
Subdivision Depth Computation for Extra-OrdinaryCatmull-Clark Subdivision Surfae PathesFuhua (Frank) Cheng Gang Chen Jun-Hai YongUniversity of Kentuky University of Kentuky Tsinghua Universityheng�s.uky.edu ghen5�s.uky.edu yongjh�tsinghua.edu.nhttp://www.s.uky.edu/�heng/ http://www.sr.uky.edu/�ghen/ http://gad.thss.tsinghua.edu.n/�yongjh/AbstratA new subdivision depth omputation tehnique forextra-ordinary Catmull-Clark subdivision surfae (CCSS)pathes is presented. For a given error tolerane � and anextra-ordinary CCSS path (a CCSS path with an ex-traordinary vertex), the new tehnique determines, basedon the seond order forward di�erenes of the path'sontrol points only, how many times the ontrol meshof the path should be subdivided so that the distanebetween the resulting ontrol mesh and the limit surfaeis smaller than �. The new tehnique improves a previ-ous tehnique by giving a subdivision depth based on thepath's urvature distribution only, instead of its dimen-sion. Hene, with the new tehnique, no exessive subdi-vision is needed for extra-ordinary CCSS pathes to meetthe preision requirement and, onsequently, one anmake trimming, �nite element mesh generation, booleanoperations, and tessellation of CCSS's more eÆient.Keywords: subdivision surfaes, distane evaluation,subdivision depth omputation1 IntrodutionSubdivision sheme provides a powerful method for build-ing smooth and omplex surfaes. Given a ontrol meshand a set of mesh re�ning rules (or, more intuitively, or-ner utting rules), one gets a limit surfae by reursivelyutting o� orners of the ontrol mesh [2℄[5℄. The limitsurfae is alled a subdivision surfae beause the meshre�ning proess is a generalization of the uniform B-splinesurfae's subdivision tehnique. Subdivision surfaes anmodel/represent omplex shape of arbitrary topology be-ause there is no limit on the shape and topology of theontrol mesh of a subdivision surfae. [4℄.Researh work for subdivision surfaes has been done inseveral important areas, suh as surfae parametrization[12℄[13℄[16℄[7℄, surfae trimming [8℄, boolean operations[1℄, mesh editing [15℄, and error estimate/ontrol [14℄[3℄.For instane, given an error tolerane, [3℄ shows howmanytimes the ontrol mesh of a Catmull-Clark subdivisionsurfae (CCSS) path should be reursively subdivided

so that the distane between the resulting ontrol meshand the limit surfae path would be less than the errortolerane. This error ontrol tehnique, alled subdivisiondepth omputation, is required in all tessellation based ap-pliations of CCSS's. [3℄'s subdivision depth omputationtehnique for regular CCSS pathes is optimum. How-ever, for an extra-ordinary CCSS path (a path with anextra-ordinary vertex), sine the subdivision depth om-puted by [3℄ depends on �rst order forward di�erenes ofthe ontrol points, its value ould be bigger than what itatually should be and, onsequently, generates exessivemesh elements for regions that are already at enough.In this paper we will present a new subdivision depthomputation tehnique for extra-ordinary CCSS pathes.The new tehnique is based on the seond order forwarddi�erenes of an extra-ordinary path's ontrol points.The omputed subdivision depth reets the path's ur-vature distribution, not its dimension. Hene, with thenew tehnique, no exessive subdivision is needed forregions that are already at enough and, onsequently,trimming, �nite element mesh generation, boolean op-erations, and tessellation of CCSS's an be made moreeÆient.The remaining part of the paper is arranged as fol-lows. A brief review of the Catmull-Clark subdivisionsheme and the subdivision depth omputation tehniquefor regular CCSS pathes (to be used in the new teh-nique) is given in Setion 2. A new distane evaluationtehnique and a new subdivision depth omputation teh-nique for an extra-ordinary CCSS path are given in Se-tion 3. Examples of subdivision depth omputation forextra-ordinary CCSS pathes using the new tehniquesare presented in Setion 4. Conluding remarks are givenin Setion 5.2 Problem Formulation and Bak-groundGiven the ontrol mesh of an extra-ordinary Catmull-Clark subdivision surfae path and an error tolerane�, the goal here is to ompute an integer d so that if the1



ontrol mesh is iteratively re�ned (subdivided) d times,then the distane between the resulting mesh and thesurfae path is smaller than �. d is alled the subdivi-sion depth of the surfae path with respet to �. Beforewe show the omputation tehnique, we need to de�nerelated terms. We also need to review a distane eval-uation tehnique and a subdivision depth omputationtehnique for regular Catmull-Clark subdivision surfaepathes [3℄. These tehniques are needed in the new teh-nique for extra-ordinary Catmull-Clark subdivision sur-fae pathes.2.1 Catmull-Clark Subdivision SurfaesGiven a ontrol mesh, the Catmull-Clark subdivisionsheme iteratively re�nes (subdivides) the ontrol meshto form new ontrol meshes [2℄. The limit surfae of there�ned ontrol meshes is alled a Catmull-Clark subdi-vision surfae (CCSS). The re�ning proess onsists ofde�ning new verties and onneting the new verties toform new edges and faes of a new ontrol mesh. The newverties belong to three groups: fae points, edge pointsand vertex points. For eah old interior mesh fae, a newfae point is de�ned as the average of the verties de�ningthe old fae. For eah old interior mesh edge, a new edgepoint is de�ned as the average of the midpoint of the oldedge and the average of the two adjaent new fae points.For eah old interior vertex P, a new vertex point Q isde�ned as follows:Q = Fn + 2En + (n� 3)Pnwhere n is the number of adjaent edges of P, F is theaverage of the new adjaent fae points and E is the av-erage of the midpoints of adjaent edges of P. The newedges are formed through two onneting proesses afterall the new verties are onstruted:� onneting eah new fae point to adjaent new edgepoints� onneting eah new vertex point to adjaent newedge pointsNew faes are then de�ned as those enlosed by newedges. The ontrol mesh of a CCSS path and the newontrol mesh after a re�ning (subdivision) proess areshown in Figure 1(a) and (b), respetively. This is aoneptual drawing, the loation shown for a new vertexmight not be its exat physial loation.The limit surfae of the iteratively re�ned ontrolmeshes is alled a subdivision surfae beause the meshre�ning (subdivision) proess is a generalization of theuniform biubi B-spline surfae subdivision tehnique.Therefore, CCSS's inlude uniform B-spline surfaesand pieewise B�ezier surfaes as speial ases. Atu-ally CCSS's inlude non-uniform B-spline surfaes and
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Figure 1: (a) Control mesh of an extra-ordinary path; (b)new verties and edges generated after a Catmull-Clarksubdivision.NURBS surfaes as speial ases as well [11℄. TheCatmull-Clark mesh re�ning proess will also be alledthe Catmull-Clark subdivision, or simply the subdivisionstep subsequently. The given ontrol mesh will be referredto as M0 and the limit surfae will be referred to as �S.For eah positive integer k,Mk refers to the ontrol meshobtained after applying the Catmull-Clark subdivision ktimes to M0.2.2 Regular vs. Extra-ordinaryThe power of CCSS's omes from the way mesh vertiesare onneted. If the number of edges onneted to amesh vertex is alled its valene, then the valene of aninterior mesh vertex an be anything � 3, instead of justfour. Those mesh verties whose valenes are di�erentfrom four are alled extra-ordinary verties to distinguishthem from the standard or regular mesh verties. VertexV in Figure 1(a) is an extra-ordinary vertex of valene�ve. An interior mesh fae is alled an extra-ordinarymesh fae if it has an extra-ordinary vertex. Otherwise,2



