 < j < n+5, are eigenvalues of the Catmull-Clark
subdivision metrix and M ;, 1 <b<3,0<j <n+5,
are matrices of dimension 16 x (2n + 8). A; and M, ;
are independent of (u,v) and their exact expressions
are given in [7]. G is the vector of control points (See
Fig. 5 for their labeling):

G = [V7E17"' 7En7F17“' 7Fn7117“' 717]'
One can compute the derivatives of S(u,v) to any

degree simply by differentiating W(u,v) in Eq. (1)
accordingly. For example,

0 6WT mn_*_5 m—1
5-S(mv) = (5-)T K ;0 APTE M G (2)

1Eq. (1) works for regular patches as well, i.e., when n = 4.

The value and tangents at an extra-ordinary vertex are
simply the limit points of the corresponding equations
in (2) when (u,v) — (0,0):

S(0,0) = [1,0,---,0]- Mynis G
D, = [0,1,0,0,---,0]-Mso -G (3)
Dv = [07071707'“70]'M2,2'G

where D,, and D, are the direction vectors of w

and w7 respectively.

4 Flatness Testing (Error Eval-
uation)

In the flatness testing process, to measure the dif-
ference between a patch (or subpatch) and its base
quadrilateral, we need to parametrize the base quadri-
lateral as well. The base quadrilateral can be
parametrized with a simple bilinear interpolation:

Qu,v) = Z=rGErVit o= Ve)

U2 —uUy U2 —uUy

(4)

+ v—vq (ugfu V4 + uU—uj Vg)

U2—U1 *U2—UL u2—uy

where u; < u < ws, v1 < v < wy. The difference
between the patch (or subpatch) and the base quadri-
lateral at (u,v) is defined as

du,v) = 1 Qu,v) — S(u,v) |
= (Q(um) - S(u U)) ’ (Q(u 'U) - S(um))T
(5)
where || - || is the second norm and AT is the transpose
of A. The distance between the patch (or subpatch)
and the base quadrilateral is the maximum of all the
differences:

D = max{ \/d(u,v) | (u,v) € [ur,us] x [v1,v2] }.

To measure the distance between a patch (or sub-
patch) and the corresponding base quadrilateral, we
only need to measure the norms of all local minima
and maxima of d(u,v). Note that Q(u,v) and S(u,v)
are both C'-continuous, and d(Vy), d(Va2), d(V3) and
d(V4) are equal to 0. Therefore, by Mean Value The-
orem, the local minima and maxima must lie either
inside [ug,u2] X [v1, v2] or on the four boundary curves.
In other words, they must satisfy at least one of the
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Figure 6: Partitioning of the unit square [7].

following three conditions:

ad(u,v)
ou =0
UV =v1 Or v = 02

up < u < Uz

Od(u,v)
v =0
U =Up Or U = Uz

v v < v

d(u,v)
olin) _ o
81}7 =0

(u,v) € (u1,us) X (v1,v2)

(6)
For a patch (or subpatch) that is not adjacent to
an extraordinary point (i.e., (u1,v1) # (0,0)), m is
fixed and known (m(u,v) = min{[logiu], [logiv]}).
Hence Eq. (6) can be solved explicitly. With the valid
solutions, we can find the difference for each of them
using Eq. (5). Suppose the one with the biggest dif-
ference is (@, 0). Then (@, ) is also the point with the
biggest distance between the patch (or subpatch) and
the corresponding base quadrilateral. The patch (or
subpatch) is considered flat enough if

d(a, 0) < e (7)

where € is a given error tolerance. In such a case, the
patch (or subpatch) is replaced with the corresponding
base quadrilateral in the tessellation process.

For a patch (or subpatch) that is adjacent to an
extraordinary point (i.e. (u1,v1) = (0,0) in Eq. (6)),
m is not fixed and m tends to oo (see Figure 6). As
a result, Eq. (6) can not be solved explicitly. One
way to resolve this problem is to use nonlinear numer-
ical method to solve these equations. But numerical
approach cannot guarantee the error is less than € ev-
erywhere. For precise error control, a better choice
is needed. In the following, an alternative method is
given for that purpose.

Eq. (3) shows that S(u,v) and Q(u,v) both con-
verge to S(0,0) when (u,v) — (0,0). Hence, for
any given error tolerance €, there exists an integer
m. such that if m > m,., then the distance be-
tween S(u,v) and S(0,0) is smaller than €¢/2 for any

(u,v) € [0,1/2™] x [0,1/2™], and so is the distance
between Q(u,v) and S(0,0). Consequently, when
(u,v) € [0,1/2™] x [0,1/2™], the distance between
S(u,v) and Q(u,v) is smaller than e. The value of
me, in most of the cases, is a relatively small number
and can be explicitly calculated. In next subsection,
we will show how to calculate m..

