
Subdivision Depth Computation forExtra-Ordinary Catmull-Clark SubdivisionSurfae PathesFuhua (Frank) Cheng, Gang Chen and Jun-Hai Yong*University of Kentuky, Lexington, KY, USA*Tsinghua University, Beijing, ChinaAbstrat. A seond order forward di�erenes based subdivision depthomputation tehnique for extra-ordinary Catmull-Clark subdivision sur-fae (CCSS) pathes is presented. The new tehnique improves a previoustehnique in that the omputation of the subdivision depth is based onthe path's urvature distribution, instead of its dimension. Hene, withthe new tehnique, no exessive subdivision is needed for extra-ordinaryCCSS pathes to meet the preision requirement and, onsequently, onean make trimming, �nite element mesh generation, boolean operations,and tessellation of CCSSs more eÆient.1 IntrodutionResearh work for subdivision surfaes has been done in several important areas,suh as surfae parametrization [6℄[10℄[11℄[14℄, surfae trimming [7℄, boolean op-erations [1℄, mesh editing [13℄, and error estimate/ontrol [3℄[12℄. For instane,given an error tolerane, [3℄ shows howmany times the ontrol mesh of a Catmull-Clark subdivision surfae (CCSS) path should be reursively subdivided sothat the distane between the resulting ontrol mesh and the limit surfae pathwould be less than the error tolerane. This error ontrol tehnique, alled sub-division depth omputation, is required in all tessellation based appliations ofCCSSs. [3℄'s subdivision depth omputation tehnique for regular CCSS pathesis optimum. However, for an extra-ordinary CCSS path (a path with an extra-ordinary vertex), sine the subdivision depth omputed by [3℄ depends on �rstorder forward di�erenes of the ontrol points, its value ould be bigger thanwhat it atually should be and, onsequently, generates exessive mesh elementsfor regions that are already at enough.In this paper we will present a new subdivision depth omputation tehniquefor extra-ordinary CCSS pathes. The new tehnique is based on the seond orderforward di�erenes of an extra-ordinary path's ontrol points. The omputedsubdivision depth reets the path's urvature distribution, not its dimension.Hene, with the new tehnique, no exessive subdivision is needed for regionsthat are already at enough and, onsequently, trimming, �nite element meshgeneration, boolean operations, and tessellation of CCSSs an be made moreeÆient.



22 Problem Formulation and BakgroundGiven the ontrol mesh of an extra-ordinary CCSS path and an error tolerane�, the goal here is to ompute an integer d so that if the ontrol mesh is iterativelyre�ned (subdivided) d times, then the distane between the resulting mesh andthe surfae path is smaller than �. d is alled the subdivision depth of the surfaepath with respet to �. Before we show the omputation tehnique, we need tode�ne related terms and review related tehniques for regular CCSS pathes.2.1 Catmull-Clark Subdivision SurfaesGiven a ontrol mesh, a CCSS is generated by iteratively re�ning (subdividing)the ontrol mesh to form new ontrol meshes [2℄. The re�ning proess onsistsof de�ning new verties (fae points, edge points and vertex points) and on-neting the new verties to form new edges and faes of a new ontrol mesh.The limit surfae of the iteratively re�ned ontrol meshes is alled a subdivisionsurfae beause the mesh re�ning (subdivision) proess is a generalization ofthe uniform biubi B-spline surfae subdivision tehnique. Therefore, CCSSsinlude uniform B-spline surfaes and pieewise B�ezier surfaes as speial ases.Atually CCSSs inlude non-uniform B-spline surfaes and NURBS surfaes asspeial ases as well [9℄. The ontrol mesh of a CCSS path and the new ontrolmesh after a re�ning (subdivision) proess are shown in Figures 1(a) and (b),respetively. This is a oneptual drawing, the loation shown for a new vertexmight not be its exat physial loation.
