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esShuhua Lai and Fuhua (Frank) ChengGraphi
s & Geometri
 Modeling Lab, Department of Computer S
ien
eUniversity of Kentu
ky, Lexington, Kentu
ky 40506-0046Abstra
t. A new method for 
onstru
ting a smoothCatmull-Clark subdivision surfa
e (CCSS) that inter-polates the verti
es of a mesh with arbitrary topologyis presented. The new method handles both openand 
losed meshes. Normals or derivatives spe
i�edat any verti
es of the mesh (whi
h 
an a
tually beanywhere) 
an also be interpolated. The 
onstru
tionpro
ess is based on the assumption that, in additionto interpolating the verti
es of the given mesh, theinterpolating surfa
e is also similar to the limit surfa
eof the given mesh. Therefore, 
onstru
tion of theinterpolating surfa
e 
an use information from thegiven mesh as well as its limit surfa
e. This approa
h,
alled similarity based interpolation, gives us more
ontrol on the smoothness of the interpolating surfa
eand, 
onsequently, avoids the need of shape fairingin the 
onstru
tion of the interpolating surfa
e. The
omputation of the interpolating surfa
e's 
ontrolmesh follows a new approa
h, whi
h does not requirethe resulting global linear system to be solvable. Anapproximate solution provided by any fast iterativelinear system solver is suÆ
ient. However, inter-polation of the given mesh is guaranteed. This isan important improvement over previous methodsbe
ause with these features, the new method 
an han-dle meshes with large number of verti
es eÆ
iently.Although the new method is presented for CCSSs,the 
on
ept of similarity based interpolation 
an beused for other subdivision surfa
es as well.Keywords: subdivision, subdivision surfa
es,Catmull-Clark subdivision surfa
es, interpolation1 Introdu
tionGiven a 3D mesh, there exist in�nitely many smoothsurfa
es that interpolate the mesh verti
es. Any ofthem 
an be used as a solution to the interpolationproblem. But, to a shape designer, usually only oneof them is the surfa
e he really wants. That sur-fa
e, 
alled the designer's 
on
ept surfa
e, is a pie
e of

important information for the interpolation pro
ess.If that information is available to the interpolationsystem, then by 
onstru
ting an interpolating surfa
ewhose shape is `similar' to the designer's 
on
ept sur-fa
e, we get the best result one 
an get for the in-terpolation pro
ess. We 
all an interpolation pro
esssimilarity based interpolation if the interpolation alsodepends on establishing `similarity' with a referen
esurfa
e. In the above 
ase, the referen
e surfa
e is thedesigner's 
on
ept surfa
e.
(a) Interpolation (b) ApproximationFigure 1: They are similar!The result of a similarity based interpolation de-pends on the quality of the referen
e surfa
e. The
loser the shape of the referen
e surfa
e to the de-signer's 
on
ept surfa
e, the better the result. Thedesigner's 
on
ept surfa
e usually is not available tothe interpolation system. But it is reasonable to as-sume that the given mesh 
arries a shape similar to thedesigner's 
on
ept surfa
e. Afterall, these are verti
esthe user extra
ted from his 
on
ept surfa
e. Conse-quently, limit surfa
e of the given mesh, when viewedas the 
ontrol mesh of a Catmull-Clark subdivisionsurfa
e, would be similar to the designer's 
on
ept sur-fa
e. Therefore, using the limit surfa
e as the referen
esurfa
e in the interpolation pro
ess, i.e., 
onstru
t-ing an interpolating surfa
e of a given mesh that isalso similar to the limit surfa
e of the given mesh, we1



