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Abstract

A new subdivision depth computation technique for
extra-ordinary Catmull-Clark subdivision surface (CCSS)
patches is presented. For a given error tolerance € and an
extra-ordinary CCSS patch (a CCSS patch with an ex-
traordinary vertex), the new technique determines, based
on the second order forward differences of the patch’s
control points only, how many times the control mesh
of the patch should be subdivided so that the distance
between the resulting control mesh and the limit surface
is smaller than e. The new technique improves a previ-
ous technique by giving a subdivision depth based on the
patch’s curvature distribution only, instead of its dimen-
sion. Hence, with the new technique, no excessive subdi-
vision is needed for extra-ordinary CCSS patches to meet
the precision requirement and, consequently, one can
make trimming, finite element mesh generation, boolean
operations, and tessellation of CCSS’s more efficient.

Keywords: subdivision surfaces, distance evaluation,
subdivision depth computation

1 Introduction

Subdivision scheme provides a powerful method for build-
ing smooth and complex surfaces. Given a control mesh
and a set of mesh refining rules (or, more intuitively, cor-
ner cutting rules), one gets a limit surface by recursively
cutting off corners of the control mesh [2][5]. The limit
surface is called a subdivision surface because the mesh
refining process is a generalization of the uniform B-spline
surface’s subdivision technique. Subdivision surfaces can
model/represent complex shape of arbitrary topology be-
cause there is no limit on the shape and topology of the
control mesh of a subdivision surface. [4].

Research work for subdivision surfaces has been done in
several important areas, such as surface parametrization
[12][13][16][7], surface trimming [8], boolean operations
[1], mesh editing [15], and error estimate/control [14][3].
For instance, given an error tolerance, [3] shows how many
times the control mesh of a Catmull-Clark subdivision
surface (CCSS) patch should be recursively subdivided
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so that the distance between the resulting control mesh
and the limit surface patch would be less than the error
tolerance. This error control technique, called subdivision
depth computation, is required in all tessellation based ap-
plications of CCSS’s. [3]’s subdivision depth computation
technique for regular CCSS patches is optimum. How-
ever, for an extra-ordinary CCSS patch (a patch with an
extra-ordinary vertex), since the subdivision depth com-
puted by [3] depends on first order forward differences of
the control points, its value could be bigger than what it
actually should be and, consequently, generates excessive
mesh elements for regions that are already flat enough.

In this paper we will present a new subdivision depth
computation technique for extra-ordinary CCSS patches.
The new technique is based on the second order forward
differences of an extra-ordinary patch’s control points.
The computed subdivision depth reflects the patch’s cur-
vature distribution, not its dimension. Hence, with the
new technique, no excessive subdivision is needed for
regions that are already flat enough and, consequently,
trimming, finite element mesh generation, boolean op-
erations, and tessellation of CCSS’s can be made more
efficient.

The remaining part of the paper is arranged as fol-
lows. A brief review of the Catmull-Clark subdivision
scheme and the subdivision depth computation technique
for regular CCSS patches (to be used in the new tech-
nique) is given in Section 2. A new distance evaluation
technique and a new subdivision depth computation tech-
nique for an extra-ordinary CCSS patch are given in Sec-
tion 3. Examples of subdivision depth computation for
extra-ordinary CCSS patches using the new techniques
are presented in Section 4. Concluding remarks are given
in Section 5.

2 Problem Formulation and Back-
ground
Given the control mesh of an extra-ordinary Catmull-

Clark subdivision surface patch and an error tolerance
€, the goal here is to compute an integer d so that if the



control mesh is iteratively refined (subdivided) d times,
then the distance between the resulting mesh and the
surface patch is smaller than e. d is called the subdivi-
sion depth of the surface patch with respect to e. Before
we show the computation technique, we need to define
related terms. We also need to review a distance eval-
uation technique and a subdivision depth computation
technique for regular Catmull-Clark subdivision surface
patches [3]. These techniques are needed in the new tech-
nique for extra-ordinary Catmull-Clark subdivision sur-
face patches.

2.1 Catmull-Clark Subdivision Surfaces

Given a control mesh, the Catmull-Clark subdivision
scheme iteratively refines (subdivides) the control mesh
to form new control meshes [2]. The limit surface of the
refined control meshes is called a Catmull-Clark subdi-
vision surface (CCSS). The refining process consists of
defining new vertices and connecting the new vertices to
form new edges and faces of a new control mesh. The new
vertices belong to three groups: face points, edge points
and wvertez points. For each old interior mesh face, a new
face point is defined as the average of the vertices defining
the old face. For each old interior mesh edge, a new edge
point is defined as the average of the midpoint of the old
edge and the average of the two adjacent new face points.
For each old interior vertex P, a new verter point Q is
defined as follows:

Q:E+E+ (n—3)P

n n

where n is the number of adjacent edges of P, F is the
average of the new adjacent face points and E is the av-
erage of the midpoints of adjacent edges of P. The new
edges are formed through two connecting processes after
all the new vertices are constructed:

e connecting each new face point to adjacent new edge
points

e connecting each new vertex point to adjacent new
edge points

New faces are then defined as those enclosed by new
edges. The control mesh of a CCSS patch and the new
control mesh after a refining (subdivision) process are
shown in Figure 1(a) and (b), respectively. This is a
conceptual drawing, the location shown for a new vertex
might not be its exact physical location.

The limit surface of the iteratively refined control
meshes is called a subdivision surface because the mesh
refining (subdivision) process is a generalization of the
uniform bicubic B-spline surface subdivision technique.
Therefore, CCSS’s include uniform B-spline surfaces
and piecewise Bézier surfaces as special cases. Actu-
ally CCSS’s include non-uniform B-spline surfaces and
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Figure 1: (a) Control mesh of an extra-ordinary patch; (b)
new vertices and edges generated after a Catmull-Clark
subdivision.