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Fig. 1. (a) Control mesh of an extra-ordinary path; (b) new verties and edges gen-erated after a Catmull-Clark subdivision.The given ontrol mesh will be referred to as M0 and the limit surfae willbe referred to as �S. For eah positive integer k, Mk refers to the ontrol meshobtained after applying the Catmull-Clark subdivision k times to M0.The power of CCSSs omes from the way mesh verties are onneted. If thenumber of edges onneted to a mesh vertex is alled its valene, then the valene



3of an interior mesh vertex an be anything � 3, instead of just four. Those meshverties whose valenes are di�erent from four are alled extra-ordinary vertiesto distinguish them from the standard or regular mesh verties. Vertex V inFigure 1(a) is an extra-ordinary vertex of valene �ve. An interior mesh fae isalled an extra-ordinary mesh fae if it has an extra-ordinary vertex. Otherwise,a standard or regular mesh fae. Mesh fae F in Figure 1(a) is an extra-ordinarymesh fae. we assume all the mesh faes inM0 are quadrilaterals and eah meshfae of M0 has at most one extra-ordinary vertex. Otherwise, simply performthe subdivision step twie on the given ontrol mesh.For eah interior fae F of Mk, k � 0, there is a orresponding path S inthe limit surfae �S. F and S an be parametrized on the same parameter spae
 = [0; 1℄�[0; 1℄ [10℄. F is a bilinear rule surfae. S is a uniform biubi B-splinesurfae path if F is a regular fae. However, if F is an extra-ordinary fae thenS, de�ned by 2n+ 8 ontrol points where n is the valene of F's extra-ordinaryvertex, an not be parametrized as a uniform B-spline path. In suh a ase, Sis alled an extra-ordinary path. Otherwise, a regular path or standard path.The ontrol mesh shown in Figure 1(a) is the ontrol mesh of an extra-ordinarypath whose extra-ordinary vertex is of valene �ve.2.2 Distane and Subdivision DepthFor a given interior mesh fae F, let S be the orresponding path in the limitsurfae �S. The ontrol mesh of S ontains F as the enter fae. If we perform asubdivision step on the ontrol mesh, we get four new mesh faes in the plae ofF. This is the ase no matter F is a regular fae or an extra-ordinary fae (seeFigure 1(b) for the four new faes F00, F10, F01 and F11 obtained in the plaeof the extra-ordinary fae F shown in Figure 1(a)). Sine eah of these new faesorresponds to a quarter subpath of S, we shall all these new faes subfaes ofF even though they are not pyhsially subsets of F. Therefore, eah subdivisionstep generates four new subfaes for the enter fae F of the ontrol mesh.Beause the orrespondene between F and S is one-to-one, sometime, insteadof saying performing a subdivision step on S, we shall simply say performing asubdivision step on F.The distane between an interior mesh fae F and the orresponding pathS is de�ned as the maximum of kF(u; v)� S(u; v)k:DF = max (u;v)2
 kF(u; v)� S(u; v)k (1)where 
 is the unit square parameter spae of F and S. DF is also alled thedistane between S and its ontrol mesh. For a given � > 0, the subdivisiondepth of F with respet to � is a positive integer d suh that if F is reursivelysubdivided d times, the distane between eah of the resulting subfaes and theorresponding subpath is smaller than zero.2.3 Subdivision Depth Computation for Regular PathesA regular path is a standard uniform biubi B-spline surfae path. Therefore,the omputation proess for a regular path is the same as the omputation



4proess for a standard uniform B-spline surfae path. We review the evaluationof the distane between a B-spline path and its ontrol mesh �rst.