a standard or regular mesh fae. Mesh fae F in Fig-ure 1(a) is an extra-ordinary mesh fae. Note that af-ter one iteration of the subdivision step, mesh faes of aCCSS are always quadrilaterals and the number of extra-ordinary verties remains the same. After at most twoiterations of the subdivision step, eah mesh fae has atmost one extra-ordinary vertex. Therefore, without lossof generality, we shall assume all the mesh faes in M0are quadrilaterals and eah mesh fae of M0 has at mostone extra-ordinary vertex.For eah interior fae F of Mk, k � 0, there is aorresponding path S in the limit surfae �S. F andS an be parametrized on the same parameter spae
 = [0; 1℄ � [0; 1℄ [12℄. F is a bilinear rule surfae.S is a uniform biubi B-spline surfae path if F is aregular fae. However, if F is an extra-ordinary fae thenS, de�ned by 2n+8 ontrol points where n is the valeneof F's extra-ordinary vertex, an not be parametrized asa uniform B-spline path. In suh a ase, S is alled anextra-ordinary path. Otherwise, a regular path or stan-dard path. The ontrol mesh shown in Figure 1(a) isthe ontrol mesh of an extra-ordinary path whose extra-ordinary vertex is of valene �ve.2.3 Distane and Subdivision DepthFor a given interior mesh fae F, let S be the orrespond-ing path in the limit surfae �S. The ontrol mesh of Sontains F as the enter fae. If we perform a subdivisionstep on the ontrol mesh, we get four new mesh faes inthe plae of F. This is the ase no matter F is a reg-ular fae or an extra-ordinary fae (see Figure 1(b) forthe four new faes F00, F10, F01 and F11 obtained in theplae of the extra-ordinary fae F shown in Figure 1(a)).Sine eah of these new faes orresponds to a quartersubpath of S, we shall all these new faes subfaes of Feven though they are not pyhsially subsets of F. There-fore, eah subdivision step generates four new subfaes forthe enter fae F of the ontrol mesh. Beause the or-respondene between F and S is one-to-one, sometime,instead of saying performing a subdivision step on S, weshall simply say performing a subdivision step on F.The distane between an interior mesh fae F and theorresponding path S is de�ned as the maximum ofkF(u; v)� S(u; v)k:DF = max (u;v)2
 kF(u; v)� S(u; v)k (1)where 
 is the unit square parameter spae of F and S.DF is also alled the distane between S and its ontrolmesh. For a given � > 0, the subdivision depth of F withrespet to � is a positive integer d suh that if F is reur-sively subdivided d times, the distane between eah ofthe resulting subfaes and the orresponding subpath issmaller than zero.

2.4 Subdivision Depth Computation forRegular PathesA regular path is a standard uniform biubi B-splinesurfae path. Therefore, the omputation proess for aregular path is the same as the omputation proess fora standard uniform B-spline surfae path. We review theevaluation of the distane between a B-spline path andits ontrol mesh �rst.2.4.1 Distane Evaluation
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Figure 2: De�nition of L(u; v) = (1�v)L1(u)+vL2(u) =(1� u)�L1(v) + u�L2(v).Let S(u; v) be a uniform biubi B-spline surfae pathde�ned on the unit square 
 = [0; 1℄� [0; 1℄ with ontrolpoints Vi;j , 0 � i; j � 3,S(u; v) = 3Xi=0 Ni;3(u) 3Xj=0Nj;3(v)Vi;j ; 0 � u; v � 1 (2)where Nk;3(t) are standard B-spline basis funtions of de-gree three, and let L(u; v) be the bilinear parametrizationof the enter mesh fae fV1;1;V2;1;V2;2;V1;2g (see Fig-ure 2):L(u; v) = (1� v)[(1� u)V1;1 + uV2;1℄+v[(1� u)V1;2 + uV2;2℄; 0 � u; v � 1:The distane between S(u; v) and L(u; v), i.e., themaximum of kL(u; v) � S(u; v)k, satis�es the inequalityof the following lemma [3℄.Lemma 1: The distane between L(u; v) and S(u; v)satis�es the following inequalitymax0�u;v�1 kL(u; v)� S(u; v)k � 13Mwhere M is the seond order norm of S(u; v) de�ned asfollowsM = maxi;jf k2Vi;j �Vi�1;j �Vi+1;jk ;k2Vi;j �Vi;j�1 �Vi;j+1k g (3)3



2.4.2 Reurrene Formula for Seond OrderNormLet Vi;j , 0 � i; j � 3, be the ontrol points of a uni-form biubi B-spline surfae path S(u; v). We useVki;j to represent the new ontrol points of the surfaepath after k levels of reursive subdivision. The in-dexing of the new ontrol points follows the onven-tion that Vk0;0 is always the fae point of the mesh faefVk�10;0 ;Vk�11;0 ;Vk�11;1 ;Vk�10;1 g. The new ontrol points Vkijare alled the level-k ontrol points of S(u; v) and the newontrol mesh will be alled the level-k ontrol mesh ofS(u; v).If we divide the parameter spae of the surfae path,
, into 4k regions as follows:
kmn = [m2k ; m+ 12k ℄� [ n2k ; n+ 12k ℄; 0 � m;n � 2k � 1and denote the orresponding subpathes Skmn(u; v),then eah Skmn(u; v) is a uniform biubi B-splinesurfae path de�ned by the level-k ontrol point setfVkpq j m � p � m + 3; n � q � n + 3g. Skmn(u; v) isalled a level-k subpath of S(u; v). Let Lkmn(u; v) bethe bilinear parametrization of the enter fae of Skmn'sontrol mesh, fVkpq j p = m+ 1;m+2; q = n+ 1; n+2g.We say the distane between S(u; v) and the level-kontrol mesh is smaller than � if the distane betweeneah level-k subpath Skmn(u; v) and the orrespondinglevel-k bilinear plane Lkmn(u; v), 0 � m;n � 2k � 1, issmaller than �. A tehnique to ompute a subdivisiondepth k for a given � so that the distane betweenS(u; v) and the level-k ontrol mesh is smaller than � ispresented in [3℄. The following lemma is needed in thederivation of the omputation proess. If we use Mkmn torepresent the seond order norm of Skmn(u; v), i.e., themaximum norm of the seond order forward di�erenesof the ontrol points of Skmn(u; v), then the lemma showsthe seond order norm of Skmn(u; v) onverges at a rateof 1=4 of the level-(k � 1) seond order norm [3℄.Lemma 2 If Mkmn is the seond order norm ofSkmn(u; v) then we haveMkmn � �14�kM (4)where M is the seond order norm of S(u; v) de�ned in(3).2.4.3 Subdivision Depth ComputationWith Lemmas 1 and 2, it is easy to see that, for any0 � m;n � 2k�1, we havemax 0�u;v�1 kLkmn(u; v)� Skmn(u; v)k� 13Mkmn � 13 � 14�k M (5)

