
Subdivision Depth Computation for Catmull-Clark Subdivision SurfaesFuhua (Frank) Cheng �, University of Kentuky, heng�s.uky.eduJun-Hai Yong y, Tsinghua University, yongjh�tsinghua.edu.nAbstratA subdivision depth omputation tehnique for Catmull-Clark subdivision surfaes (CCSS's) is presented.The subdivision depth omputation tehnique also inludes distane evaluation tehniques for CCSS pathes withtheir ontrol meshes. The distane and the subdivision depth omputation tehniques provide the long-neededpreision/error ontrol tools in subdivision surfae trimming, �nite element mesh generation, boolean operations,and surfae tessellation for rendering proesses.Keywords: subdivision surfaes, distane evaluation, subdivision depth omputation1 IntrodutionSubdivision surfaes have beome popular reently in graphial modeling, animation and CAD/CAM beause oftheir stability in numerial omputation, simpliity in oding and, most importantly, their apability in model-ing/representing omplex shape of arbitrary topology. Given a ontrol mesh and a set of mesh re�ning rules (or,more intuitively, orner utting rules), one gets a limit surfae by reursively utting o� orners of the ontrol mesh[3℄[6℄. The limit surfae is alled a subdivision surfae beause the orner utting (mesh re�ning) proess is a general-ization of the uniform B-spline surfae subdivision tehnique. Subdivision surfaes inlude uniform B-spline surfaesand pieewise B�ezier surfaes as speial ases. Atually subdivision surfaes inlude non-uniform B-spline surfaesand NURBS surfaes as speial ases as well [11℄. Subdivision surfaes an model/represent omplex shape of ar-bitrary topology beause there is no limit on the shape and topology of the ontrol mesh of a subdivision surfae.With the parametrization tehnique of subdivision surfaes beoming available [12℄, we now know that subdivisionsurfaes over both parametri forms and disrete forms. Sine parametri forms are good for design and representa-tion and disrete forms are good for mahining and tessellation (inluding FE mesh generation) [1℄, we �nally havea representation sheme that is good for all graphis and CAD/CAM appliations.Researh work for subdivision surfaes has been done in several important areas, suh as surfae trimming [8℄,boolean operations [2℄, and mesh editing [14℄. However, the area of preision/error ontrol for Catmull-Clark sub-division surfaes (CCSS's)is ompletely blank. For instane, given an error tolerane, how many levels of reursiveCatmull-Clark subdivision should be performed on the initial ontrol mesh so that the distane between the resultantontrol mesh and the limit surfae would be less than the error tolerane? This error ontrol tehnique is requiredin all tessellation based appliations suh as subdivision surfae trimming, �nite element mesh generation, booleanoperations, and surfae tessellation for rendering. A subdivision depth omputation tehnique based on bounds ofseond derivatives has been presented for tensor produt rational surfaes [4℄. But nothing in this area has beendone for Catmull-Clark subdivision surfaes yet. The tehnique used for tensor produt rational surfaes an not beused here beause the parameter spae of a CCSS usually does not �t into a retangular grid struture.In this paper we will present a subdivision depth omputation tehnique for a CCSS. The