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nAbstra
tA subdivision depth 
omputation te
hnique for Catmull-Clark subdivision surfa
es (CCSS's) is presented.The subdivision depth 
omputation te
hnique also in
ludes distan
e evaluation te
hniques for CCSS pat
hes withtheir 
ontrol meshes. The distan
e and the subdivision depth 
omputation te
hniques provide the long-neededpre
ision/error 
ontrol tools in subdivision surfa
e trimming, �nite element mesh generation, boolean operations,and surfa
e tessellation for rendering pro
esses.Keywords: subdivision surfa
es, distan
e evaluation, subdivision depth 
omputation1 Introdu
tionSubdivision surfa
es have be
ome popular re
ently in graphi
al modeling, animation and CAD/CAM be
ause oftheir stability in numeri
al 
omputation, simpli
ity in 
oding and, most importantly, their 
apability in model-ing/representing 
omplex shape of arbitrary topology. Given a 
ontrol mesh and a set of mesh re�ning rules (or,more intuitively, 
orner 
utting rules), one gets a limit surfa
e by re
ursively 
utting o� 
orners of the 
ontrol mesh[3℄[6℄. The limit surfa
e is 
alled a subdivision surfa
e be
ause the 
orner 
utting (mesh re�ning) pro
ess is a general-ization of the uniform B-spline surfa
e subdivision te
hnique. Subdivision surfa
es in
lude uniform B-spline surfa
esand pie
ewise B�ezier surfa
es as spe
ial 
ases. A
tually subdivision surfa
es in
lude non-uniform B-spline surfa
esand NURBS surfa
es as spe
ial 
ases as well [11℄. Subdivision surfa
es 
an model/represent 
omplex shape of ar-bitrary topology be
ause there is no limit on the shape and topology of the 
ontrol mesh of a subdivision surfa
e.With the parametrization te
hnique of subdivision surfa
es be
oming available [12℄, we now know that subdivisionsurfa
es 
over both parametri
 forms and dis
rete forms. Sin
e parametri
 forms are good for design and representa-tion and dis
rete forms are good for ma
hining and tessellation (in
luding FE mesh generation) [1℄, we �nally havea representation s
heme that is good for all graphi
s and CAD/CAM appli
ations.Resear
h work for subdivision surfa
es has been done in several important areas, su
h as surfa
e trimming [8℄,boolean operations [2℄, and mesh editing [14℄. However, the area of pre
ision/error 
ontrol for Catmull-Clark sub-division surfa
es (CCSS's)is 
ompletely blank. For instan
e, given an error toleran
e, how many levels of re
ursiveCatmull-Clark subdivision should be performed on the initial 
ontrol mesh so that the distan
e between the resultant
ontrol mesh and the limit surfa
e would be less than the error toleran
e? This error 
ontrol te
hnique is requiredin all tessellation based appli
ations su
h as subdivision surfa
e trimming, �nite element mesh generation, booleanoperations, and surfa
e tessellation for rendering. A subdivision depth 
omputation te
hnique based on bounds ofse
ond derivatives has been presented for tensor produ
t rational surfa
es [4℄. But nothing in this area has beendone for Catmull-Clark subdivision surfa
es yet. The te
hnique used for tensor produ
t rational surfa
es 
an not beused here be
ause the parameter spa
e of a CCSS usually does not �t into a re
tangular grid stru
ture.In this paper we will present a subdivision depth 
omputation te
hnique for a CCSS. The subdivision depth
omputation te
hnique also in
ludes distan
e evaluation te
hniques for a CCSS pat
h with its 
ontrol mesh. Thenew te
hniques are based on the 
ontrol points of the CCSS pat
h only and work for CCSS pat
hes with or withoutan extraordinary vertex. The presented subdivision depth 
omputation te
hnique provides the �rst and an eÆ
ienterror 
ontrol tool that works for all tessellation based appli
ations of CCSS's. A potential disadvantage of thesubdivision depth 
omputation te
hnique is that it might generate a relatively large subdivision depth for a pat
hwith an extraordinary vertex even though the pat
h is already 
at enough. This is due to the fa
t that the �rst ordernorm 
an not measure the 
urvature di�eren
e between two points. A possible solution to this problem is given inthe last se
tion.�Work of this author is supported by NSF (DMI-0422126).yWork of this author is supported by NSF of China (60403047) and FANEDD (200342).1