where Mkmn and M are the seond order norms ofSkmn(u; v) and S(u; v), respetively. Hene, if k is largeenough to make the right side of the above inequalitysmaller than �, we havemax0�u;v�1 kLkmn(u; v)� Skmn(u; v)k � �for every 0 � m;n � 2k�1. This leads to the followingsubdivision depth omputation proess for a regularCCSS path [3℄.Theorem 3 LetVij , 0 � i; j � 3, be the ontrol pointsof a uniform biubi B-spline surfae path S(u; v). Forany given � > 0, if k � d log4(M3� ) elevels of reursive subdivision are performed on the on-trol points of S(u; v) then the distane between S(u; v)and the level-k ontrol mesh is smaller than � where Mis the seond order norm of S(u; v) de�ned in (3).3 Subdivision Depth Computa-tion for Extra-Ordinary PathesThe main idea of the new tehnique is the same, i.e.,developing a distane evaluation mehanism that has areursive nature so that results from di�erent subdivi-sion levels an be related through a reurrene formula.The distane evaluation mehanism will utilize seond or-der norm, instead of �rst order norm, as a measurementsheme beause of its apability in measuring both lengthand height, but the pattern of seond order forward dif-ferenes used in the distane evaluation proess will bedi�erent. In the following, we will de�ne seond order for-ward di�erene pattern to be used for an extra-ordinarypath and derive a reurrene formula for the orrespond-ing seond order norm, like the one used for regular pathin Setion 2.3.1 Seond Order Norm and ReurreneFormulaLet Vi, i = 1; 2; :::; 2n + 8, be the ontrol points of anextra-ordinary path S(u; v) = S00(u; v), with V1 beingan extra-ordinary vertex of valene n. The ontrol pointsare ordered following J. Stam's fashion [12℄ (Figure 3(a)).For onveniene of subsequent referene, we shall all theontrol mesh of S(u; v) � = �00. By performing a sub-dividion step on �, one gets 2n + 17 new verties V1i ,i = 1; :::; 2n+ 17 (see Figure 3(b)). These ontrol pointsform four ontrol point sets �10, �11, �12 and �13, represent-ing ontrol meshes of the subpathes S10(u; v), S11(u; v),S12(u; v) and S13(u; v), respetively (see Figure 3(b)) where4
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Figure 3: (a) Ordering of ontrol points of an extra-ordinary path. (b) Ordering of new ontrol points (soliddots) after a Catmull-Clark subdivision.�10 = fV1i j 1 � i � 2n + 8 g, and the other three on-trol point sets �11, �12 and �13 are shown in Figure 4.S10(u; v) is an extra-ordinary path but S11(u; v), S12(u; v)and S13(u; v) are regular pathes. Therefore, seond ordernorm similar to (3) an be de�ned for S11, S12 and S13.
VV V V V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V V V

1 1 1 1 1

1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

8 1 4 2n+7

2 3 2n+8 2n+17

2n+16

2n+15

2n+14

2n+9

7 6 5 2n+6

2n+5 2n+4 2n+3 2n+2

2n+13 2n+12 2n+11 2n+10

Π

Π

Π1

1

1

1

2

3

Figure 4: Control verties of subpathes S11, S12 and S13.To de�ne a seond order norm for S, one needs tohoose appropriate seond order forward di�erenes from�. For the seond order norm to be reursively de�ned,seond order forward di�erenes that are required in thehild ontrol meshes should also appear in the parent on-trol mesh. For instane, 2V1�V4�V8 and 2V1�V2�V6should be hosen for � beause these patterns are re-quired for �11 and �13, respetively. On the other hand,for a reurrene formula to hold e�etively, seond orderforward di�erenes that are not required in the hild on-trol meshes should not be used in the parent ontrol mesheither. For instane, one should not hoose 2V1�V2�V8for � beause this pattern is not required in any of �11,�12 or �13. Therefore, for those ases that involves theextra-ordinary point V1 as the enter point, one shouldonly onsider2V1 �V2i �V2(i%n+2); 1 � i � n: (6)To ensure the boundary of the viinity of the extra-ordinary point is overed (Figure 5(a)), one should on-

sider2V2(i%n+1) �V2i+1 �V2(i%n+1)+1; 1 � i � n: (7)One also has to onsider seond order forward di�erenes
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Figure 5: (a) Viinity of the extra-ordinary point. (b)The extended remaining part.that over the extended remaining part (Figure 5(b)).There are ten of them (atually twelve, but two of themhave been used in (7)). So, totally, 2n+10 (n+10 whenn = 3) seond order forward di�erenes should be on-sidered for � and the seond order norm of S, M = M0,is de�ned as the maximum norm of these 2n+10 seondorder forward di�erenes:M = maxf f k2V1 �V2i �V2(i%n+2)k j 1 � i � n g [f k2V2(i%n+1) �V2i+1 �V2(i%n+1)+1k j 1 � i � n g [f k 2V3 � V2 � V2n+8 k; k 2V4 � V1 � V2n+7 k;k 2V5 � V6 � V2n+6 k; k 2V5 � V4 � V2n+3 k;k 2V6 � V1 � V2n+4 k; k 2V7 � V8 � V2n+5 k;k 2V2n+7 � V2n+6 � V2n+8 k;k 2V2n+6 � V2n+2 � V2n+7 k;k 2V2n+3 � V2n+2 � V2n+4 k;k 2V2n+4 � V2n+3 � V2n+5 k g g (8)Following this de�nition, one an de�ne a similar seondorder norm, M1, for the ontrol mesh of S10. In general,if Sk0 is an extra-ordinary path with ontrol mesh �k0after k Catmull-Clark subdivision steps, k � 1, then byperforming a Catmull-Clark subdivision step on �k0 , weget four subpathes Sk+10 , Sk+11 , Sk+12 and Sk+13 withontrol points �k+10 , �k+11 , �k+12 and �k+13 , respetively.These ontrol point sets are de�ned similar to �1i ,0 � i � 3 (simply replaing the sup-index `1' with `k+1'of points in �1i ). Sk+10 is again an extra-ordinary pathand Sk+11 , Sk+12 and Sk+13 are regular pathes. Therefore,we an de�ne seond order norm similar to (8) for bothSk0 and Sk+10 . The seond order norms of Sk0 and Sk+105



