
Subdivision Depth Computation forExtra-Ordinary Catmull-Clark SubdivisionSurfa
e Pat
hesFuhua (Frank) Cheng, Gang Chen and Jun-Hai Yong*University of Kentu
ky, Lexington, KY, USA*Tsinghua University, Beijing, ChinaAbstra
t. A se
ond order forward di�eren
es based subdivision depth
omputation te
hnique for extra-ordinary Catmull-Clark subdivision sur-fa
e (CCSS) pat
hes is presented. The new te
hnique improves a previouste
hnique in that the 
omputation of the subdivision depth is based onthe pat
h's 
urvature distribution, instead of its dimension. Hen
e, withthe new te
hnique, no ex
essive subdivision is needed for extra-ordinaryCCSS pat
hes to meet the pre
ision requirement and, 
onsequently, one
an make trimming, �nite element mesh generation, boolean operations,and tessellation of CCSSs more eÆ
ient.1 Introdu
tionResear
h work for subdivision surfa
es has been done in several important areas,su
h as surfa
e parametrization [6℄[10℄[11℄[14℄, surfa
e trimming [7℄, boolean op-erations [1℄, mesh editing [13℄, and error estimate/
ontrol [3℄[12℄. For instan
e,given an error toleran
e, [3℄ shows howmany times the 
ontrol mesh of a Catmull-Clark subdivision surfa
e (CCSS) pat
h should be re
ursively subdivided sothat the distan
e between the resulting 
ontrol mesh and the limit surfa
e pat
hwould be less than the error toleran
e. This error 
ontrol te
hnique, 
alled sub-division depth 
omputation, is required in all tessellation based appli
ations ofCCSSs. [3℄'s subdivision depth 
omputation te
hnique for regular CCSS pat
hesis optimum. However, for an extra-ordinary CCSS pat
h (a pat
h with an extra-ordinary vertex), sin
e the subdivision depth 
omputed by [3℄ depends on �rstorder forward di�eren
es of the 
ontrol points, its value 
ould be bigger thanwhat it a
tually should be and, 
onsequently, generates ex
essive mesh elementsfor regions that are already 
at enough.In this paper we will present a new subdivision depth 
omputation te
hniquefor extra-ordinary CCSS pat
hes. The new te
hnique is based on the se
ond orderforward di�eren
es of an extra-ordinary pat
h's 
ontrol points. The 
omputedsubdivision depth re
e
ts the pat
h's 
urvature distribution, not its dimension.Hen
e, with the new te
hnique, no ex
essive subdivision is needed for regionsthat are already 
at enough and, 
onsequently, trimming, �nite element meshgeneration, boolean operations, and tessellation of CCSSs 
an be made moreeÆ
ient.



22 Problem Formulation and Ba
kgroundGiven the 
ontrol mesh of an extra-ordinary CCSS pat
h and an error toleran
e�, the goal here is to 
ompute an integer d so that if the 
ontrol mesh is iterativelyre�ned (subdivided) d times, then the distan
e between the resulting mesh andthe surfa
e pat
h is smaller than �. d is 
alled the subdivision depth of the surfa
epat
h with respe
t to �. Before we show the 
omputation te
hnique, we need tode�ne related terms and review related te
hniques for regular CCSS pat
hes.2.1 Catmull-Clark Subdivision Surfa
esGiven a 
ontrol mesh, a CCSS is generated by iteratively re�ning (subdividing)the 
ontrol mesh to form new 
ontrol meshes [2℄. The re�ning pro
ess 
onsistsof de�ning new verti
es (fa
e points, edge points and vertex points) and 
on-ne
ting the new verti
es to form new edges and fa
es of a new 
ontrol mesh.The limit surfa
e of the iteratively re�ned 
ontrol meshes is 
alled a subdivisionsurfa
e be
ause the mesh re�ning (subdivision) pro
ess is a generalization ofthe uniform bi
ubi
 B-spline surfa
e subdivision te
hnique. Therefore, CCSSsin
lude uniform B-spline surfa
es and pie
ewise B�ezier surfa
es as spe
ial 
ases.A
tually CCSSs in
lude non-uniform B-spline surfa
es and NURBS surfa
es asspe
ial 
ases as well [9℄. The 
ontrol mesh of a CCSS pat
h and the new 
ontrolmesh after a re�ning (subdivision) pro
ess are shown in Figures 1(a) and (b),respe
tively. This is a 
on
eptual drawing, the lo
ation shown for a new vertexmight not be its exa
t physi
al lo
ation.
