
Similarity based Interpolationusing Catmull-Clark Subdivision SurfaesShuhua Lai and Fuhua (Frank) ChengGraphis & Geometri Modeling Lab, Department of Computer SieneUniversity of Kentuky, Lexington, Kentuky 40506-0046Abstrat. A new method for onstruting a smoothCatmull-Clark subdivision surfae (CCSS) that inter-polates the verties of a mesh with arbitrary topologyis presented. The new method handles both openand losed meshes. Normals or derivatives spei�edat any verties of the mesh (whih an atually beanywhere) an also be interpolated. The onstrutionproess is based on the assumption that, in additionto interpolating the verties of the given mesh, theinterpolating surfae is also similar to the limit surfaeof the given mesh. Therefore, onstrution of theinterpolating surfae an use information from thegiven mesh as well as its limit surfae. This approah,alled similarity based interpolation, gives us moreontrol on the smoothness of the interpolating surfaeand, onsequently, avoids the need of shape fairingin the onstrution of the interpolating surfae. Theomputation of the interpolating surfae's ontrolmesh follows a new approah, whih does not requirethe resulting global linear system to be solvable. Anapproximate solution provided by any fast iterativelinear system solver is suÆient. However, inter-polation of the given mesh is guaranteed. This isan important improvement over previous methodsbeause with these features, the new method an han-dle meshes with large number of verties eÆiently.Although the new method is presented for CCSSs,the onept of similarity based interpolation an beused for other subdivision surfaes as well.Keywords: subdivision, subdivision surfaes,Catmull-Clark subdivision surfaes, interpolation1 IntrodutionGiven a 3D mesh, there exist in�nitely many smoothsurfaes that interpolate the mesh verties. Any ofthem an be used as a solution to the interpolationproblem. But, to a shape designer, usually only oneof them is the surfae he really wants. That sur-fae, alled the designer's onept surfae, is a piee of

important information for the interpolation proess.If that information is available to the interpolationsystem, then by onstruting an interpolating surfaewhose shape is `similar' to the designer's onept sur-fae, we get the best result one an get for the in-terpolation proess. We all an interpolation proesssimilarity based interpolation if the interpolation alsodepends on establishing `similarity' with a referenesurfae. In the above ase, the referene surfae is thedesigner's onept surfae.
(a) Interpolation (b) ApproximationFigure 1: They are similar!The result of a similarity based interpolation de-pends on the quality of the referene surfae. Theloser the shape of the referene surfae to the de-signer's onept surfae, the better the result. Thedesigner's onept surfae usually is not available tothe interpolation system. But it is reasonable to as-sume that the given mesh arries a shape similar to thedesigner's onept surfae. Afterall, these are vertiesthe user extrated from his onept surfae. Conse-quently, limit surfae of the given mesh, when viewedas the ontrol mesh of a Catmull-Clark subdivisionsurfae, would be similar to the designer's onept sur-fae. Therefore, using the limit surfae as the referenesurfae in the interpolation proess, i.e., onstrut-ing an interpolating surfae of a given mesh that isalso similar to the limit surfae of the given mesh, we1



should get an interpolating surfae that is relativelylose to the designer's onept surfae. This interpo-lation onept has not been studied with subdivisionsurfaes before, although interpolation using subdivi-sion surfaes has already been studied for a while.1.1 Previous Work: A Brief ReviewThere are two major ways to interpolate a given meshwith a subdivision surfae: interpolating subdivision[3, 6, 5, 8, 10℄ or global optimization [4, 7℄. In the �rstase, a subdivision sheme that interpolates the on-trol verties, suh as the Buttery sheme[3℄, Zorin etal's improved version [10℄ or Kobbelt's sheme [6℄, isused to generate the interpolating surfae. New ver-ties are de�ned as loal aÆne ombinations of nearbyverties. This approah is simple and easy to imple-ment. It an handle meshes with large number of ver-ties. However, sine no vertex is ever moved one itis omputed, any distortion in the early stage of thesubdivision will persist. This makes interpolating sub-division very sensitive to the irregularity in the givenmesh. In addition, it is diÆult for this approah tointerpolate normals or derivatives.The seond approah, global optimization, usuallyneeds to build a global linear system with some on-straints. The solution to the global linear system isan interpolating mesh whose limit surfae interpolatesthe ontrol verties in the given mesh. This approahusually requires some fairness onstraints, suh as theenergy funtions presented in [4℄, in the interpolationproess to avoid undesired undulations. Although thisapproah seems more ompliated, it results in a tra-ditional subdivision surfae. For example, the methodin [4℄ results in a Catmull-Clark subdivision surfae(CCSS), whih is C2 ontinuous almost everywhereand whose properties are well studied and understood.The problem with this approah is that a global linearsystem needs to be built and solved. Hene it is diÆ-ult to handle meshes with large number of verties.There are also subdivision tehniques that produesurfaes to interpolate given urves or surfaes thatnear- (or quasi-)interpolate given meshes. But thosetehniques are either of di�erent natures or of di�erentonerns and, hene, will not be disussed here.1.2 OverviewIn this paper, we will address some of the problemswith urrent vextex interpolation tehniques by simi-larity based interpolation tehnique developed for CC-SSs. Given a 3D mesh P with arbitrary topology,the new method alulates a ontrol mesh Q whoseCCSS interpolates the verties of P . The CCSS of Qis onstruted with the additional assumption that its