are denoted Mk and Mk+1, respetively. We have thefollowing lemma for Mk and Mk+1. The proof of Lemma4 is given in Appendix A.Lemma 4: For any k � 0, if Mk represents the seondorder norm of the extra-ordinary sub-path Sk0 after kCatmull-Clark subdivision steps, then Mk satis�es thefollowing inequalityMk+1 �8>><>>: 23Mk; n = 30:72Mk; n = 5( 34 + 8n�464n2 )Mk; n > 5Atually, the lemma works in a more general sense,i.e., if Mk stands for the seond order norm of the on-trol mesh Mk, instead of �k0 , the lemma still works. Theseond order norm of Mk is de�ned as follows: for re-gions not involving the extra-ordinary point, use stan-dard seond order forward di�erenes; for the viinity ofthe extra-ordinary point, use seond order forward di�er-enes de�ned in (8). The proof is essentially the same.3.2 Distane EvaluationTo ompute the distane between the extra-ordinarypath S(u; v) and the enter fae of its ontrol mesh,L(u; v), we need to parameterize the path S(u; v) �rst.
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-partition of the unit square.Note that by iteratively performing Catmull-Clark sub-division on S(u; v), we get a sequene of regular pathesf Smb g, m � 1, b = 1; 2; 3, and a sequene of extra-ordinary pathes f Sm0 g, m � 1. The extra-ordinarypathes onverge to a limit point whih is the value ofS at (0; 0) [6℄. This limit point and the regular pathesf Smb g, m � 1, b = 1; 2; 3, form a partition of S. If weuse 
mb to represent the parameter spae orrespondingto Smb then f 
mb g, m � 1, b = 1; 2; 3, form a partitionof the unit square 
 = [0; 1℄� [0; 1℄ (see Figure 6) with
m1 = [ 12m ; 12m�1 ℄� [0; 12m ℄;
m2 = [ 12m ; 12m�1 ℄� [ 12m ; 12m�1 ℄;
m3 = [0; 12m ℄� [ 12m ; 12m�1 ℄: (9)

The parametrization of S(u; v) is done as follows. Forany (u; v) 2 
 but (u; v) 6= (0; 0), �rst �nd the 
mb thatontains (u; v). m and b an be omputed as follows.m(u; v) = minfdlog 12 ue; dlog 12 vegb(u; v) = 8<: 1; if 2mu � 1 and 2mv � 12; if 2mu � 1 and 2mv � 13; if 2mu � 1 and 2mv � 1 (10)Then map this 
mb to the unit square with the followingmapping (u; v)! (um; vm)wheretm = (2mt)%1 = � 2mt; if 2mt � 12mt� 1; if 2mt > 1 : (11)The value of S(u; v) is equal to the value of Smb at(um; vm), i.e., S(u; v) = Smb (um; vm):Let Lmb (u; v) be the bilinear parametrization of the enterfae of Smb 's ontrol mesh. Sine Smb is a regular path,following Lemma 1, we havekLmb (u; v)� Smb (u; v)k � 13Mmbwhere Mmb is the seond order norm of the ontol meshof Smb . But the seond order norm of Smb is smaller thanthe seond order norm of Mm, Mm. Hene, the aboveinequality an be written askLmb (u; v)� Smb (u; v)k � 13Mm: (12)So the maximum distane between the original extra-ordinary mesh L(u; v) and the path S(u; v) an be writ-ten ask L(u; v)� S(u; v) k= k L(u; v)� Lmb (um; vm) + Lmb (um; vm)� S(u; v) k� k L(u; v)� Lmb (um; vm) k+ k Lmb (um; vm)� Smb (um; vm) k (13)where 0 � u; v � 1 and um and vm are de�ned in (11).Sine the seond term on the right hand side an be es-timated using (12), the only thing we need to work withis kL(u; v)� Lmb (um; vm) k.It is easy to see that if (u; v) 2 
mb then (u; v) 2 
k0 forany 0 � k < m where
k0 = [0; 12k ℄� [0; 12k ℄: (14)
k0 orresponds to the subpath Sk0 . This means that(2ku; 2kv) is within the parameter spae of Sk0 for 0 �6



k < m, i.e., (2ku; 2kv) = (uk; vk) where uk and vk arede�ned in (11). Consequently, we an onsider Lk0(uk; vk)for 0 � k < m where Lk0 is the bilinear parametrizationof the enter fae of the ontrol mesh of Sk0 (with theunderstanding that L00 = L). What we want to do hereis to write the �rst term on the right hand side of (13) asL(u; v)� Lmb (um; vm) =L00(u; v)� L10(u1; v1) + L10(u1; v1)� L20(u2; v2)+ L20(u2; v2)� L30(u3; v3) + L30(u3; v3)� L40(u4; v4)+ � � �+ Lm�10 (um�1; vm�1)� Lmb (um; vm) (15)and get an estimate for its norm by estimating the normof eah onseutive pair on the right hand side. We havethe following two lemmas. The proofs of these lemmasare shown in Appendie B and C, respetively.Lemma 5: If (u; v) 2 
mb where b and m are de�nedin (10) then for any 0 � k < m� 1 we havek Lk0(uk; vk)� Lk+10 (uk+1; vk+1) k � 1minf n; 8 gMkwhere Mk is the seond order norm of Mk and L00 = L.Lemma 6: If (u; v) 2 
mb where b and m are de�nedin (10) then we havek Lm�10 (um�1; vm�1)� Lmb (um; vm) k� ( 14Mm�1; if b = 218Mm�1; if b = 1 or 3where Mm�1 is the seond order norm of Mm�1.By applying Lemmas 5 and 6 on (15) and then using(12) on (13), we have the following lemma. Proof of thislemma is shown in Appendix D.Lemma 7: The maximum of k L(u; v) � S(u; v) ksatis�es the following inequalityk L(u; v)�S(u; v) k � 8>>>>>><>>>>>>: M0; n = 357M0; n = 54nn2�8n+46M0; 5 < n � 8n24(n2�8n+46)M0; n > 8 (16)where M = M0 is the seond order norm of the extra-ordinary path S(u; v).Sine the oeÆient in the third ase (4n=(n2�8n+46))is smaller than the oeÆient in the seond ase (5=7),we an ombine these two ases into one ase (5 � n � 8)to make the above expression (16) simpler.