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Fig. 1. (a) Control mesh of an extra-ordinary pat
h; (b) new verti
es and edges gen-erated after a Catmull-Clark subdivision.The given 
ontrol mesh will be referred to as M0 and the limit surfa
e willbe referred to as �S. For ea
h positive integer k, Mk refers to the 
ontrol meshobtained after applying the Catmull-Clark subdivision k times to M0.The power of CCSSs 
omes from the way mesh verti
es are 
onne
ted. If thenumber of edges 
onne
ted to a mesh vertex is 
alled its valen
e, then the valen
e



3of an interior mesh vertex 
an be anything � 3, instead of just four. Those meshverti
es whose valen
es are di�erent from four are 
alled extra-ordinary verti
esto distinguish them from the standard or regular mesh verti
es. Vertex V inFigure 1(a) is an extra-ordinary vertex of valen
e �ve. An interior mesh fa
e is
alled an extra-ordinary mesh fa
e if it has an extra-ordinary vertex. Otherwise,a standard or regular mesh fa
e. Mesh fa
e F in Figure 1(a) is an extra-ordinarymesh fa
e. we assume all the mesh fa
es inM0 are quadrilaterals and ea
h meshfa
e of M0 has at most one extra-ordinary vertex. Otherwise, simply performthe subdivision step twi
e on the given 
ontrol mesh.For ea
h interior fa
e F of Mk, k � 0, there is a 
orresponding pat
h S inthe limit surfa
e �S. F and S 
an be parametrized on the same parameter spa
e
 = [0; 1℄�[0; 1℄ [10℄. F is a bilinear rule surfa
e. S is a uniform bi
ubi
 B-splinesurfa
e pat
h if F is a regular fa
e. However, if F is an extra-ordinary fa
e thenS, de�ned by 2n+ 8 
ontrol points where n is the valen
e of F's extra-ordinaryvertex, 
an not be parametrized as a uniform B-spline pat
h. In su
h a 
ase, Sis 
alled an extra-ordinary pat
h. Otherwise, a regular pat
h or standard pat
h.The 
ontrol mesh shown in Figure 1(a) is the 
ontrol mesh of an extra-ordinarypat
h whose extra-ordinary vertex is of valen
e �ve.2.2 Distan
e and Subdivision DepthFor a given interior mesh fa
e F, let S be the 
orresponding pat
h in the limitsurfa
e �S. The 
ontrol mesh of S 
ontains F as the 
enter fa
e. If we perform asubdivision step on the 
ontrol mesh, we get four new mesh fa
es in the pla
e ofF. This is the 
ase no matter F is a regular fa
e or an extra-ordinary fa
e (seeFigure 1(b) for the four new fa
es F00, F10, F01 and F11 obtained in the pla
eof the extra-ordinary fa
e F shown in Figure 1(a)). Sin
e ea
h of these new fa
es
orresponds to a quarter subpat
h of S, we shall 
all these new fa
es subfa
es ofF even though they are not pyhsi
ally subsets of F. Therefore, ea
h subdivisionstep generates four new subfa
es for the 
enter fa
e F of the 
ontrol mesh.Be
ause the 
orresponden
e between F and S is one-to-one, sometime, insteadof saying performing a subdivision step on S, we shall simply say performing asubdivision step on F.The distan
e between an interior mesh fa
e F and the 
orresponding pat
hS is de�ned as the maximum of kF(u; v)� S(u; v)k:DF = max (u;v)2
 kF(u; v)� S(u; v)k (1)where 
 is the unit square parameter spa
e of F and S. DF is also 
alled thedistan
e between S and its 
ontrol mesh. For a given � > 0, the subdivisiondepth of F with respe
t to � is a positive integer d su
h that if F is re
ursivelysubdivided d times, the distan
e between ea
h of the resulting subfa
es and the
orresponding subpat
h is smaller than zero.2.3 Subdivision Depth Computation for Regular Pat
hesA regular pat
h is a standard uniform bi
ubi
 B-spline surfa
e pat
h. Therefore,the 
omputation pro
ess for a regular pat
h is the same as the 
omputation



4pro
ess for a standard uniform B-spline surfa
e pat
h. We review the evaluationof the distan
e between a B-spline pat
h and its 
ontrol mesh �rst.