NURBS surfaces as special cases as well [11]. The
Catmull-Clark mesh refining process will also be called
the Catmull-Clark subdivision, or simply the subdivision
step subsequently. The given control mesh will be referred
to as Mg and the limit surface will be referred to as S.
For each positive integer k, M}, refers to the control mesh
obtained after applying the Catmull-Clark subdivision k

times to M.

2.2 Regular vs. Extra-ordinary

The power of CCSS’s comes from the way mesh vertices
are connected. If the number of edges connected to a
mesh vertex is called its walence, then the valence of an
interior mesh vertex can be anything > 3, instead of just
four. Those mesh vertices whose valences are different
from four are called extra-ordinary vertices to distinguish
them from the standard or reqular mesh vertices. Vertex
V in Figure 1(a) is an extra-ordinary vertex of valence
five. An interior mesh face is called an ezxtra-ordinary
mesh face if it has an extra-ordinary vertex. Otherwise,



a standard or regular mesh face. Mesh face F in Fig-
ure 1(a) is an extra-ordinary mesh face. Note that af-
ter one iteration of the subdivision step, mesh faces of a
CCSS are always quadrilaterals and the number of extra-
ordinary vertices remains the same. After at most two
iterations of the subdivision step, each mesh face has at
most one extra-ordinary vertex. Therefore, without loss
of generality, we shall assume all the mesh faces in My
are quadrilaterals and each mesh face of M has at most
one extra-ordinary vertex.

For each interior face F of My, k > 0, there is a
corresponding patch S in the limit surface S. F and
S can be parametrized on the same parameter space
Q = 1[0, 1] x [0, 1] [12]. F is a bilinear rule surface.
S is a uniform bicubic B-spline surface patch if F is a
regular face. However, if F is an extra-ordinary face then
S, defined by 2n + 8 control points where n is the valence
of F’s extra-ordinary vertex, can not be parametrized as
a uniform B-spline patch. In such a case, S is called an
extra-ordinary patch. Otherwise, a reqular patch or stan-
dard patch. The control mesh shown in Figure 1(a) is
the control mesh of an extra-ordinary patch whose extra-
ordinary vertex is of valence five.

2.3 Distance and Subdivision Depth

For a given interior mesh face F, let S be the correspond-
ing patch in the limit surface S. The control mesh of S
contains F as the center face. If we perform a subdivision
step on the control mesh, we get four new mesh faces in
the place of F. This is the case no matter F is a reg-
ular face or an extra-ordinary face (see Figure 1(b) for
the four new faces Fog, F10, Fo1 and F1; obtained in the
place of the extra-ordinary face F shown in Figure 1(a)).
Since each of these new faces corresponds to a quarter
subpatch of S, we shall call these new faces subfaces of F
even though they are not pyhsically subsets of F. There-
fore, each subdivision step generates four new subfaces for
the center face F of the control mesh. Because the cor-
respondence between F and S is one-to-one, sometime,
instead of saying performing a subdivision step on S, we
shall simply say performing a subdivision step on F.
The distance between an interior mesh face F and the

corresponding patch S is defined as the maximum of
1 (u,v) — S(u, )

Dy = maz (y,v)eq |[F(u,v) — S(u,v)|] (1)
where 2 is the unit square parameter space of F and S.
Dy is also called the distance between S and its control
mesh. For a given € > 0, the subdivision depth of F with
respect to € is a positive integer d such that if F is recur-
sively subdivided d times, the distance between each of
the resulting subfaces and the corresponding subpatch is
smaller than zero.

2.4 Subdivision Depth Computation for
Regular Patches

A regular patch is a standard uniform bicubic B-spline
surface patch. Therefore, the computation process for a
regular patch is the same as the computation process for
a standard uniform B-spline surface patch. We review the
evaluation of the distance between a B-spline patch and
its control mesh first.

2.4.1 Distance Evaluation

Figure 2: Definition of L(u,v) = (1 —v)Lq(u) +vLa(u) =
(1 — u)Ly (v) + uLa(v).

Let S(u,v) be a uniform bicubic B-spline surface patch
defined on the unit square = [0, 1] x [0, 1] with control
points V; ;, 0 <4,5 < 3,

3 3
S(u,v) = ZNZ";g(’U/) ZNjyg(i))Vz"j, 0<u,v<1
j=0

=0

where Ny, 3(t) are standard B-spline basis functions of de-
gree three, and let L(u, v) be the bilinear parametrization
of the center mesh face {V1,1, V2,1, Va2, Vio} (see Fig-
ure 2):

L(u,v) = (1—-v)[(1—-u)Vi1+uVa4]

+7)[(]. - U)Vl’g + ’UIV2’2],

The distance between S(u,v) and L(u,v), i.e., the
maximum of ||L(u,v) — S(u,v)||, satisfies the inequality
of the following lemma [3].

0<u,v<1.

Lemma 1: The distance between L(u,v) and S(u,v)
satisfies the following inequality

1
,U) — < -
Jmax [|Lu,v) = S(u0)]| < 5 M
where M is the second order norm of S(u,v) defined as
follows

M = max;;{|2Vi; — Vi1 — Vigall

(3)

12Vi; = Vij—1 = Vil }



2.4.2 Recurrence Formula for Second Order
Norm

Let V;;, 0 < 4,5 < 3, be the control points of a uni-
form bicubic B-spline surface patch S(u,v). We use
Vf’j to represent the new control points of the surface
patch after k& levels of recursive subdivision. The in-
dexing of the new control points follows the conven-
tion that V§ , is always the face point of the mesh face
{V&BHV%HV?;HV(’;?}. The new control points V;
are called the level-k control points of S(u,v) and the new
control mesh will be called the level-k control mesh of
S(u,v).

