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Abstract. A new subdivision depth computation technique for extra-
ordinary Catmull-Clark subdivision surface (CCSS) patches is presented.
The new technique improves a previous technique by using a matrix
representation of the second order norm in the computation process. This
enables us to get a more precise estimate of the rate of convergence of the
second order norm of an extra-ordinary CCSS patch and, consequently,
a more precise subdivision depth for a given error tolerance.

1 Introduction

Given a Catmull-Clark subdivision surface (CCSS) patch, subdivision depth com-
putation is the process of determining how many times the control mesh of the
CCSS patch should be subdivided so that the distance between the resulting
control mesh and the surface patch is smaller than a given error tolerance.

A good subdivision depth computation technique requires precise estimate of
the distance between the control mesh of a CCSS patch and its limit surface.
Optimum distance evaluation techniques for regular CCSS patches are available
[3,6]. Distance evaluation for an extra-ordinary CCSS patch is more complicated.
A first attempt in that direction is done in [3]. The distance is evaluated by
measuring norms of the first order forward differences of the control points. But
the distance computed by this approach is usually bigger than what it really
is for regions already flat enough and, consequently, leads to over-estimated
subdivision depth.

An improved distance evaluation technique for extra-ordinary CCSS patches
is presented in [4]. The distance is evaluated by measuring norms of the second
order forward differences (called second order norms) of the control points of the
given extra-ordinary CCSS patch. However, it has been observed recently that,
for extra-ordinary CCSS patches, the convergence rate of second order norm
changes with the subdivision process, especially between the first subdivision
level and the second subdivision level. Therefore, using a fixed convergence rate
in the distance evaluation process for all subdivision levels would over-estimate
the distance and, consequently, over-estimate the subdivision depth as well.
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In this paper we present an improved subdivision depth computation method
for extra-ordinary CCSS patches. The new technique uses a matrix representa-
tion of the maximum second order norm in the computation process to generate
a recurrence formula. This recurrence formula allows the smaller convergence
rate of the second subdivision level to be used as a bound in the evaluation
of the maximum second order norm and, consequently, leads to a more precise
subdivision depth for the given error tolerance.

2 Problem Formulation and Background

Given the control mesh of an extra-ordinary CCSS patch and an error tolerance
ε, the goal here is to compute an integer d so that if the control mesh is iteratively
refined (subdivided) d times, then the distance between the resulting mesh and
the surface patch is smaller than ε. d is called the subdivision depth of the surface
patch with respect to ε.

2.1 Distance Between Patch and Control Mesh

For a given interior mesh face F, let S be the corresponding Catmull-Clark
Subdivision Surface (CCSS) patch in the limit surface S̄. The distance between
an interior mesh face F and the corresponding patch S is defined as the maximum
of ‖F(u, v) − S(u, v)‖:

DF = max (u,v)∈Ω ‖F(u, v) − S(u, v)‖ (1)

where Ω ≡ [0, 1] × [0, 1] is the parameter space of F and S. DF is also called
the distance between S and its control mesh.

2.2 Depth Computation for Extra-Ordinary Patches

The distance evaluation mechanism of the previous subdivision depth computa-
tion technique for extra-ordinary CCSS patches utilizes second order norm as a
measurement scheme as well [4], but the pattern of second order forward differ-
ences (SOFDs) used in the distance evaluation process is different from the one
used for regular patches [4].

Second Order Norm and Recurrence Formula. Let Vi, i = 1, 2, ..., 2n+8,
be the control points of an extra-ordinary patch S(u, v) = S0

0(u, v), with V1
being an extra-ordinary vertex of valence n. The control points are ordered
following J. Stam’s fashion [7] (Figure 1(a)). The control mesh of S(u, v) is
denoted Π = Π0

0 . The second order norm of S, denoted M = M0, is defined as
the maximum norm of the following 2n + 10 SOFDs:

M = max{{‖2V1 − V2i − V2((i+1)%n+1)‖ | 1 ≤ i ≤ n}
∪ {‖2V2(i%n+1) − V2i+1 − V2(i%n+1)+1‖ | 1 ≤ i ≤ n}
∪ {‖2V3 − V2 − V2n+8 ‖, ‖ 2V4 − V1 − V2n+7 ‖, ‖ 2V5 − V6 − V2n+6 ‖,