should get an interpolating surfa
e that is relatively
lose to the designer's 
on
ept surfa
e. This interpo-lation 
on
ept has not been studied with subdivisionsurfa
es before, although interpolation using subdivi-sion surfa
es has already been studied for a while.1.1 Previous Work: A Brief ReviewThere are two major ways to interpolate a given meshwith a subdivision surfa
e: interpolating subdivision[3, 6, 5, 8, 10℄ or global optimization [4, 7℄. In the �rst
ase, a subdivision s
heme that interpolates the 
on-trol verti
es, su
h as the Butter
y s
heme[3℄, Zorin etal's improved version [10℄ or Kobbelt's s
heme [6℄, isused to generate the interpolating surfa
e. New ver-ti
es are de�ned as lo
al aÆne 
ombinations of nearbyverti
es. This approa
h is simple and easy to imple-ment. It 
an handle meshes with large number of ver-ti
es. However, sin
e no vertex is ever moved on
e itis 
omputed, any distortion in the early stage of thesubdivision will persist. This makes interpolating sub-division very sensitive to the irregularity in the givenmesh. In addition, it is diÆ
ult for this approa
h tointerpolate normals or derivatives.The se
ond approa
h, global optimization, usuallyneeds to build a global linear system with some 
on-straints. The solution to the global linear system isan interpolating mesh whose limit surfa
e interpolatesthe 
ontrol verti
es in the given mesh. This approa
husually requires some fairness 
onstraints, su
h as theenergy fun
tions presented in [4℄, in the interpolationpro
ess to avoid undesired undulations. Although thisapproa
h seems more 
ompli
ated, it results in a tra-ditional subdivision surfa
e. For example, the methodin [4℄ results in a Catmull-Clark subdivision surfa
e(CCSS), whi
h is C2 
ontinuous almost everywhereand whose properties are well studied and understood.The problem with this approa
h is that a global linearsystem needs to be built and solved. Hen
e it is diÆ-
ult to handle meshes with large number of verti
es.There are also subdivision te
hniques that produ
esurfa
es to interpolate given 
urves or surfa
es thatnear- (or quasi-)interpolate given meshes. But thosete
hniques are either of di�erent natures or of di�erent
on
erns and, hen
e, will not be dis
ussed here.1.2 OverviewIn this paper, we will address some of the problemswith 
urrent vextex interpolation te
hniques by simi-larity based interpolation te
hnique developed for CC-SSs. Given a 3D mesh P with arbitrary topology,the new method 
al
ulates a 
ontrol mesh Q whoseCCSS interpolates the verti
es of P . The CCSS of Qis 
onstru
ted with the additional assumption that its

shape is similar to a referen
e surfa
e, the limit sur-fa
e of P . A shape fairing pro
ess is not required inthe 
onstru
tion pro
ess of the interpolating surfa
e.The 
omputation of the 
ontrol mesh Q follows a newapproa
h whi
h does not require the resulting globallinear system to be solvable. An approximate solutionprovided by any fast iterative linear system solver issuÆ
ient. Hen
e, handling meshes with large numberof verti
es is not a problem. However, interpolation ofthe given mesh is guaranteed. The new method 
anhandle both 
losed and open meshes. The interpolat-ing surfa
e 
an interpolate not only verti
es of a givenmesh, but also derivatives and normals anywhere inthe parameter spa
e of the surfa
e.The remaining part of the paper is arranged as fol-lows. In Se
tion 2, the similarity based interpolationte
hnique for 
losed meshes is presented. A te
hniquethat works for open meshes is presented in Se
tion 3.Implementation issues and test results are presentedin Se
tion 4. A summary is presented in Se
tion 5.2 Similarity based Interpolation2.1 Mathemati
al SetupGiven a 3D mesh with n verti
es: P =fP1;P2; � � � ;Png, the goal here is to 
onstru
t a 
on-trol mesh Q whose CCSS interpolates P (the verti
esof P , for now). The 
onstru
tion of Q follows the fol-lowing path. First, we perform one or more levels ofCatmull-Clark subdivision on P to get a �ner 
ontrolmesh G. G satis�es the following property: ea
h fa
eof G is a quadrilateral and ea
h fa
e of G has at mostone extra-ordinary vertex. The verti
es of G are di-vided into two 
ategories. A vertex of G is 
alled aType I vertex if it 
orresponds to a vertex of P . Oth-erwise it is 
alled a Type II vertex. Q is then de�nedas a 
ontrol mesh with the same number of verti
esand the same topolgy as G. We assume Q has m ver-ti
es Q = fQ1;Q2; � � � ;Qmg, m > n, and the �rst nverti
es 
orrespond to the n Type I verti
es of G (and,
onsequently, the n verti
es of P ). These n verti
es ofQ will also be 
alled Type I verti
es and the remainingm � n verti
es Type II verti
es. This way of settingup Q is to ensure the parametri
 form developed for aCCSS pat
h [9℄ 
an be used for the limit surfa
e of Q,denoted S(Q), and we have enough degree of freedomin our subsequent work. Note that m is usually mu
hbigger than n. The remaining job then is to determinethe position of ea
h vertex of Q.In previous methods [7, 4℄ the n Type I verti
es ofQ are set as independent variables, the m�n Type IIverti
es are represented as linear 
ombinations of theType I verti
es. Sin
e m � n is bigger than n, this2



