Similarity based Interpolation

using Catmull-Clark Subdivision Surfaces

Shuhua Lai and Fuhua (Frank) Cheng

Graphics & Geometric Modeling Lab, Department of Computer Science
University of Kentucky, Lexington, Kentucky 40506-0046

Abstract. A new method for constructing a smooth
Catmull-Clark subdivision surface (CCSS) that inter-
polates the vertices of a mesh with arbitrary topology
is presented. The new method handles both open
and closed meshes. Normals or derivatives specified
at any vertices of the mesh (which can actually be
anywhere) can also be interpolated. The construction
process is based on the assumption that, in addition
to interpolating the vertices of the given mesh, the
interpolating surface is also similar to the limit surface
of the given mesh. Therefore, construction of the
interpolating surface can use information from the
given mesh as well as its limit surface. This approach,
called similarity based interpolation, gives us more
control on the smoothness of the interpolating surface
and, consequently, avoids the need of shape fairing
in the construction of the interpolating surface. The
computation of the interpolating surface’s control
mesh follows a new approach, which does not require
the resulting global linear system to be solvable. An
approximate solution provided by any fast iterative
linear system solver is sufficient. However, inter-
polation of the given mesh is guaranteed. This is
an important improvement over previous methods
because with these features, the new method can han-
dle meshes with large number of vertices efficiently.
Although the new method is presented for CCSSs,
the concept of similarity based interpolation can be
used for other subdivision surfaces as well.

Keywords: subdivision, subdivision surfaces,
Catmull-Clark subdivision surfaces, interpolation

1 Introduction

Given a 3D mesh, there exist infinitely many smooth
surfaces that interpolate the mesh vertices. Any of
them can be used as a solution to the interpolation
problem. But, to a shape designer, usually only one
of them is the surface he really wants. That sur-
face, called the designer’s concept surface, is a piece of

important information for the interpolation process.
If that information is available to the interpolation
system, then by constructing an interpolating surface
whose shape is ‘similar’ to the designer’s concept sur-
face, we get the best result one can get for the in-
terpolation process. We call an interpolation process
similarity based interpolation if the interpolation also
depends on establishing ‘similarity’ with a reference
surface. In the above case, the reference surface is the
designer’s concept surface.

(a) Interpolation

(b) Approximation
Figure 1: They are similar!

The result of a similarity based interpolation de-
pends on the quality of the reference surface. The
closer the shape of the reference surface to the de-
signer’s concept surface, the better the result. The
designer’s concept surface usually is not available to
the interpolation system. But it is reasonable to as-
sume that the given mesh carries a shape similar to the
designer’s concept surface. Afterall, these are vertices
the user extracted from his concept surface. Conse-
quently, limit surface of the given mesh, when viewed
as the control mesh of a Catmull-Clark subdivision
surface, would be similar to the designer’s concept sur-
face. Therefore, using the limit surface as the reference
surface in the interpolation process, i.e., construct-
ing an interpolating surface of a given mesh that is
also similar to the limit surface of the given mesh, we

should get an interpolating surface that is relatively
close to the designer’s concept surface. This interpo-
lation concept has not been studied with subdivision
surfaces before, although interpolation using subdivi-
sion surfaces has already been studied for a while.

1.1 Previous Work: A Brief Review

There are two major ways to interpolate a given mesh
with a subdivision surface: interpolating subdivision
[3, 6, 5, 8, 10] or global optimization [4, 7]. In the first
case, a subdivision scheme that interpolates the con-
trol vertices, such as the Butterfly scheme[3], Zorin et
al’s improved version [10] or Kobbelt’s scheme [6], is
used to generate the interpolating surface. New ver-
tices are defined as local affine combinations of nearby
vertices. This approach is simple and easy to imple-
ment. It can handle meshes with large number of ver-
tices. However, since no vertex is ever moved once it
is computed, any distortion in the early stage of the
subdivision will persist. This makes interpolating sub-
division very sensitive to the irregularity in the given
mesh. In addition, it is difficult for this approach to
interpolate normals or derivatives.