2 Subdivision Depth Computation for Regular Pat
hesLet V0, V1, V2 and V3 be the 
ontrol points of a uniform 
ubi
 B-spline 
urve segment C(t) whose parameter spa
eis [0; 1℄. If we parametrize the middle leg of the 
ontrol polygon as follows: L(t) = V1+ (V2�V1)t, 0 � t � 1, thenthe maximum of kL(t) �C(t)k is 
alled the distan
e between the 
urve segment and its 
ontrol polygon. It is easyto see thatkL(t)�C(t)k = k (1� t)36 (2V1�V0�V2)+ t36 (2V2�V1�V3)k � 16 maxfk2V1�V0�V2k; k2V2�V1�V3kg: (1)Sin
e (2V1 �V0 �V2)=6 and (2V2 �V1 �V3)=6 are the values of L(t) � C(t) at t = 0 and t = 1, we have thefollowing lemma.Lemma 1: The maximum of kL(t)�C(t)k o

urs at the endpoints of the 
urve segment and 
an be expressed asmax0�t�1 kL(t)�C(t)k = 16 maxfk2V1 �V0 �V2k; k2V2 �V1 �V3kg (2)A form more general than (1) has been proved by Peters [9℄. His result works for uniform B-spline 
urves of anydegree. However, the above result is more intuitive and is all we need for subsequent results. We next de�ne thedistan
e between a uniform bi
ubi
 B-spline surfa
e pat
h and its 
ontrol mesh.Let Vi;j , 0 � i; j � 3, be the 
ontrol points of a uniform bi
ubi
 B-spline surfa
e pat
h S(u; v) with parameterspa
e [0; 1℄� [0; 1℄. If we parametrize the 
entral mesh fa
e fV1;1;V2;1;V1;2;V2;2g as follows:L(u; v) = (1� v)[(1� u)V1;1 + uV2;1℄ + v[(1� u)V1;2 + uV2;2℄; 0 � u; v � 1then the maximum of kL(u; v) � S(u; v)k is 
alled the distan
e between S(u; v) and its 
ontrol mesh. If we de�neQu;k, Qv;k, �Qu;k and �Qv;k as follows:Qu;k � (1� u)V1;k + uV2;k; Qv;k � (1� v)Vk;1 + vVk;2;�Qu;k � P3i=0Ni;3(u)Vi;k; �Qv;k � P3j=0Nj;3(v)Vk;jwhere Ni;3(t) are standard uniform B-spline basis fun
tions of degree three, we havekL(u; v)� S(u; v)k � (1� v)kQu;1 � �Qu;1k+ vkQu;2 � �Qu;2k+ 3Xi=0 Ni;3(u)kQv;i � �Qv;ik:By applying Lemma 1 on kQu;1 � �Qu;1k, kQu;2 � �Qu;2k and kQv;i � �Qv;ik, i = 1; 2; 3, and by de�ning M0 as themaximum norm of the se
ond order forward di�eren
es of the 
ontrol points of S(u; v), we havekL(u; v)� S(u; v)k � 16[(1� v)M0 + vM0 + 3Xi=0 Ni;3(u)M0℄ � 13M0:M0 is 
alled the se
ond order norm of S(u; v). This leads to the following lemma.Lemma 2: The maximum of kL(u; v)� S(u; v)k satis�es the following inequalitymax0�u;v�1 kL(u; v)� S(u; v)k � 13M0 (3)where M0 is the se
ond order norm of S(u; v).Note that even though the maximum of kL(t) � C(t)k o