shape is similar to a referene surfae, the limit sur-fae of P . A shape fairing proess is not required inthe onstrution proess of the interpolating surfae.The omputation of the ontrol mesh Q follows a newapproah whih does not require the resulting globallinear system to be solvable. An approximate solutionprovided by any fast iterative linear system solver issuÆient. Hene, handling meshes with large numberof verties is not a problem. However, interpolation ofthe given mesh is guaranteed. The new method anhandle both losed and open meshes. The interpolat-ing surfae an interpolate not only verties of a givenmesh, but also derivatives and normals anywhere inthe parameter spae of the surfae.The remaining part of the paper is arranged as fol-lows. In Setion 2, the similarity based interpolationtehnique for losed meshes is presented. A tehniquethat works for open meshes is presented in Setion 3.Implementation issues and test results are presentedin Setion 4. A summary is presented in Setion 5.2 Similarity based Interpolation2.1 Mathematial SetupGiven a 3D mesh with n verties: P =fP1;P2; � � � ;Png, the goal here is to onstrut a on-trol mesh Q whose CCSS interpolates P (the vertiesof P , for now). The onstrution of Q follows the fol-lowing path. First, we perform one or more levels ofCatmull-Clark subdivision on P to get a �ner ontrolmesh G. G satis�es the following property: eah faeof G is a quadrilateral and eah fae of G has at mostone extra-ordinary vertex. The verties of G are di-vided into two ategories. A vertex of G is alled aType I vertex if it orresponds to a vertex of P . Oth-erwise it is alled a Type II vertex. Q is then de�nedas a ontrol mesh with the same number of vertiesand the same topolgy as G. We assume Q has m ver-ties Q = fQ1;Q2; � � � ;Qmg, m > n, and the �rst nverties orrespond to the n Type I verties of G (and,onsequently, the n verties of P ). These n verties ofQ will also be alled Type I verties and the remainingm � n verties Type II verties. This way of settingup Q is to ensure the parametri form developed for aCCSS path [9℄ an be used for the limit surfae of Q,denoted S(Q), and we have enough degree of freedomin our subsequent work. Note that m is usually muhbigger than n. The remaining job then is to determinethe position of eah vertex of Q.In previous methods [7, 4℄ the n Type I verties ofQ are set as independent variables, the m�n Type IIverties are represented as linear ombinations of theType I verties. Sine m � n is bigger than n, this2