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Fig. 2. De�nition of L(u; v) = (1� v)L1(u) + vL2(u) = (1� u)�L1(v) + u�L2(v).Distan
e Evaluation Let S(u; v) be a uniform bi
ubi
 B-spline surfa
e pat
hde�ned on the unit square 
 = [0; 1℄ � [0; 1℄ with 
ontrol points Vi;j , 0 �i; j � 3, and let L(u; v) be the bilinear parametrization of the 
enter mesh fa
efV1;1;V2;1;V2;2;V1;2g (see Figure 2):L(u; v) = (1� v)[(1� u)V1;1 + uV2;1℄ + v[(1� u)V1;2 + uV2;2℄; 0 � u; v � 1:The distan
e between S(u; v) and L(u; v) satis�es the following lemma [3℄.Lemma 1: The distan
e between L(u; v) and S(u; v) satis�es the followinginequality max0�u;v�1 kL(u; v)� S(u; v)k � 13Mwhere M is the se
ond order norm of S(u; v) de�ned as followsM = maxi;j f k2Vi;j �Vi�1;j �Vi+1;jk; k2Vi;j �Vi;j�1 �Vi;j+1k g (2)Re
urren
e Formula for Se
ond Order Norm LetVi;j , 0 � i; j � 3, be the
ontrol points of a uniform bi
ubi
 B-spline surfa
e pat
h S(u; v). We use Vki;jto represent the new 
ontrol points of the surfa
e pat
h after k levels of re
ursivesubdivision. The indexing of the new 
ontrol points follows the 
onvention thatVk0;0 is always the fa
e point of the mesh fa
e fVk�10;0 ;Vk�11;0 ;Vk�11;1 ;Vk�10;1 g. Thenew 
ontrol points Vkij are 
alled the level-k 
ontrol points of S(u; v) and thenew 
ontrol mesh will be 
alled the level-k 
ontrol mesh of S(u; v).If we divide the parameter spa
e of the surfa
e pat
h, 
, into 4k regions asfollows: 
kmn = [m2k ; m+ 12k ℄� [ n2k ; n+ 12k ℄; 0 � m;n � 2k � 1



5and denote the 
orresponding subpat
hes Skmn(u; v), then ea
h Skmn(u; v) is auniform bi
ubi
 B-spline surfa
e pat
h de�ned by the level-k 
ontrol point setfVkpq j m � p � m+ 3; n � q � n+ 3g. Skmn(u; v) is 
alled a level-k subpat
h ofS(u; v). Let Lkmn(u; v) be the bilinear parametrization of the 
enter fa
e of Skmn's
ontrol mesh, fVkpq j p = m + 1;m + 2; q = n + 1; n + 2g. We say the distan
ebetween S(u; v) and the level-k 
ontrol mesh is smaller than � if the distan
ebetween ea
h level-k subpat
h Skmn(u; v) and the 
orresponding level-k bilinearplane Lkmn(u; v), 0 � m;n � 2k � 1, is smaller than �. A te
hnique to 
omputea subdivision depth k for a given � so that the distan
e between S(u; v) and thelevel-k 
ontrol mesh is smaller than � is presented in [3℄. The following lemma isneeded in the derivation of the 
omputation pro
ess. If we use Mkmn to representthe se
ond order norm of Skmn(u; v), i.e., the maximum norm of the se
ond orderforward di�eren
es of the 
ontrol points of Skmn(u; v), then the lemma shows these
ond order norm of Skmn(u; v) 
onverges at a rate of 1=4 of the level-(k � 1)se
ond order norm [3℄.Lemma 2 If Mkmn is the se
ond order norm of Skmn(u; v) then we haveMkmn � �14�kM (3)where M is the se
ond order norm of S(u; v) de�ned in (2).Subdivision Depth Computation With Lemmas 1 and 2, it is easy to seethat, for any 0 � m;n � 2k�1, we havemax0�u;v�1 kLkmn(u; v)� Skmn(u; v)k � 13Mkmn � 13 �14�kM (4)where Mkmn and M are the se