‖ 2V5 − V4 − V2n+3 ‖, ‖ 2V6 − V1 − V2n+4 ‖, ‖ 2V7 − V8 − V2n+5 ‖,
‖ 2V2n+7 − V2n+6 − V2n+8 ‖, ‖ 2V2n+6 − V2n+2 − V2n+7 ‖,
‖ 2V2n+3 − V2n+2 − V2n+4 ‖, ‖ 2V2n+4 − V2n+3 − V2n+5 ‖ } }

(2)
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Fig. 1. (a) Ordering of control points of an extra-ordinary patch. (b) Ordering of new
control points (solid dots) after a Catmull-Clark subdivision.

If we perform a Catmull-Clark subdivision step [1] on the control mesh of S, we
get four new subpatches: S1

0, S
1
1, S

1
2 and S1

3. S
1
0 is an extra-ordinary patch but S1

1,
S1

2 and S1
3 are regular patches (see Figure 1(b)). We use M1 to denote the second

order norm of S1
0. This process can be iteratively repeated on S1

0, S2
0, S3

0, ... etc.
We have the following lemma for a general Sk

0 and its second order norm Mk [4].

Lemma 1: For any k ≥ 0, if Mk represents the second order norm of the extra-
ordinary sub-patch Sk

0 after k Catmull-Clark subdivision steps, then Mk satisfies
the following inequality

Mk+1 ≤

⎧
⎨

⎩

2
3Mk, n = 3
18
25Mk, n = 5
(3
4 + 8n−46

4n2 )Mk, n > 5
.

Distance Evaluation. Let L(u, v) be the bilinear parametrization of the center
face of S(u, v)’s control mesh F = {V1,V6,V5,V4}

L(u, v) = (1 − v)[(1 − u)V1 + uV6] + v[(1 − u)V4 + uV5], 0 ≤ u, v ≤ 1

and let S(u, v) be parameterized following the Ω-partition based approach [7]
then the maximum distance between S(u, v) and its control mesh satisfies the
following lemma [4].

Lemma 2: The maximum of ‖ L(u, v)−S(u, v) ‖ satisfies the following inequality

‖ L(u, v) − S(u, v) ‖ ≤

⎧
⎪⎪⎨

⎪⎪⎩

M0, n = 3
5
7M0, n = 5

4n
n2−8n+46M0, 5 < n ≤ 8

n2

4(n2−8n+46)M0, n > 8

(3)

where M = M0 is the second order norm of the extra-ordinary patch S(u, v).

Subdivision Depth Computation. Lemma 2 can be used to estimate the
distance between a level-k control mesh and the surface patch for any k > 0.

Theorem 3: Given an extra-ordinary surface patch S(u, v) and an error toler-
ance ε, if k levels of subdivisions are iteratively performed on the control mesh
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of S(u, v), where k =
⌈
logw

M
zε

⌉
with M being the second order norm of S(u, v)

defined in (2),

w =

⎧
⎨

⎩

3
2 , n = 3
25
18 , n = 5

4n2

3n2+8n−46 , n > 5
and z =

⎧
⎨

⎩

1, n = 3
25
18 , 5 ≤ n ≤ 8
2(n2−8n+46)

n2 , n > 8

then the distance between S and the level-k control mesh is smaller than ε.

3 New Subdivision Depth Computation Technique for
Extra-Ordinary Patches

The SOFDs involved in the second order norm of an extra-ordinary CCSS patch
(see eq. (2)) can be classified into two groups: group I and group II. Group I
contains those SOFDs that involve vertices in the vicinity of the extra-ordinary
vertex (see Figure 2(a)). These are the first 2n SOFDs in (2). Group II contains
the remaining SOFDs, i.e., SOFDs that involve vertices in the vicinity of the
other three vertices of S (see Figure 2(b)). These are the last 10 SOFDs in (2).
It is easy to see that the convergence rate of the SOFDs in group II is the same
as the regular case, i.e., 1/4 [3]. Therefore, to study properties of the second
order norm M , it is sufficient to study norms of the SOFDs in group I.
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Fig. 2. (a) Vicinity of the extra-ordinary point. (b) Vicinity of the other three vertices
of S.