subdivision depthomputation tehnique also inludes distane evaluation tehniques for a CCSS path with its ontrol mesh. Thenew tehniques are based on the ontrol points of the CCSS path only and work for CCSS pathes with or withoutan extraordinary vertex. The presented subdivision depth omputation tehnique provides the �rst and an eÆienterror ontrol tool that works for all tessellation based appliations of CCSS's. A potential disadvantage of thesubdivision depth omputation tehnique is that it might generate a relatively large subdivision depth for a pathwith an extraordinary vertex even though the path is already at enough. This is due to the fat that the �rst ordernorm an not measure the urvature di�erene between two points. A possible solution to this problem is given inthe last setion.�Work of this author is supported by NSF (DMI-0422126).yWork of this author is supported by NSF of China (60403047) and FANEDD (200342).1



2 Subdivision Depth Computation for Regular PathesLet V0, V1, V2 and V3 be the ontrol points of a uniform ubi B-spline urve segment C(t) whose parameter spaeis [0; 1℄. If we parametrize the middle leg of the ontrol polygon as follows: L(t) = V1+ (V2�V1)t, 0 � t � 1, thenthe maximum of kL(t) �C(t)k is alled the distane between the urve segment and its ontrol polygon. It is easyto see thatkL(t)�C(t)k = k (1� t)36 (2V1�V0�V2)+ t36 (2V2�V1�V3)k � 16 maxfk2V1�V0�V2k; k2V2�V1�V3kg: (1)Sine (2V1 �V0 �V2)=6 and (2V2 �V1 �V3)=6 are the values of L(t) � C(t) at t = 0 and t = 1, we have thefollowing lemma.Lemma 1: The maximum of kL(t)�C(t)k ours at the endpoints of the urve segment and an be expressed asmax0�t�1 kL(t)�C(t)k = 16 maxfk2V1 �V0 �V2k; k2V2 �V1 �V3kg (2)A form more general than (1) has been proved by Peters [9℄. His result works for uniform B-spline urves of anydegree. However, the above result is more intuitive and is all we need for subsequent results. We next de�ne thedistane between a uniform biubi B-spline surfae path and its ontrol mesh.Let Vi;j , 0 � i; j � 3, be the ontrol points of a uniform biubi B-spline surfae path S(u; v) with parameterspae [0; 1℄� [0; 1℄. If we parametrize the entral mesh fae fV1;1;V2;1;V1;2;V2;2g as follows:L(u; v) = (1� v)[(1� u)V1;1 + uV2;1℄ + v[(1� u)V1;2 + uV2;2℄; 0 � u; v � 1then the maximum of kL(u; v) � S(u; v)k is alled the distane between S(u; v) and its ontrol mesh. If we de�neQu;k, Qv;k, �Qu;k and �Qv;k as follows:Qu;k � (1� u)V1;k + uV2;k; Qv;k � (1� v)Vk;1 + vVk;2;�Qu;k � P3i=0Ni;3(u)Vi;k; �Qv;k � P3j=0Nj;3(v)Vk;jwhere Ni;3(t) are standard uniform B-spline basis funtions of degree three, we havekL(u; v)� S(u; v)k � (1� v)kQu;1 � �Qu;1k+ vkQu;2 � �Qu;2k+ 3Xi=0 Ni;3(u)kQv;i � �Qv;ik:By applying Lemma 1 on kQu;1 � �Qu;1k, kQu;2 � �Qu;2k and kQv;i � �Qv;ik, i = 1; 2; 3, and by de�ning M0 as themaximum norm of the seond order forward di�erenes of the ontrol points of S(u; v), we havekL(u; v)� S(u; v)k � 16[(1� v)M0 + vM0 + 3Xi=0 Ni;3(u)M0℄ � 13M0:M0 is alled the seond order norm of S(u; v). This leads to the following lemma.Lemma 2: The maximum of kL(u; v)� S(u; v)k satis�es the following inequalitymax0�u;v�1 kL(u; v)� S(u; v)k � 13M0 (3)where M0 is the seond order norm of S(u; v).Note that even though the maximum of kL(t) � C(t)k ours at the end points of the urve segment C(t), themaximum