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Abstract

The Gamma distribution and related approximation properties of this distribution to certain of classes
of functions are discussed. Two asymptotic estimate formulas are given.
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1 Introduction and Main Results

Probability distributions and related approximation properties have played a central role in several
areas of computer aided geometric design (CAGD) and numerical analysis. For instance, the
(Bernstein) basis functions of Bézier curves and surfaces are taken from a binomial distribution,
and the basis functions of B-spline curves and surfaces model a simple stochastic process [1,
2]. Properties of these curves and surfaces are closely related to the approximation features
of the corresponding basis functions. Therefore studying probability distributions and related
approximation properties is important both in theory and applications.

The aim of this paper is to do a study in that direction. In this paper we shall consider the
following Gamma random variable ξ with probability density function:

pξ(u) =

{
ux−1

Γ(x)
exp(−u), if u ≥ 0

0, if u < 0
(1)

where x is a fixed number in (0,∞) and Γ(x) is the Gamma function of x defined as follows:

Γ(x) =

∫ ∞

0

ux−1e−udu,

and study related approximation process based on the above Gamma distribution. We first prove
the following lemma.
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Lemma 1. Let {ξi}∞i=1 be a sequence of independent random variables with the same Gamma

distribution as ξ, and let ηn =
n∑

i=1

ξi. Then the probability distribution of the random variable ηn

is

P (ηn ≤ y) =
1

Γ(nx)

∫ y

0

unx−1e−udu. (2)

Proof . Let the distribution functions of the random variables ξi be Fi(x), i = 1, 2, 3, ..., and
let the distribution function of ηn be Fηn(x). We have

Fi(y) =

∫ y

−∞
pξi

(u)du =

∫ y

0

ux−1

Γ(x)
e−udu

and
Fηn(y) = (F1 ∗ F2 ∗ ... ∗ Fn)(y),

where

(F1 ∗ F2)(y) =

∫ +∞

−∞
F2(y − u)dF1(u),

and (F1 ∗ F2 ∗ ... ∗ Fn)(y) is defined recursively. By convolution of probability distributions we
obtain

P (ηn ≤ y) = Fηn(y) =
1

Γ(nx)

∫ y

0

unx−1e−udu.

Hence, Lemma 1 is proved.

In this paper we consider the following Gamma approximation process G∗
n:

G∗
n(f, x) =

∫ +∞

−∞
f(t/n)dFηn(t) =

nnx

Γ(nx)

∫ ∞

0

f(u)unx−1e−nudu (3)

where f belongs to the class of function ΦB or the class of function ΦDB, which are defined
respectively by

ΦB = {f | f is bounded on every finite subinterval of [0,∞),

and |f(t)| ≤ Meβt, (M > 0; β ≥ 0; t →∞)}.
and

ΦDB = {f | f(x)− f(0) =

∫ x

0

h(t)dt; x ≥ 0; h is bounded on every finite

subinterval of [0,∞), and |f(t)| ≤ Meβt, (M > 0; β ≥ 0; t →∞)}.
For a function f ∈ ΦB, we introduce the following metric form:

Ωx(f, λ) = sup
t∈[x−λ,x+λ]

|f(t)− f(x)|,

where x ∈ [0,∞) is fixed, λ ≥ 0.

It is clear that

Ωx(f, λ) is non-decreasing with respect to λ;

limλ→0 Ωx(f, λ) = 0, if f is continuous at the point x;
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If f is of bounded variation on [a, b], and
∨b

a(f) denotes the total variation of f on [a, b], then

Ωx(f, λ) ≤
x+λ∨

x−λ

(f)

For further properties of Ωx(f, λ), refers to Zeng and Cheng [8].