setting leads to an over-determined system. Withoutany freedom in adjusting the solution of the system,one has no ontrol on the shape of the resulting in-terpolating surfae S(Q) even if it arries undesirableundulations. In this paper, instead, the m � n TypeII verties are set as independent variables and the nType I verties are represented as linear ombinationsof the Type II verties. This approah provides uswith enough degrees of freedom to adjust the solutionof the resulting linear system and, onsequently, moreontrol on the shape of the interpolating surfae S(Q).As disussed in the previous setion, the interpolat-ing surfae S(Q) should be similar to the limit surfaeof P . The limit surfae of P , denoted S(P ), usuallyis smaller than the interpolating surfae of P , S(Q).To establish a better similarity relationship, we saleup S(P ) so that dimension of the saled limit surfaeis the same as S(Q). The required saling fators sx,sy and sz for suh a task an be determined by theondition that the bounding box of the saled limitsurfae is the same as the bounding box of the inter-polating surfae. This an easily be done by ompar-ing the maxima and minima of the verties of P inall three diretions with the maxima and minima oftheir orresponding limit points. The example shownin Figure 2 illustrates this proess. Figure 2(b) is thelimit surfae of the mesh shown in Figure 2(a). Thesaled limit surfae is shown in Figure 2(). Figure2(d) is the interpolating surfae of the mesh shown inFigure 2(a). We an see that the interpolating surfaeis more similar to the saled limit surfae than theoriginal limit surfae. In the subsequent disussion, itshould be understood that eah referene to the simi-larity between the interpolating surfae and the limitsurfae of P atually means the similarity between theinterpolating surfae and the saled limit surfae of P .The ontrol mesh of the saled limit surfae, alled Ĝ,an be obtained by saling G with sx, sy and sz. Thesaled limit surfae will be denoted S(Ĝ).2.2 Interpolation RequirementsReall that Type I verties of Q are those verties thatorrespond to verties of P . Hene, eah vertex of Pis the limit point of a Type I vertex of Q. We assumethe limit point of Qi is Pi, 1 � i � n. Then for eahType I vertex Qi (1 � i � n), we haveQi = Ci � eQ+ Pi (1)where eQ = fQn+1;Qn+2; � � � ;Qmg is the vetor ofType II verties. Vetor Ci and onstant  depend onthe topology of P and the degree of vertexPi. Ci and an be easily obtained using the formula for alulating

the limit point of a CCSS [9, 4℄. The onditions in(1) are alled interpolation requirements, beause theyhave to be exatly satis�ed.Note that the interpolation requirements in (1) forma system of linear equations. By solving this systemof linear equations, we solve the interpolation prob-lem [7℄. But in this ase one tends to get undesiredundulations on the resulting interpolationg surfae [4℄.2.3 Similarity ConstraintsTwo CCSSs are said to be similar if their ontrolmeshes have the same topology and they have similarith derivatives (1 � i <1) everywhere. The �rst on-dition of this de�nition is a suÆient onditon for theseond ondition to be true, beause it ensures the on-sidered CCSSs have the same parameter spae. TheCCSSs onsidered here, S(Q) and S(Ĝ), satisfy the�rst ondition. Hene, we have the suÆient ondi-tion to make the assumption that S(Q) and S(Ĝ) aresimilar. In the following, we assume S(Q) and S(Ĝ)are similar in the sense of the above de�nition.With explit parameterization of a CCSS available[9℄, it is possible for us to onsider derivatives of S(Q)and S(Ĝ) at any point of their parameter spae. How-ever, to avoid ostly integration of derivative expres-sions, we will only onsider derivatives sampled at thefollowing pointsf(1=2i; 1=2j) j 0 � i; j �1 g (2)for eah path of S(Q) and S(Ĝ). In the above simi-larity de�nition, two derivatives are said to be similarif they have the same diretion. In the following, weuse the similarity ondition to set up onstraints in theonstrution proess of S(Q).Given two surfaes, let Du and Dv be the u and vderivatives of the �rst surfae and D̂u and D̂v the uand v derivatives of the seond surfae. These deriva-tives are similar if the following onditin holds:Du � D̂u = 0 and Dv � D̂v = 0 (3)A di�erent ondition, shown below, is used in [4, 7℄.Du � (D̂u � D̂v) = 0 and Dv � (D̂u � D̂v) = 0 (4)These two onditions are not neessarily equivalent.Our test ases show that (3) gives better interpolatingsurfaes. This is beause (4) only requires the orre-sponding derivatives to lie in the same tangent plane,no restritions on their direitons. As a result, using(4) ould result in unneessary undulations. Note that(3) requires diretions of Du and Dv to be the sameas that of D̂u and D̂v , respetively.3