of kL(u; v)�S(u; v)k for a surfae path usually does not our at the orners of S(u; v). In the following,we present subdivision depth omputation tehnique for CCSS pathes not adjaent to an extraordinary vertex.Let Vi;j , 0 � i; j � 3, be the ontrol points of a uniform biubi B-spline surfae path S(u; v). We use Vki;j ,0 � i; j � 3 + 2k � 1, to represent the new ontrol points of the surfae path after k levels of reursive subdivision.The indexing of the new ontrol points follows the onvention that Vk0;0 is always the fae point of the mesh fae2



fVk�10;0 ;Vk�11;0 ;Vk�10;1 ;Vk�11;1 g. The new ontrol points Vki;j will be alled the level-k ontrol points of S(u; v) and thenew ontrol mesh will be alled the level-k ontrol mesh of S(u; v).Note that if we divide the parameter spae of the surfae path into 4k regions as follows:
km;n = [m2k ; m+ 12k ℄� [ n2k ; n+ 12k ℄; (4)where 0 � m;n � 2k � 1 and let the orresponding subpathes be denoted Skm;n(u; v), then eah Skm;n(u; v)is a uniform biubi B-spline surfae path de�ned by the level-k ontrol point set fVkp;q j m � p � m + 3; n �q � n + 3g. Skm;n(u; v) is alled a level-k subpath of S(u; v). One an de�ne a level-k bilinear plane Lkm;n onfVkp;q j p = m + 1;m + 2; q = n + 1; n + 2g and measure the distane between Lkm;n(u; v) and Skm;n(u; v). We saythat the distane between S(u; v) and the level-k ontrol mesh is smaller than � if the distane between eah level-ksubpath Skm;n(u; v) and the orresponding level-k bilinear plane Lkm;n(u; v), 0 � m;n � 2k � 1, is smaller than �. Inthe following, we will show how to ompute a subdivision depth k for a given � so that the distane between S(u; v)and the level-k ontrol mesh is smaller than � after k levels of reursive subdivision. The following lemma is neededin the derivation of the omputation proess. If we use Mkm;n to represent the seond order norm of Skm;n(u; v), i.e.,the maximum norm of the seond order forward di�erenes of the ontrol points of Skm;n(u; v), then the lemma showsthe seond order norm of Skm;n(u; v) onverges at a rate of 1=4 of the level-(k � 1) seond order norm. The proof ofthis lemma is given in Appendix A.Lemma 3 If Mkm;n is the seond order norm of Skm;n(u; v) then we haveMkm;n � �14�kM0 (5)where M0 is the seond order norm of S(u; v).With Lemmas 2 and 3, it is easy to see that, for any 0 � m;n � 2k�1, we havemax0�u;v�1 kLkm;n(u; v)� Skm;n(u; v)k � 13Mkm;n � 13 �14�kM0: (6)Hene, if k is large enough to make the right side of (6) smaller than �, we havemax0�u;v�1 kLkm;n(u; v)� Skm;n(u; v)k � �for every 0 � m;n � 2k�1. This leads to the following main result of this setion.Theorem 4 Let Vi;j , 0 � i; j � 3, be the ontrol points of a uniform biubi B-spline surfae path S(u; v). Forany given � > 0, if k � d log4(M03� ) e (7)levels of reursive subdivision are performed on the ontrol points of S(u; v) then the distane between S(u; v) andthe level-k ontrol mesh is smaller than � where M0 is the seond order norm of S(u; v).3 Subdivision Depth Computation for Extra-Ordinary PathesThe subdivision depth omputation proess for a CCSS path with an extraordinary vertex is di�erent. This isbeause in the viinity of an extraordinary vertex one does not have a uniform B-spline surfae path representationand, onsequently, annot use the tehnique of Theorem 4 diretly. Fortunately, the