The main results of this paper are as follows:

Theorem 1. Let f ∈ ΦB. If f(x+) and f(x−) exist at a fixed point x ∈ (0,∞), then for
n > 3β, we have

∣∣∣∣G∗
n(f, x)− f(x+) + f(x−)

2
+

f(x+)− f(x−)

3
√

2πnx

∣∣∣∣ ≤
x + 4

nx

n∑

k=1

Ωx(gx, x/
√

k) + O(n−1), (4)

where

gx(u) =





f(u)− f(x+), x < u < ∞;
0, u = x;

f(u)− f(x−), 0 ≤ u < x.
(5)

We point out that Theorem 1 subsumes the case of approximation of functions of bounded
variation. From Theorem 1 we get immediately

Corollary 1. Let f be a function of bounded variation on every subinterval of [0,∞) and let
f(t) = O(eβt) for some β ≥ 0 as t →∞. then for x ∈ (0,∞) and n > 3β, we have

∣∣∣∣G∗
n(f, x)− f(x+) + f(x−)

2
+

f(x+)− f(x−)

3
√

2πnx

∣∣∣∣ ≤
x + 4

nx

n∑

k=1

Ωx(gx, x/
√

k) + O(n−1)

≤ x + 4

nx

n∑

k=1

x+x/
√

k∨

x−x/
√

k

(gx) + O(n−1), (6)

Corollary 2. Under the conditions of Theorem 1, if Ωx(gx, λ) = o(λ), then

G∗
n(f, x) =

f(x+) + f(x−)

2
− f(x+)− f(x−)

3
√

2πnx
+ o(n−1/2). (7)

Theorem 2. Let f be a function in ΦDB and let f(t) ≤ Meβt for some M > 0 and β ≥ 0 as
t →∞. If h(x+) and h(x−) exist at a fixed point x ∈ (0,∞), then for n > 3β we have

∣∣∣∣G∗
n(f, x)− f(x)− ρ

√
x

2πn

∣∣∣∣ ≤
4x + 2

n

[
√

n]∑

k=1

Ωx(ψx, x/k) +
|ρ|x5/2 + 7M(x + 1)3/2e3βx

x3n3/2
, (8)
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where ρ = h(x+)− h(x−), and

ψx(t) =





h(t)− h(x+), x < t < ∞;
0, t = x;

h(t)− h(x−), 0 ≤ t < x.
(9)

Remark . If f is a function with derivative of bounded variation, then f ∈ ΦDB. Thus the
approximation of functions with derivatives of bounded variation is a special case of Theorem 2.

2 Auxiliary Results

To prove Theorem 1 and Theorem 2 we need some auxiliary results.

Lemma 2. For a fixed x ∈ (0,∞), we have

G∗
n(1, x) = 1,

G∗
n(uk, x) =

(nx + k − 1)(nx + k − 2)...(nx + 1)nx

nk
, k > 1 (10)

Proof . Direct computations give G∗
n(1, x) = 1, and

G∗
n(uk, x) =

nnx

Γ(nx)

∫ ∞

0

unx+k−1e−nudu

=
nnx

nnx+kΓ(nx)

∫ ∞

0

tnx+k−1e−tdt

=
Γ(nx + k)

nkΓ(nx)

=
(nx + k − 1)(nx + k − 2)...(nx + 1)nx

nk
.

Lemma 3. For x ∈ (0,∞) there hold

G∗
n((u− x)2, x) =

x

n
; (11)

G∗
n((u− x)4, x) ≤ 3(x + 1)2

n2
; (12)

G∗
n((u− x)6, x) ≤ 49(x + 1)3

n3
; (13)

G∗
n(e2βu, x) ≤ e6βx, for n > 3β. (14)

Proof . By Lemma 2 and direct computations we get

G∗
n((t− x)2, x) =

x

n
;

G∗
n((t− x)4, x) =

3x2

n2
+

6x

n3
≤ 3(x + 1)2

n2
;

G∗
n((t− x)6, x) =

15n2x3 + 130nx2 + 120x

n5
≤ 49(x + 1)3

n3
;
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In addition, if n > 3β, putting u =
t

n− 2β
, we have

G∗
n(e2βu, x) =

nnx

Γ(nx)

∫ ∞

0

e2βuunx−1e−nudu

=
nnx

(n− 2β)nxΓ(nx)

∫ ∞

0

tnx−1e−tdt

=

(
n

n− 2β

)nx

≤ e6βx.