The second approach, global optimization, usually
needs to build a global linear system with some con-
straints. The solution to the global linear system is
an interpolating mesh whose limit surface interpolates
the control vertices in the given mesh. This approach
usually requires some fairness constraints, such as the
energy functions presented in [4], in the interpolation
process to avoid undesired undulations. Although this
approach seems more complicated, it results in a tra-
ditional subdivision surface. For example, the method
in [4] results in a Catmull-Clark subdivision surface
(CCSS), which is C? continuous almost everywhere
and whose properties are well studied and understood.
The problem with this approach is that a global linear
system needs to be built and solved. Hence it is diffi-
cult to handle meshes with large number of vertices.

There are also subdivision techniques that produce
surfaces to interpolate given curves or surfaces that
near- (or quasi-)interpolate given meshes. But those
techniques are either of different natures or of different
concerns and, hence, will not be discussed here.

1.2 Overview

In this paper, we will address some of the problems
with current vextex interpolation techniques by simi-
larity based interpolation technique developed for CC-
SSs. Given a 3D mesh P with arbitrary topology,
the new method calculates a control mesh @ whose
CCSS interpolates the vertices of P. The CCSS of @
is constructed with the additional assumption that its

shape is similar to a reference surface, the limit sur-
face of P. A shape fairing process is not required in
the construction process of the interpolating surface.
The computation of the control mesh @ follows a new
approach which does not require the resulting global
linear system to be solvable. An approximate solution
provided by any fast iterative linear system solver is
sufficient. Hence, handling meshes with large number
of vertices is not a problem. However, interpolation of
the given mesh is guaranteed. The new method can
handle both closed and open meshes. The interpolat-
ing surface can interpolate not only vertices of a given
mesh, but also derivatives and normals anywhere in
the parameter space of the surface.

The remaining part of the paper is arranged as fol-
lows. In Section 2, the similarity based interpolation
technique for closed meshes is presented. A technique
that works for open meshes is presented in Section 3.
Implementation issues and test results are presented
in Section 4. A summary is presented in Section 5.

2 Similarity based Interpolation
2.1 Mathematical Setup

Given a 3D mesh with n vertices: P =
{P,P5,--- ,P,}, the goal here is to construct a con-
trol mesh @ whose CCSS interpolates P (the vertices
of P, for now). The construction of @ follows the fol-
lowing path. First, we perform one or more levels of
Catmull-Clark subdivision on P to get a finer control
mesh G. G satisfies the following property: each face
of G is a quadrilateral and each face of G has at most
one extra-ordinary vertex. The vertices of G are di-
vided into two categories. A vertex of G is called a
Type I vertex if it corresponds to a vertex of P. Oth-
erwise it is called a Type II vertex. @ is then defined
as a control mesh with the same number of vertices
and the same topolgy as G. We assume @ has m ver-
tices @ = {Q1,Q2, - ,Qum}, m > n, and the first n
vertices correspond to the n Type I vertices of G (and,
consequently, the n vertices of P). These n vertices of
Q@ will also be called Type I vertices and the remaining
m — n vertices Type II vertices. This way of setting
up @ is to ensure the parametric form developed for a
CCSS patch [9] can be used for the limit surface of @,
denoted S(Q), and we have enough degree of freedom
in our subsequent work. Note that m is usually much
bigger than n. The remaining job then is to determine
the position of each vertex of Q.

In previous methods [7, 4] the n Type I vertices of
Q are set as independent variables, the m —n Type II
vertices are represented as linear combinations of the
Type I vertices. Since m — n is bigger than n, this

setting leads to an over-determined system. Without
any freedom in adjusting the solution of the system,
one has no control on the shape of the resulting in-
terpolating surface S(Q) even if it carries undesirable
undulations. In this paper, instead, the m — n Type
IT vertices are set as independent variables and the n
Type I vertices are represented as linear combinations
of the Type II vertices. This approach provides us
with enough degrees of freedom to adjust the solution
of the resulting linear system and, consequently, more
control on the shape of the interpolating surface S(Q).