For other regions of the wunit square with
[logs uz] < m < me (see Figure 6), eq. (6) can be
used directly to find the difference between S(u, v) and
Q(u,v) for any fixed m € ([logy us], mc). Therefore,
by combining all these differences, we have the dis-
tance between the given extra-ordinary patch (or sub-
patch) and the corresponding base quadrilateral. If
this distance is smaller than €, we consider the given
extra-ordinary patch (or subpatch) to be flat, and use
the base quadrilateral to replace the extra-ordinary
patch (or subpatch) in the tessellation process. Other-
wise, repeatedly subdivide the patch (or subpatch) and
perform flatness testing on the resulting subpatches
until all the subpatches satisfy Eq. (7).

4.1 Calculating m,

For a given € > 0, an integer k. will first be computed
so that if k is bigger than k., then the subpatch of
S(u,v) with 0 < u,v < 1/2* is contained in a sphere
with center S(0,0) and diameter € (called an e-sphere).
A subpatch is contained in an e-sphere if all points of
the subpatch are €/2 away from S(0,0).

To find such k., we need a few properties from [7].
Recall that an extra-ordinary patch S(u,v) can be ex-
pressed as

n—+5
S(u,v) = Z &y i(u,v) -G
j=0

where ®;, ; are eigen basis functions defined in [7]
and G is the vector of control points of S. The eigen
basis functions satisfy the scaling relation [4, 7], i.e.,

‘I’bJ(U/Qk,’U/Qk) = )\f@b,j(u,v)

for any positive integer k, where A; are eigen values of
the Catmull-Clark subdivision matrix [7]. The eigen
values are indexed so that

1:>\n+1>)\22)\i>0

where 0 <7 <n+5and i # n+ 1. Also recall that
®;, ;(0,0) = 0 when j # n+ 1, and ®p pq1(u,v) is a
constant vector, its value is independent of (u,v) [7].
Hence,

(¢b7n+1(u77}) - (I>b7n+1(u’= U’)) -G, =0



for any (u,v) and (u',v') where r € {z,y,z} and G,
is the z-, y- or z-component of G.

Hence for any 1/2 <wu <1lor 1/2 <wv <1, and for
any k we have

'S, (u/2%,v/2%) — S,.(0,0)]

= | 232 (@ (u,0) — 5,5(0,0)) - G,

j=0

< Zj;én+1 A?‘((I)b,j (u,v) - Gy

< >‘§ Zj;én+1 (@b, (u,v) - Gy

Similarly, the three conditions in Eqgs. (6) can be
used to find the maxima of |(®y ;(u,v) - G,| for any
j. Note that because here (u,v) ¢ [0,1/2] x [0,1/2],
the corresponding m is equal to 1 (See figure 6).
Hence we can easily find the maximum in its domain
{(u,v)[1/2 <u <1or1/2 <wv<1}. Let the maxi-
mum of [(®y,;(u,v)-Gr| be Fyj and F,. = 37, ) Fyj.
Then, for any k£ > 0 we have

S, (u/2% v/2%) = S,(0,0)] < A¥F,.

Therefore if (ASF,)2 + (ASF,)2 + (ASF.)? < (e/2)2,
we have

IS (u/2",v/2") — S(0,0) ||< /2.

If we define k. as follows

€

) ]
2,/F2 + F? + F?

then it is easy to see that when k£ > k., the subpatch
S(u,v) with (u,v) € [0,1/2%] x [0,1/2F] is inside an
e-sphere whose center is S(0, 0).

In addition, S(0,0) is a fixed point and can be ex-
plicitly evaluated for any patch (see eq. 3), and Q(u, v)
also has an explicit parametrization (See eq. (4)).
Hence, similarly, by using the method of Eqs. (6),

ke = [log,

it is easy to find an integer k., such that for any given
e > 0, when k > k., we have || Q(u,v)—S(0,0) ||< €/2,
where (u,v) € [0,1/2F] x [0,1/2%]. Once we have k.
and EE, simply set m. as the maximum of k. and EE.

me = max{k., Ee}

With this m., it is easy to see that when m > m.,
we have || S(u,v) — Q(u,v) [|< €, where (u,v) €
[0,1/2™] x [0,1/2™].