Lemma 4. [3, Chapter 2] Let {ξk}∞k=1 be a sequence of independent and identically distributed
random variables with the expectation Eξ, the variance E(ξ − Eξ)2 = σ2 > 0, E(ξ − Eξ)4 <

∞, and let Fn stand for the distribution function of
n∑

k=1

(ξk − Eξ)/σ
√

n. If Fn is not a lattice

distribution, then the following equation holds for all t ∈ (−∞, +∞)

Fn(t)− 1√
2π

∫ t

−∞
e−u2/2du =

E(ξ − ξ)3

6σ3
√

n
(1− t2)

1√
2π

e−t2/2 + O(n−1). (15)

Lemma 5. Let

Kn(x, u) =
nnx

Γ(nx)

∫ u

0

vnx−1e−nvdv.

If 0 ≤ v ≤ u < x, then

Kn(x, u) ≤ x

n(x− u)2
. (16)

Proof . Let ξ be a Gamma random variable with probability density function defined as in (1).
Let {ξi}∞i=1 be a sequence of independent random variables with the same Gamma distribution
as ξ. Then by direct computation we have

E(ξ) = x, E(ξ − Eξ)2 = σ2 = x, (17)

E(ξ − Eξ)3 = 2x, E(ξ − Eξ)4 = 3x2 + 6x < ∞. (18)

Let ηn =
n∑

i=1

ξi. By the addition operation of random variables, we obtain

E(ηn) = nx, E(ηn − Eηn)2 = nx

through simple computation. Thus by Chebyshev inequality it follows that

Kn(x, u) = P (|ηn − nx| ≥ nx− nu) ≤ x

n(x− u)2
.
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3 Proof of Theorem 1

Let f satisfy the conditions of Theorem 1, then f can be expressed as

f(u) =
f(x+) + f(x−)

2
+ gx(u) +

f(x+)− f(x−)

2
sgn(u− x) + δx(u)

[
f(x)− f(x+) + f(x−)

2

]
,

(19)

where gx(u) is defined in (5), sgn(u) is sign function and δx(u) =

{
1, u = x
0, u 6= x

.

Obviously,
G∗

n(δx, x) = 0. (20)

Let {ξi}∞i=1 be a sequence of independent random variables with the same Gamma distribution
and their probability density functions are

pξi
(u) =

{
ux−1

Γ(x)
exp(−u), if u ≥ 0

0, if u < 0.

where x ∈ (0,∞) is a parameter. Let ηn =
n∑

i=1

ξi and F ∗
n stand for the distribution function of

n∑
i=1

(ξi − Eξi)/σ
√

n. Then by Lemma 1, the probability distribution of the random variable ηn is

P (ηn ≤ y) =
1

Γ(nx)

∫ y

0

unx−1e−udu.

Thus

G∗
n(sgn(u− x), x) =

nnx

Γ(nx)

∫ ∞

x

unx−1e−nudu− nnx

Γ(nx)

∫ x

0

unx−1e−nudu

= 1− 2P (ηn ≤ nx) = 1− 2F ∗
n(0). (21)

By Lemma 4, (17), (18) and straightforward computation, we have

1− 2F ∗
n(0) = −2E(ξ1 − a1)

3

6σ3
√

n

1√
2π

+ O(n−1) =
−2

3
√

2πnx
+ O(n−1). (22)

It follows from (19)–(22) that

∣∣∣∣G∗
n(f, x)− f(x+) + f(x−)

2
+

f(x+)− f(x−)

3
√

2πnx

∣∣∣∣ ≤ |G∗
n(gx, x)|+ O(n−1). (23)

We need to estimate |G∗
n(gx, x)|. Let

Kn(x, u) =
nnx

Γ(nx)

∫ u

0

vnx−1e−nvdv.