As discussed in the previous section, the interpolat-
ing surface S(Q) should be similar to the limit surface
of P. The limit surface of P, denoted S(P), usually
is smaller than the interpolating surface of P, S(Q).
To establish a better similarity relationship, we scale
up S(P) so that dimension of the scaled limit surface
is the same as S(Q). The required scaling factors s,
sy and s. for such a task can be determined by the
condition that the bounding box of the scaled limit
surface is the same as the bounding box of the inter-
polating surface. This can easily be done by compar-
ing the maxima and minima of the vertices of P in
all three directions with the maxima and minima of
their corresponding limit points. The example shown
in Figure 2 illustrates this process. Figure 2(b) is the
limit surface of the mesh shown in Figure 2(a). The
scaled limit surface is shown in Figure 2(c). Figure
2(d) is the interpolating surface of the mesh shown in
Figure 2(a). We can see that the interpolating surface
is more similar to the scaled limit surface than the
original limit surface. In the subsequent discussion, it
should be understood that each reference to the simi-
larity between the interpolating surface and the limit
surface of P actually means the similarity between the
interpolating surface and the scaled limit surface of P.
The control mesh of the scaled limit surface, called G‘,
can be obtained by scaling G’ with s,, s, and s.. The

scaled limit surface will be denoted S(G).

2.2 Interpolation Requirements

Recall that Type I vertices of @) are those vertices that
correspond to vertices of P. Hence, each vertex of P
is the limit point of a Type I vertex of Q. We assume
the limit point of Q; is P;, 1 <4 < m. Then for each
Type I vertex Q; (1 <i < n), we have

Qi=Ci-Q+cP; (1)

where Q = {Qut1, Quio, - ,Q,} is the vector of
Type II vertices. Vector C; and constant ¢ depend on
the topology of P and the degree of vertex P;. C; and ¢
can be easily obtained using the formula for calculating

the limit point of a CCSS [9, 4]. The conditions in
(1) are called interpolation requirements, because they
have to be exactly satisfied.

Note that the interpolation requirements in (1) form
a system of linear equations. By solving this system
of linear equations, we solve the interpolation prob-
lem [7]. But in this case one tends to get undesired
undulations on the resulting interpolationg surface [4].

2.3 Similarity Constraints

Two CCSSs are said to be similar if their control
meshes have the same topology and they have similar
ith derivatives (1 < i < o0) everywhere. The first con-
dition of this definition is a sufficient conditon for the
second condition to be true, because it ensures the con-
sidered CCSSs have the same parameter space. The
CCSSs considered here, S(Q) and S(G), satisfy the
first condition. Hence, we have the sufficient condi-

tion to make the assumption that S(Q) and S(G) are
similar. In the following, we assume S(Q) and S(QG)
are similar in the sense of the above definition.

With explict parameterization of a CCSS available
[9], it is possible for us to consider derivatives of S(Q)
and S(G) at any point of their parameter space. How-
ever, to avoid costly integration of derivative expres-
sions, we will only consider derivatives sampled at the
following points

{(1/2".1/27) |0 <4, j < oo } (2)

for each patch of S(Q) and S(G). In the above simi-
larity definition, two derivatives are said to be similar
if they have the same direction. In the following, we
use the similarity condition to set up constraints in the
construction process of S(Q).