3.3 Subdivision Depth ComputationLemma 7 is important beause it not only provides uswith a seond order norm based simple mehanism toestimate the distane between an extra-ordinary surfaepath and its ontrol mesh, it also allows us to estimatethe distane between a level-k ontrol mesh and the sur-fae path for any k > 0. This is beause the distane be-tween a level-k ontrol mesh and the surfae path is dom-inated by the distane between the level-k extra-ordinarysubpath and the orresponding ontrol mesh whih, a-oriding to Lemma 7, iskLk(u; v)�S(u; v) k �8>>><>>>: Mk; n = 30:72Mk; 5 � n � 8n24(n2�8n+46)Mk; n > 8where Mk is the seond order norm of S(u; v)'s level-kontrol mesh, Mk (see the remark at the end of Setion3.1 for the de�nition of Mk). By ombining the aboveresult with Lemma 4, we have the following subdivisiondepth omputation theorem for extra-ordinary surfaepathes.Theorem 8: Given an extra-ordinary surfae pathS(u; v) and an error tolerane �, if k levels of subdivisionsare iteratively performed on the ontrol mesh of S(u; v),where k = �logwMz� �with M being the seond order norm of S(u; v) de�ned in(8), w =8>>><>>>: 32 ; n = 32518 ; n = 54n23n2+8n�46 ; n > 5and z =8>>><>>>: 1; n = 32518 ; 5 � n � 82(n2�8n+46)n2 ; n > 8then the distane between S(u; v) and the level-k ontrolmesh is smaller than �.4 ExamplesSome examples of the presented distane evaluation andsubdivision depth omputation tehniques are given inthis setion. In Figures 7(a) and 7(), the distanes be-tween the blue mesh faes of the ontrol meshes and theorresponding limit surfae pathes are 0.16 and 0.81, re-spetively. For the blue mesh fae shown in Figure 7(a),the subdivision depths for the error toleranes 0.1, 0.01,7



(a) (b)

() (d)Figure 7: Examples: (a) an extra-ordinary CCSS meshfae of valene 3, (b) limit surfae of the ontrol meshshown in (a), () an extra-ordinary CCSS mesh fae ofvalene 5, (d) limit surfae of the ontrol mesh shown in().0.001, and 0.0001 are 2, 7, 13, and 19, respetively. Forthe blue mesh fae shown in Figure 7(), the subdivisiondepths for the error toleranes 0.1, 0.01, 0.001, and 0.0001are 7, 14, 21, and 28, respetively. Note that in the pre-vious approah [3℄, the subdivision depths for these errortoleranes are 9, 24, 40, and 56, respetively. Hene, thenew approah presented in this paper indeed improves theprevious, �rst order norm based approah.5 ConlusionsA new subdivision depth omputation tehnique forextra-ordinary CCSS pathes is presented. The new teh-nique omputes the subdivision depth based on norms ofthe seond order forward di�erenes, not the �rst orderforward di�erenes, of the path's ontrol points. Hene,the omputed subdivision depth reets the urvature dis-tribution of the extra-ordinary path, not its dimension.Our result also points out that as long as the design obje-tive an be ahieved, one should try to use extra-ordinaryverties with smaller valene beause, aording to Theo-rem 8, smaller valene gives higher onvergene rate and,onsequently, smaller subdivision depth for the same pre-ision.Although the new tehnique improves the previous ap-proah [3℄, it is not lear if the new approah is optimum

for extra-ordinary CCSS pathes. This will be a studydiretion in the future.6 Appendix A: Proof of Lemma 4For onveniene of subsequent referene, we introdue twonotations here:8>>><>>>: A = Pni=1(2Vk1 �Vk2i �Vk2[(i+2)%n)℄)= 2nVk1 � 2Pni=1Vk2iB = Pni=1(Vk2[i%n+1℄ �Vk2i+1 �Vk2[i%n+1℄+1)= 2Pni=1Vk2i � 2Pni=1Vk2i+1Note that kAk � nMk and kBk � nMk. Then Vk+11 anbe expressed asVk+11 = Fn + 2En + (n�3)Vk1n= Vk1 6Pn1 Vk2i+Pn1 Vk2i+1�7nVk14n2= Vk1 � 18n2 (7A+B) (17)where Vk1 is the extra-ordinary vertex with subdivisiondepth k.Seond order forward di�erenes involved in Mk+1an be lassi�ed into four ategories: F-E-F, E-F-E,E-V-E and V-E-V, where F indiates a new fae point, Eindiates a new edge point and V indiates a new vertexpoint. For some ategories, we also need to onsider if anextra-ordinary mesh fae is involved in the seond orderforward di�erene.Category 1 (F-E-F):The proof is similar to the same ategory in the proofof Lemma 3 in [3℄ and the result is the same, i.e., thenorm of eah seond order forward di�erene of this typeis � Mk=4 where Mk is the seond order norm of theextra-ordinary path after k subdivisions. Hene theproof is omitted.Category 2 (E-F-E):Like the above ategory, the proof of this ategory issimilar to the same ategory in the proof of Lemma 3in [3℄ and the result is the same as well (i.e., � Mk=4).Hene the proof is omitted.Category 3 (E-V-E):Case 1: When the extra-ordinary vertex point V k+11 isinvolved. Consider 2V k+11 �V k+12 �V k+16 only. The proofof other ases is similar.Note that from (17) and de�nition of edge points wehaveVk+11 = Vk1 � 18n2 (7A+B)Vk+12 = 38 (Vk1 +Vk2 ) + 116 (Vk3 +Vk4 +Vk2n +Vk2n+1)Vk+16 = 38 (Vk1 +Vk6 ) + 116 (Vk4 +Vk5 +Vk7 +Vk8 )8