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Fig. 2. De�nition of L(u; v) = (1� v)L1(u) + vL2(u) = (1� u)�L1(v) + u�L2(v).Distane Evaluation Let S(u; v) be a uniform biubi B-spline surfae pathde�ned on the unit square 
 = [0; 1℄ � [0; 1℄ with ontrol points Vi;j , 0 �i; j � 3, and let L(u; v) be the bilinear parametrization of the enter mesh faefV1;1;V2;1;V2;2;V1;2g (see Figure 2):L(u; v) = (1� v)[(1� u)V1;1 + uV2;1℄ + v[(1� u)V1;2 + uV2;2℄; 0 � u; v � 1:The distane between S(u; v) and L(u; v) satis�es the following lemma [3℄.Lemma 1: The distane between L(u; v) and S(u; v) satis�es the followinginequality max0�u;v�1 kL(u; v)� S(u; v)k � 13Mwhere M is the seond order norm of S(u; v) de�ned as followsM = maxi;j f k2Vi;j �Vi�1;j �Vi+1;jk; k2Vi;j �Vi;j�1 �Vi;j+1k g (2)Reurrene Formula for Seond Order Norm LetVi;j , 0 � i; j � 3, be theontrol points of a uniform biubi B-spline surfae path S(u; v). We use Vki;jto represent the new ontrol points of the surfae path after k levels of reursivesubdivision. The indexing of the new ontrol points follows the onvention thatVk0;0 is always the fae point of the mesh fae fVk�10;0 ;Vk�11;0 ;Vk�11;1 ;Vk�10;1 g. Thenew ontrol points Vkij are alled the level-k ontrol points of S(u; v) and thenew ontrol mesh will be alled the level-k ontrol mesh of S(u; v).If we divide the parameter spae of the surfae path, 
, into 4k regions asfollows: 
kmn = [m2k ; m+ 12k ℄� [ n2k ; n+ 12k ℄; 0 � m;n � 2k � 1



5and denote the orresponding subpathes Skmn(u; v), then eah Skmn(u; v) is auniform biubi B-spline surfae path de�ned by the level-k ontrol point setfVkpq j m � p � m+ 3; n � q � n+ 3g. Skmn(u; v) is alled a level-k subpath ofS(u; v). Let Lkmn(u; v) be the bilinear parametrization of the enter fae of Skmn'sontrol mesh, fVkpq j p = m + 1;m + 2; q = n + 1; n + 2g. We say the distanebetween S(u; v) and the level-k ontrol mesh is smaller than � if the distanebetween eah level-k subpath Skmn(u; v) and the orresponding level-k bilinearplane Lkmn(u; v), 0 � m;n � 2k � 1, is smaller than �. A tehnique to omputea subdivision depth k for a given � so that the distane between S(u; v) and thelevel-k ontrol mesh is smaller than � is presented in [3℄. The following lemma isneeded in the derivation of the omputation proess. If we use Mkmn to representthe seond order norm of Skmn(u; v), i.e., the maximum norm of the seond orderforward di�erenes of the ontrol points of Skmn(u; v), then the lemma shows theseond order norm of Skmn(u; v) onverges at a rate of 1=4 of the level-(k � 1)seond order norm [3℄.Lemma 2 If Mkmn is the seond order norm of Skmn(u; v) then we haveMkmn � �14�kM (3)where M is the seond order norm of S(u; v) de�ned in (2).Subdivision Depth Computation With Lemmas 1 and 2, it is easy to seethat, for any 0 � m;n � 2k�1, we havemax0�u;v�1 kLkmn(u; v)� Skmn(u; v)k � 13Mkmn � 13 �14�kM (4)where Mkmn and M are the seond order norms of Skmn(u; v) and S(u; v), respe-tively. Hene, if k is large enough to make the right side of the above inequalitysmaller than �, we havemax0�u;v�1 kLkmn(u; v)� Skmn(u; v)k � �for every 0 � m;n � 2k�1. This leads to the following subdivision depth om-putation proess for a regular CCSS path [3℄.Theorem 3 Let Vij , 0 � i; j � 3, be the ontrol points of a uniform biubiB-spline surfae path S(u; v). For any given � > 0, ifk � d log4(M3� ) elevels of reursive subdivision are performed on the ontrol points of S(u; v) thenthe distane between S(u; v) and the level-k ontrol mesh is smaller than � whereM is the seond order norm of S(u; v) de�ned in (2).