If we divide the parameter space of the surface patch,
€, into 4* regions as follows:

QO m m+ 1 n n+1

= k
m”_[2_k’2—k X[2_k’2—k]’ 0<mn<2"-1

and denote the corresponding subpatches S (u,v),
then each SF (u,v) is a uniform bicubic B-spline
surface patch defined by the level-k control point set
{VE [m <p<m+3n<qg<n+3} Sk (u,0)is
called a level-k subpatch of S(u,v). Let Lk (u,v) be
the bilinear parametrization of the center face of Sk s
control mesh, {V’;q |p=m+1,m+2,g=n+1n+2}.
We say the distance between S(u,v) and the level-k
control mesh is smaller than € if the distance between
each level-k subpatch S¥ (u,v) and the corresponding
level-k bilinear plane LE (u,v), 0 < m,n < 2% — 1, is
smaller than e. A technique to compute a subdivision
depth k for a given € so that the distance between
S(u,v) and the level-k control mesh is smaller than € is
presented in [3]. The following lemma is needed in the
derivation of the computation process. If we use MF*  to
represent the second order norm of Sk (u,v), i.e., the
maximum norm of the second order forward differences
of the control points of S¥ (u,v), then the lemma shows
the second order norm of Sk (u,v) converges at a rate
of 1/4 of the level-(k — 1) second order norm [3].

Lemma 2 If Mk  is the second order norm of

Sk (u,v) then we have
k
1
(3) »
4

where M is the second order norm of S(u,v) defined in

(3).

MF <

mn —

(4)

2.4.3 Subdivision Depth Computation
With Lemmas 1 and 2, it is easy to see that, for any
0<m,n <21 we have

max o<uw<t (Lo (u,v) = S5, (u, )|
(5)

<imk,<i(d)'m

wl—

where MF ~—and M are the second order norms of
Sk (u,v) and S(u,v), respectively. Hence, if k is large

enough to make the right side of the above inequality
smaller than e, we have

k ok
Jmax Lk, (u,0) — Sk, (u,0) | < e

for every 0 < m,n < 2¥=!_ This leads to the following
subdivision depth computation process for a regular
CCSS patch [3].

Theorem 3 Let V;;,0 <14,5 < 3, be the control points
of a uniform bicubic B-spline surface patch S(u,v). For
any given ¢ > 0, if

B> logy(50)

levels of recursive subdivision are performed on the con-
trol points of S(u,v) then the distance between S(u,v)
and the level-k control mesh is smaller than € where M
is the second order norm of S(u,v) defined in (3).

3 Subdivision Depth Computa-
tion for Extra-Ordinary Patches

The main idea of the new technique is the same, i.e.,
developing a distance evaluation mechanism that has a
recursive nature so that results from different subdivi-
sion levels can be related through a recurrence formula.
The distance evaluation mechanism will utilize second or-
der norm, instead of first order norm, as a measurement
scheme because of its capability in measuring both length
and height, but the pattern of second order forward dif-
ferences used in the distance evaluation process will be
different. In the following, we will define second order for-
ward difference pattern to be used for an extra-ordinary
patch and derive a recurrence formula for the correspond-
ing second order norm, like the one used for regular patch
in Section 2.

3.1 Second Order Norm and Recurrence

Formula

Let V;, i = 1,2,...,2n + 8, be the control points of an
extra-ordinary patch S(u,v) = S§(u,v), with V; being
an extra-ordinary vertex of valence n. The control points
are ordered following J. Stam’s fashion [12] (Figure 3(a)).
For convenience of subsequent reference, we shall call the
control mesh of S(u,v) Il = TI3. By performing a sub-
dividion step on II, one gets 2n + 17 new vertices V],
i=1,...,2n + 17 (see Figure 3(b)). These control points
form four control point sets I1}, I}, 11} and I1}, represent-
ing control meshes of the subpatches S} (u,v), Si(u,v),
S3(u,v) and Si(u,v), respectively (see Figure 3(b)) where
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Figure 3: (a) Ordering of control points of an extra-

ordinary patch. (b) Ordering of new control points (solid
dots) after a Catmull-Clark subdivision.

Iy = {V; | 1<i<2n+8}, and the other three con-
trol point sets II, TI} and II} are shown in Figure 4.
Si(u,v) is an extra-ordinary patch but Si(u,v), Si(u,v)
and Si(u,v) are regular patches. Therefore, second order
norm similar to (3) can be defined for S}, S and Si.
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Figure 4: Control vertices of subpatches Si, S} and S}.

To define a second order norm for S, one needs to
choose appropriate second order forward differences from
I1. For the second order norm to be recursively defined,
second order forward differences that are required in the
child control meshes should also appear in the parent con-
trol mesh. Forinstance, 2V;—V,4—Vgand 2V;—-V,—Vj
should be chosen for II because these patterns are re-
quired for 11} and II}, respectively. On the other hand,
for a recurrence formula to hold effectively, second order
forward differences that are not required in the child con-
trol meshes should not be used in the parent control mesh
either. For instance, one should not choose 2V; -V, —Vyg
for IT because this pattern is not required in any of II},
1} or I}. Therefore, for those cases that involves the
extra-ordinary point V; as the center point, one should
only consider
To ensure the boundary of the vicinity of the extra-
ordinary point is covered (Figure 5(a)), one should con-

= Va(i%nt2),

sider
1<i<n.

(7)

One also has to consider second order forward differences

2V (i%n+1) — V2it1 — Vo(i%nt1)+1,

(b)

(a) Vicinity of the extra-ordinary point.
The extended remaining part.