Hene,k2Vk+11 �Vk+12 �Vk+16 k= k2[Vk1 � 18n2 (7A+B)℄� 38Vk1 � 38Vk2 � 116Vk2n� 116Vk2n+1 � 116Vk3 � 116Vk4 � 38Vk1 � 38Vk6 � 116Vk4� 116Vk5 � 116Vk7 � 116Vk8k= k 54Vk1 � 38Vk2 � 38Vk6 � 116Vk2n � 116Vk2n+1 � 116Vk3� 18Vk4 � 116Vk5 � 116Vk7 � 116Vk8 � 14n2 (7A+B)k= k 12 (2Vk1 �Vk2 �Vk6 ) + 116 (2Vk1 �Vk2n �Vk4 )+ 116 (2Vk1 �Vk4 �Vk8) + 116 (2Vk2 �Vk2n+1 �Vk3)+ 116 (2Vk6 �Vk5 �Vk7)� 74n2A� 14n2BkLetDA = A� (2Vk1 �Vk2 �Vk6 )� (2Vk1 �Vk4 �Vk8)� (2Vk1 �Vk2n �Vk4)DB = B� (2Vk2 �Vk2n+1 �Vk3 )� (2Vk6 �Vk5 �Vk7)We have kDAk � (n� 3)Mk and kDBk � (n� 2)Mk.Hene,k2Vk+11 �Vk+12 �Vk+16 k= k( 12 � 74n2 )(2Vk1 �Vk2 �Vk6 )+ ( 116 � 74n2 )(2Vk1 �Vk2n �Vk4 )+ ( 116 � 74n2 )(2Vk1 �Vk4 �Vk8)+ ( 116 � 14n2 )(2Vk2 �Vk2n+1 �Vk3 )+ ( 116 � 14n2 )(2Vk6 �Vk5 �Vk7)� 74n2DA � 14n2DBk:In the above equation, Vk8 should be replaed with Vk2 ifn = 3.For the ase n=3,k2Vk+11 �Vk+12 �Vk+16 k� [( 12 � 74n2 ) + ( 74n2 � 116 ) + ( 74n2 � 116 )+ ( 116 � 14n2 ) + ( 116 � 14n2 ) + 7(n�3)4n2 + n�24n2 ℄Mk= ( 12 + 8n�184n2 )Mk = ( 12 + 636 )Mk = 23MkFor the ase n=5,k2Vk+11 �Vk+12 �Vk+16 k� [( 12 � 74n2 ) + ( 74n2 � 116 ) + ( 74n2 � 116 )+ ( 116 � 14n2 ) + ( 116 � 14n2 ) + 7(n�3)4n2 + n�24n2 ℄Mk= ( 12 + 8n�184n2 )Mk = ( 12 + 22100 )Mk = 0:72MkFor the ase n>5,k2Vk+11 �Vk+12 �Vk+16 k� [( 12 � 74n2 ) + ( 116 � 74n2 ) + ( 116 � 74n2 )+ ( 116 � 14n2 ) + ( 116 � 14n2 ) + 7(n�3)4n2 + n�24n2 ℄Mk= ( 12 + 416 + �7�7�7�1�1+7n�21+n�24n2 )Mk= ( 34 + 8n�464n2 )MkCase 2: When the extra-ordinary point is not involved.The proof of this ase is similar to the same ategory in

the proof of Lemma 3 in [3℄ and the result is the same aswell (i.e., �Mk=4). Hene the proof is omitted.Category 4 (V-E-V):Case 1: When the extra-ordinary vertex point V k1 + 1 isinvolved. Consider 2Vk+14 � Vk+11 � Vk+12n+7 only. Theproof of other ases is similar:k2Vk+14 �Vk+11 �Vk+12n+7k= k 34Vk1 + 34Vk4 + 18Vk2 + 18Vk5 + 18Vk6 �Vk1+ 18n2 (7A+B)� 916Vk4 � 164 (Vk2 +Vk6 +Vk2n+6+Vk2n+8)� 332 (Vk1 +Vk3 +Vk5 +Vk2n+7)k= k 18 (Vk4 �Vk1 �Vk2n+7) + 164 (2Vk2n+7 �Vk2n+6�Vk2n+8)� 764 (2Vk1 �Vk2 �Vk6)� 132 (2Vk4 �Vk3 �Vk5 ) + 18n2 (7A+B)k= k 18 (2Vk4 �Vk1 �Vk2n+7) + 164 (2Vk2n+7 �Vk2n+6�Vk2n+8)� ( 764 � 78n2 )(2Vk1 �Vk2 �Vk6 )� ( 132 � 18n2 )(2Vk4 �Vk3 �Vk5) + 78n2 [A� (2Vk1�Vk2 �Vk6)℄ + 18n2 [B� (2Vk4 �Vk3 �Vk5 )℄k� [ 18 + 164 + ( 764 � 78n2 ) + ( 132 � 18n2 ) + 7(n�1)8n2 + n�18n2 ℄Mk= ( 932 � 1n2 + n�1n2 )Mk = ( 932 + n�2n2 )Mk:Case 2: When the extra-ordinary vertex point V k+11 isnot involved. The proof of this ase is similar to thesame ategory in the proof of Lemma 3 in [3℄ and theresult is the same as well (i.e., �Mk=4). Hene the proofis omitted.The lemma now follows from ombining the results fromthe above four ategories.7 Appendix B: Proof of Lemma 5The enter faes of Sk0 and Sk+10 are f Vk1 ;Vk6 ;Vk5 ;Vk4 gand f Vk+11 ;Vk+16 ;Vk+15 ;Vk+14 g, respetively. By de�-nition and the fat that uk+1 = 2uk and vk+1 = 2vk, wehave Lk0(uk; vk) = (1� vk)[(1� uk)V k1 + ukV k6 ℄+ vk[(1� uk)V k4 + ukV k5 ℄and Lk+10 (uk+1; vk+1)= (1� vk+1)[(1� uk+1)Vk+11 + uk+1Vk+16 ℄+ vk+1[(1� uk+1)Vk+14 + uk+1Vk+15 ℄= (1� 2vk)[(1� 2uk)Vk+11 + 2ukVk+16 ℄+ 2vk[(1� 2uk)Vk+14 + 2ukVk+15 ℄:9