4.2 Flatness Testing Revisited

A potential problem with the base quadrilateral re-
placement process is the new polygon that replaces the

base quadrilateral might not satisfy the flatness re-
quirement. To ensure the flatness requirement is also
satisfied by the polygons that replace the base quadri-
laterals, we need to change the test condition in Eq.
(7) to the following one:

Vd (u, v) ++/d (a4, 9) <e (8)

where (4,0) and (@,v) are solutions of Eq. (6) and
they satisfy the following conditions:

e Among all the solutions of Eq. (6) that are lo-
cated on one side of Q(u,v), i.e. solutions that
satisfy (Q —S) - (V1 — V3) x (V2 — Vy4)) >0,
d(u,0) is the biggest. If there does not exist
any solution such that this condition holds, then
d(u,0) is set to 0

e Among all the solutions of Eq. (6) that are lo-
cated on the other side of Q(u,v), i.e. solutions
that satisfy (Q— S) . ((V1 —Vg) X (V2 —V4)) <0,
d(u,v) is the biggest. If there does not exist any
solution such this condtion holds, then d(a, ) is

set to 0

From the definition of (4, 9) and (@, 7), we can see that
satisfying Eq. (8) means that the patch being tested
is located between two quadrilaterals that are € away.

Note that all the evaluated points lie on the limit
surface.  Hence, for instance, in Fig. 4, points
A5, C4,B; and A5 of patch A;A3A4A5 are also
points of patch A;A;A5Ag. With the new test con-
dition in Eq. (8), we know that a patch or subpatch is
flat enough if it is located between two quadrilaterals
that are € away. Because boundary points Ay, C4, By
and Aj are on the limit surface, they must be lo-
cated between two quadrilaterals that are e away. So
is the polygon A3 AsCsBsA5As. Now the patch (or
subpatch) and its approximating polygon are both lo-
cated inside two quadrilaterals that are e away. Hence
the overall error between the patch (or subpatch) and
its approximating polygon is guaranteed to be smaller
than e.

5 Making Patches Visible to

Each Other

In this section, we show how to use a globalization
process to make adjacent patches visible to each other.

To make adjacent patches visible to each other
and to make subsequent base quadrilateral replacement
process easier, one should assign a global index ID to
each evaluated vertex so that



e all the evaluated vertices with the same 3D posi-
tion have the same index ID;

e theindex I D’s are sorted in v and then in u, i.e., if
(us,v;) > (uj,v;), then ID; > ID;, unless ID; or
ID; has been used in previous patch evaluation.

This global indexing technique allows subsequent
processing to be performed on individual patches
but still with a global visibility. We also need a
step called adaptive marking to facilitate the base
quadrilateral replacement process. The purpose of
adaptive marking is to mark those points in uv space
where the limit surface should be evaluated. With
the help of the global index ID, this step can be
done on an individual patch basis. Initially, all
(u,v) points are marked white. If surface evaluation
should be performed at a point and the resulting
vertex is needed in the tessellation process, then that
point is marked in black. This process can be easily
implemented as a recursive function. A pseudo code
for this step is given below.

AdaptiveMarking(P, uy, ua, vy, v2)

1. Evaluate(P, uy, ua, vy, va),

2. AssignGloballD(P, u1, us, v1, v2),

3. if (FlatEnough(P, u1, us, v1, v2))

4. MarkBlack(P, U1, U2, U1, ’Ug)

5.  else

6. U1 = (Ul + Uz)/2

7. V12 = (’Ul + ’U2)/2

8. AdaptiveMarking(P, u1, u12, v1, v12)
9. AdaptiveMarking (P, w12, us, v1, v12)
10. AdaptiveMarking(P, uja, us, vi2, v2)
11. AdaptiveMarking(P, uy, u1a, vi2, v2)

This routine adaptively marks points in the param-
eter space of patch P. Function ‘Evaluate’ evaluates
limit surface at the four corners of patch or subpatch P
defined on [u1, us] X [v1, v2]. Function ‘AssignGlobelD’
assignes global index ID to the four corners of P.
Function ‘FlatEnough’ uses the method given in Sec-
tion 4 and Eq. (7) to tell if a patch or subpatch is flat
enough. Function ‘MarkBlack’ marks the four corners
of patch or subpatch P defined on [ug,us] X [v1,vs] in
black. All the marked corner points will be used in
the tessellation process. When a subpatch is ready for
the base quadrilateral replacement process, simply out-
put in order all the marked points between corners of
the base quadrilateral to form the polygon that should
be used for this base quadrilateral in the tessellation
process.