Figure 5:

that cover the extended remaining part (Figure 5(b)).
There are ten of them (actually twelve, but two of them
have been used in (7)). So, totally, 2n + 10 (n + 10 when
n = 3) second order forward differences should be con-
sidered for II and the second order norm of S, M = My,
is defined as the maximum norm of these 2n + 10 second
order forward differences:

M =maz{ { |]2V1 — Vy;

{112Vttt

= Vognspll [ 1<i<n } U

= Vaiy1 = Vognsnyall [ 1<i<n } U

{12V = Vo~ Vapps |, [| 2V — Vi — Vapur ||,
| 2Vs — Vo — Vange ||, || 2V — Vi — Vanys |,
| 2V — Vi — Vanga |, || 2Ve = Vs — Vonas ||,

| 2Vant7 — Vangs — Vangs |,
|| 2V2n+6 - V2n+2 - V2n+7 ||,
| 2Van43 — Vango — Voga ||

| 2Vapta — Vanys — Vongs || } }

(8)

Following this definition, one can define a similar second
order norm, My, for the control mesh of S(l]. In general,
if Sk is an extra-ordinary patch with control mesh II%
after k& Catmull-Clark subdivision steps, k& > 1, then by
performing a Catmull-Clark subdivision step on II¥, we
get four subpatches SFT!, 81 g+l and SEF! with
control points H§+17 mh+t H’;H and H§+1, respectively.
These control point sets are defined similar to II},
0 < < 3 (simply replacing the sup-index ‘1’ with ‘6 + 1’
of points in II}). Sg“ is again an extra-ordinary patch
and S¥*! S and S5 are regular patches. Therefore,
we can define second order norm similar to (8) for both
Sk and SE*. The second order norms of Sk and SE*+?



are denoted M} and My, respectively. We have the
following lemma for M} and My ;. The proof of Lemma
4 is given in Appendix A.

Lemma 4: For any k& > 0, if M}, represents the second
order norm of the extra-ordinary sub-patch S} after k
Catmull-Clark subdivision steps, then M} satisfies the
following inequality

%Mk, n=3
M1 << 0.72My, n=>5
(§+ %520 M, n>5

Actually, the lemma works in a more general sense,
i.e., if My stands for the second order norm of the con-
trol mesh My, instead of TI%, the lemma still works. The
second order norm of M is defined as follows: for re-
gions not involving the extra-ordinary point, use stan-
dard second order forward differences; for the vicinity of
the extra-ordinary point, use second order forward differ-
ences defined in (8). The proof is essentially the same.

3.2 Distance Evaluation

To compute the distance between the extra-ordinary
patch S(u,v) and the center face of its control mesh,
L(u,v), we need to parameterize the patch S(u,v) first.

v
o} a;
2 2
Q3 Q
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ofa] .
Hel

u

Figure 6: Q-partition of the unit square.

Note that by iteratively performing Catmull-Clark sub-
division on S(u,v), we get a sequence of regular patches
{S},m>1 b= 1,23, and a sequence of extra-
ordinary patches { S§’ }, m > 1. The extra-ordinary
patches converge to a limit point which is the value of
S at (0,0) [6]. This limit point and the regular patches
{S;*}, m>1b=1,2,3, form a partition of S. If we
use 0} to represent the parameter space corresponding
to Sy* then { Q" }, m > 1, b = 1,2, 3, form a partition
of the unit square 2 = [0,1] x [0, 1] (see Figure 6) with

The parametrization of S(u,v) is done as follows. For
any (u,v) € Q but (u,v) # (0,0), first find the Q;" that
contains (u,v). m and b can be computed as follows.

m(u,v) = min{[logsul], [logiv]}

1, if2™u>1and2mv <1
blu,v) =< 2, if 2™u>1and2™v>1
3, if2"u<land2mv>1

(10)

Then map this ;" to the unit square with the following

mapping
(u,0) = (tm, Um)

where

2mt,
2mt — 1

if 2mt <1
if 2mt>1

(11)

tm = (2" %1 = {

The value of S(u,v) is equal to the value of S;* at
(um: vm): i-e-:

S(u,v) = Sy (Um, Um)-

Let L} (u, v) be the bilinear parametrization of the center
face of S;"’s control mesh. Since S} is a regular patch,
following Lemma 1, we have

m m 1 m
1LY (u, v) = 83" (u,v)]| < gMb

where M;" is the second order norm of the contol mesh
of Sj*. But the second order norm of S;* is smaller than
the second order norm of M,,, M,,. Hence, the above
inequality can be written as
m m 1
L7 (u, 0) = Sp* (w, )| < 5 M. (12)
So the maximum distance between the original extra-

ordinary mesh L(u,v) and the patch S(u,v) can be writ-
ten as

| L, v) = S(u, v) |
= || L(u,v) — L} (4m, Vm) + Ly (U, Ur) — S(u,v) ||

<1l L, ) = L (s ) |
+ [ Ly (U, Um) = Sy (thm; vm) |
(13)

where 0 < u,v < 1 and u,, and v, are defined in (11).
Since the second term on the right hand side can be es-
timated using (12), the only thing we need to work with
is ||L(u, v) — L (U, vm) |-

It is easy to see that if (u,v) € Q" then (u,v) € QF for
any 0 < k < m where

1 1
_] X[Oa 2_k

o =10,

]. (14)

QF corresponds to the subpatch SE. This means that
(2%u, 2%v) is within the parameter space of Sk for 0 <



k < m, ie., (2%u,2%0) = (ug,vr) where u; and v are
defined in (11). Consequently, we can consider L§ (uy,, vy)
for 0 < k < m where L} is the bilinear parametrization
of the center face of the control mesh of S (with the
understanding that LY = L). What we want to do here
is to write the first term on the right hand side of (13) as

L(u,v) — L (U, ) =
L (u,v) — L (uy,v1) + L (uy,v1) — L2 (uz,v2)
+ L3 (u2,v2) — L (us, v3) + L3 (us, v3) — L§(ua, v4)

+ 4+ L(T]nil(umfly vmfl) - LG(umavm)

(15)
and get an estimate for its norm by estimating the norm
of each consecutive pair on the right hand side. We have
the following two lemmas. The proofs of these lemmas
are shown in Appendice B and C, respectively.