Using the expression of (17), we getk Lk0(uk; vk)� Lk+10 (uk+1; vk+1) k= k (1� vk)[(1� uk)Vk1 + ukVk6 ℄ + vk[(1� uk)Vk4+ ukVk5 ℄� (1� 2vk)[(1� 2uk)(Vk1 � 18n2 (7A+B))+ 2uk( 38Vk1 + 38Vk6 + 116Vk4 + 116Vk5 + 116Vk7 + 116Vk8)℄� 2vk[(1� 2uk)( 38Vk1 + 38Vk4 + 116Vk2 + 116Vk3+ 116Vk5 + 116Vk6 ) + uk2 (Vk1 +Vk4 +Vk5 +Vk6)℄ k= k 18 [uk(2Vk1 �Vk4 �Vk8 + 2Vk6 �Vk5 �Vk7 )+ vk(2Vk1 �Vk2 �Vk6 + 2Vk4 �Vk3 �Vk5) + ukvk�(�8Vk1 + 2Vk2 + 2Vk3 � 2Vk4 + 4Vk5 � 2Vk6 + 2Vk7+ 2Vk8)℄ + 18n2 (1� 2uk)(1� 2vk)(7A+B) k= k 18 [uk(2Vk1 �Vk4 �Vk8 ) + uk(2Vk6 �Vk5 �Vk7 )+ vk(2Vk1 �Vk2 �Vk6) + vk(2Vk4 �Vk3 �Vk5)� 2ukvk(2Vk1 �Vk2 �Vk6)� 2ukvk(2Vk1 �Vk4 �Vk8 )� 2ukvk(2Vk6 �Vk5 �Vk7)� 2ukvk(2Vk4 �Vk3 �Vk5 )℄+ 18n2 (1� 2uk)(1� 2vk)(7A+B) k= k 18 [(uk � 2ukvk)(2Vk1 �Vk4 �Vk8 ) + (uk � 2ukvk)�(2Vk6 �Vk5 �Vk7 ) + (vk � 2ukvk)(2Vk1 �Vk2 �Vk6)+ (vk � 2ukvk)(2Vk4 �Vk3 �Vk5)℄+ 18n2 (1� 2uk)(1� 2vk)(7A+B) k� 18 [2(uk � 2ukvk) + 2(vk � 2ukvk)℄Mk+ 1n (1� 2uk)(1� 2vk)Mk= [ 14 (uk + vk)� ukvk + 1n (1� 2uk)(1� 2vk)℄MkTo �nd the maximum value of the above inequality, wesetf(u; v) = 14(u+v)�uv+1n (1�2u)(1�2v); 0 � u; v � 12 :The partial derivatives of f with respet to u and v arefu(u; v) = 14 � v � 2n (1� 2v)and fv(u; v) = 14 � u� 2n (1� 2u);respetively. By setting fu and fv to zero and solving foru and v, we getu = n� 84n� 16 ; v = n� 84n� 16 :On the other hand, it is easy to see that f is a linearfuntion on the boundary of its domain 
10 = [0; 1=2℄ �[0; 1=2℄. Hene, the maximum of f(u; v) on 
10 must ourat one of the orners of 
10 or at ( n�84n�16 ; n�84n�16 ). Note thatf(0; 0) = 1n; f(12 ; 0) = 18 ; f(0; 12) = 18 ; f(12 ; 12) = 0and f( n� 84n� 16 ; n� 84n� 16) = n16(n� 4) :Therefore the largest value ours at (0; 0) when n � 8,whih is 1n , and the largest value ours at at ( 12 ; 0) or(0; 12 ) when n > 8, whih is 18 . Hene, by ombiningthese ases, we getk Lk0(uk; vk)� Lk+10 (uk+1vk+1 k � 1minfn; 8gMk:

8 Appendix C: Proof of Lemma 6We onsider the ase b = 2 �rst, i.e., 12m � u; v < 12m�1 .Sine 2m�1u and 2m�1v are both smaller than 1 and 2muand 2mv are both bigger than 1, aording to de�nition(11), we haveum�1 = 2m�1u; vm�1 = 2m�1vandum = 2mu�1 = 2um�1�1; vm = 2mv�1 = 2vm�1�1:The enter fae of Sm�10 is fVm�11 ;Vm�16 ;Vm�15 ;Vm�14 gand the enter fae of Sm2 is f Vm5 ;Vm2n+3,Vm2n+2;Vm2n+6 g. Hene, we haveLm�10 (um�1; vm�1)= (1� vm�1)[(1� um�1)Vm�11 + um�1Vm�16 ℄+ vm�1[(1� um�1)Vm�14 + um�1Vm�15 ℄andLm2 (um; vm)= (1� vm)[(1� um)Vm5 + umVm2n+3℄+ vm[(1� um)Vm2n+6 + umVm2n+2℄= 2(1� vm�1)[2(1� um�1)Vm5 + (2um�1 � 1)Vm2n+3℄+ (2vm�1 � 1)[2(1� um�1)Vm2n+6+ (2um�1 � 1)Vm2n+2℄If we de�ne A5 and B5 as follows:A5 = 2[(2Vm�15 �Vm�14 �Vm�12n+3)+ (2Vm�15 �Vm�16 �Vm�12n+6)℄B5 = (2Vm�14 �Vm�11 �Vm�12n+7)+ (2Vm�16 �Vm�11 �Vm�12n+4)+ (2Vm�12n+3 �Vm�12n+2 �Vm�12n+4)+ (2Vm�12n+6 �Vm�12n+2 �Vm�12n+7)then Vm2n+2 an be expressed asVm2n+2 = Vm�15 � 1128(7A5 +B5):10



Note that kA5 k � 4Mm�1 and kB5 k � 4Mm�1. There-fore,k Lm�10 (um�1; vm�1)� Lm2 (um; vm) k= k (1� vm�1)[(1� um�1)Vm�11 + um�1Vm�16 ℄+ vm�1[(1� um�1)Vm�14 + um�1Vm�15 ℄� 2(1� vm�1)[2(1� um�1)Vm�11 +Vm�14 +Vm�15 +Vm�164+ (2um�1 � 1)( 38Vm�15 + 38Vm�16 + 116Vm�11+ 116Vm�14 + 116Vm�12n+3 + 116Vm�12n+4)℄� (2vm�1 � 1)�[2(1� um�1)( 38Vm�14 + 38Vm�15 + 116Vm�11+ 116Vm�16 + 116Vm�12n+6 + 116Vm�12n+7)+ (2um�1 � 1)(Vm�15 � 1128 (7A5 +B5))℄ k= k 18 [(2um�1 + vm�1 � 2um�1vm�1 � 1)�(2Vm�16 �Vm�11 �Vm�12n+4)+ (um�1 + 2vm�1 � 2um�1vm�1 � 1)�(2Vm�15 �Vm�16 �Vm�12n+6)+ (2um�1 + vm�1 � 2um�1vm�1 � 1)�(2Vm�15 �Vm�14 �Vm�12n+3)+ (um�1 + 2vm�1 � 2um�1vm�1 � 1)�(2Vm�14 �Vm�11 �Vm�12n+7)℄� 1128 (2um�1 � 1)(2vm�1 � 1)(7A5 +B5) k� 18 [2(2um�1 + vm�1 � 2um�1vm�1 � 1)+ 2(um�1 + 2vm�1 � 2um�1vm�1 � 1)℄Mm�1+ 1128 (2um�1 � 1)(2vm�1 � 1)32Mm�1= 14 (um�1 + vm�1 � 1)Mm�1� 14Mm�1:We next onsider the ase b = 3, i.e., 0 < u � 12m and12m < v � 12m�1 . The proof of the ase b = 1 is similarand, onsequently, will be omitted.In this ase sine 2mu � 1 and 1 < 2mv, but 2m�1v �1, we have um�1 = 2m�1u; vm�1 = 2m�1vandum = 2mu = 2um�1; vm = 2mv � 1 = 2vm�1 � 1:The enter fae of the ontrol mesh of Sm3 isf Vm4 ;Vm5 ;Vm2n+6;Vm2n+7 g. Hene, Lm3 (um; vm) an beexpressed asLm3 (um; vm)= (1� vm)[(1� um)Vm4 + umVm5 ℄+ vm[(1� um)Vm2n+7 + umVm2n+6℄= 2(1� vm�1)[(1� 2um�1)Vm4 + 2um�1Vm5 ℄+ (2vm�1 � 1)[(1� 2um�1)Vm2n+7 + 2um�1Vm2n+6℄If we de�ne A4 and B4 as followsA4 = 2[(2Vm�14 �Vm�11 �Vm�12n+7)+ (2Vm�14 �Vm�13 �Vm�15 )℄B4 = (2Vm�11 �Vm�12 �Vm�16 )+ (2Vm�13 �Vm�12 �Vm�12n+8)+ (2Vm�12n+7 �Vm�12n+6 �Vm�12n+8)+ (2Vm�15 �Vm�16 �Vm�12n+6)