(a) (b) () (d)Figure 2: Similariy between the interpolating surfae and the limit surfae: (a) given mesh, (b) limit surfae,()saled limit surfae, (d) interpolating surfae.Conditions of the type shown in (3) are alled sim-ilarity onstraints. These onstraints do not have tobe satis�ed exatly, only to the extent possible. Theinterpolation method used in [7℄ onsiders interpola-tion requirements only. The method in [4℄ also in-ludes fairness onstraints to avoid undesired undula-tions and artifats.2.4 Global Linear SystemIf the derivatives of S(Q) and S(Ĝ) are sampled at apoint in (2) then, aording to (3) and the derivativeof the parametri form of a CCSS path [9℄, we wouldhave (V T �Q)� (V T � Ĝ) = 0 (5)where V is a onstant vetor of salars whose values de-pend on the type of the derivative and the point wherethe sampling is performed. This expression atuallyontains 3 equations, one for eah omponent. Re-plae the Type I verties Q1;Q2; � � � ;Qn in the aboveexpression with (1) and ombine all the similarity on-straints, we get a system of linear equations whih anbe represented in matrix form as follows:D �X = Cwhere X is a vetor of length 3(m� n), whose entriesare the x, y and z omponents of eQ. D usually is nota square matrix. Hene we need to �nd an X suhthat (D �X � C)T � (D �X � C) is minimized. This isa quadrati programming problem and an be solvedusing a linear least squares method. It is basiallya proess of �nding a solution of the following linearsystem: A �X = B (6)

where A = DTD and B = DTC. A is a symmetrimatrix. Hene only half of its elements need to bealulated and stored. One X is known, i.e., eQ isknown, we an �nd Q1;Q2; � � � ;Qn using (1).The matrix D ould be very big if many samplepoints or onstrains are used. Fortunately, we do nothave to alulate and store the matrix D and the vetorC. Note that A and B an be writen asA =XDi(Di)T and B =XDiiwhere (Di)T is the ith row of D and i is the ith en-try of C. Note that the number of rows of D anbe as large as possible but the number of olumns is�xed, 3(m � n). Suppose the ith onstraint (See eq.(5)), with Q1;Q2; � � � ;Qn replaed, is written in ve-tor form as UT � X = u. Then UT is the ith row ofmatrix D and u is the ith entry of C. Hene rowsof matrix D and entries of C an be alulated inde-pendently from (5) for eah onstraint of eah sam-ple point. Therefore, A and B an be aumulativelyalulated, onstraint by onstraint. No matter howmany sample points are used, and no matter how manyonstraints are onsidered for every sample point, onlya �xed amount memory is required for the entire pro-ess and the size of matrix A is always the same,3(m� n)� 3(m� n).Note that the solution of (6) only determinesthe positions of Type II verties of Q, i.e.Qn+1;Qn+2; � � � ;Qn+m. Type I verties of Q,Q1;Q2; � � � ;Qn, are represented as linear ombina-tions of Qn+1;Qn+2; � � � ;Qn+m in the interpolationrequirements de�ned in (1). Sine interpolation of theverties of P by the interpolating surfae is determinedby the interpolation requirements (1) only, this meansas long as we an �nd a solution for (6), the task of4



onstruting an interpolating surfae that interpolatesthe verties of P an always be ful�lled, even if the so-lution is not preise. Hene, an exat solution to thelinear system (6) is not a must for our method. Anapproximate solution provided by a fast interative lin-ear system solver is suÆient. As a result, the newmethod an handle meshes with large number of ver-ties eÆiently. This is an important improvementover previous methods.With the similarity assumption, the surfae inter-polation problem is basially a proess of using an it-erative method to �nd an approximate solution forthe global linear system (6). The saled mesh Ĝ isa good initial guess for the interative proess beauseĜ is atually very lose to the ontrol mesh of theinterpolating surfae we want to obtain. In our im-plementation, the Gauss-Seidel method is used for theiterative proess. The iterative proess would onvergeto a good approximate solution very rapidly with thisinitial guess. However, it should be pointed out thatthere is no need to arry out the iterative proess toa very preise level. Aording to our test ases, aresidual tolerane of the size � = 10�6 does not pro-due muh notiable improvement on the quality ofthe interpolating surfae than a residual tolerane ofthe size � = 10�2, while the former takes muh moretime than the latter. Therefore a relatively large resid-ual tolerane an be supplied to the iterative linearsystem solver to prevent it from running too long onthe iterative proess, while not improving the qualityof the interpolationg surfae muh. This is espeiallyimportant for proessing meshes with large number ofverties.2.5 Additional Interpolation Require-mentsIn addition to the interpolation requirements onsid-ered in (1), other interpolation requirements an beinluded in the global linear system as well. One analso modify or remove some of the interpolation re-quirements in (1). For example, if we wants the �rstu�derivative of the interpolating surfae at Pi to beDu, we need to set up a ondition similar to (5) asfollows: (V T �Q)�Du = 0where V is a onstant vetor. The di�erene here is,this is not a similarity onstraint, but an interpolationrequirement. However, if we want a partiular nor-mal to be interpolated, we should set up interpolationrequirements for the u derivative and the v derivativewhose ross produt equals this normal, instead of set-ting up an interpolation requirement for the normal