Lemma 5: If (u,v) € Q)" where b and m are defined
in (10) then for any 0 < k < m — 1 we have

1

k
| L (ur, vi) — L (g, vrg) || < ka

where M, is the second order norm of M and LS = L.

Lemma 6: If (u,v) € Q)" where b and m are defined
in (10) then we have

L8 (10 1) — L (s ) |
%Mmfly ’Lf b=2
<

lefly ’Lf

5 b=1or3

where M,,_; is the second order norm of M,,,_;.
By applying Lemmas 5 and 6 on (15) and then using

(12) on (13), we have the following lemma. Proof of this
lemma is shown in Appendix D.

Lemma 7: The maximum of || L(u,v) — S(u,v) ||
satisfies the following inequality

Mo, n=3
%]\407 n=>=5
L(u,v)—S(u,v) || <
IL-Seoll< &
2
4(n2—8n+46) MO’ n>8
(16)

where M = My is the second order norm of the extra-
ordinary patch S(u,v).

Since the coefficient in the third case (4n/(n*—8n+46))
is smaller than the coefficient in the second case (5/7),
we can combine these two cases into one case (5 < n < 8)
to make the above expression (16) simpler.

3.3 Subdivision Depth Computation

Lemma 7 is important because it not only provides us
with a second order norm based simple mechanism to
estimate the distance between an extra-ordinary surface
patch and its control mesh, it also allows us to estimate
the distance between a level-k control mesh and the sur-
face patch for any & > 0. This is because the distance be-
tween a level-k control mesh and the surface patch is dom-
inated by the distance between the level-k extra-ordinary
subpatch and the corresponding control mesh which, ac-
coriding to Lemma 7, is

M, n=3
|| Lk(u,v)fS(u,q;) || < 072Mk, 5<n<8
n’ Mk, n>8

4(n®>—8n+46)

where M), is the second order norm of S(u,v)’s level-k
control mesh, My, (see the remark at the end of Section
3.1 for the definition of Mj). By combining the above
result with Lemma 4, we have the following subdivision
depth computation theorem for extra-ordinary surface
patches.

Theorem 8: Given an extra-ordinary surface patch
S(u,v) and an error tolerance ¢, if k levels of subdivisions
are iteratively performed on the control mesh of S(u,v),

where u
k= ’Vlogw—-‘
Z€

with M being the second order norm of S(u,v) defined in

(8),

bR n = 3
w = %, n=>=5
4 2
ST 8n 6" n>5
and
1, n=23
z=4 22, 5<n<8

2(1’1.2781’1.4»46)7 n>8

n?2
then the distance between S(u,v) and the level-k control
mesh is smaller than e.

4 Examples

Some examples of the presented distance evaluation and
subdivision depth computation techniques are given in
this section. In Figures 7(a) and 7(c), the distances be-
tween the blue mesh faces of the control meshes and the
corresponding limit surface patches are 0.16 and 0.81, re-
spectively. For the blue mesh face shown in Figure 7(a),
the subdivision depths for the error tolerances 0.1, 0.01,



(d)

Figure 7: Examples: (a) an extra-ordinary CCSS mesh
face of valence 3, (b) limit surface of the control mesh
shown in (a), (¢) an extra-ordinary CCSS mesh face of
valence 5, (d) limit surface of the control mesh shown in

(c).

0.001, and 0.0001 are 2, 7, 13, and 19, respectively. For
the blue mesh face shown in Figure 7(c), the subdivision
depths for the error tolerances 0.1, 0.01, 0.001, and 0.0001
are 7, 14, 21, and 28, respectively. Note that in the pre-
vious approach [3], the subdivision depths for these error
tolerances are 9, 24, 40, and 56, respectively. Hence, the
new approach presented in this paper indeed improves the
previous, first order norm based approach.

5 Conclusions

A new subdivision depth computation technique for
extra-ordinary CCSS patches is presented. The new tech-
nique computes the subdivision depth based on norms of
the second order forward differences, not the first order
forward differences, of the patch’s control points. Hence,
the computed subdivision depth reflects the curvature dis-
tribution of the extra-ordinary patch, not its dimension.
Our result also points out that as long as the design objec-
tive can be achieved, one should try to use extra-ordinary
vertices with smaller valence because, according to Theo-
rem 8, smaller valence gives higher convergence rate and,
consequently, smaller subdivision depth for the same pre-
cision.

Although the new technique improves the previous ap-
proach [3], it is not clear if the new approach is optimum

for extra-ordinary CCSS patches. This will be a study
direction in the future.

6 Appendix A: Proof of Lemma 4

For convenience of subsequent reference, we introduce two
notations here:

A = YL VI = V5 = Vi)
= 2nV’f -2 Z?:l ng‘

Z?:1(V§[Ij%n+1] - V§i+k1 - V;[i%n+1]+1)
2 i1 Ve =230, Vit

Note that ||A|| < nM;, and ||B|| < nM;. Then Vf+1 can
be expressed as

B =

(n=3)V}

n

n k n k k
vk 6 2 Vit ) Vi —TnVi
1 an2

k+1 _ F 2E
Vit o= atTt

(17)

- Vi- L (7A +B)

where V¥ is the extra-ordinary vertex with subdivision
depth k.

Second order forward differences involved in Mj 4
can be classified into four categories: F-E-F, E-F-E,
E-V-E and V-E-V, where F indicates a new face point, E
indicates a new edge point and V indicates a new vertex
point. For some categories, we also need to consider if an
extra-ordinary mesh face is involved in the second order
forward difference.