6 Degree of Flatness

Just like numerical errors have two different settings,
the flatness of a patch, which can be viewed as a nu-
merical error from the approximation point of view,
has two different aspects as well, depending on if the
flatness is considered in the absolute sense or relative
sense. The flatness of a patch is called the absolute
flatness (AF) if the patch is not transformed in any
way. In that case, the value of € in Eqs. (7) and (8)
is set to whatever precision the flatness of the patch is
supposed to meet. AF should be considered for oper-
ations that work on physical size of an object such as
machining or prototyping.

For operations that do not work on the physical size
of an object, such as the rendering process, we need a
flatness that does not depends on the physical size of a
patch. Such a flatness must be Affine transformation
invariant to be a constant for any transformed version
of the patch. Such a flatness is called the relative flat-
ness of the patch. More specifically, if Q is the base
quadrilateral of patch S, the relative flatness (RF) of
S with respect to Q is defined as follows:

d

RF= —
max{Dl, D2}

where d is the maximal distance between S and Q,
and D;, D> are lengths of the diagonal lines of Q.
It is easy to see that RF defined this way is Affine
transformation invariant. Note that when D; and D,
are fixed, smaller RE means smaller d. Hence, RE
indeed measures the flatness of a patch. The difference
between RF and AF is that RF measures the flatness
of a patch in a global sense while AF measures flatness
of a patch in a local sense. Therefore, RF is more
suitable for operations that have data sets of various
sizes but with a constant size display area such as the
rendering process. Using RF is also good for adaptive
tessellation process because it has the advantage of
keeping the number of polygons low in the tessellation
process.

7 Implementation and Test Re-
sults

The proposed approach has been implemented in C++
using OpenGL as the supporting graphics system on
the Windows platform. Some of the tested results are
shown in Figures 1 and Figure 7. We also summarize
those tested results in Table 1. The column under-
neath A|U|T in Table 1 indicates the type of tessel-
lation technique (Adaptive, Uniform or Triangulated



after adaptive tessellation) used in the rendering pro-
cess. For instance, Fig. 1(a) is generated using uni-
form subdivision, while Figs. 1(b), 1(c), 1(d) are tes-
sellated with the adaptive technique presented in this
paper, and Fig. 1(e) is the triangulated result of Fig.
1(d). Also Fig. 7(e) and Fig. 7(p) are the triangulated
results of Fig. 7(d) and Fig. 7(o), respectively. The
term A/U ratio means the ratio of number of poly-
gons in an adaptively tessellated CCSS to its counter
part in a uniformly tessellated CCSS with the same
accuracy. The term Depth means the number of iter-
ative uniform subdivisions that have to be performed
on the control mesh of a CCSS to satisfy the error
requirement. From Table 1 we can see that all the
adaptively tessellated CCSS’s have relatively low A /U
ratios. This shows the proposed method indeed sig-
nificantly reduces the number of faces in the resulting
mesh while satisfying the given error requirement.

The ‘Error’ column in Table 1 represents absolute
error. We can easily see that, for the same model, the
smaller the error, the lower the A/U ratio. For exam-
ple, Fig. 7(b) has lower A/U ratio than Fig. 7(c) and
Fig. 7(d) because the former has smaller error toler-
ance than the last two. However, for the same model, if
the difference of two error tolerances is not big enough,
the resulting adaptive tessellation would have the same
subdivision depth (see information on Figs. 7(g) and
7(h) or Figs. 7(1) and 7(m) in Table 1). As a result,
the one with smaller error tolerance would have higher
A /U ratio, because the corresponding uniformly sub-
divided meshes are the same. Another interesting fact
is that Fig. 7(k) uses much more polygons than Fig.
7(1) does, while the former is less accurate than the
latter. This shows the presented adaptive tessellation
method is capable of providing a higher accuracy with
less polygons.

From Table 1 we can easily see that for different
models the absolute errors differ very much. There-
fore, for different models, comparing their absolute er-
rors might not make any practical sense because ab-
solute error is not affine transformation invariant. In
the mean while, from Table 1, we can see that RF
is a much better and more understandable measure-
ment for users to specify the error requirement in the
adaptive tessellation process.