Then by Lebesgue-Stieltjes integral representation, we have

G∗
n(gx, x) =

∫ ∞

0

gx(u)duKn(x, u) (24)
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Decompose the integral of (24) into four parts, as

∫ ∞

0

gx(u)duKn(x, u) = 41,n(gx) +42,n(gx) +43,n(gx) +44,n(gx),

where

41,n(gx) =

∫ x−x/
√

n

0

gx(u)duKn(x, u), 42,n(gx) =

∫ x+x/
√

n

x−x/
√

n

gx(u)duKn(x, u),

43,n(gx) =

∫ 2x

x+x/
√

n

gx(u)duKn(x, u), 44,n(gx) =

∫ ∞

2x

gx(u)duKn(x, u).

We will evaluate 41,n(gx), 42,n(gx), 43,n(gx) and 44,n(gx) separately. First, for 42,n(gx), note
that gx(x) = 0. Hence

|42,n(gx)| ≤
∫ x+x/

√
n

x−x/
√

n

|gx(u)− gx(x)|duKn(x, u) ≤ Ωx(gx, x/
√

n). (25)

To estimate |41,n(gx)|, note that Ωx(gx, λ) is non-decreasing with respect to λ, thus it follows
that

|41,n(gx)| =
∣∣∣∣∣
∫ x−x/

√
n

0

gx(u)duKn(x, u)

∣∣∣∣∣ ≤
∫ x−x/

√
n

0

Ωx(gx, x− u)duKn(x, u).

Using integration by parts with y = x− x/
√

n, we have

∫ y

0

Ωx(gx, x− u)duKn(x, u) ≤ Ωx(gx, x− y)Kn(x, y) +

∫ y

0

Kn(x, u)du(−Ωx(gx, x− u)). (26)

From (26) and Lemma 5 we get

|41,n(gx)| ≤ Ωx(gx, x− y)
x

n(x− y)2
+

∫ y

0

x

n(x− u)2
du(−Ωx(gx, x− u)). (27)

Using integration by parts once again, from (26), (27) it follows that

|41,n(gx)| ≤ 1

nx
Ωx(gx, x) +

2x

n

∫ x−x/
√

n

0

Ωx(gx, x− u)

(x− u)3
dt.

Putting u = x− x/
√

t for the last integral we get

∫ x−x/
√

n

0

Ωx(gx, x− u)

(x− u)3
du =

1

nx

∫ n

1

Ωx(gx, x/
√

t)dt.

Consequently

|41,n(gx)| ≤ 1

nx

(
Ωx(gx, x) +

∫ n

1

Ωx(gx, x/
√

t)dt

)
. (28)

Using a similar method to estimate |43,n(gx)|, we get

|43,n(gx)| ≤ 1

nx

(
Ωx(gx, x) +

∫ n

1

Ωx(gx, x/
√

t)dt

)
. (29)
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Finally, by assumption we know that gx(t) ≤ M(eβt) as t → ∞. Using Hölder inequality and
Lemma 3, we have, for n ≥ 3β,

|44,n(gx)| ≤ M
∫∞

2x
eβuduKn(x, u)

≤ M
x2

∫∞
0

(u− x)2eβuduKn(x, u)

≤ M
x2

(∫∞
0

(u− x)4duKn(x, u)
)1/2 (∫∞

0
e2βuduKn(x, u)

)1/2

≤ 2M(x+1)e3βx

n
.

(30)

Equations (25) and (28)–(30) lead to

|G∗
n(gx, x)| ≤ |41,n(gx)|+ |42,n(gx)|+ |43,n(gx)|+ |44,n(gx)|

≤ Ωx(gx, x/
√

n) + 2
nx

(
Ωx(gx, x) +

∫ n

1
Ωx(gx, x/

√
u)du

)
+ 2M(x+1)e3βx

n

≤ x+4
n

n∑
k=1

Ωx(gx, x/
√

k) + 2M(x+1)e3βx

n
.

(31)

Theorem 1 now follows from (23) and (31).