Category 1 (F-E-F):

The proof is similar to the same category in the proof
of Lemma 3 in [3] and the result is the same, i.e., the
norm of each second order forward difference of this type
is < My /4 where M is the second order norm of the
extra-ordinary patch after k& subdivisions. Hence the
proof is omitted.

Category 2 (E-F-E):

Like the above category, the proof of this category is
similar to the same category in the proof of Lemma 3
in [3] and the result is the same as well (i.e., < M/4).
Hence the proof is omitted.

Category 3 (E-V-E):
Case 1: When the extra-ordinary vertex point VII“Jr1 is
involved. Consider 2V**! — V)™ — V1 only. The proof
of other cases is similar.

Note that from (17) and definition of edge points we
have

Vitt =vi - L (TA + B)
Vol = R(VEHVE) +55(VE+ Vi Vi, + Vi)
Vet =2(VE+ V) + £(VE+ VE+VEL V)



Hence,
|2VETT - VAT Vi
_ k 1 3 k 3 k
= ||2[1Vl - m(7f§ +kB)]1_ gk_V1 = gkvz T V2n .
_ ?V%n-{-l ) @VB 1— @Vél — §V1 — §V6 V4
B EVS ~ 16 V - 16V8||
_ |5 k 3 k 3 k 1 k 1 k 1 k
T Y e 16 Y e e
—5Vi—1Vs — EV7 —16Vs — o= (TA + B)H
1 2Vk VA V4 + 16 2Vk vk vk
2 2 6 2n 4
+ %(QVk Vi-Vi)+ 9(2V2 V§n+1 - Vi)
+=2VE-VE_VE) - LA - LB

TL

Let

Ds = A — (2Vh — Vi — V) — (2VE - VE— V)
- @Vt - Vi, - Vi)
D =B - (2V§ - V., = V) - (2v§ - Vi - V)

We have [|Dal| < (n—3)Mj and ||Dg|| < (n—2)M,.
Hence,

[2VEH - ViR - i
— 113 = L) @VE - VE - Vi)

+ (15 — é)(w’“fv!zn vk)

+ (35 — 72)(2VI — Vi - Vy)

+ (5 — 22V - V’sn+1 v¥)

+ (5 — 22)(2VE = VE - V) — LDA — ;= Dsl.

In the above equation, V& should be replaced with V& if
n = 3.

For the case n=3,

VIR ViR v
<lG- )+ gz 1)+ (57 — %)
+ (35 — ap2) + (f5 — r) +

For the case n=5,

||2V£+1 77V,2c+1 77Vé&+j.|| 7 1
<G m2)+ (o —16) + (52 — 1%)

For the case n>5,
HQVfH 7Vk+1 1 V§+71H 1 7
S[(g*m)"‘(ﬁfm)"'(l—%*%?)
+ (15— ze) + (5~ 7) + im 2+ M,

'S
3

Case 2: When the extra-ordinary point is not involved.
The proof of this case is similar to the same category in

the proof of Lemma 3 in [3] and the result is the same as

well (i.e., < My /4). Hence the proof is omitted.

Category 4 (V-E-V):

Case 1: When the extra-ordinary vertex point V}* + 1 is
involved. Consider 2V§+1 — V’f“ V’;:’L only. The

proof of other cases is similar:

12Vi+ = Vit = vl
_|| Vk SVE+ LtV +ivE4 v - Vi

(7A+B)— 9V’u—(V’“+V’“-|-V2n+6

+ Vms) - 5(VE+VE+VELVE

= ||%(Y§ - Vi - V§%+7) +ki(2‘k/§n+7 - V5.6
= V3,48) — 51(2V] = V5 — Vg)
— 55 (2Vi — V5 — V) + 55 (7TA + B)||

= ||%(2‘f{4C - \/-]1C o V§n+7) + 64 (2V,2€n+7 V§n+6

- V1§n+8) (674 - 8n2 )£2Vk L Vk Vk)
- (32 8n-)(2V4 V v ) [

5rlA -~ (2V
=V - Vi)l +5=[B (2V4— Vi)l
) 4

7(n—1

§[§+;—4+(é—%)+(§——9)+ o

8n? 8n?
= (i _ Lz + n;l)Mk — (% + ;2)Mk

Case 2: When the extra-ordinary vertex point

k+1
Vl

gi]Mk

is

not involved. The proof of this case is similar to the
same category in the proof of Lemma 3 in [3] and the
result is the same as well (i.e., < M}, /4). Hence the proof

is omitted.

The lemma now follows from combining the results from

the above four categories.

7 Appendix B: Proof of Lemma 5

The center faces of S§ and S{*! are { V¥ VE VE Vi1
and { VETL VETL VERL VAT respectively. By defi-

nition and the fact that ugy1 = 2up and vg4q =
have

2vp, we

Lg(uk,vk) = (1—Uk)[(1 —’U,k)Vlk +ukV6’“]

+or[(1 — up) VF + up V¥
and

Lt (ukt1, vis1)

= (1 — gy 1)[(1 — ups 1) VEFY g VEF
+ o [(1 = wp) Vi +up g VT

= (1 = 208)[(1 = 2uy) VI 4 24, VI
+ 20 [(1 — 2up ) VAT + 20, VET.