diretly, to avoid the involvement of non-linear equa-tions in our system. Then by ombining all the newinterpolation requirements with the original interpo-lation requirements in (1), we get all the expressionsfor verties that are not onsidered independent vari-ables in the linear system in (6). Note that inluding anew interpolation requirement in the interpolation re-quirement pool requires us to hange a variable vertexin Q to a non-variable vertex. Atually, interpolationrequirements an be spei�ed for any points of the in-terpolating surfae, not just for verties of P . Thisis possible beause we have a parametri representa-tion for eah path of a CCSS [9℄. For example, if wewant the position of a path at (1=2; 1=4) to be T, wean set up an interpolation requirement of the form:V T �Q = T where V is a onstant vetor whose valuesdepend on (1=2; 1=4). Therefore the interpolating sur-fae an interpolate positions, derivatives and normalsanywhere in the parameter spae.3 Handling Open MeshesThe interpolation proess developed in the previoussetion an not be used for open meshes, suh as theone shown in Fig. 3(a), diretly. This is beauseboundary verties of an open mesh have no orre-sponding limit points, nor derivatives, therefore, onean not set up interpolation requirements for theseverties, as required by the new interpolation proess.One way to overome this problem is to add an addi-tional ring of verties along the urrent boundary andonnet the verties of this ring with orrespondingverties of the urrent boundary to form an additionalring of faes, suh as the example shown in Figure3(). The newly added verties are alled dummy ver-ties. We then apply the interpolation method to theextended open mesh as to a losed mesh exept thatthere are no interpolation requirements for the dummyverties. This tehnique of extending the boundary ofa given mesh is similar to a tehnique proposed foruniform B-spline surfae representation in [1℄.Note that in this ase, the interpolation proessdoes not use the limit surfae of the given mesh, butrather the limit surfae of the extended mesh as a refer-ene surfae. Therefore, the shape of the interpolatingsurfae depends on loations of the dummy verties aswell. Determining the loation of a dummy vertex,however, is a triky issue, and the user should notbe burdened with suh a triky task. In our system,this is done by using loations of the urrent bound-ary verties of the given mesh as the initial loationsof the dummy verties and then solving the global lin-ear system in (6) to determine their �nal loations.5



(a) (b) () (d) (e) (f)Figure 3: Interpolating an open mesh: (a) given mesh; (b) limit surfae of (a); () extended version of (a); (d)limit surfae of (); (e) interpolating surfae of (a) that is similar to (d); (f) interpolating surfae of () withadditional requirements.This approah of generating dummy verties works�ne beause dummy verties only a�et similarity on-straints. Figure 3(e) is a surfae that interpolates themesh given in Fig. 3(a) and uses 3(d) as a referenesurfae.The above setting of the dummy verties usually isnot enough to reate an interpolating surfae with thedesired boundary shape. Additional requirements (notonstraints) are needed in the interpolation proess.As explained in Setion 2.5, a platform that allows usto de�ne additional requirements an be reated bytreating the dummy verties as non-variables in (6).We an then speify new derivative onditions or nor-mal onditions to be satis�ed at the original boundaryverties. With the additional interpolation require-ments, a designer has more ontrol on the shape ofthe interpolating surfae in areas along the bound-ary and, onsequently, an generate an interpolatingsurfae with the desired boundary shape. For exam-ple, Figure 3(f) is an interpolating surfae of the meshgiven in Figure 3(a), but generated with additionalinterpolation requirements. The interpolating surfaeobviously looks more like a real glass now.4 Test ResultsThe proposed approah has been implemented in C++using OpenGL as the supporting graphis system onthe Windows platform. Quite a few examples havebeen tested with the method desribed here. All theexamples have extra-ordinary verties. Some of thetested results are shown in Figures 2, 3 and 4. Due tolimited spae, limit surfae of the Utah Teapot whihis well known and limit surfae of the mesh shown in