urs at the end points of the 
urve segment C(t), themaximum of kL(u; v)�S(u; v)k for a surfa
e pat
h usually does not o

ur at the 
orners of S(u; v). In the following,we present subdivision depth 
omputation te
hnique for CCSS pat
hes not adja
ent to an extraordinary vertex.Let Vi;j , 0 � i; j � 3, be the 
ontrol points of a uniform bi
ubi
 B-spline surfa
e pat
h S(u; v). We use Vki;j ,0 � i; j � 3 + 2k � 1, to represent the new 
ontrol points of the surfa
e pat
h after k levels of re
ursive subdivision.The indexing of the new 
ontrol points follows the 
onvention that Vk0;0 is always the fa
e point of the mesh fa
e2



fVk�10;0 ;Vk�11;0 ;Vk�10;1 ;Vk�11;1 g. The new 
ontrol points Vki;j will be 
alled the level-k 
ontrol points of S(u; v) and thenew 
ontrol mesh will be 
alled the level-k 
ontrol mesh of S(u; v).Note that if we divide the parameter spa
e of the surfa
e pat
h into 4k regions as follows:
km;n = [m2k ; m+ 12k ℄� [ n2k ; n+ 12k ℄; (4)where 0 � m;n � 2k � 1 and let the 
orresponding subpat
hes be denoted Skm;n(u; v), then ea
h Skm;n(u; v)is a uniform bi
ubi
 B-spline surfa
e pat
h de�ned by the level-k 
ontrol point set fVkp;q j m � p � m + 3; n �q � n + 3g. Skm;n(u; v) is 
alled a level-k subpat
h of S(u; v). One 
an de�ne a level-k bilinear plane Lkm;n onfVkp;q j p = m + 1;m + 2; q = n + 1; n + 2g and measure the distan
e between Lkm;n(u; v) and Skm;n(u; v). We saythat the distan
e between S(u; v) and the level-k 
ontrol mesh is smaller than � if the distan
e between ea
h level-ksubpat
h Skm;n(u; v) and the 
orresponding level-k bilinear plane Lkm;n(u; v), 0 � m;n � 2k � 1, is smaller than �. Inthe following, we will show how to 
ompute a subdivision depth k for a given � so that the distan
e between S(u; v)and the level-k 
ontrol mesh is smaller than � after k levels of re
ursive subdivision. The following lemma is neededin the derivation of the 
omputation pro
ess. If we use Mkm;n to represent the se
ond order norm of Skm;n(u; v), i.e.,the maximum norm of the se
ond order forward di�eren
es of the 
ontrol points of Skm;n(u; v), then the lemma showsthe se
ond order norm of Skm;n(u; v) 
onverges at a rate of 1=4 of the level-(k � 1) se
ond order norm. The proof ofthis lemma is given in Appendix A.Lemma 3 If Mkm;n is the se
ond order norm of Skm;n(u; v) then we haveMkm;n � �14�kM0 (5)where M0 is the se
ond order norm of S(u; v).With Lemmas 2 and 3, it is easy to see that, for any 0 � m;n � 2k�1, we havemax0�u;v�1 kLkm;n(u; v)� Skm;n(u; v)k � 13Mkm;n � 13 �14�kM0: (6)Hen
e, if k is large enough to make the right side of (6) smaller than �, we havemax0�u;v�1 kLkm;n(u; v)� Skm;n(u; v)k � �for every 0 � m;n � 2k�1. This leads to the following main result of this se
tion.Theorem 4 Let Vi;j , 0 � i; j � 3, be the 
ontrol points of a uniform bi
ubi
 B-spline surfa
e pat
h S(u; v). Forany given � > 0, if k � d log4(M03� ) e (7)levels of re
ursive subdivision are performed on the 
ontrol points of S(u; v) then the distan
e between S(u; v) andthe level-k 
ontrol mesh is smaller than � where M0 is the se