3.1 Matrix Based Rate of Convergence

The second order norm of S = S0
0 can be put in matrix form as follows:

M = ‖AP‖∞
where A is a 2n ∗ (2n + 1) matrix

A =

�
��������������

2 −1 0 0 0 −1 0 0 · · · 0 0
2 0 0 −1 0 0 0 −1 · · · 0 0

...
2 0 0 −1 0 0 0 0 · · · −1 0
0 2 −1 0 0 0 0 0 · · · 0 −1
0 0 −1 2 −1 0 0 0 · · · 0 0

...
0 0 0 0 0 0 0 0 · · · 2 −1

�
��������������
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and P is a control point vector

P = [V1, V2, V3, . . . , V2n+1]T .

A is called the second order norm matrix for extra-ordinary CCSS patches. If i
levels of Catmull-Clark subdivision are performed on the control mesh of S = S0

0
then, following the notation of Section 2, we have an extra-ordinary subpatch
Si

0 whose second order norm can be expressed as:

Mi =
∥
∥AΛiP

∥
∥
∞

where Λ is a subdivision matrix of dimension (2n + 1) ∗ (2n + 1). The function
of Λ is to perform a subdivision step on the 2n + 1 control vertices around
(and including) the extra-ordinary point (see Figure 2(a)). We are interested in
knowing the relationship between ‖AP‖∞ and

∥
∥AΛiP

∥
∥
∞. We need the following

important result for AΛi. The proof of this result is shown in [2].

Lemma 4: AΛi = AΛiA+A, where A+ is the pseudo-inverse matrix of A.
With this lemma, we have

‖AΛiP‖∞
‖AP‖∞

=
‖AΛiA+AP‖∞

‖AP‖∞
≤ ‖AΛiA+‖∞

‖AP‖∞
‖AP‖∞

=
∥
∥AΛiA+

∥
∥
∞

Use ri to represent
∥
∥AΛiA+

∥
∥
∞. Then we have the following recurrence formula

for ri

ri ≡
∥
∥AΛiA+

∥
∥
∞ =

∥
∥AΛi−1A+AΛA+

∥
∥
∞

≤
∥
∥AΛi−1A+

∥
∥
∞ ‖AΛA+‖∞ = ri−1 r1

(4)

where r0 = 1. Hence, we have the following lemma on the convergence rate of
second order norm of an extra-ordinary CCSS patch.

Lemma 5: The second order norm of an extra-ordinary CCSS patch satisfies
the following inquality:

Mi ≤ ri M0 (5)

where ri =
∥
∥AΛiA+

∥
∥
∞ and ri satisfies the recurrence formula (4).

The recurrence formula (4) shows that ri in (5) can be replaced with ri
1.

However, experiment data show that, while the convergence rate changes by a
constant ratio in most of the cases, there is a significant difference between r2
and r1. The value of r2 is smaller than r2

1 by a significant gap. Hence, if we use
ri
1 for ri in (5), we would end up with a bigger subdivision depth for a given

error tolerance. A better choice is to use r2 to bound ri, as follows.

ri ≤
{

rj
2, i = 2j

r1r
j
2, i = 2j + 1

(6)

3.2 Distance Evaluation

Following (12) and (13) of [4], the distance between the extra-ordinary CCSS
patch S(u, v) and its control mesh L(u, v) can be expressed as



550 G. Chen and F. Cheng

‖L(u, v) − S(u, v)‖ ≤
∑m−2

k=0 ‖Lk
0(uk, vk) − Lk+1

0 (uk+1, vk+1)‖
+‖Lm−1

0 (um−1, vm−1) − Lm
b (um, vm)‖ + ‖Lm

b (um, vm) − Sm
b (um, vm)‖ (7)

where um,vm and b are defined in [4].
By applying Lemma 5, Lemma 6 and Lemma 1 of [4] on the first, second and

third terms of the right hand side of the above inequality, respectively, we get

‖L(u, v) − S(u, v)‖ ≤ c
�m−2

k=0 Mk + 1
4Mm−1 + 1

3Mm

≤ M0(c
�m−2

k=0 rk + 1
4rm−1 + 1

3rm)

where c = 1/ min{n, 8}. The last part of the above inequality follows from
Lemma 2. Consequently, through a simple algebra, we have