63 Subdivision Depth Computation for Extra-OrdinaryPathesIn the following, we will de�ne seond order forward di�erene patterns to beused for an extra-ordinary path and derive a reurrene formula for the orre-sponding seond order norm, like the one used for a regular path in Setion 2.3.1 Seond Order Norm and Reurrene Formula
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Fig. 3. (a) Ordering of ontrol points of an extra-ordinary path. (b) Ordering of newontrol points (solid dots) after a Catmull-Clark subdivision.Let Vi, i = 1; 2; :::; 2n+ 8, be the ontrol points of an extra-ordinary pathS(u; v) = S00(u; v), with V1 being an extra-ordinary vertex of valene n. Theontrol points are ordered following J. Stam's fashion [10℄ (Figure 3(a)). Foronveniene of subsequent referene, we shall all the ontrol mesh of S(u; v)� = �00 . By performing a subdividion step on � , one gets 2n+17 new vertiesV1i , i = 1; :::; 2n+ 17 (see Figure 3(b)). These ontrol points form four ontrolpoint sets �10 , �11 , �12 and �13 , representing ontrol meshes of the subpathesS10(u; v), S11(u; v), S12(u; v) and S13(u; v), respetively (see Figure 3(b)) where�10 = fV1i j 1 � i � 2n + 8 g, and the other three ontrol point sets �11 , �12and �13 are shown in Figure 4. S10(u; v) is an extra-ordinary path but S11(u; v),S12(u; v) and S13(u; v) are regular pathes. Therefore, seond order norm similarto (2) an be de�ned for S11, S12 and S13.To de�ne a seond order norm for S, one needs to hoose appropriate seondorder forward di�erenes from � . For the seond order norm to be reursivelyde�ned, seond order forward di�erenes that are required in the hild ontrolmeshes should also appear in the parent ontrol mesh. For instane, 2V1 �V4 �V8 and 2V1 � V2 � V6 should be hosen for � beause these patternsare required for �11 and �13 , respetively. On the other hand, for a reurreneformula to hold e�etively, seond order forward di�erenes that are not requiredin the hild ontrol meshes should not be used in the parent ontrol mesh either.For instane, one should not hoose 2V1 �V2 �V8 for � beause this pattern
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Fig. 4. Control verties of subpathes S11, S12 and S13.is not required in any of �11 , �12 or �13 . Therefore, for those ases that involvesthe extra-ordinary point V1 as the enter point, one should only onsider2V1 �V2i �V2(i%n+2); 1 � i � n: (5)To ensure the boundary of the viinity of the extra-ordinary point is overed(Figure 5(a)), one should onsider2V2(i%n+1) �V2i+1 �V2(i%n+1)+1; 1 � i � n: (6)One also has to onsider seond order forward di�erenes that over the extended
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Fig. 5. (a) Viinity of the extra-ordinary point. (b) The extended remaining part.remaining part (Figure 5(b)). There are ten of them (atually twelve, but twoof them have been used in (6)). So, totally, 2n+10 (n+10 when n = 3) seondorder forward di�erenes should be onsidered for � and the seond order normof S, M = M0, is de�ned as the maximum norm of these 2n+ 10 seond order



8forward di�erenes:M = maxf f k2V1 �V2i �V2(i%n+2)k j 1 � i � n g [f k2V2(i%n+1) �V2i+1 �V2(i%n+1)+1k j 1 � i � n g [f k 2V3 � V2 � V2n+8 k; k 2V4 � V1 � V2n+7 k; k 2V5 � V6 � V2n+6 k;k 2V5 � V4 � V2n+3 k; k 2V6 � V1 � V2n+4 k; k 2V7 � V8 � V2n+5 k;k 2V2n+7 � V2n+6 � V2n+8 k; k 2V2n+6 � V2n+2 � V2n+7 k;k 2V2n+3 � V2n+2 � V2n+4 k; k 2V2n+4 � V2n+3 � V2n+5 k g g (7)
Following this de�nition, one an de�ne a similar seond order norm, M1, forthe ontrol mesh of S10. In general, for any k � 0, we an de�ne seond ordernorm similar to (7) for Sk0 and Sk+10 . The seond order norms of Sk0 and Sk+10are denoted Mk and Mk+1, respetively. We have the following lemma for Mkand Mk+1. The proof is shown in the omplete version of the paper [4℄.Lemma 4: For any k � 0, if Mk represents the seond order norm of theextra-ordinary sub-path Sk0 after k Catmull-Clark subdivision steps, then Mksatis�es the following inequalityMk+1 � 8>><>>: 23Mk; n = 30:72Mk; n = 5( 34 + 8n�464n2 )Mk; n > 5Atually, the