ond order norm of S(u; v).3 Subdivision Depth Computation for Extra-Ordinary Pat
hesThe subdivision depth 
omputation pro
ess for a CCSS pat
h with an extraordinary vertex is di�erent. This isbe
ause in the vi
inity of an extraordinary vertex one does not have a uniform B-spline surfa
e pat
h representationand, 
onsequently, 
annot use the te
hnique of Theorem 4 dire
tly. Fortunately, the size of su
h a vi
inity 
an bemade as small as possible, therefore, one 
an redu
e the size of su
h a vi
inity to a degree that is tolerable (i.e.,within the given error bound) and use the te
hnique of Theorem 4 to work on the remaining part of the surfa
epat
h. A subdivision depth 
omputation te
hnique based on this 
on
ept for a CCSS pat
h with an extraordinaryvertex will be presented below. we assume the initial mesh has been subdivided at least twi
e so that ea
h mesh fa
eis a quadrilateral and 
ontains at most one extraordinary vertex. We need to de�ne a few notations �rst.3
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Figure 1: (a) Ordering of 
ontrol points for an extra-ordinary CCSS pat
h; (b) Control point sets �n1 , �n2 and �n3 .Let �00 = f Vi j 1 � i � 2N +8 g be a level-0 
ontrol point set that in
uen
es the shape of a surfa
e pat
h S(u; v)(= S00(u; v)). V1 is an extraordinary vertex with valen
e N . The 
ontrol verti
es are ordered following Stam's fashion[12℄ (see Figure ??).If we useVni to represent the level-n 
ontrol verti
es generated after n levels of re
ursive Catmull-Clark subdivision,and use Sn0 , Sn1 , Sn2 and Sn3 to represent the subpat
hes of Sn�10 de�ned over the tiles
n0 = [0; 12n ℄� [0; 12n ℄; 
n1 = [ 12n ; 12n�1 ℄� [0; 12n ℄; 
n2 = [ 12n ; 12n�1 ℄� [ 12n ; 12n�1 ℄; 
n3 = [0; 12n ℄� [ 12n ; 12n�1 ℄;respe
tively, then the shape of Sn0 , Sn1 , Sn2 and Sn3 are in
uen
ed by the level-n 
ontrol point sets �n0 , �n1 , �n2 and�n3 , respe
tively. �n0 is de�ned below and de�nition of �n1 , �n2 and �n3 
an be found in Figure ??.�n0 = f Vni j 1 � i � 2N + 8 gSn1 , Sn2 and Sn3 are standard uniform bi
ubi
 B-spline surfa
e pat
hes be
ause their 
ontrol meshes satisfy a 4-by-4stru
ture. Hen
e, the te
hnique des
ribed in Theorem 4 
an be used to 
ompute a subdivision depth for ea
h ofthem. Sn0 is not a standard uniform bi
ubi
 B-spline surfa
e pat
h. Hen
e, Theorem 4 
an not be used to 
ompute asubdivision depth for Sn0 dire
tly. For the 
onvenien
e of referen
e, we shall 
all Sn0 a level-n extraordinary subpat
hof S(u; v) be
ause it 
ontains the limit point of the extraordinary points.1 Note that if H0 and Hn are 
olumn ve
torrepresentations of the 
ontrol points of �00 and �n0 , respe
tively,H0 � (V0;V1; � � � ;V2N+8)t; Hn � (Vn0 ;Vn1 ; � � � ;Vn2N+8)twhere (X; X; � � � ;X)t represents the transpose of the row ve
tor (X; X; � � � ;X) then we haveHn = (T )n H0 (8)where T is the (2N + 8)� (2N + 8) (extended) subdivision matrix de�ned as follows [7℄[12℄:T � � �T 0�T1;1 �T1;2 � ; (9)with �T = 0BBBBBBBBBBB�
aN bN 
N bN 
N bN � � � bN 
Nd d e e 0 0 � � � e ef f f f 0 0 � � � 0 0d e e d e e � � � 0 0f 0 0 f f f � � � 0 0... . . . ...d e 0 0 0 0 � � � d ef f 0 0 0 0 � � � f f