4 Proof of Theorem 2

By direct computation we find that

G∗
n(f, x)− f(x) =

h(x+)− h(x−)

2
G∗

n(|u− x|, x)− An,x(ψx) + Bn,x(ψx) + Cn,x(ψx), (32)

where

An,x(ψx) =

∫ x

0

(∫ x

t

ψx(u)du

)
dtKn(x, t),

Bn,x(ψx) =

∫ 2x

x

(∫ t

x

ψx(u)du

)
dtKn(x, t),

Cn,x(ψx) =

∫ +∞

2x

(∫ t

x

ψx(u)du

)
dtKn(x, t),

Integration by parts derives

An,x(ψx) =

∫ x

0

(∫ x

t

ψx(u)du

)
dtKn(x, t)

=

∫ x

t

ψx(u)duKn(x, t)

∣∣∣∣
x

0

+

∫ x

0

Kn(x, t)ψx(t)dt

=

(∫ x−x/
√

n

0

+

∫ x

x−x/
√

n

)
Kn(x, v)ψx(v)dv

Note that Kn(x, v) ≤ 1 and ψx(x) = 0, it follows that

∣∣∣∣
∫ x

x−x/
√

n

Kn(x, nv)ψx(v)dv

∣∣∣∣ ≤
x√
n

Ωx

(
ψx,

x√
n

)
≤ 2x

n

[
√

n]∑

k=1

Ωx(ψx, x/k).
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On the other hand, by Lemma 5 and using change of variable v = x− x/u, we have
∣∣∣∣∣
∫ x−x/

√
n

0

Kn(x, v)ψx(v)dv

∣∣∣∣∣ ≤ x

n

∫ x−x/
√

n

0

Ωx(ψx, x− v)

(x− v)2
dv

=
1

n

∫ √
n

1

Ωx(ψx, x/u)du ≤ 1

n

[
√

n]∑

k=1

Ωx(ψx, x/k).

Thus, it follows that

|An,x(ψx)| ≤ 2x + 1

n

[
√

n]∑

k=1

Ωx(ψx, x/k). (33)

A similar evalutation gives

|Bn,x(ψx)| ≤ 2x + 1

n

[
√

n]∑

k=1

Ωx(ψx, x/k). (34)

Next we estimate Cn,x(ψx), by the assumption that f(t) ≤ Meβt (M > 0, β ≥ 0), and using
Lemma 3 we have

|Cn,x(ψx)| ≤ M

∫ +∞

2x

eβtdtKn(x, t)

≤ M

x3

∫ +∞

2x

(t− x)3eβtdtKn(x, t)

≤ M

x3

(∫ +∞

0

(t− x)6dtKn(x, t)

)1/2 (∫ +∞

0

e2βtdtKn(x, t)

)1/2

≤ 7M(x + 1)3/2e3βx

x3n3/2
. (35)

Finally, we estimate the first order absolute moment of the Gamma approximation process:
G∗

n(|u− x|, x). By direct calculation, we have

G∗
n(|u− x|, x) =

nnx

Γ(nx)

∫ ∞

0

|u− x|unx−1e−nudu

=
nnx

Γ(nx)

(∫ x

0

(x− u)unx−1e−nudu +

∫ ∞

x

(u− x)unx−1e−nudu

)

=
2nnx

Γ(nx)

∫ x

0

(x− u)unx−1e−nudu

=
2x

Γ(nx)

∫ nx

0

tnx−1e−tdt− 2

nΓ(nx)

∫ nx

0

tnxe−tdt.

Note that ∫ nx

0

tnxe−tdt = −(nx)nxe−nx + nx

∫ nx

0

tnx−1e−tdt,

thus

G∗
n(|u− x|, x) =

2(nx)nx

nenxΓ(nx)
. (36)
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Now using Stirling’s formula (cf. [4]):

Γ(z + 1) =
√

2πz(z/e)zecz , (12z + 1)−1 < cz < (12z)−1,

from (36) we have √
2x

nπ
−G∗

n(|u− x|, x) =

√
2x

nπ
(1− e−cx), (37)

and a simple calculation derives

1

18
√

xn3/2
≤

√
2x

nπ
(1− e−cx) ≤ 1

12
√

xn3/2
. (38)

Theorem 2 now follows from (32)–(38) combining with some simple calculations.
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