‖L(u, v) − S(u, v)‖ ≤
{

M0[c(
1−rj

2
1−r2

+ 1−rj−1
2

1−r2
r1) + r1rj−1

2
4 + rj

2
3 ], if m = 2j

M0[c(
1−rj

2
1−r2

+ 1−rj
2

1−r2
r1) + rj

2
4 + r1rj

2
3 ], if m = 2j + 1

It can be easily proved that the maximum occurs at m = ∞. Hence, we have
the following lemma.

Lemma 6: The maximum of ‖L(u, v)−S(u, v)‖ satisfies the following inequality

‖L(u, v) − S(u, v)‖ ≤ M0

min{n, 8}
1 + r1

1 − r2

where ri = ‖AΛiA+‖∞ and M = M0 is the second order norm of the extra-
ordinary patch S(u, v).

3.3 Subdivision Depth Computation

Lemma 6 can also be used to evaluate the distance between a level-i control mesh
and the extra-ordinary patch S(u, v) for any i > 0. This is because the distance
between a level-i control mesh and the surface patch S(u, v) is dominated by
the distance between the level-i extra-ordinary subpatch and the corresponding
control mesh which, accoriding to Lemma 6, is

‖Li(u, v) − S(u, v)‖ ≤ Mi

min{n, 8}
1 + r1

1 − r2

where Mi is the second order norm of S(u, v)’s level-i control mesh, Mi. Hence,
if the right side of the above inequality is smaller than a given error tolerance
ε, then the distance between S(u, v) and the level-i control mesh is smaller than
ε. Consequently, we have the following subdivision depth computation theorem
for extra-ordinary CCSS patches.

Theorem 7: Given an extra-ordinary surface patch S(u, v) and an error toler-
ance ε, if

i ≡ min{2l, 2k + 1}
levels of subdivision are iteratively performed on the control mesh of S(u, v),
where
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l = �log 1
r2

( 1
min{n,8}

1+r1
1−r2

M0
ε )	 ,

k = �log 1
r2

( r1
min{n,8}

1+r1
1−r2

M0
ε )	

with ri = ‖AΛiA+‖∞ and M0 being the second order norm of S(u, v), then the
distance between S(u, v) and the level-i control mesh is smaller than ε.

4 Examples

The new subdivision depth technique has been inplemented in C++ on the Win-
dows platform to compare its performance with the previous approach. MatLab is
used for both numerical and symbolic computation of ri in the implementation.
Table 1 shows the comparison results of the previous technique, Theorem 3, with
the new technique, Theorem 7. Two error tolerances 0.01 and 0.001 are consid-
ered and the second order norm M0 is assumed to be 2. For each error tolerance,
we consider five different valences: 3, 5, 6, 7 and 8 for the extra-ordinary vertex.
As can be seen from the table, the new technique has a 30% improvement over
the previous technique in most of the cases. Hence, the new technique indeed
improves the previous technique significantly.

To show that the rates of convergence are indeed difference between r1 and r2,
their values from several typical extra-ordinary CCSS patches are also included
in Table 1. Note that when we compare r1 and r2, the value of r1 should be
squared first.

Table 1. Comparison between the old and the new technique

ε = 0.01 ε = 0.001 convergence rate
N Old New Old New r1 r2

3 14 9 19 12 0.6667 0.2917
5 16 11 23 16 0.7200 0.4016
6 19 16 27 22 0.8889 0.5098
7 23 14 33 22 0.8010 0.5121
8 37 27 49 33 1.0078 0.5691

5 Conclusions

A new subdivision depth computation technique for extra-ordinary CCSS patches
is presented. The computation process is performed on matrix representation of
the second order norm, which gives us a better bound of the convergence rate
and, consequently, a tighter subdivision depth for a given error tolerance. Test
results show that the new technique improves the previous technique by about
30% in most of the cases. This is a significant result because of the exponential
nature of the subdivision process.
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