ond order norms of Skmn(u; v) and S(u; v), respe
-tively. Hen
e, if k is large enough to make the right side of the above inequalitysmaller than �, we havemax0�u;v�1 kLkmn(u; v)� Skmn(u; v)k � �for every 0 � m;n � 2k�1. This leads to the following subdivision depth 
om-putation pro
ess for a regular CCSS pat
h [3℄.Theorem 3 Let Vij , 0 � i; j � 3, be the 
ontrol points of a uniform bi
ubi
B-spline surfa
e pat
h S(u; v). For any given � > 0, ifk � d log4(M3� ) elevels of re
ursive subdivision are performed on the 
ontrol points of S(u; v) thenthe distan
e between S(u; v) and the level-k 
ontrol mesh is smaller than � whereM is the se
ond order norm of S(u; v) de�ned in (2).



63 Subdivision Depth Computation for Extra-OrdinaryPat
hesIn the following, we will de�ne se
ond order forward di�eren
e patterns to beused for an extra-ordinary pat
h and derive a re
urren
e formula for the 
orre-sponding se
ond order norm, like the one used for a regular pat
h in Se
tion 2.3.1 Se
ond Order Norm and Re
urren
e Formula
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Fig. 3. (a) Ordering of 
ontrol points of an extra-ordinary pat
h. (b) Ordering of new
ontrol points (solid dots) after a Catmull-Clark subdivision.Let Vi, i = 1; 2; :::; 2n+ 8, be the 
ontrol points of an extra-ordinary pat
hS(u; v) = S00(u; v), with V1 being an extra-ordinary vertex of valen
e n. The
ontrol points are ordered following J. Stam's fashion [10℄ (Figure 3(a)). For
onvenien
e of subsequent referen
e, we shall 
all the 
ontrol mesh of S(u; v)� = �00 . By performing a subdividion step on � , one gets 2n+17 new verti
esV1i , i = 1; :::; 2n+ 17 (see Figure 3(b)). These 
ontrol points form four 
ontrolpoint sets �10 , �11 , �12 and �13 , representing 
ontrol meshes of the subpat
hesS10(u; v), S11(u; v), S12(u; v) and S13(u; v), respe
tively (see Figure 3(b)) where�10 = fV1i j 1 � i � 2n + 8 g, and the other three 
ontrol point sets �11 , �12and �13 are shown in Figure 4. S10(u; v) is an extra-ordinary pat
h but S11(u; v),S12(u; v) and S13(u; v) are regular pat
hes. Therefore, se
ond order norm similarto (2) 
an be de�ned for S11, S12 and S13.To de�ne a se
ond order norm for S, one needs to 
hoose appropriate se
ondorder forward di�eren
es from � . For the se
ond order norm to be re
ursivelyde�ned, se
ond order forward di�eren
es that are required in the 
hild 
ontrolmeshes should also appear in the parent 
ontrol mesh. For instan
e, 2V1 �V4 �V8 and 2V1 � V2 � V6 should be 
hosen for � be
ause these patternsare required for �11 and �13 , respe
tively. On the other hand, for a re
urren
eformula to hold e�e
tively, se
ond order forward di�eren
es that are not requiredin the 
hild 
ontrol meshes should not be used in the parent 
ontrol mesh either.For instan
e, one should not 
hoose 2V1 �V2 �V8 for � be
ause this pattern
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Fig. 4. Control verti
es of subpat
hes S11, S12 and S13.is not required in any of �11 , �12 or �13 . Therefore, for those 