setting leads to an over-determined system. Withoutany freedom in adjusting the solution of the system,one has no 
ontrol on the shape of the resulting in-terpolating surfa
e S(Q) even if it 
arries undesirableundulations. In this paper, instead, the m � n TypeII verti
es are set as independent variables and the nType I verti
es are represented as linear 
ombinationsof the Type II verti
es. This approa
h provides uswith enough degrees of freedom to adjust the solutionof the resulting linear system and, 
onsequently, more
ontrol on the shape of the interpolating surfa
e S(Q).As dis
ussed in the previous se
tion, the interpolat-ing surfa
e S(Q) should be similar to the limit surfa
eof P . The limit surfa
e of P , denoted S(P ), usuallyis smaller than the interpolating surfa
e of P , S(Q).To establish a better similarity relationship, we s
aleup S(P ) so that dimension of the s
aled limit surfa
eis the same as S(Q). The required s
aling fa
tors sx,sy and sz for su
h a task 
an be determined by the
ondition that the bounding box of the s
aled limitsurfa
e is the same as the bounding box of the inter-polating surfa
e. This 
an easily be done by 
ompar-ing the maxima and minima of the verti
es of P inall three dire
tions with the maxima and minima oftheir 
orresponding limit points. The example shownin Figure 2 illustrates this pro
ess. Figure 2(b) is thelimit surfa
e of the mesh shown in Figure 2(a). Thes
aled limit surfa
e is shown in Figure 2(
). Figure2(d) is the interpolating surfa
e of the mesh shown inFigure 2(a). We 
an see that the interpolating surfa
eis more similar to the s
aled limit surfa
e than theoriginal limit surfa
e. In the subsequent dis
ussion, itshould be understood that ea
h referen
e to the simi-larity between the interpolating surfa
e and the limitsurfa
e of P a
tually means the similarity between theinterpolating surfa
e and the s
aled limit surfa
e of P .The 
ontrol mesh of the s
aled limit surfa
e, 
alled Ĝ,
an be obtained by s
aling G with sx, sy and sz. Thes
aled limit surfa
e will be denoted S(Ĝ).2.2 Interpolation RequirementsRe
all that Type I verti
es of Q are those verti
es that
orrespond to verti
es of P . Hen
e, ea
h vertex of Pis the limit point of a Type I vertex of Q. We assumethe limit point of Qi is Pi, 1 � i � n. Then for ea
hType I vertex Qi (1 � i � n), we haveQi = Ci � eQ+ 
Pi (1)where eQ = fQn+1;Qn+2; � � � ;Qmg is the ve
tor ofType II verti
es. Ve
tor Ci and 
onstant 
 depend onthe topology of P and the degree of vertexPi. Ci and 