Given two surfaces, let D, and D, be the v and v
derivatives of the first surface and lju and]3,, the u
and v derivatives of the second surface. These deriva-
tives are similar if the following conditin holds:

D,xD,=0 and D,xD,=0 (3)
A different condition, shown below, is used in [4, 7].
D, - (D,xD,)=0 and D, (D, xD,) =0 (4)

These two conditions are not necessarily equivalent.
Our test cases show that (3) gives better interpolating
surfaces. This is because (4) only requires the corre-
sponding derivatives to lie in the same tangent plane,
no restrictions on their direcitons. As a result, using
(4) could result in unnecessary undulations. Note that
(3) requires directions of D,, and D, to be the same
as that of lju and]51,, respectively.

(a) (b)

Figure 2: Similariy between the interpolating surface and the limit surface: (a) given mesh, (b) limit surface,

(c)scaled limit surface, (d) interpolating surface.

Conditions of the type shown in (3) are called sim-
ilarity comstraints. These constraints do not have to
be satisfied exactly, only to the extent possible. The
interpolation method used in [7] considers interpola-
tion requirements only. The method in [4] also in-
cludes fairness constraints to avoid undesired undula-
tions and artifacts.

2.4 Global Linear System

If the derivatives of S(Q) and S(G) are sampled at a
point in (2) then, according to (3) and the derivative
of the parametric form of a CCSS patch [9], we would
have

VT Q) x (V' -G)=0 (5)

where V' is a constant vector of scalars whose values de-
pend on the type of the derivative and the point where
the sampling is performed. This expression actually
contains 3 equations, one for each component. Re-
place the Type I vertices Q1,Qa, -+ ,Q,, in the above
expression with (1) and combine all the similarity con-
straints, we get a system of linear equations which can
be represented in matrix form as follows:

D-X=C

where X is a vector of length 3(m — n), whose entries
are the z, y and z components of é D usually is not
a square matrix. Hence we need to find an X such
that (D- X — C)T-(D- X — C) is minimized. This is
a quadratic programming problem and can be solved
using a linear least squares method. It is basically
a process of finding a solution of the following linear
system:

A-X=B (6)

where A = DTD and B = DTC. A is a symmetric
matrix. Hence only half of its elements need to_be
calculated and stored. Once X is known, i.e., @ is
known, we can find Q1,Qa, -, Q, using (1).

The matrix D could be very big if many sample
points or constrains are used. Fortunately, we do not
have to calculate and store the matrix D and the vector
C. Note that A and B can be writen as

A=>"DiD)" and B=)> Dic;

where (D;)T is the ith row of D and ¢; is the ith en-
try of C. Note that the number of rows of D can
be as large as possible but the number of columns is
fixed, 3(m — n). Suppose the ith constraint (See eq.
(5)), with Q1,Qa, -+, Q, replaced, is written in vec-
tor form as UT - X = u. Then U7 is the ith row of
matrix D and w is the ith entry of C. Hence rows
of matrix D and entries of C' can be calculated inde-
pendently from (5) for each constraint of each sam-
ple point. Therefore, A and B can be accumulatively
calculated, constraint by constraint. No matter how
many sample points are used, and no matter how many
constraints are considered for every sample point, only
a fixed amount memory is required for the entire pro-
cess and the size of matrix A is always the same,
3(m —n) x 3(m — n).

Note that the solution of (6) only determines
the positions of Type II vertices of @, i.e.
Qni1: Quia, + , Qugm. Type 1 vertices of @,
Q1,Q2, - ,Q,, are represented as linear combina-
tions of Quni1, Qnya, -+, Qnim in the interpolation
requirements defined in (1). Since interpolation of the
vertices of P by the interpolating surface is determined
by the interpolation requirements (1) only, this means
as long as we can find a solution for (6), the task of

constructing an interpolating surface that interpolates
the vertices of P can always be fulfilled, even if the so-
lution is not precise. Hence, an exact solution to the
linear system (6) is not a must for our method. An
approximate solution provided by a fast interative lin-
ear system solver is sufficient. As a result, the new
method can handle meshes with large number of ver-
tices efficiently. This is an important improvement
over previous methods.

