Statement of Teaching
Fuhua (Frank) Cheng

A. Teaching

1. Reflective Statement

My teaching has three goals: (1) to make sure that students understand the course materials well, (2) to make sure that students know how to use/apply the materials they learn in class, and (3) to make sure that the students are evaluated fairly.

To achieve the first goal,

- I use a motivation-driven approach in my lecture, i.e., I give the background and applications of the result first, and then explain the theory that leads to the result.
- I give many examples in my notes (see, e.g., my CS535 and CS633 notes).
- I encourage the students to be involved and active during lectures. (However, for those who find it difficult to do so, I welcome them to ask questions or make comments after class.)
- I make all my class notes available on line so that, instead of copying my notes in class, they can closely follow my lectures on course materials. (My class notes such as CS633, CS631, CS535, and CS321 have been used by some of my students and colleagues in their own classes.)

To achieve the second goal,

- I give applications for each covered result.
- I provide students with sample programs to help them initiate their work (see my web pages).
- I encourage students to share their ideas.
- I award students with extra credit if they have new ideas on assignments.

To achieve the third goal,

- I always let the students know at the outset of the course exactly what is expected. I clearly specify the requirements of the course such as materials to be covered, grading policy, program requirements (see, e.g., my CS535 and CS633 Programming Requirements), late penalty, and numerical scale to be used in the evaluation, on the first day of class.
- I provide students with solution sets for all homework assignments and exams (see my webpages) so they would not only know the solutions to the questions, but also know if their works are graded fairly.

I have different expectations for graduate and undergraduate students though. For an undergraduate or programming-extensive course, the students are evaluated based on two subjects: programming assignments and tests. I usually put equal weight on both sides so the effort of the students can be evaluated fairly. However, I encourage students to do critical thinking and they get extra credit if they do so such as providing comments or improvement on existing techniques. For a seminar course or advanced topics, I evaluate the students mainly based on the quality of the work, i.e., I will follow the numerical scale, but a student with good ideas will get more extra credit than the ones who don’t.
2. **Courses taught recently**

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS633</td>
<td>Computer Animation</td>
<td>G</td>
</tr>
<tr>
<td>CS535</td>
<td>Intermediate Computer Graphics</td>
<td>G</td>
</tr>
<tr>
<td>CS321</td>
<td>Intro. Numerical Methods</td>
<td>U</td>
</tr>
<tr>
<td>CS275</td>
<td>Discrete Mathematics</td>
<td>U</td>
</tr>
</tbody>
</table>

3. **Student Evaluation (recent three semesters)**

Material/grading outlined	Textbook	Supplemental reading	Exams reflection	Grading fair	Distributing assignments evenly	Assignments graded promptly	Grading including comments	Presentation	Knowledge of subject	Availability	Answer questions	Stimulate interest	Encourage participation	Respect viewpoints	Ability to analyze	Solve problems	Understand concepts	Read further	Value of course	Quality of teaching																	
Spring	Fall	Spring	Fall	Spring				Spring	Fall	Spring	Spring	Fall	Spring	Spring	Fall	Spring	Spring	Fall	Spring	Spring	Fall	Spring	Spring	Fall	Spring	Spring	Fall	Spring	Spring	Fall	Spring	Spring	Fall	Spring	Spring	Fall	Spring
B. Advising

1. Reflective Statement

 My goal in advising a project or a thesis is to ensure that the student knows how to set up a target and how to develop a strategy to reach that target. The target must be very specific and the strategy must be practical. The idea is to let the student know how to play a game by him/her-self and to what extent that he/she should keep trying before giving up. I help the student with the technical part initially after he/she has successfully performed background study, target selecting, and strategy design.

 My advising in pre-registration meetings with the students will ensure that (1) students understand the requirement of a computer science major in addition to the college and university requirements, and (2) each student develops an appropriate course plan for each semester. This will be achieved by going through a checklist with the student and showing him/her the best combination for the semester.

2. Students Advised - PhD Students (past three years)

 - **Shuhua Lai**
 Area of Research: *Subdivision surface based one-piece representation*
 Starting Date: January 2003
 Supported Period: January 2003 - May 2006 (supported by NSF grant DMS-0310645).
 Current Status: Assistant Professor, Virginia State University
 Publication: six journal papers, seven conference papers
 Graduation Date: September 2006

 - **Gang Chen**
 Area of Research: *Error Control for Subdivision Surface based Modeling*
 Starting Date: January 2005
 Publication: two journal papers, one conference paper.
 Supported period: January 2005 - present (supported by NSF grant DMI-0422126).
 Anticipated Graduation Date: December 2008.

 - **Fengtao Fan**
 Area of Research: *Shape Reconstruction using Subdivision Surfaces*
 Starting Date: August 2006
 Publication: four conference papers (in preparation).
 Supported period: August 2006 - present (supported by NSF grant DMI-0422126).
 Anticipated Graduation Date: May 2009.

3. Students Advised - MS Students (past three years)

 - **Jidong Qu**
 Masters Project: *Shape Modeling using Subdivision Surfaces*
 Date of graduation: December 2004.

 - **Gang Chen**
 Masters Project: *Subdivision Depth Computation for Extra-ordinary Patches*
 Publication: one Journal paper (Subdivision Depth Computation for Subdivision Surfaces)
Supported period: August 2003 - December 2004 (supported by NSF grants DMS-0310645 and DMI-0422126).
Date of graduation: December 2004.

• **Ping Du**
 Masters Project: *Parametrization of Doo-Sabin Subdivision Surfaces*
 Date of graduation: May 2006.

• **Conglin Huang**
 Masters Project: *Curvature Estimation for Triangular Meshes based on Local Parametrization*
 Current Status: *theory development stage*
 Supported period: January 2007 - present (supported by KSTC grant 144-401-07-015).
 Date of graduation: May 2008.

• **Jiaxi Wang**
 Masters Project: *Shape Reconstruction using Doo-Sabin Subdivision Surfaces*
 Current Status: *implementation stage*
 Supported period: August 2007 - present (supported by KSTC grant 144-401-07-015).
 Date of graduation: February 2008.