then Vm2n+7 an be expressed asVm2n+7 = Vm�14 � 1128(7A4 +B4)with k A4 k � 4Mm�1 and k B4 k � 4Mm�1. Therefore,by using the expression of Lm�10 (um�1; vm�1) given inthe previous ase and the above expression for Vm2n+7, wehavek Lm�10 (um�1; vm�1)� Lm3 (um; vm) k= k (1� vm�1)[(1� um�1)Vm�11 + um�1Vm�16 ℄+ vm�1[(1� um�1)Vm�14 + um�1Vm�15 ℄� 2(1� vm�1)[(1� 2um�1)( 38Vm�11 + 38Vm�14+ 116Vm�12 + 116Vm�13 + 116Vm�15 + 116Vm�16 )+ 2um�1Vm�11 +Vm�14 +Vm�15 +Vm�164 ℄� (2vm�1 � 1)�[(1� 2um�1)(Vm�14 � 1128 (7A4 +B4))+ 2um�1( 38Vm�14 + 38Vm�15 + 116Vm�11 + 116Vm�16+ 116Vm�12n+6 + 116Vm�12n+7)℄ k= k 18 [(2um�1vm�1 � um�1)(2Vm�14 �Vm�11 �Vm�12n+7)+ (2um�1vm�1 � um�1)(2Vm�15 �Vm�16 �Vm�12n+6)+ (2um�1vm�1 � 2um�1 � vm�1 + 1)�(2Vm�11 �Vm�12 �Vm�16 )+ (2um�1vm�1 � 2um�1 � vm�1 + 1)�(2Vm�14 �Vm�13 �Vm�15 )℄� 1128 (1� 2um�1)(2vm�1 � 1)(7A4 +B4) k� 18 [2(2um�1vm�1 � um�1)+ 2(2um�1vm�1 � 2um�1 � vm�1 + 1)℄Mm�1+ 1128 (1� 2um�1)(2vm�1 � 1)32Mm�1= 14 (8um�1vm�1 � 5um�1 � 3vm�1 + 2)Mm�1It is easy to see that if we de�ne f(u; v) as followsf(u; v) = 8uv � 5u� 3v + 2then the maximum value of f(u; v) on 0 � u � 12 and12 < v � 1 is 12 . Consequently, we havek Lm�10 (um�1; vm�1)� Lm3 (um; vm k � 18Mm�1:9 Appendix D: Proof of Lemma 7By applying Lemmas 5 and 6 on the right side of (15)and then using (12) for the seond term on the right sideof (13), we getk L(u; v)� S(u; v) k�Pm�2k=0 k Lk0(uk; vk)� Lk+10 (uk+1; vk+1) k+ k Lm�10 (um�1; vm�1)� Lmb (um; vm) k+ k Lmb (um; vm)� Smb (um; vm) k�Pm�2k=0 1minfn;8gMk + 14Mm�1 + 13Mm (18)
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When n = 5, using the fat that minfn; 8g = 5 andMk+1 � 0:72Mk from Lemma 4, (18) beomesk L(u; v)� S(u; v) k� 15 [ Pm�2k=0 (0:72)k℄M0 + 14 (0:72)m�1M0+ 13 (0:72)mM0= h 1�(0:72)m�11:4 + 14 (0:72)m�1 + 13 (0:72)miM0= 6�(1:884)(0:72)m�18:4 M0� 57M0The oeÆient 5=7 follows from the fat that6�(1:884)(0:72)m�18:4 is an inreasing funtion of m and itsmaximum ours at m = +1.When n = 3, using the fat that minfn; 8g = 3 andMk+1 � 23Mk from Lemma 4, (18) beomesk L(u; v)� S(u; v) k� 13 [ Pm�2k=0 ( 23 )k℄M0 + 14 ( 23 )m�1M0 + 13 ( 23 )mM0= �1� ( 23 )m�1 + 14 ( 23 )m�1 + 13 ( 23 )m�M0�M0For 5 < n � 8, we havek L(u; v)� S(u; v) k� 1n 1�( 34+ 8n�464n2 )m�11�( 34+ 8n�464n2 ) M0 + 14 ( 34 + 8n�464n2 )m�1M0+ 13 ( 34 + 8n�464n2 )mM0= [ 4nn2�8n+46 � ( 4nn2�8n+46 � 12 � 4n�236n2 )( 34 + 8n�464n2 )m�1℄M0� 4nn2�8n+46M0The last inequality follows from the observation that4nn2�8n+46� 12� 4n�236n2 > 0 and 34+ 8n�464n2 � 78 for 5 < n � 8and, therefore, the maximum of the oeÆient of M0 o-urs at m = +1.As for n > 8, we havek L(u; v)� S(u; v) k� 18 1�( 34+ 8n�464n2 )m�11�( 34+ 8n�464n2 ) M0 + 14 ( 34 + 8n�464n2 )m�1M0+ 13 ( 34 + 8n�464n2 )mM0= [ n22(n2�8n+46) � ( n22(n2�8n+46) � 12 � 4n�236n2 )�( 34 + 8n�464n2 )m�1℄M0� n22(n2�8n+46)M0The last inequality follows from a similar observation asthe above ase. This ompletes the proof. 2
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