With the similarity assumption, the surface inter-
polation problem is basically a process of using an it-
erative method to find an approximate solution for
the global linear system (6). The scaled mesh G is
a good initial guess for the interative process because
G is actually very close to the control mesh of the
interpolating surface we want to obtain. In our im-
plementation, the Gauss-Seidel method is used for the
iterative process. The iterative process would converge
to a good approximate solution very rapidly with this
initial guess. However, it should be pointed out that
there is no need to carry out the iterative process to
a very precise level. According to our test cases, a
residual tolerance of the size € = 1078 does not pro-
duce much noticable improvement on the quality of
the interpolating surface than a residual tolerance of
the size € = 1072, while the former takes much more
time than the latter. Therefore a relatively large resid-
ual tolerance can be supplied to the iterative linear
system solver to prevent it from running too long on
the iterative process, while not improving the quality
of the interpolationg surface much. This is especially
important for processing meshes with large number of
vertices.

2.5 Additional Interpolation Require-
ments

In addition to the interpolation requirements consid-
ered in (1), other interpolation requirements can be
included in the global linear system as well. One can
also modify or remove some of the interpolation re-
quirements in (1). For example, if we wants the first
u—derivative of the interpolating surface at P; to be
D,, we need to set up a condition similar to (5) as
follows:

V. Q)xD,=0

where V' is a constant vector. The difference here is,
this is not a similarity constraint, but an interpolation
requirement. However, if we want a particular nor-
mal to be interpolated, we should set up interpolation
requirements for the u derivative and the v derivative
whose cross product equals this normal, instead of set-
ting up an interpolation requirement for the normal

directly, to avoid the involvement of non-linear equa-
tions in our system. Then by combining all the new
interpolation requirements with the original interpo-
lation requirements in (1), we get all the expressions
for vertices that are not considered independent vari-
ables in the linear system in (6). Note that including a
new interpolation requirement in the interpolation re-
quirement pool requires us to change a variable vertex
in @ to a non-variable vertex. Actually, interpolation
requirements can be specified for any points of the in-
terpolating surface, not just for vertices of P. This
is possible because we have a parametric representa-
tion for each patch of a CCSS [9]. For example, if we
want the position of a patch at (1/2,1/4) to be T, we
can set up an interpolation requirement of the form:
VT.Q = T where V is a constant vector whose values
depend on (1/2,1/4). Therefore the interpolating sur-
face can interpolate positions, derivatives and normals
anywhere in the parameter space.

3 Handling Open Meshes

The interpolation process developed in the previous
section can not be used for open meshes, such as the
one shown in Fig. 3(a), directly. This is because
boundary vertices of an open mesh have no corre-
sponding limit points, nor derivatives, therefore, one
can not set up interpolation requirements for these
vertices, as required by the new interpolation process.
One way to overcome this problem is to add an addi-
tional ring of vertices along the current boundary and
connect the vertices of this ring with corresponding
vertices of the current boundary to form an additional
ring of faces, such as the example shown in Figure
3(c). The newly added vertices are called dummy ver-
tices. We then apply the interpolation method to the
extended open mesh as to a closed mesh except that
there are no interpolation requirements for the dummy
vertices. This technique of extending the boundary of
a given mesh is similar to a technique proposed for
uniform B-spline surface representation in [1].

Note that in this case, the interpolation process
does not use the limit surface of the given mesh, but
rather the limit surface of the extended mesh as a refer-
ence surface. Therefore, the shape of the interpolating
surface depends on locations of the dummy vertices as
well. Determining the location of a dummy vertex,
however, is a tricky issue, and the user should not
be burdened with such a tricky task. In our system,
this is done by using locations of the current bound-
ary vertices of the given mesh as the initial locations
of the dummy vertices and then solving the global lin-
ear system in (6) to determine their final locations.