an be easily obtained using the formula for 
al
ulating

the limit point of a CCSS [9, 4℄. The 
onditions in(1) are 
alled interpolation requirements, be
ause theyhave to be exa
tly satis�ed.Note that the interpolation requirements in (1) forma system of linear equations. By solving this systemof linear equations, we solve the interpolation prob-lem [7℄. But in this 
ase one tends to get undesiredundulations on the resulting interpolationg surfa
e [4℄.2.3 Similarity ConstraintsTwo CCSSs are said to be similar if their 
ontrolmeshes have the same topology and they have similarith derivatives (1 � i <1) everywhere. The �rst 
on-dition of this de�nition is a suÆ
ient 
onditon for these
ond 
ondition to be true, be
ause it ensures the 
on-sidered CCSSs have the same parameter spa
e. TheCCSSs 
onsidered here, S(Q) and S(Ĝ), satisfy the�rst 
ondition. Hen
e, we have the suÆ
ient 
ondi-tion to make the assumption that S(Q) and S(Ĝ) aresimilar. In the following, we assume S(Q) and S(Ĝ)are similar in the sense of the above de�nition.With expli
t parameterization of a CCSS available[9℄, it is possible for us to 
onsider derivatives of S(Q)and S(Ĝ) at any point of their parameter spa
e. How-ever, to avoid 
ostly integration of derivative expres-sions, we will only 
onsider derivatives sampled at thefollowing pointsf(1=2i; 1=2j) j 0 � i; j �1 g (2)for ea
h pat
h of S(Q) and S(Ĝ). In the above simi-larity de�nition, two derivatives are said to be similarif they have the same dire
tion. In the following, weuse the similarity 
ondition to set up 
onstraints in the
onstru
tion pro
ess of S(Q).Given two surfa
es, let Du and Dv be the u and vderivatives of the �rst surfa
e and D̂u and D̂v the uand v derivatives of the se
ond surfa
e. These deriva-tives are similar if the following 
onditin holds:Du � D̂u = 0 and Dv � D̂v = 0 (3)A di�erent 
ondition, shown below, is used in [4, 7℄.Du � (D̂u � D̂v) = 0 and Dv � (D̂u � D̂v) = 0 (4)These two 
onditions are not ne
essarily equivalent.Our test 
ases show that (3) gives better interpolatingsurfa
es. This is be
ause (4) only requires the 
orre-sponding derivatives to lie in the same tangent plane,no restri
tions on their dire
itons. As a result, using(4) 
ould result in unne
essary undulations. Note that(3) requires dire
tions of Du and Dv to be the sameas that of D̂u and D̂v , respe
tively.3



(a) (b) (
) (d)Figure 2: Similariy between the interpolating surfa
e and the limit surfa
e: (a) given mesh, (b) limit surfa
e,(
)s
aled limit surfa
e, (d) interpolating surfa
e.Conditions of the type shown in (3) are 
alled sim-ilarity 
onstraints. These 
onstraints do not have tobe satis�ed exa
tly, only to the extent possible. Theinterpolation method used in [7℄ 
onsiders interpola-tion requirements only. The method in [4℄ also in-
ludes fairness 
onstraints to avoid undesired undula-tions and artifa
ts.2.4 Global Linear SystemIf the derivatives of S(Q) and S(Ĝ) are sampled at apoint in (2) then, a

ording to (3) and the derivativeof the parametri
 form of a CCSS pat
h [9℄, we wouldhave (V T �Q)� (V T � Ĝ) = 0 (5)where V is a 
onstant ve
tor of s
alars whose values de-pend on the type of the derivative and the point wherethe sampling is performed. This expression a
tually
ontains 3 equations, one for ea
h 
omponent. Re-pla
e the Type I verti
es Q1;Q2; � � � ;Qn in the aboveexpression with (1) and 
ombine all the similarity 
on-straints, we get a system of linear equations whi
h 
anbe represented in matrix form as follows:D �X = Cwhere X is a ve
tor of length 3(m� n), whose entriesare the x, y and z 
omponents of eQ. D usually is nota square matrix. Hen
e we need to �nd an X su
hthat (D �X � C)T � (D �X � C) is minimized. This isa quadrati
 programming problem and 
an be solvedusing a linear least squares method. It is basi
allya pro
ess of �nding a solution of the following linearsystem: A �X = B (6)

where A = DTD and B = DTC. A is a symmetri
matrix. Hen
e only half of its elements need to be
al
ulated and stored. On
e X is known, i.e., eQ isknown, we 
an �nd Q1;Q2; � � � ;Qn using (1).The matrix D 
ould be very big if many samplepoints or 
onstrains are used. Fortunately, we do nothave to 
al
ulate and store the matrix D and the ve
torC. Note that A and B 
an be writen asA =XDi(Di)T and B =XDi
iwhere (Di)T is the ith row of D and 
i is the ith en-try of C. Note that the number of rows of D 
anbe as large as possible but the number of 
olumns is�xed, 3(m � n). Suppose the ith 
onstraint (See eq.(5)), with Q1;Q2; � � � ;Qn repla
ed, is written in ve
-tor form as UT � X = u. Then UT is the ith row ofmatrix D and u is the ith entry of C. Hen
e rowsof matrix D and entries of C 
an be 
al
ulated inde-pendently from (5) for ea
h 
onstraint of ea
h sam-ple point. Therefore, A and B 
an be a