ases that involvesthe extra-ordinary point V1 as the 
enter point, one should only 
onsider2V1 �V2i �V2(i%n+2); 1 � i � n: (5)To ensure the boundary of the vi
inity of the extra-ordinary point is 
overed(Figure 5(a)), one should 
onsider2V2(i%n+1) �V2i+1 �V2(i%n+1)+1; 1 � i � n: (6)One also has to 
onsider se
ond order forward di�eren
es that 
over the extended
(b)(a)
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inity of the extra-ordinary point. (b) The extended remaining part.remaining part (Figure 5(b)). There are ten of them (a
tually twelve, but twoof them have been used in (6)). So, totally, 2n+10 (n+10 when n = 3) se
ondorder forward di�eren
es should be 
onsidered for � and the se
ond order normof S, M = M0, is de�ned as the maximum norm of these 2n+ 10 se
ond order



8forward di�eren
es:M = maxf f k2V1 �V2i �V2(i%n+2)k j 1 � i � n g [f k2V2(i%n+1) �V2i+1 �V2(i%n+1)+1k j 1 � i � n g [f k 2V3 � V2 � V2n+8 k; k 2V4 � V1 � V2n+7 k; k 2V5 � V6 � V2n+6 k;k 2V5 � V4 � V2n+3 k; k 2V6 � V1 � V2n+4 k; k 2V7 � V8 � V2n+5 k;k 2V2n+7 � V2n+6 � V2n+8 k; k 2V2n+6 � V2n+2 � V2n+7 k;k 2V2n+3 � V2n+2 � V2n+4 k; k 2V2n+4 � V2n+3 � V2n+5 k g g (7)
Following this de�nition, one 
an de�ne a similar se
ond order norm, M1, forthe 
ontrol mesh of S10. In general, for any k � 0, we 
an de�ne se
ond ordernorm similar to (7) for Sk0 and Sk+10 . The se
ond order norms of Sk0 and Sk+10are denoted Mk and Mk+1, respe
tively. We have the following lemma for Mkand Mk+1. The proof is shown in the 
omplete version of the paper [4℄.Lemma 4: For any k � 0, if Mk represents the se
ond order norm of theextra-ordinary sub-pat
h Sk0 after k Catmull-Clark subdivision steps, then Mksatis�es the following inequalityMk+1 � 8>><>>: 23Mk; n = 30:72Mk; n = 5( 34 + 8n�464n2 )Mk; n > 5A
tually, the lemma works in a more general sense, i.e., if Mk stands for these
ond order norm of the 
ontrol meshMk, instead of �k0 , the lemma still works.The se
ond order norm of Mk is de�ned as follows: for regions not involvingthe extra-ordinary point, use standard se
ond order forward di�eren
es; for thevi
inity of the extra-ordinary point, use se
ond order forward di�eren
es de�nedin (7). The proof is essentially the same.3.2 Distan
e EvaluationTo 
ompute the distan
e between the extra-ordinary pat
h S(u; v) and the 
enterfa
e of its 
ontrol mesh, L(u; v), we need to parameterize the pat
h S(u; v) �rst.Note that by iteratively performing Catmull-Clark subdivision on S(u; v), weget a sequen
e of regular pat
hes f Smb g, m � 1, b = 1; 2; 3, and a sequen
eof extra-ordinary pat
hes f Sm0 g, m � 1. The extra-ordinary pat
hes 
onvergeto a limit point whi
h is the value of S at (0; 0) [5℄. This limit point and theregular pat
hes f Smb g, m � 1, b = 1; 2; 3, form a partition of S. If we use 
mbto represent the parameter spa
e 
orresponding to Smb then f 
mb g, m � 1,