Figure 3: Interpolating an open mesh: (a) given mesh; (b) limit surface of (a); (c) extended version of (a); (d)
limit surface of (c); (e) interpolating surface of (a) that is similar to (d); (f) interpolating surface of (c) with

additional requirements.

This approach of generating dummy vertices works
fine because dummy vertices only affect similarity con-
straints. Figure 3(e) is a surface that interpolates the
mesh given in Fig. 3(a) and uses 3(d) as a reference
surface.

The above setting of the dummy vertices usually is
not enough to create an interpolating surface with the
desired boundary shape. Additional requirements (not
constraints) are needed in the interpolation process.
As explained in Section 2.5, a platform that allows us
to define additional requirements can be created by
treating the dummy vertices as non-variables in (6).
We can then specify new derivative conditions or nor-
mal conditions to be satisfied at the original boundary
vertices. With the additional interpolation require-
ments, a designer has more control on the shape of
the interpolating surface in areas along the bound-
ary and, consequently, can generate an interpolating
surface with the desired boundary shape. For exam-
ple, Figure 3(f) is an interpolating surface of the mesh
given in Figure 3(a), but generated with additional
interpolation requirements. The interpolating surface
obviously looks more like a real glass now.

4 Test Results

The proposed approach has been implemented in C++
using OpenGL as the supporting graphics system on
the Windows platform. Quite a few examples have
been tested with the method described here. All the
examples have extra-ordinary vertices. Some of the
tested results are shown in Figures 2, 3 and 4. Due to
limited space, limit surface of the Utah Teapot which
is well known and limit surface of the mesh shown in

Figure 4(r) which is very simple are not shown here.
For all other cases, the limit surfaces (not scaled) of
the given meshes and the interpolating surfaces are
both shown so that one can tell if these surfaces are
indeed similar to each other in the least squares sense.

In our implementation, only one subdivision is per-
formed on the given mesh for each example and the
first, second and third derivatives in u and v directions
are used to construct interpolation constraints and
build the global linear system. These derivatives are
sampled at points with parameters (2L7 2%), 1,7 =0,1
or oo, for each patch. That is, 9 points are sampled
for each patch, which is good enough for most cases.
For bigger patches one can use more sample points

because patches do not have to be sampled uniformly.

The original Utah teapot consists of four separate
parts: lid, handle, body and spout. The mesh shown
in Figure 4(n) is actually a set of four meshes, one
for each component of the original Utah teapot. Each
mesh is an open mesh. Although each of these meshes
can be interpolated separately, Figure 4(q) is gener-
ated by regarding them as a single mesh. The mesh
shown in Figure 4(f) is another example of an open
mesh with disconnected boundaries. Figure 4(h) is
the interpolating surface without using additional in-
terpolation requirements in the construction process.

As can be seen from Figure 4, all the resulting inter-
polating surface are very smooth and visually pleasing,
except the interpolating surface shown in Figure 4(p).
The surface has some undulations around the neck,
but we do not think they are caused completely by
our method. We believe this is more of a problem with
the general interpolation concept. Note that the input

(q) I-S (r) G-M (s) I-S

Figure 4: Interpolating meshes with arbitrary topology (G-M: given mesh; L-S: limit surface; I-S: interpolating
surface. 7

mesh, Figure 4(m), has some abrupt changes of ver-
tex positions and twists in the neck area. This is also
reflected by some visible undulations in the neck area
of the limit surface, Figure 4(0), even though they are
not as clear as in the interpolating surface. An approx-
imation curve/surface, like a spline curve, can be re-
garded as a low pass filter [10], which makes the given
control polygon or mesh smoother. An interpolation
curve/surface, on the other hand, can be regarded as a
high pass filter, which magnifies undulations or twists
in the input mesh. Since a limit surface is an approxi-
mation surface, it reduces the impact of abrupt vertex
location changes and twists in the input mesh while
the interpolating surface enhances it. This is why the
undulations are more obvious in Figure 4(p) than in
Figure 4(0).