umulatively
al
ulated, 
onstraint by 
onstraint. No matter howmany sample points are used, and no matter how many
onstraints are 
onsidered for every sample point, onlya �xed amount memory is required for the entire pro-
ess and the size of matrix A is always the same,3(m� n)� 3(m� n).Note that the solution of (6) only determinesthe positions of Type II verti
es of Q, i.e.Qn+1;Qn+2; � � � ;Qn+m. Type I verti
es of Q,Q1;Q2; � � � ;Qn, are represented as linear 
ombina-tions of Qn+1;Qn+2; � � � ;Qn+m in the interpolationrequirements de�ned in (1). Sin
e interpolation of theverti
es of P by the interpolating surfa
e is determinedby the interpolation requirements (1) only, this meansas long as we 
an �nd a solution for (6), the task of4




onstru
ting an interpolating surfa
e that interpolatesthe verti
es of P 
an always be ful�lled, even if the so-lution is not pre
ise. Hen
e, an exa
t solution to thelinear system (6) is not a must for our method. Anapproximate solution provided by a fast interative lin-ear system solver is suÆ
ient. As a result, the newmethod 
an handle meshes with large number of ver-ti
es eÆ
iently. This is an important improvementover previous methods.With the similarity assumption, the surfa
e inter-polation problem is basi
ally a pro
ess of using an it-erative method to �nd an approximate solution forthe global linear system (6). The s
aled mesh Ĝ isa good initial guess for the interative pro
ess be
auseĜ is a
tually very 
lose to the 
ontrol mesh of theinterpolating surfa
e we want to obtain. In our im-plementation, the Gauss-Seidel method is used for theiterative pro
ess. The iterative pro
ess would 
onvergeto a good approximate solution very rapidly with thisinitial guess. However, it should be pointed out thatthere is no need to 
arry out the iterative pro
ess toa very pre
ise level. A

ording to our test 
ases, aresidual toleran
e of the size � = 10�6 does not pro-du
e mu
h noti
able improvement on the quality ofthe interpolating surfa
e than a residual toleran
e ofthe size � = 10�2, while the former takes mu
h moretime than the latter. Therefore a relatively large resid-ual toleran
e 
an be supplied to the iterative linearsystem solver to prevent it from running too long onthe iterative pro
ess, while not improving the qualityof the interpolationg surfa
e mu
h. This is espe
iallyimportant for pro
essing meshes with large number ofverti
es.2.5 Additional Interpolation Require-mentsIn addition to the interpolation requirements 
onsid-ered in (1), other interpolation requirements 
an bein
luded in the global linear system as well. One 
analso modify or remove some of the interpolation re-quirements in (1). For example, if we wants the �rstu�derivative of the interpolating surfa
e at Pi to beDu, we need to set up a 
ondition similar to (5) asfollows: (V T �Q)�Du = 0where V is a 
onstant ve
tor. The di�eren
e here is,this is not a similarity 
onstraint, but an interpolationrequirement. However, if we want a parti
ular nor-mal to be interpolated, we should set up interpolationrequirements for the u derivative and the v derivativewhose 
ross produ
t equals this normal, instead of set-ting up an interpolation requirement for the normal