size of suh a viinity an bemade as small as possible, therefore, one an redue the size of suh a viinity to a degree that is tolerable (i.e.,within the given error bound) and use the tehnique of Theorem 4 to work on the remaining part of the surfaepath. A subdivision depth omputation tehnique based on this onept for a CCSS path with an extraordinaryvertex will be presented below. we assume the initial mesh has been subdivided at least twie so that eah mesh faeis a quadrilateral and ontains at most one extraordinary vertex. We need to de�ne a few notations �rst.3
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Figure 1: (a) Ordering of ontrol points for an extra-ordinary CCSS path; (b) Control point sets �n1 , �n2 and �n3 .Let �00 = f Vi j 1 � i � 2N +8 g be a level-0 ontrol point set that inuenes the shape of a surfae path S(u; v)(= S00(u; v)). V1 is an extraordinary vertex with valene N . The ontrol verties are ordered following Stam's fashion[12℄ (see Figure ??).If we useVni to represent the level-n ontrol verties generated after n levels of reursive Catmull-Clark subdivision,and use Sn0 , Sn1 , Sn2 and Sn3 to represent the subpathes of Sn�10 de�ned over the tiles
n0 = [0; 12n ℄� [0; 12n ℄; 
n1 = [ 12n ; 12n�1 ℄� [0; 12n ℄; 
n2 = [ 12n ; 12n�1 ℄� [ 12n ; 12n�1 ℄; 
n3 = [0; 12n ℄� [ 12n ; 12n�1 ℄;respetively, then the shape of Sn0 , Sn1 , Sn2 and Sn3 are inuened by the level-n ontrol point sets �n0 , �n1 , �n2 and�n3 , respetively. �n0 is de�ned below and de�nition of �n1 , �n2 and �n3 an be found in Figure ??.�n0 = f Vni j 1 � i � 2N + 8 gSn1 , Sn2 and Sn3 are standard uniform biubi B-spline surfae pathes beause their ontrol meshes satisfy a 4-by-4struture. Hene, the tehnique desribed in Theorem 4 an be used to ompute a subdivision depth for eah ofthem. Sn0 is not a standard uniform biubi B-spline surfae path. Hene, Theorem 4 an not be used to ompute asubdivision depth for Sn0 diretly. For the onveniene of referene, we shall all Sn0 a level-n extraordinary subpathof S(u; v) beause it ontains the limit point of the extraordinary points.1 Note that if H0 and Hn are olumn vetorrepresentations of the ontrol points of �00 and �n0 , respetively,H0 � (V0;V1; � � � ;V2N+8)t; Hn � (Vn0 ;Vn1 ; � � � ;Vn2N+8)twhere (X; X; � � � ;X)t represents the transpose of the row vetor (X; X; � � � ;X) then we haveHn = (T )n H0 (8)where T is the (2N + 8)� (2N + 8) (extended) subdivision matrix de�ned as follows [7℄[12℄:T � � �T 0�T1;1 �T1;2 � ; (9)with �T = 0BBBBBBBBBBB�
aN bN N bN N bN � � � bN Nd d e e 0 0 � � � e ef f f f 0 0 � � � 0 0d e e d e e � � � 0 0f 0 0 f f f � � � 0 0... . . . ...d e 0 0 0 0 � � � d ef f 0 0 0 0 � � � f f

1CCCCCCCCCCCA ; (10)1To be proved in the next subsetion. 4



�T1;1 = 0BBBBBBBB�  0 0 b a b 0 0 0e 0 0 e d d 0 0 0b 0 0  b a b  0e 0 0 0 0 d d e 0e 0 0 d d e 0 0 0b  b a b  0 0 0e e d d 0 0 0 0 0
1CCCCCCCCA ; �T1;2 = 0BBBBBBBB�  b  0 b  00 e e 0 0 0 00  b  0 0 00 0 e e 0 0 00 0 0 0 e e 00 0 0 0  b 0 0 0 0 0 e e