From Table 1, we can also see that triangulated
tessellations usually have higher A/U ratio, because
triangulation increases the number of polygons by at
lease 2 times. Hence triangulation will slow down the
rendering process while it does not improve accuracy.
From the view point of rendering, triangulation is not
really necessary. But for some special applications,
such as Finite Element Analysis, triangulation is in-

dispensable. Performing triangulation on the resulting
mesh of our adaptive tessellation process is straight-
forward and fast.

The proposed adaptive tessellation method is good
for models that have large flat or nearly flat regions in
its limit surface and would save significant amount of
time in the final rendering process, but may not have
low A/U ratios when it is applied to surfaces with
extraordinary curvature distribution or surfaces with
very dense control meshes. One main disadvantage
of all the current adaptive tessellation methods (in-
cluding the method proposed here) is that they only
eliminate polygons inside a patch. They do not take
the whole surface into consideration. For instance, all
the flat sides of the rocker arm model in Fig. 7 are
already flat enough, yet a lot of polygons are still gen-
erated there.

8 Summary

A new adaptive tessellation method for general
Catmull-Clark subdivision surfaces is presented. The
new method is developed for rendering purpose and
is based on the observation that optimum adaptive
tessellation for rendering purpose is a recursive er-
ror evaluation and globalization process. The new
method can precisely measure the error for every point
of the limit surface and is performed on the basis of
individual patches. Hence, the approximating polyhe-
dron mesh generated by this method is optimum for
each patch of the CCSS. Furthermore, since the new
method does not increase the number of faces in order
to avoid the generation of cracks, the resulting approx-
imating polyhedron mesh is actually near-optimum for
the entire CCSS. As the the new method does not re-
quire crack detection, it is also computation efficient.

The result of our work can be improved by running
a post-processor to see if some faces from different
sides of a patch boundary can be merged into a
bigger face with the same error size. However, since
the improvement is not significant and the computa-
tion is costly, it might not be worth the effort to do so.

Acknowledgement. Data sets for Figs. 1 and 7
except the rocker arm are downloaded from the web
site: http://research.microsoft.com/~hoppe/ .
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Figure 7: Adaptive rendering on surfaces with arbitrary topology.



Table 1: Extra information on Figures 1 and 7

Figure Object AJU|T | polygons | A/U Ratio | Depth | Error RF
Fig. 1(a) Gargoyle U 16384 100.00% 2 0.0055 | 12%
Fig. 1(b) | Gargoyle A 14311 | 5.46% 4 | 0.0030 | 6%
Fig. 1(c) Gargoyle A 5224 7.97% 3 0.0045 | 9%
Fig. 1(d) | Gargoyle A 2500 | 15.26% 2 [ 0.0055 | 12%
Fig. 1(e) Gargoyle T 6139 37.47% 2 0.0055 | 12%
Fig. 7(a) Bunny U 65536 100.00% 3 0.0008 | 3%
Fig. 7(b) Bunny A 32894 12.55% 4 0.0001 | 1%
Fig. 7(c) Bunny A 9181 14.01% 3 0.0008 | 3%
Fig. 7(d) Bunny A 3412 20.82% 2 0.0010 | 5%
Fig. 7(e) Bunny T 7697 46.98% 2 0.0010 | 5%
Fig. 7(f) Venus U 65536 100.00% 2 0.00095 | 8%
Fig. 7(g) Venus A 29830 2.84% 4 0.00015 | 3%
Fig. 7(h) Venus A 21841 | 2.08% 4 | 0.00035 | 4%
Fig. 7(i) Venus A 9763 3.72% 3 0.00060 | 6%
Fig. 7)) Venus A 6178 | 9.43% 2 [ 0.00095 | 8%
Fig. 7(k) | Rocker arm U 90624 | 100.00% 4 1.2 3%
Fig. 7(1) | Rocker arm A 36045 9.94% 5 0.85 1%
Fig. 7(m) | Rocker arm A 10950 3.02% 5 1.0 2%
Fig. 7(n) | Rocker arm A 5787 6.39% 4 1.2 3%
Fig. 7(0) | Rocker arm A 2091 12.80% 3 1.5 5%
Fig. 7(p) | Rocker arm T 4926 21.74% 3 1.5 5%
Fig. 7(q) Beethoven U 65536 100.00% 2 0.041 10%
Fig. 7(r) | Beethoven A 20893 1.99% 4 0.006 4%
Fig. 7(s) | Beethoven A 15622 1.48% 4 0.026 | 6%
Fig. 7(t) | Becthoven | A 77aL | 2.95% 3 0.035 | 8%
Fig. 7(u) | Beethoven A 5230 7.99% 2 0.041 | 10%
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