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-partition of the unit square.b = 1; 2; 3, form a partition of the unit square 
 = [0; 1℄ � [0; 1℄ (see Figure 6)with 
m1 = [ 12m ; 12m�1 ℄� [0; 12m ℄; 
m2 = [ 12m ; 12m�1 ℄� [ 12m ; 12m�1 ℄;
m3 = [0; 12m ℄� [ 12m ; 12m�1 ℄: (8)The parametrization of S(u; v) is done as follows. For any (u; v) 2 
 but (u; v) 6=(0; 0), �rst �nd the 
mb that 
ontains (u; v). m and b 
an be 
omputed as follows.m(u; v) = minfdlog 12ue; dlog 12 vegb(u; v) = 8<:1; if 2mu � 1 and 2mv � 12; if 2mu � 1 and 2mv � 13; if 2mu � 1 and 2mv � 1 (9)Then map this 
mb to the unit square with the mapping: (u; v) ! (um; vm)where tm = (2mt)%1 = �2mt; if 2mt � 12mt� 1; if 2mt > 1 : (10)The value of S(u; v) is equal to the value of Smb at (um; vm), i.e., S(u; v) =Smb (um; vm) . Let Lmb (u; v) be the bilinear parametrization of the 
enter fa
e ofSmb 's 
ontrol mesh. Sin
e Smb is a regular pat
h, following Lemma 1, we havekLmb (u; v)� Smb (u; v)k � 13Mmbwhere Mmb is the se
ond order norm of the 
ontol mesh of Smb . But the se
ondorder norm of Smb is smaller than the se
ond order norm of Mm, Mm. Hen
e,the above inequality 
an be written askLmb (u; v)� Smb (u; v)k � 13Mm: (11)So the maximum distan
e between the original extra-ordinary mesh L(u; v) andthe pat
h S(u; v) 
an be written ask L(u; v)� S(u; v) k = k L(u; v)� Lmb (um; vm) + Lmb (um; vm)� S(u; v) k� k L(u; v)� Lmb (um; vm) k+ k Lmb (um; vm)� Smb (um; vm) k (12)



10where 0 � u; v � 1 and um and vm are de�ned in (10). Sin
e the se
ond termon the right hand side 
an be estimated using (11), the only thing we need towork with is kL(u; v)� Lmb (um; vm) k.It is easy to see that if (u; v) 2 
mb then (u; v) 2 
k0 for any 0 � k < m where
k0 = [0; 12k ℄ � [0; 12k ℄. 
k0 
orresponds to the subpat
h Sk0 . This means that(2ku; 2kv) is within the parameter spa
e of Sk0 for 0 � k < m, i.e., (2ku; 2kv) =(uk; vk) where uk and vk are de�ned in (10). Consequently, we 
an 
onsiderLk0(uk; vk) for 0 � k < m where Lk0 is the bilinear parametrization of the 
enterfa
e of the 
ontrol mesh of Sk0 (with the understanding that L00 = L). What wewant to do here is to write the �rst term on the right hand side of (12) asL(u; v)� Lmb (um; vm) = L00(u; v)� L10(u1; v1) + L10(u1; v1)� L20(u2; v2)+ L20(u2; v2)� L30(u3; v3) + L30(u3; v3)� L40(u4; v4)+ � � �+ Lm�10 (um�1; vm�1)� Lmb (um; vm) (13)and get an estimate for its norm by estimating the norm of ea
h 
onse
utive pairon the right hand side. We have the following two lemmas. The proofs of theselemmas are shown in the 
omplete version of the paper [4℄.Lemma 5: If (u; v) 2 
mb where b and m are de�ned in (9) then for any0 � k < m� 1 we havek Lk0(uk; vk)� Lk+10 (uk+1; vk+1) k � 1minf n; 8 gMkwhere Mk is the se
ond order norm of Mk and L00 = L.Lemma 6: If (u; v) 2 
mb where b and m are de�ned in (9) then we havek Lm�10 (um�1; vm�1)� Lmb (um; vm) k � ( 14Mm�1; if b = 218Mm�1; if b = 1 or 3where Mm�1 is the se