1CCCCCCCCA (11)and aN = 1� 74N ; bN = 32N2 ; N = 14N2 ; a = 916 ; b = 332 ;  = 164 ; d = 38 ; e = 116 ; f = 14 :3.1 Computing subdivision depth for a viinity of the extraordinary vertexThe goal here is to �nd an integer n� for a given � > 0 so that if n (� n�) reursive subdivisions are performed on�00, then the ontrol point set of the level-n extraordinary subpath Sn0 of S(u; v), �n0 = f Vni j 1 � i � 2N + 8 g, isontained in the sphere B(Vn+15 ; �=2) with enter Vn+15 � (Vn1 +Vn4 +Vn5 +Vn6 )=4 and radius �=2. Note that if the(2N + 8)-point ontrol mesh �n0 is ontained in the sphere B(Vn+15 ; �=2) then the level-n extraordinary subpathSn0 is ontained in the sphere B(Vn+15 ; �=2) as well. This follows from the fat that Sn0 , as the limit surfae of �n0 ,is ontained in the onvex hull of �n0 and the onvex hull of �n0 is ontained in the sphere B(Vn+15 ; �=2). But thenwe have max kSn0 (u; v)� Ln0 (u; v)k < � (12)where Ln0 (u; v) is a bilinear plane de�ned on the level-n mesh fae f Vn1 ; Vn4 ; Vn5 ; Vn6 g. The onstrution of suhan n� depends on several properties of the (extended) subdivision matrix T and the ontrol point sets f�n0g.First note that sine all the entries of the extended subdivision matrix T are non-negative and the sum of eah rowequals one, the extended subdivision matrix is a transition probability matrix of a (2N +8)-state Markov hain [10℄.In partiular, the (2N+1)�(2N+1) blok �T of T is a transition probability matrix of a (2N+1)-state Markov hain.The entries in the �rst row and �rst olumn of �T are all non-zero. Therefore, the matrix �T is irreduible beause( �T )2 has no zero entries and, onsequently, all the states are aessible to eah other. On the other hand, sine allthe diagonal entries of �T are non-zero and entries of ( �T )n are non-zero for all n � 2, it follows that all the states of �Tare aperiodi and positive reurrent. Consequently, the Markov hain is irreduible and ergodi. By the well-knowntheorem of Markov hain ([10℄, Theorem 4.1), ( �T )n onverges to a limit matrix �T � whose rows are idential. Morepreisely, limn!1( �T )n = �T � � 0BBB� �1 �2 � � � �2N+1�1 �2 � � � �2N+1... ... . . . ...�1 �2 � � � �2N+1 1CCCA (13)where �i are the unique non-negative solution of�j = 2N+1Xi=1 �i�ti;j ; j = 1; 2; � � � ; 2N + 1; 2N+1Xj=1 �j = 1 (14)with �ti;j being the entries of �T . One an easily get the following observations.� The vetor (�1;�2; � � � ;�2N+1) satis�es the following properties:�1 = NN + 5 ; �2 = �4 = � � � = �2N = 4N(N + 5) ; �3 = �5 = � � � = �2N+1 = 1N(N + 5)� The matrix �T � is an idempotent matrix, i.e., �T � �T � = �T �. Hene, �T � has two eigenvalues, 1 and 0 (withmultipliity 2N).� �T has 1 as an eigenvalue and all the other 2N eigenvalues of �T have a magnitude smaller than one.� As it is well known [7℄, the limit point of fVn1 g isV�1 � �1V1 +�2V2 + � � �+�2N+1V2N+1:5



ButV�1 is atually the limit point of allVnj , j = 1; 2; � � � ; 2N+8. Therefore, the onvex hull of fVn1 ; Vn2 ; � � � ; Vn2N+8gonverges to V�1 when n tends to in�nity and, onsequently, V�1 = S(0; 0). The fat that V�1 is the limit point offVn1 ;Vn2 ; � � � ;Vn2N+1g follows from (8) and (13). The fat thatV�1 is also the limit point of fVn2N+2;Vn2N+3; � � � ;Vn2N+8g is proved in the omplete version [5℄.The last observation is important beause it shows thatmaxV2�n0 kVn+15 �Vk (15)onverges. Therefore, it is possible to redue the size of Sn0 to a degree that is tolerable if n is large enough. Fora given � > 0 we will �nd an n� so that if n � n� then the level-n ontrol point set �n0 is ontained in the sphereB(Vn+15 ; �=2). To do this, we need to know how fast (15) onverges.