lemma works in a more general sense, i.e., if Mk stands for theseond order norm of the ontrol meshMk, instead of �k0 , the lemma still works.The seond order norm of Mk is de�ned as follows: for regions not involvingthe extra-ordinary point, use standard seond order forward di�erenes; for theviinity of the extra-ordinary point, use seond order forward di�erenes de�nedin (7). The proof is essentially the same.3.2 Distane EvaluationTo ompute the distane between the extra-ordinary path S(u; v) and the enterfae of its ontrol mesh, L(u; v), we need to parameterize the path S(u; v) �rst.Note that by iteratively performing Catmull-Clark subdivision on S(u; v), weget a sequene of regular pathes f Smb g, m � 1, b = 1; 2; 3, and a sequeneof extra-ordinary pathes f Sm0 g, m � 1. The extra-ordinary pathes onvergeto a limit point whih is the value of S at (0; 0) [5℄. This limit point and theregular pathes f Smb g, m � 1, b = 1; 2; 3, form a partition of S. If we use 
mbto represent the parameter spae orresponding to Smb then f 
mb g, m � 1,
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-partition of the unit square.b = 1; 2; 3, form a partition of the unit square 
 = [0; 1℄ � [0; 1℄ (see Figure 6)with 
m1 = [ 12m ; 12m�1 ℄� [0; 12m ℄; 
m2 = [ 12m ; 12m�1 ℄� [ 12m ; 12m�1 ℄;
m3 = [0; 12m ℄� [ 12m ; 12m�1 ℄: (8)The parametrization of S(u; v) is done as follows. For any (u; v) 2 
 but (u; v) 6=(0; 0), �rst �nd the 
mb that ontains (u; v). m and b an be omputed as follows.m(u; v) = minfdlog 12ue; dlog 12 vegb(u; v) = 8<:1; if 2mu � 1 and 2mv � 12; if 2mu � 1 and 2mv � 13; if 2mu � 1 and 2mv � 1 (9)Then map this 
mb to the unit square with the mapping: (u; v) ! (um; vm)where tm = (2mt)%1 = �2mt; if 2mt � 12mt� 1; if 2mt > 1 : (10)The value of S(u; v) is equal to the value of Smb at (um; vm), i.e., S(u; v) =Smb (um; vm) . Let Lmb (u; v) be the bilinear parametrization of the enter fae ofSmb 's ontrol mesh. Sine Smb is a regular path, following Lemma 1, we havekLmb (u; v)� Smb (u; v)k � 13Mmbwhere Mmb is the seond order norm of the ontol mesh of Smb . But the seondorder norm of Smb is smaller than the seond order norm of Mm, Mm. Hene,the above inequality an be written askLmb (u; v)� Smb (u; v)k � 13Mm: (11)So the maximum distane between the original extra-ordinary mesh L(u; v) andthe path S(u; v) an be written ask L(u; v)� S(u; v) k = k L(u; v)� Lmb (um; vm) + Lmb (um; vm)� S(u; v) k� k L(u; v)� Lmb (um; vm) k+ k Lmb (um; vm)� Smb (um; vm) k (12)



10where 0 � u; v � 1 and um and vm are de�ned in (10). Sine the seond termon the right hand side an be estimated using (11), the only thing we need towork with is kL(u; v)� Lmb (um; vm) k.It is easy to see that if (u; v) 2 
mb then (u; v) 2 
k0 for any 0 � k < m where
k0 = [0; 12k ℄ � [0; 12k ℄. 
k0 orresponds to the subpath Sk0 . This means that(2ku; 2kv) is within the parameter spae of Sk0 for 0 � k < m, i.e., (2ku; 2kv) =(uk; vk) where uk and vk are de�ned in (10). Consequently, we an onsiderLk0(uk; vk) for 0 � k < m where Lk0 is the bilinear parametrization of the enterfae of the ontrol mesh of Sk0 (with the understanding that L00 = L). What wewant to do here is to write the �rst term on the right hand side of (12) asL(u; v)� Lmb (um; vm) = L00(u; v)� L10(u1; v1) + L10(u1; v1)� L20(u2; v2)+ L20(u2; v2)� L30(u3; v3) + L30(u3; v3)� L40(u4; v4)+ � � �+ Lm�10 (um�1; vm�1)� Lmb (um; vm) (13)and get an estimate for its norm by estimating the norm of eah onseutive pairon the right hand side. We have the following two lemmas. The proofs of theselemmas are shown in the omplete version of the paper [4℄.Lemma 5: If (u; v) 2 
mb where b and m are de�ned in (9) then for any0 � k < m� 1 we havek Lk0(uk; vk)� Lk+10 (uk+1; vk+1) k � 1minf n; 8 gMkwhere Mk is the seond order norm of Mk and L00 = L.Lemma 6: If (u; v) 2 