ond order norm of Mm�1.By applying Lemmas 5 and 6 on (13) and then using (11) on (12), we havethe following lemma. Proof of this lemma is shown in [4℄.Lemma 7: The maximum of k L(u; v) � S(u; v) k satis�es the following in-equality k L(u; v)� S(u; v) k � 8>>>>>><>>>>>>:M0; n = 357M0; n = 54nn2�8n+46M0; 5 < n � 8n24(n2�8n+46)M0; n > 8 (14)



11where M =M0 is the se
ond order norm of the extra-ordinary pat
h S(u; v).Sin
e the 
oeÆ
ient in the third 
ase (4n=(n2� 8n+46)) is smaller than the
oeÆ
ient in the se
ond 
ase (5=7), we 
an 
ombine these two 
ases into one
ase (5 � n � 8) to make the above expression (14) simpler.3.3 Subdivision Depth ComputationLemma 7 is important be
ause it not only provides us with a se
ond order normbased simple me
hanism to estimate the distan
e between an extra-ordinarysurfa
e pat
h and its 
ontrol mesh, it also allows us to estimate the distan
ebetween a level-k 
ontrol mesh and the surfa
e pat
h for any k > 0. This isbe
ause the distan
e between a level-k 
ontrol mesh and the surfa
e pat
h isdominated by the distan
e between the level-k extra-ordinary subpat
h and the
orresponding 
ontrol mesh whi
h, a

oriding to Lemma 7, isk Lk(u; v)� S(u; v) k �8>>><>>>:Mk; n = 30:72Mk; 5 � n � 8n24(n2�8n+46)Mk; n > 8where Mk is the se
ond order norm of S(u; v)'s level-k 
ontrol mesh, Mk (seethe remark at the end of Se
tion 3.1 for the de�nition of Mk). By 
ombining theabove result with Lemma 4, we have the following subdivision depth 
omputa-tion theorem for extra-ordinary surfa
e pat
hes.Theorem 8: Given an extra-ordinary surfa
e pat
h S(u; v) and an errortoleran
e �, if k levels of subdivisions are iteratively performed on the 
ontrolmesh of S(u; v), where k = �logwMz� �with M being the se
ond order norm of S(u; v) de�ned in (7),w =8>>><>>>: 32 ; n = 32518 ; n = 54n23n2+8n�46 ; n > 5 and z = 8>>><>>>:1; n = 32518 ; 5 � n � 82(n2�8n+46)n2 ; n > 8then the distan
e between S(u; v) and level-k 
ontrol mesh is smaller than �.4 ExamplesSome examples of the presented distan
e evaluation and subdivision depth 
om-putation te
hniques are given in this se
tion. In Figures 7(a) and 7(
), the dis-tan
es between the blue mesh fa
es of the 
ontrol meshes and the 
orresponding
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(a) (b) (
) (d)Fig. 7. Examples: (a) an extra-ordinary CCSS mesh fa
e of valen
e 3, (b) limit surfa
eof the 
ontrol mesh shown in (a), (
) an extra-ordinary CCSS mesh fa
e of valen
e 5,(d) limit surfa
e of the 
ontrol mesh shown in (
).limit surfa
e pat
hes are 0.16 and 0.81, respe
tively. For the blue mesh fa
eshown in Figure 7(a), the subdivision depths for the error toleran
es 0.1, 0.01,0.001, and 0.0001 are 2, 7, 13, and 19, respe
tively. For the blue mesh fa
e shownin Figure 7(
), the subdivision depths for the error toleran
es 0.1, 0.01, 0.001,and 0.0001 are 7, 14, 21, and 28, respe
tively. Note that in the previous approa
h[3℄, the subdivision depths for these error toleran
es are 9, 24, 40, and 56, re-spe
tively. Hen
e, the new approa