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Figure 2: Control point sets �n0 , �n1 , �n2 and �n3 .Let �k0 , �k1 , �k2 and �k3 be subsets of �k0 de�ned as follows (see Figure 2):�k0 = fVkj j j = 1; 2; � � � ; 2N + 1g;�k1 = fVkj j j = 1; 4; 5; � � � ; 8; 2N + 3; 2N + 4; 2N + 5g;�k2 = fVkj j j = 1; 4; 5; 6; 2N + 2; 2N + 3; 2N + 4; 2N + 6; 2N + 7g;�k3 = fVkj j j = 1; 2; � � � ; 6; 2N + 6; 2N + 7; 2N + 8g (16)(Vk8 in �k1 should be replaed with Vk2 if N = 3) and de�ne Gk0 , Gk1 , Gk2 and Gk3 as follows:Gk0 = maxV2�k0 kVk1 �Vk; Gk1 = maxV2�k1 kVk6 �Vk;Gk2 = maxV2�k2 kVk5 �Vk; Gk3 = maxV2�k3 kVk4 �Vk: (17)Gki is alled the �rst order norm of �ki , i = 0; 1; 2; 3. We need the following lemma for the onstrution of n�. Theproof is shown in the omplete version [5℄.Lemma 5 If �ki and Gki are de�ned as above then, for i = 0; 1; 2; 3, we haveGki �8><>: � 34�kG0; if N = 3� 34 + 74N � 132N2 �kG0; if N � 5 (18)where G0 � maxfG00; G01; G02; G03g. G0 is alled the �rst order norm of �00.To onstrut n�, note that if V 2 �n0 and V 2 �n0 , we havekVn+15 �Vk � 14kVn4 �Vn1 k+ 14kVn5 �Vn1 k+ 14kVn6 �Vn1 k+ kVn1 �Vk � 74Gn0 :6



It is easy to prove that similar inequalities hold for �n1 , �n2 and �n3 as well. Hene, for eah V 2 �n0 , by Lemma 5,we have kVn+15 �Vk � 8<: 74 � 34�nG0; if N = 374 � 34 + 74N � 132N2 �nG0; if N � 5 (19)Sine the maximum of 34 + 74N � 132N2 ours at N = 7, (19) an be simpli�ed askVn+15 �Vk � 74 �1Æ�nG0 (20)where Æ = 8<: 43 ; if N = 39885 ; if N � 5 : (21)Hene, kVn+15 �Vk is smaller than �=2 if n is large enough to make the right hand side of (20) smaller than or equalto �=2. Consequently, we have the following theorem.Theorem 6 Let �00 = fVi j 1 � i � 2N + 8g be a level-0 ontrol point set that inuenes the shape of a CCSSpath S(u; v) (= S00(u; v)). V1 is an extraordinary vertex with valene N . The ontrol verties are ordered followingStam's fashion [12℄ (see Figure ??). For a given � > 0, if n� is de�ned as follows:n� � dlogÆ �7G02� �e ; Æ =8<: 43 ; if N = 39885 ; if N � 5 (22)where G0 is the �rst order norm of �00, then the distane between the level-n extraordinary subpath Sn0 (u; v) andthe orresponding bilinear plane Ln0 (u; v) is smaller than or equal to � if n � n�.Theorem 6 shows that the rate of onvergene of the ontrol mesh in the viinity of an extraordinary vertex isfastest when valene of the extraordinary vertex is three.3.2 Computing subdivision depth for the remaining partThe idea here is, for eah k between 1 and n�, to determine a subdivision depth Dk (� n�) so that if Dk reursivesubdivisions are performed on the ontrol mesh �00 of S(u; v), then the distane between the level-Dk ontrol meshand the subpathes Ski , i = 1; 2; 3, is smaller than �. Consequently, if we de�ne D to be the maximum of these Dk(i.e., D = maxfDkj1 � k � n�g), then after D reursive subdivisions, the distane between the level-D ontrol meshand the subpathes Ski , i = 1; 2; 3, would be smaller than � for all 1 � k � n�. Note that the distane between thelevel-D ontrol mesh and the subpathes Sk1 , Sk2 and Sk3 for n� + 1 � k � D, and the distane between the level-Dontrol mesh and the level-D extraordinary subpath SD0 would be smaller than � as well. This is beause thesesubpathes are subpathes of Sn�0 and the distane between Sn�0 and the level-n� ontrol mesh is already smaller than�. Hene, the key here is the onstrution of Dk. We will show the onstrution of Dk for Sk3(u; v). This Dk worksfor Sk1(u; v) and Sk2(u; v) as well.For 0 � u; v � 1, de�ne a bilinear plane Lk3(u; v) on the mesh fae fVk4 , Vk5 ;Vk2N+7;Vk2N+6g as follows:Lk3(u; v) = (1� v)[(1� u)Vk4 + uVk5 ℄ + v[(1� u)Vk2N+7 + uVk2N+6℄: (23)Sine Sk3(u; v) is a uniform biubi B-spline surfae path with ontrol mesh �k3 , we have, by Lemma 2,kLk3(u; v)� Sk3(u; v)k � 13Zk3 (24)where Zk3 is the seond order norm of Sk3(u; v). If we de�ne Zi0 to be the seond order norm of Si0(u; v), we haveZk3 �WZk�10 � (W )kZ00 (25)7