mb where b and m are de�ned in (9) then we havek Lm�10 (um�1; vm�1)� Lmb (um; vm) k � ( 14Mm�1; if b = 218Mm�1; if b = 1 or 3where Mm�1 is the seond order norm of Mm�1.By applying Lemmas 5 and 6 on (13) and then using (11) on (12), we havethe following lemma. Proof of this lemma is shown in [4℄.Lemma 7: The maximum of k L(u; v) � S(u; v) k satis�es the following in-equality k L(u; v)� S(u; v) k � 8>>>>>><>>>>>>:M0; n = 357M0; n = 54nn2�8n+46M0; 5 < n � 8n24(n2�8n+46)M0; n > 8 (14)



11where M =M0 is the seond order norm of the extra-ordinary path S(u; v).Sine the oeÆient in the third ase (4n=(n2� 8n+46)) is smaller than theoeÆient in the seond ase (5=7), we an ombine these two ases into onease (5 � n � 8) to make the above expression (14) simpler.3.3 Subdivision Depth ComputationLemma 7 is important beause it not only provides us with a seond order normbased simple mehanism to estimate the distane between an extra-ordinarysurfae path and its ontrol mesh, it also allows us to estimate the distanebetween a level-k ontrol mesh and the surfae path for any k > 0. This isbeause the distane between a level-k ontrol mesh and the surfae path isdominated by the distane between the level-k extra-ordinary subpath and theorresponding ontrol mesh whih, aoriding to Lemma 7, isk Lk(u; v)� S(u; v) k �8>>><>>>:Mk; n = 30:72Mk; 5 � n � 8n24(n2�8n+46)Mk; n > 8where Mk is the seond order norm of S(u; v)'s level-k ontrol mesh, Mk (seethe remark at the end of Setion 3.1 for the de�nition of Mk). By ombining theabove result with Lemma 4, we have the following subdivision depth omputa-tion theorem for extra-ordinary surfae pathes.Theorem 8: Given an extra-ordinary surfae path S(u; v) and an errortolerane �, if k levels of subdivisions are iteratively performed on the ontrolmesh of S(u; v), where k = �logwMz� �with M being the seond order norm of S(u; v) de�ned in (7),w =8>>><>>>: 32 ; n = 32518 ; n = 54n23n2+8n�46 ; n > 5 and z = 8>>><>>>:1; n = 32518 ; 5 � n � 82(n2�8n+46)n2 ; n > 8then the distane between S(u; v) and level-k ontrol mesh is smaller than �.4 ExamplesSome examples of the presented distane evaluation and subdivision depth om-putation tehniques are given in this setion. In Figures 7(a) and 7(), the dis-tanes between the blue mesh faes of the ontrol meshes and the orresponding
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(a) (b) () (d)Fig. 7. Examples: (a) an extra-ordinary CCSS mesh fae of valene 3, (b) limit surfaeof the ontrol mesh shown in (a), () an extra-ordinary CCSS mesh fae of valene 5,(d) limit surfae of the ontrol mesh shown in ().limit surfae pathes are 0.16 and 0.81, respetively. For the blue mesh faeshown in Figure 7(a), the subdivision depths for the error toleranes 0.1, 0.01,0.001, and 0.0001 are 2, 7, 13, and 19, respetively. For the blue mesh fae shownin Figure 7(), the subdivision depths for the error toleranes 0.1, 0.01, 0.001,and 0.0001 are 7, 14, 21, and 28, respetively. Note that in the previous approah[3℄, the subdivision depths for these error toleranes are 9, 24, 40, and 56, re-spetively. Hene, the new approah presented in this paper indeed improves theprevious, �rst order norm based approah.5 ConlusionsA new subdivision depth omputation tehnique for extra-ordinaryCCSS pathesis presented. The new tehnique omputes the subdivision depth based on normsof the seond order forward di�erenes, not the �rst order forward di�erenes,of the path's ontrol points. Hene, the omputed subdivision depth reetsthe urvature distribution of the extra-ordinary path, not its dimension. Ourresult also points out that as long as the design objetive an be ahieved, oneshould try to use extra-ordinary verties with smaller valene beause, aordingto Theorem 8, smaller valene gives higher onvergene rate and, onsequently,smaller subdivision depth for the same preision.Although the new tehnique improves the previous approah [3℄, it is notlear if the new approah is optimum for extra-ordinary CCSS pathes. Thiswill be a study diretion in the future.Aknowledgement Work of the �rst two authors is supported by NSF undergrants DMS-0310645 and DMI-0422126. Work of the third author is supportedby NSF of China (60533070), NCET(NCET-04-0088) and FANEDD (200342).
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