The new interpolation method can handle meshes
with large number of vertices in a matter of seconds on
an ordinary PC (3.2GHz CPU, 512MB of RAM). For
example, the mesh shown in Figure 4(m) has 1,022 ver-
tices and 1024 faces, and only takes 51 seconds to in-
terpolate it. The rocker arm shown in Figure 4(d) has
354 vertices and 354 faces, and only takes 4 seconds to
interpolate it. The teapot model shown in Figure 4(n)
has 138 vertices and 128 faces, and it takes less than 1
second to interpolate it. For smaller meshes, like Fig-
ures 4(a), 4(j), 4(r) and 4(f), the interpolation process
is done almost in real time. Hence our interpolation
method is suitable for interactive shape design, where
simple shapes with small or medium-sized control ver-
tex sets are constructed using design or interpolation
methods, and then combined using CSG trees to form
complex objects.

5 Summary

A new interpolation method for meshes with arbitrary
topology using general CCSSs is presented. The de-
velopment of the method is based on the assumption
that the interpolating surface should be similar to the
limit surface of the given mesh. Our test results show
that this approach leads to good interpolation results
even for complicated data sets.

The new method has several special properties.
First, by using information from the vertices of the
given mesh as well as its limit surface, one has more
control on the smoothness of the interpolating sur-
face. Hence, a surface fairing process is not needed
in the new method. Second, there is no system solv-
ability problem for the new method. The global linear
system that the new method has to solve does not
require an exact solution, an approximate solution is
sufficient. The approximate solution can be provided
by any fast iterative linear solver. Consequently the

new method can process meshes with large number of
vertices efficiently. Third, the new method can han-
dle both open and closed meshes. It can interpolate
not only vertices, but normals and derivatives as well.
These normals and derivative can be anywhere, not
just at the vertices of the given mesh. Therefore, the
new method is general.

Acknowledgement. Data set of Figure 4(m) is
downloaded from research.microsoft.com/~hoppe and
the original data sets of Figures 4(r) and 4(f) are down-
loaded from mrl.nyu.edu/~dzorin.

References

[1] Barsky B A, End conditions and boundary con-
ditions for uniform B-spline curve and surface
representation, Computers in Industry, 1982,
3(1/2):17-29.

[2] Catmull E, Clark J, Recursively generated B-
spline surfaces on arbitrary topological meshes,
Computer-Aided Design, 1978, 10(6):350-355.

[3] Dyn N, Levin D, and Gregory J A, A butterfly
subdivision scheme for surface interpolation with
tension control, ACM Transactions on Graphics,
1990, 9(2):160-169.

[4] Halstead M, Kass M, DeRose T, Efficient, fair
interpolationusing Catmull-Clark surfaces, ACM
SIGGRAPH, 1993:35-44.

[6] Levin A, Interpolating nets of curves by smooth
subdivision surfaces, Computer Graphics Proceed-
ings (SIGGRAPH), Annual Conference Series,
1999, 57-64.

[6] Kobbelt L, Interpolatory subdivision on open
quadrilateral nets with arbitrary topology, Com-
puter Graphics Forum, Eurographics, V.15, 1996.

[7] Nasri A H, Surface interpolation on irregular net-
works with normal conditions, Computer Aided
Geometric Design, 1991, 8:89-96.

[8] Schaefer S, Warren J, A Factored Interpolatory
Subdivision Scheme for Quadrilateral Surfaces,
Curves and Surface Fitting: Saint Malo 2002,
373-382.

[9] Stam J, Exact Evaluation of Catmull-Clark Sub-
division Surfaces at Arbitrary Parameter Values,
Proceedings of SIGGRAPH 1998:395-404.

[10] D. Zorin, P. Schréder, W. Sweldens, Interpolating
Subdivision for meshes with arbitrary topology,
ACM SIGGRAPH, 1996:189-192.