1CCCCCCCCCCCA ; (10)1To be proved in the next subse
tion. 4



�T1;1 = 0BBBBBBBB� 
 0 0 b a b 0 0 0e 0 0 e d d 0 0 0b 0 0 
 b a b 
 0e 0 0 0 0 d d e 0e 0 0 d d e 0 0 0b 
 b a b 
 0 0 0e e d d 0 0 0 0 0
1CCCCCCCCA ; �T1;2 = 0BBBBBBBB� 
 b 
 0 b 
 00 e e 0 0 0 00 
 b 
 0 0 00 0 e e 0 0 00 0 0 0 e e 00 0 0 0 
 b 
0 0 0 0 0 e e

1CCCCCCCCA (11)and aN = 1� 74N ; bN = 32N2 ; 
N = 14N2 ; a = 916 ; b = 332 ; 
 = 164 ; d = 38 ; e = 116 ; f = 14 :3.1 Computing subdivision depth for a vi
inity of the extraordinary vertexThe goal here is to �nd an integer n� for a given � > 0 so that if n (� n�) re
ursive subdivisions are performed on�00, then the 
ontrol point set of the level-n extraordinary subpat
h Sn0 of S(u; v), �n0 = f Vni j 1 � i � 2N + 8 g, is
ontained in the sphere B(Vn+15 ; �=2) with 
enter Vn+15 � (Vn1 +Vn4 +Vn5 +Vn6 )=4 and radius �=2. Note that if the(2N + 8)-point 
ontrol mesh �n0 is 
ontained in the sphere B(Vn+15 ; �=2) then the level-n extraordinary subpat
hSn0 is 
ontained in the sphere B(Vn+15 ; �=2) as well. This follows from the fa
t that Sn0 , as the limit surfa
e of �n0 ,is 
ontained in the 
onvex hull of �n0 and the 
onvex hull of �n0 is 
ontained in the sphere B(Vn+15 ; �=2). But thenwe have max kSn0 (u; v)� Ln0 (u; v)k < � (12)where Ln0 (u; v) is a bilinear plane de�ned on the level-n mesh fa
e f Vn1 ; Vn4 ; Vn5 ; Vn6 g. The 
onstru
tion of su
han n� depends on several properties of the (extended) subdivision matrix T and the 
ontrol point sets f�n0g.First note that sin
e all the entries of the extended subdivision matrix T are non-negative and the sum of ea
h rowequals one, the extended subdivision matrix is a transition probability matrix of a (2N +8)-state Markov 
hain [10℄.In parti
ular, the (2N+1)�(2N+1) blo
k �T of T is a transition probability matrix of a (2N+1)-state Markov 
hain.The entries in the �rst row and �rst 
olumn of �T are all non-zero. Therefore, the matrix �T is irredu
ible be
ause( �T )2 has no zero entries and, 
onsequently, all the states are a

essible to ea
h other. On the other hand, sin
e allthe diagonal entries of �T are non-zero and entries of ( �T )n are non-zero for all n � 2, it follows that all the states of �Tare aperiodi
 and positive re
urrent. Consequently, the Markov 
hain is irredu
ible and ergodi
. By the well-knowntheorem of Markov 
hain ([10℄, Theorem 4.1), ( �T )n 
onverges to a limit matrix �T � whose rows are identi
al. Morepre
isely, limn!1( �T )n = �T � � 0BBB� �1 �2 � � � �2N+1�1 �2 � � � �2N+1... ... . . . ...�1 �2 � � � �2N+1 1CCCA (13)where �i are the unique non-negative solution of�j = 2N+1Xi=1 �i�ti;j ; j = 1; 2; � � � ; 2N + 1; 2N+1Xj=1 �j = 1 (14)with �