dire
tly, to avoid the involvement of non-linear equa-tions in our system. Then by 
ombining all the newinterpolation requirements with the original interpo-lation requirements in (1), we get all the expressionsfor verti
es that are not 
onsidered independent vari-ables in the linear system in (6). Note that in
luding anew interpolation requirement in the interpolation re-quirement pool requires us to 
hange a variable vertexin Q to a non-variable vertex. A
tually, interpolationrequirements 
an be spe
i�ed for any points of the in-terpolating surfa
e, not just for verti
es of P . Thisis possible be
ause we have a parametri
 representa-tion for ea
h pat
h of a CCSS [9℄. For example, if wewant the position of a pat
h at (1=2; 1=4) to be T, we
an set up an interpolation requirement of the form:V T �Q = T where V is a 
onstant ve
tor whose valuesdepend on (1=2; 1=4). Therefore the interpolating sur-fa
e 
an interpolate positions, derivatives and normalsanywhere in the parameter spa
e.3 Handling Open MeshesThe interpolation pro
ess developed in the previousse
tion 
an not be used for open meshes, su
h as theone shown in Fig. 3(a), dire
tly. This is be
auseboundary verti
es of an open mesh have no 
orre-sponding limit points, nor derivatives, therefore, one
an not set up interpolation requirements for theseverti
es, as required by the new interpolation pro
ess.One way to over
ome this problem is to add an addi-tional ring of verti
es along the 
urrent boundary and
onne
t the verti
es of this ring with 
orrespondingverti
es of the 
urrent boundary to form an additionalring of fa
es, su
h as the example shown in Figure3(
). The newly added verti
es are 
alled dummy ver-ti
es. We then apply the interpolation method to theextended open mesh as to a 
losed mesh ex
ept thatthere are no interpolation requirements for the dummyverti
es. This te
hnique of extending the boundary ofa given mesh is similar to a te
hnique proposed foruniform B-spline surfa
e representation in [1℄.Note that in this 
ase, the interpolation pro
essdoes not use the limit surfa
e of the given mesh, butrather the limit surfa
e of the extended mesh as a refer-en
e surfa
e. Therefore, the shape of the interpolatingsurfa
e depends on lo
ations of the dummy verti
es aswell. Determining the lo
ation of a dummy vertex,however, is a tri
ky issue, and the user should notbe burdened with su
h a tri
ky task. In our system,this is done by using lo
ations of the 
urrent bound-ary verti
es of the given mesh as the initial lo
ationsof the dummy verti
es and then solving the global lin-ear system in (6) to determine their �nal lo
ations.5



(a) (b) (
) (d) (e) (f)Figure 3: Interpolating an open mesh: (a) given mesh; (b) limit surfa
e of (a); (
) extended version of (a); (d)limit surfa
e of (
); (e) interpolating surfa
e of (a) that is similar to (d); (f) interpolating surfa
e of (
) withadditional requirements.This approa
h of generating dummy verti
es works�ne be
ause dummy verti
es only a�e
t similarity 
on-straints. Figure 3(e) is a surfa
e that interpolates themesh given in Fig. 3(a) and uses 3(d) as a referen
esurfa
e.The above setting of the dummy verti
es usually isnot enough to 
reate an interpolating surfa
e with thedesired boundary shape. Additional requirements (not
onstraints) are needed in the interpolation pro
ess.As explained in Se
tion 2.5, a platform that allows usto de�ne additional requirements 
an be 
reated bytreating the dummy verti
es as non-variables in (6).We 
an then spe
ify new derivative 
onditions or nor-mal 
onditions to be satis�ed at the original boundaryverti
es. With the additional interpolation require-ments, a designer has more 
ontrol on the shape ofthe interpolating surfa
e in areas along the bound-ary and, 
onsequently, 
an generate an interpolatingsurfa
e with the desired boundary shape. For exam-ple, Figure 3(f) is an interpolating surfa
e of the meshgiven in Figure 3(a), but generated with additionalinterpolation requirements. The interpolating surfa
eobviously looks more like a real glass now.4 Test ResultsThe proposed approa
h has been implemented in C++using OpenGL as the supporting graphi
s system onthe Windows platform. Quite a few examples havebeen tested with the method des
ribed here. All theexamples have extra-ordinary verti
es. Some of thetested results are shown in Figures 2, 3 and 4. Due tolimited spa
e, limit surfa
e of the Utah Teapot whi
his well known and limit surfa
e of the mesh shown in

Figure 4(r) whi
h is very simple are not shown here.For all other 
ases, the limit surfa
es (not s
aled) ofthe given meshes and the interpolating surfa
es areboth shown so that one 
an tell if these surfa
es areindeed similar to ea
h other in the least squares sense.In our implementation, only one subdivision is per-formed on the given mesh for ea
h example and the�rst, se
ond and third derivatives in u and v dire
tionsare used to 
onstru
t interpolation 
onstraints andbuild the global linear system. These derivatives aresampled at points with parameters ( 12i ; 12j ), i; j = 0; 1or 1, for ea
h pat
h. That is, 9 points are sampledfor ea
h pat
h, whi
h is good enough for most 
ases.For bigger pat
hes one 
an use more sample pointsbe
ause pat
hes do not have to be sampled uniformly.The original Utah teapot 
onsists of four separateparts: lid, handle, body and spout. The mesh shownin Figure 4(n) is a
tually a set of four meshes, onefor ea
h 
omponent of the original Utah teapot. Ea
hmesh is an open mesh. Although ea
h of these meshes
an be interpolated separately, Figure 4(q) is gener-ated by regarding them as a single mesh. The meshshown in Figure 4(f) is another example of an openmesh with dis
onne
ted boundaries. Figure 4(h) isthe interpolating surfa
e without using additional in-terpolation requirements in the 
onstru
tion pro
ess.As 
an be seen from Figure 4, all the resulting inter-polating surfa
e are very smooth and visually pleasing,ex
ept the interpolating surfa
e shown in Figure 4(p).The surfa
e has some undulations around the ne
k,but we do not think they are 
aused 
ompletely byour method. We believe this is more of a problem withthe general interpolation 
on
ept. Note that the input6