where W =8>>>><>>>>: 23 ; if N = 312 + 14N + 214N2 ; if N = 534 + 2N � 212N2 ; if N > 5 : (26)The proof of (25) is shown in the omplete version [5℄. Hene, by ombining the above results, we haveLemma 7 The maximum distane between Sk3 and Lk3 satis�es the following inequalitymax kLk3(u; v)� Sk3(u; v)k � 13(W )kZ00 (27)where W is de�ned in (26) and Z00 is the seond order norm of S(u; v).It should be pointed out that when de�ning Zi0, only the following items are needed for seond order forwarddi�erenes involving Vi1: k2Vi1 �Vi2j �Vi2[(j+2)%N ℄k; j = 1; 2; � � � ; N:Lemma 7 shows that if 13 (W )kZ00 � � then the distane between Sk3 and Lk3 is already smaller than �. However,sine n� subdivisions have to be performed on �00 to get Sn�0 anyway, Dk for Sk3 in this ase is set to n�. This onditionholds for Sk1 and Sk2 as well.If 13 (W )kZ00 > �, further subdivisions are needed on �ki , i = 1; 2; 3, to make the distane between Ski , i = 1; 2; 3,and the orresponding mesh faes smaller than �. Consider Sk3 again. Sk3 is a uniform biubi B-spline surfae pathwith ontrol mesh �k3 . Therefore, if lk reursive subdivisions are performed on the ontrol mesh �k3 , by Lemma 2and Lemma 3, we would have kLlk3 (u; v)� Sk3(u; v)k � 13(14)lkZk3 (28)where Llk3 (u; v) is a level-lk ontrol mesh relative to �k3 and Zk3 is the seond order norm of Sk3(u; v). Therefore, byombining the above result with (25), we havekLlk3 (u; v)� Sk3(u; v)k � 13(14)lk(W )kZ00 : (29)We get the following Lemma by setting the right hand side of (29) smaller than or equal to �.Lemma 8 In Lemma 7, if the distane between Sk3 and Lk3 is not smaller than �, then one needs to perform lklk = dlog4� (W )kZ003� �e (30)more reursive subdivisions on the level-k ontrol mesh �k3 of Sk3 to make the distane between Sk3 and the level-(k + lk) ontrol mesh smaller than �.This result works for Sk1 and Sk2 as well. Note that the value of (W )kZ00 is already omputed in Lemma 7 and Whas to be omputed only one. Therefore, the subdivision depth Dk for Sk1 , Sk2 and Sk3 is de�ned as follows:Dk = maxfn�; k + dlog4� (W )kZ003� �eg (31)Consequently, we have the following main theorem:Theorem 9 Let �00 = f Vij 1 � i � 2N + 8g be the ontrol mesh of a CCSS path S(u; v). The ontrol pointsare ordered following Stam's fashion [12℄ with V1 being an extraordinary vertex of valene N (see Figure ??). Fora given � > 0, if we ompute n� as in (22) and D as follows:D = maxfDkj1 � k � n�g (32)where Dk is de�ned in (31) then after D reursive subdivisions, the distane between S(u; v) and the level-D ontrolmesh is smaller than �. 8



4 ExamplesSome examples of the presented distane evaluating and subdivision depth omputing tehniques are shown in thissetion. In Figures 3(a), 3(b) and 3(), the distanes between the blue faes of the ontrol meshes and the orre-sponding limit surfae pathes are 0.034, 0.15 and 0.25, respetively. For an error tolerane of 0.01, the subdivisiondepths omputed for these mesh faes are 1, 22 and 24, respetively. The reason that the last two ases have largesubdivision depths is beause eah of them has an extraordinary vertex. For the blue mesh fae shown in Figure 3(),subdivision depths for error toleranes 0.25, 0.2, 0.1, 0.01, 0.001, and 0.0001 are 1, 3, 9, 24, 40, and 56, respetively.