Figure 4(r) whih is very simple are not shown here.For all other ases, the limit surfaes (not saled) ofthe given meshes and the interpolating surfaes areboth shown so that one an tell if these surfaes areindeed similar to eah other in the least squares sense.In our implementation, only one subdivision is per-formed on the given mesh for eah example and the�rst, seond and third derivatives in u and v diretionsare used to onstrut interpolation onstraints andbuild the global linear system. These derivatives aresampled at points with parameters ( 12i ; 12j ), i; j = 0; 1or 1, for eah path. That is, 9 points are sampledfor eah path, whih is good enough for most ases.For bigger pathes one an use more sample pointsbeause pathes do not have to be sampled uniformly.The original Utah teapot onsists of four separateparts: lid, handle, body and spout. The mesh shownin Figure 4(n) is atually a set of four meshes, onefor eah omponent of the original Utah teapot. Eahmesh is an open mesh. Although eah of these meshesan be interpolated separately, Figure 4(q) is gener-ated by regarding them as a single mesh. The meshshown in Figure 4(f) is another example of an openmesh with disonneted boundaries. Figure 4(h) isthe interpolating surfae without using additional in-terpolation requirements in the onstrution proess.As an be seen from Figure 4, all the resulting inter-polating surfae are very smooth and visually pleasing,exept the interpolating surfae shown in Figure 4(p).The surfae has some undulations around the nek,but we do not think they are aused ompletely byour method. We believe this is more of a problem withthe general interpolation onept. Note that the input6



(a) G-M (b) L-S () I-S (d) G-M (e) L-S
(f) G-M (g) L-S (h) I-S (i) I-S
(j) G-M (k) L-S (l) I-S (m) G-M

(n) G-M (o) L-S (p) I-S
(q) I-S (r) G-M (s) I-SFigure 4: Interpolating meshes with arbitrary topology (G-M: given mesh; L-S: limit surfae; I-S: interpolatingsurfae. 7



mesh, Figure 4(m), has some abrupt hanges of ver-tex positions and twists in the nek area. This is alsoreeted by some visible undulations in the nek areaof the limit surfae, Figure 4(o), even though they arenot as lear as in the interpolating surfae. An approx-imation urve/surfae, like a spline urve, an be re-garded as a low pass �lter [10℄, whih makes the givenontrol polygon or mesh smoother. An interpolationurve/surfae, on the other hand, an be regarded as ahigh pass �lter, whih magni�es undulations or twistsin the input mesh. Sine a limit surfae is an approxi-mation surfae, it redues the impat of abrupt vertexloation hanges and twists in the input mesh whilethe interpolating surfae enhanes it. This is why theundulations are more obvious in Figure 4(p) than inFigure 4(o).The new interpolation method an handle mesheswith large number of verties in a matter of seonds onan ordinary PC (3.2GHz CPU, 512MB of RAM). Forexample, the mesh shown in Figure 4(m) has 1,022 ver-ties and 1024 faes, and only takes 51 seonds to in-terpolate it. The roker arm shown in Figure 4(d) has354 verties and 354 faes, and only takes 4 seonds tointerpolate it. The teapot model shown in Figure 4(n)has 138 verties and 128 faes, and it takes less than 1seond to interpolate it. For smaller meshes, like Fig-ures 4(a), 4(j), 4(r) and 4(f), the interpolation proessis done almost in real time. Hene our interpolationmethod is suitable for interative shape design, wheresimple shapes with small or medium-sized ontrol ver-tex sets are onstruted using design or interpolationmethods, and then ombined using CSG trees to formomplex objets.5 SummaryA new interpolation method for meshes with arbitrarytopology using general CCSSs is presented. The de-velopment of the method is based on the assumptionthat the interpolating surfae should be similar to thelimit surfae of the given mesh. Our test results showthat this approah leads to good interpolation resultseven for ompliated data sets.The new method has several speial properties.First, by using information from the verties of thegiven mesh as well as its limit surfae, one has moreontrol on the smoothness of the interpolating sur-fae. Hene, a surfae fairing proess is not neededin the new method. Seond, there is no system solv-ability problem for the new method. The global linearsystem that the new method has to solve does notrequire an exat solution, an approximate solution issuÆient. The approximate solution an be providedby any fast iterative linear solver. Consequently the
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