g



Using the expression of (17), we get

| L (un, vx) = Lot (wagr, vesn) ||
= (1= v)[(1 = ur) V] + ux V] + vi[(1 — up) V}§
+upVE] — (1= 20)[(1 — 2ux)(V} — 5 (TA + B))
+2ur(3VE+2VE+ LVE 4+ LVE L ZVE 4 LVE)
- m[(l - 2uk)(gvff +3vh 4 Lvhk 4+ Lvk
+ = VE+ EVE) + % (VE+ VE+VELVE)] |
) Yun vl vi = Vi Lavi v v
+ ’Uk(QVk Vé — Vé + QVZ — V’g — V’g) + UpvE-
(—8VF + 2V2 +2VEk —2VEk L avE —ovEk L ovE
+ 2Vk)] g L@ 2uk)(1 —2u)(7TA + B) I
= || £[ur(2VY — Vi = V) + u.(2VE — VE - VE)
+ 0 (2VE = VE - VE) + 0, (2VE — VE — Vk)
— Qukvk (2Vf — Vé — Vg) — 2ukvk(2V1 —
—2upv (2VE — VE — VE) — 2040, (2VE
gz (1= 2ug) (1 — QUk)(7A +B) |
(ur — 2upvr)(2VE — VE - VE) +
~VE_VE) 4 (v k — 2ukvk)(2vk
+ (’Uk — 211]{[)]&-)(2‘/!1c — )]
) ||
1M

vi-vh)
Vi = VY)]

+ (ug — 2ugug)-
v

+ g5 (1= 2up)(1 — 2vk)(7A +B
[2(uk — 2ukvk) + 2(’Uk — Qukvk)
n(l - 2uk)(1 - QUk)Mk

= [%(uk + ’Uk) — UV + %(1 — 2uk)(1 — 2Uk)]Mk

<

To find the maximum value of the above inequality, we
set

1 1 1
flu,v) = Z(u+v)7uv+—(172u)(172v), 0<u,v< 7
n
The partial derivatives of f with respect to u and v are
1 2
fulu,v) = yoe E(l — 20)
and . 5
f17(u7v) =T - u- _(1 - 2“)7
4 n

respectively. By setting f, and f, to zero and solving for
u and v, we get

~ n-—28 ~ n-—38

~ 4n — 16’ ~ 4n—16°
On the other hand, it is easy to see that f is a linear
function on the boundary of its domain Q} = [0,1/2] x

[0,1/2]. Hence, the maximum of f(u,v) on 2§ must occur

at one of the corners of f or at (2=, =% fﬁ) Note that
1 1 1 1 1 11
F0.0=1 fG0 =g F0.5=5 fG.3)
and
n—8 n-—28 n
f( ) ): :
4dn — 16 4n — 16 16(n — 4)

Therefore the largest value occurs at (0,0) when n < 8,
which is 1, and the largest value occurs at at (3,0) or
(0,3) when n > 8, which is §.
these cases, we get

1

LE (up, vi) — —M
| Lo (uk, vr) min{n, 8] Mk

Lt (urgavpg || <

10

8 Appendix C: Proof of Lemma 6

We consider the case b = 2 first, i.e., 2m <0 < o=t

Since 2™ 'y and 2™~ 'y are both smaller than 1 and 2’”
and 2™wv are both bigger than 1, according to definition
(11), we have

—1 —1

Um_1 = 2™ "u, Um_1 = 2™ v

and

Uy =2"u—1=2up, 11, v, =2"v—1=2v,, 1—1.

The center face of Sj* 1is { V' L, vt vt vty
and the center face of S is { Vg, V3 .,
Vi, V5 6 }- Hence, we have

Lglil(umflyvmfl)
= (1= oy (L=t VP gy V]
+ U1 [(1 — um,l)VZ”l + um,lvg"*l]

and
LY (U, V)
= (1= v)[(1 — ) VE + 1 V5]
+ Um[(1 = um) V3, 16 + um V3, o]

= 2(1 — ’Umfl)[Q(l — um,l)Vg" + (2um,1 — 1)V§:L+3]
+ (2’Um,1 — 1)[2(1 — ’u,mfl)VgZL+6
+ (2up—1 — 1)V, o]

If we define A5 and Bj as follows:

Hence, by combining then V3 ., can be expressed as

A; =2(2Vy Tt -Vt -V
VA 25 A Y |

B; = (2vy - vyt vit)
+@ve vt vl
+ (QV;]:L:LB - VSZL+12 - VSZL+14)
+(2Vy5s — Vais — Viis)

Vo, =Vih o —(7A5 + B;3).

128



Note that || A5 || < 4M,,,—1 and || B5 || < 4M,,,_1. There-
fore,

L5 (1, 0m1) — Lzm(um=11)m) | )
= A =vm- )l = tm1)V{" +um 1 Vg
+ Um1[(1 = ) VP + umflv?fl]

— m—1 m—1 m—1
—2(1—um,1)[2(1—um YV V. +V,

+ (2um71 )( Vm 1 3vm 1 + Vm 1

+ %VT71 V2n+3 + 16V;':1+14)] (2Um71 - 1)'
[2(1 — up—1)(3 Vm +ivet 4 Lvet
+1gVe V2n+6 + IGVS:IL’L+17)

+ (2um-—1 — )(Vm — 15(TAs + Bs))] ||

= £[(2Unm—1+ V-1 — 2Up—1Vp—1 — 1)-
vyt vyt vel
+ (Um—1 4 20m—1 — 2Up—1Um—1 — 1)-

m—1 m—1 m—1

(2V5 - V6 - V2n+6)

+ (2um71 + Um—1 — 2um,1vm,1 - ]-)
m—1 m—1 m—1

(2V5 - V4 - V2n+3)

+ (Um,1 + 2’Umfl - 2Um,1’l}m,1 - 1)
m—1 m—1 m—1

Vi = Vi = Vo))

- 128 (2um 1 — 1)(2’Um,1 - 1)(7A5 + B5) ||
< %[2(2um,1 + Um—1 — 2Upy—1U;m—1 — 1)

+ 2(Um 1+ 27)m 1 — 2’Ulm,1’Um,1 — ]-)]Mmfl
+ 128 (2um 1 — 1)(2’Um,1 - 1)32Mm,1
‘ll(um 1+ UVmo1 — ].)Mm,;[

1
I M.

IN ||

We next consider the case b = 3, ie., 0 < u < —m and
5w < U < 27”%1 The proof of the case b = 1 is sumlar
and, consequently, will be omitted.