(a) (b) ()Figure 3: Distane and subdivision depth omputation for a CCSS path with: (a) no extraordinary vertex, (b) anextraordinary vertex of valene 8, () an extraordinary vertex of valene 5.5 ConlusionsA subdivision depth omputation tehnique for CCSS's is presented. This tehnique provides a preision/error ontroltool for all tessellation based appliations of subdivision surfaes.One possible disadvantage of the subdivision depth omputation tehnique is that it might generate a relativelylarge subdivision depth for a viinity of an extraordinary vertex whih is atually quite at. This is beause the�rst order norm an detet the loation di�erene of two points, but not the di�erene between their urvatures.Therefore, even though two points are on the same plane, as far as they are far apart, a large n� would still begenerated by the subdivision depth omputation proess (see Theorem 6). A possible solution to this problem is toonsider seond order norm for �n0 , �n1 , �n2 and �n3 as well as the �rst order norm when omputing n� for the viinityof an extraordinary vertex.Referenes[1℄ Austin S, Jerard R, Drysdale R, 1997. Comparison of disretization algorithms for NURBS surfaes with appli-ation to numerially ontrolled mahining, Computer Aided Design 29 1, 71-83.[2℄ Biermann, H., Kristjansson, D., and Zorin, D. 2001. Approximate Boolean Operations on Free-Form Solids. InProeedings of SIGGRAPH 2001, 185-194.[3℄ Catmull E, and Clark J, 1978. Reursively Generated B-spline Surfaes on Arbitrary Topologial Meshes.Computer-Aided Design 10, 6, 350-355.[4℄ Cheng F, 1992. Estimating Subdivision Depths for Rational Curves and Surfaes. ACM Trans. on Graphis 11,2 140-151.[5℄ http://www.s.uky.edu/� heng/publ.html or http://gad.thss.tsinghua.edu.n/�yongjh/index.html.[6℄ Doo D, and Sabin M, 1978. Behavior of Reursive Division Surfaes near Extraordinary Points. Computer-AidedDesign 10, 6, 356-360.[7℄ Halstead M, Kass M, DeRose T, 1993. EÆient, Fair Interpolation Using Catmull-Clark Surfaes. In Proeedingsof SIGGRAPH 1993, 35-44. 9



[8℄ Litke N, Levin A, and Shr�oder P, 2001. Trimming for Subdivision Surfaes. Computer Aided Geometri Design18, 5, 463-481.[9℄ Lutterkort D, and Peters J, 2001, Tight linear envelopes for splines. Numerishe Mathematik 89, 4, 735-748.[10℄ Sheldon M Ross, Introdution to Probability Models. Aademi Press, In., Orlando, Florida, 1985.[11℄ Sederberg T W, 1998. Non-Uniform Reursive Subdivision Surfaes. In Proeedings of SIGGRAPH 1999, 387-394.[12℄ Stam J, 1998. Exat Evaluation of Catmull-Clark Subdivision Surfaes at Arbitrary Parameter Values. In Pro-eedings of SIGGRAPH 1998, 395-404.[13℄ Wang H, Qin K, 2004. Estimating Subidivision Depth of Catmull-Clark Surfaes. J. Comput. Si. & Tehnol.19, 5, 657-664.[14℄ Zorin D, Shr�oder P, and Sweldens W, Interative Multiresolution Mesh Editing. In Proeedings of SIGGRAPH1997, 259-268.
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