(a) G-M (b) L-S (
) I-S (d) G-M (e) L-S
(f) G-M (g) L-S (h) I-S (i) I-S
(j) G-M (k) L-S (l) I-S (m) G-M

(n) G-M (o) L-S (p) I-S
(q) I-S (r) G-M (s) I-SFigure 4: Interpolating meshes with arbitrary topology (G-M: given mesh; L-S: limit surfa
e; I-S: interpolatingsurfa
e. 7



mesh, Figure 4(m), has some abrupt 
hanges of ver-tex positions and twists in the ne
k area. This is alsore
e
ted by some visible undulations in the ne
k areaof the limit surfa
e, Figure 4(o), even though they arenot as 
lear as in the interpolating surfa
e. An approx-imation 
urve/surfa
e, like a spline 
urve, 
an be re-garded as a low pass �lter [10℄, whi
h makes the given
ontrol polygon or mesh smoother. An interpolation
urve/surfa
e, on the other hand, 
an be regarded as ahigh pass �lter, whi
h magni�es undulations or twistsin the input mesh. Sin
e a limit surfa
e is an approxi-mation surfa
e, it redu
es the impa
t of abrupt vertexlo
ation 
hanges and twists in the input mesh whilethe interpolating surfa
e enhan
es it. This is why theundulations are more obvious in Figure 4(p) than inFigure 4(o).The new interpolation method 
an handle mesheswith large number of verti
es in a matter of se
onds onan ordinary PC (3.2GHz CPU, 512MB of RAM). Forexample, the mesh shown in Figure 4(m) has 1,022 ver-ti
es and 1024 fa
es, and only takes 51 se
onds to in-terpolate it. The ro
ker arm shown in Figure 4(d) has354 verti
es and 354 fa
es, and only takes 4 se
onds tointerpolate it. The teapot model shown in Figure 4(n)has 138 verti
es and 128 fa
es, and it takes less than 1se
ond to interpolate it. For smaller meshes, like Fig-ures 4(a), 4(j), 4(r) and 4(f), the interpolation pro
essis done almost in real time. Hen
e our interpolationmethod is suitable for intera
tive shape design, wheresimple shapes with small or medium-sized 
ontrol ver-tex sets are 
onstru
ted using design or interpolationmethods, and then 
ombined using CSG trees to form
omplex obje
ts.5 SummaryA new interpolation method for meshes with arbitrarytopology using general CCSSs is presented. The de-velopment of the method is based on the assumptionthat the interpolating surfa
e should be similar to thelimit surfa
e of the given mesh. Our test results showthat this approa
h leads to good interpolation resultseven for 
ompli
ated data sets.The new method has several spe
ial properties.First, by using information from the verti
es of thegiven mesh as well as its limit surfa
e, one has more
ontrol on the smoothness of the interpolating sur-fa
e. Hen
e, a surfa
e fairing pro
ess is not neededin the new method. Se
ond, there is no system solv-ability problem for the new method. The global linearsystem that the new method has to solve does notrequire an exa
t solution, an approximate solution issuÆ
ient. The approximate solution 
an be providedby any fast iterative linear solver. Consequently the

new method 
an pro
ess meshes with large number ofverti
es eÆ
iently. Third, the new method 
an han-dle both open and 
losed meshes. It 
an interpolatenot only verti
es, but normals and derivatives as well.These normals and derivative 
an be anywhere, notjust at the verti
es of the given mesh. Therefore, thenew method is general.A
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