In this case since 2™y < 1 and 1 < 2™p, but 2" 1v <

1, we have

[

U1 = 2m71u, U1 = 2™ 1o

and

U = 2" U = 2Usy_1, Um =20 —1 = 20,1 — 1.

The center face of the control mesh of S7' is
{ V@,V v 6, Voo . Hence, LY (4, vm) can be
expressed as

LE (U U
=(1—vm)[(1 — tum) VY + u, V]
+ v [(1 - “m)VSLH + Umvénn+6]
= 2(1 — 'Umfl)[(l — 2’U,m,1)V£n + 2’U,m,1Vgn]
+ (2’Um,1 — 1)[(1 — 2um,1)V§”n+7 + 2um,1V§;+6]

If we define A, and B4 as follows

Ay =2[2Vvyt—vpt v
+@VyT vt v )]

By=(vy ' -vyt v
+@Vyt vt v
+(2Vey — Vo — Viig)
+ VI =V =V

then V3} ., can be expressed as

=Vt - —(7A4 + By)

with || Ay || < 4M,,_1 and || By || < 4M,,_;. Therefore,
by using the expression of Lglfl(um,l,vm,l) given in
the previous case and the above expression for V3 , ,, we
have

| Lo (U1, Um—1) — L%”(umﬂl)m) I X
= (1 =vm-)[(1 = Um 1) VI + um 1 Vg ]
+ U 1[(1 = U 1) VP 1 VI

—2(1 = V1) [(1 = 2upm 1) BV L4 2V

+ vyt Lvetp Lveot o et

2y g YV ”:"?”*"6” ] 20m1 — 1)
[(1 - Qumfl)(vznil - 128 (7A4 + B4))

+ 2um (2 V""l Svirty Lt vt

+ V2n+6 2n+7)] ||

= || 8[(2um71vm71 Up1) 2V T = VT VI

+ (2Um—1Um—1 = Um—1)(2VE T = VP = VL)

+ (2 1Vm—1 — 22Uy 1 — V1 + 1)

@Vy - vyt = Vi)
+ (2Um - 1Um-1 = 2Um—1 — V1 + 1)
O A )

_8(]' - 2Um,1)(21)m,1 — 1)(7A4 + B4) ||

12
S [2(2umfl’um71 - ’1me1)
2(2um 1Um—1 — 2um 1~ Um-1 +1)]Mm71
e (1 = 2Up 1) (201 — 1)32M,, 4

1
8
_|_
+ 1

%(8 Um—1Um— 1_5um 1_3vm 1+2)Mm71

It is easy to see that if we define f(u,v) as follows

flu,v) = 8uv — bu — 3v + 2
then the maximum value of f(u,v) on 0 < u < %

2
% <wv<l1lis % Consequently, we have

and

B . 1
| Lo" M(ton—1, V1) — L (tn, vy || < ngfl-

9 Appendix D: Proof of Lemma 7

By applying Lemmas 5 and 6 on the right side of (15)
and then using (12) for the second term on the right side

of (13), we get
| L(w,v) — S(u,v) ||
<SS 1L (ur, o) — LET (s, vsr) ||

+1I Lglil(umfhvmfl) - Lgl(um7vm) I

SE”(Um: vm) ||

(18)
+ LG (i, ) —

S Z;;n:(] Mk + 3 Mmfl + %Mm

mm{n 8}



When n = 5, using the fact that min{n,8} = 5 and
M1 < 0.72My from Lemma 4, (18) becomes

| L(u, v) = S(u,0) |

%[ 2?2702 (072)k]M0 + %(0.72)m,1M0

+ 2(0.72)™ M,

B ()
1.4

+ 2(0.72)™ 7 4+ £(0.72)™ | My

67(1.884)(0.72)m*1M0

8.4
< 2M,
The coefficient 5/7 follows from the fact that
m—1
% is an increasing function of m and its

maximum occurs at m = +oc.
When n = 3, using the fact that min{n,8} = 3 and
My < %Mk from Lemma 4, (18) becomes

| L(u,v) = S(u,v) ||

<HEES (MM + 53" Mo + H3)" Mo
= [ G+ H) 5] My
< My
For 5 < n < 8, we have
| L(u,v) = S(u,v) ||
1 (84 8n—d6ym-1 . .
S % 1,4(%_:35*246) MU-I—%(%"’%) 1]MO
+ 30 + 25y
_ [ 4n o ( an 1 4n723)
— ln2-8n+46 n2—8n+46 2 6n2
(% + SZ;;G)m—l]MO
4n
< n278n+46M0

The last inequality follows from the observation that

4n 1 4%;223>Oand%+ "*46§%f0r5<n§8

_1_ 8
n? —8n-+46 2 4n?

and, therefore, the maximum of the coefficient of My oc-
curs at m = +o0.
As for n > 8, we have

| L(u,v) = S(u, v) ||

<1 1*(%4'82”;2%)"‘71]\/[ 1(3 | 8n—46ym—1}/
S ST (3 tu=am o+ 3(5+ 7 5=0) 0
(3+ an2 )
1/(3 |, 8n—46\m
+3(3+ 5)" Mo
= n? —( n? 1 4n723)_
— 12(n?—8n+46) 2(n?—8n+46) 2 6n?
3 8n—46 \m—1
(3+5)" Mo

2

< 2(n2J§n+46) My

The last inequality follows from a similar observation as
the above case. This completes the proof. O
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