h presented in this paper indeed improves theprevious, �rst order norm based approa
h.5 Con
lusionsA new subdivision depth 
omputation te
hnique for extra-ordinaryCCSS pat
hesis presented. The new te
hnique 
omputes the subdivision depth based on normsof the se
ond order forward di�eren
es, not the �rst order forward di�eren
es,of the pat
h's 
ontrol points. Hen
e, the 
omputed subdivision depth re
e
tsthe 
urvature distribution of the extra-ordinary pat
h, not its dimension. Ourresult also points out that as long as the design obje
tive 
an be a
hieved, oneshould try to use extra-ordinary verti
es with smaller valen
e be
ause, a

ordingto Theorem 8, smaller valen
e gives higher 
onvergen
e rate and, 
onsequently,smaller subdivision depth for the same pre
ision.Although the new te
hnique improves the previous approa
h [3℄, it is not
lear if the new approa
h is optimum for extra-ordinary CCSS pat
hes. Thiswill be a study dire
tion in the future.A
knowledgement Work of the �rst two authors is supported by NSF undergrants DMS-0310645 and DMI-0422126. Work of the third author is supportedby NSF of China (60533070), NCET(NCET-04-0088) and FANEDD (200342).



13Referen
es1. Biermann H, Kristjansson D, Zorin D, Approximate Boolean Operations on Free-Form Solids, Pro
eedings of SIGGRAPH 2001, 185-194.2. Catmull E, Clark J, Re
ursively Generated B-spline Surfa
es on Arbitrary Topo-logi
al Meshes, Computer-Aided Design 10, 6, 350-355, 1978.3. Cheng F, Yong J, Subdivision Depth Computation for Catmull-Clark SubdivisionSurfa
es, Computer Aided Design & Appli
ations 3, 1-4, 2006.4. Cheng F, Chen G, Yong J, Subdivision Depth Computation for Extra-Ordinary Catmull-Clark Subdivision Surfa
e Pat
hes (
omplete version),www.
s.uky.edu/�
heng/PUBL/sub depth 2.pdf5. Halstead M, Kass M, DeRose T, EÆ
ient, Fair Interpolation Using Catmull-ClarkSurfa
es, Pro
eedings of SIGGRAPH 1993, 35-44.6. Lai S, Cheng F, Parametrization of General Catmull-Clark Subdivision Surfa
esand its Appli
ations, Computer Aided Design & Appli
ations 3, 1-4, 2006.7. Litke N, Levin A, S
hr�oder P, Trimming for Subdivision Surfa
es, Computer AidedGeometri
 Design 18, 5, 463-481, 2001.8. Peters J, Pat
hing Catmull-Clark Meshes, Pro
eedings of SIGGRAPH 2000, 255-258.9. Sederberg T W, Zheng J, Sewell D, Sabin M, Non-Uniform Re
ursive SubdivisionSurfa
es, Pro
eedings of SIGGRAPH 1998, 387-394.10. Stam J, Exa
t Evaluation of Catmull-Clark Subdivision Surfa
es at Arbitrary Pa-rameter Values, Pro
eedings of SIGGRAPH 1998, 395-404.11. Stam J, Evaluation of Loop Subdivision Surfa
es, SIGGRAPH'99 Course Notes,1999.12. Wu X, Peters J, An A

urate Error Measure for Adaptive Subdivision Surfa
es,Pro
. Shape Modeling International 2005, 1-6.13. Zorin, D., S
hr�oder, P., and Sweldens, W. Intera
tive Multiresolution Mesh Edit-ing. Pro
eedings of SIGGRAPH 1997, 259-268.14. Zorin D, Kristjansson D, Evaluation of Pie
ewise Smooth Subdivision Surfa
es,The Visual Computer, 18(5/6):299-315, 2002.


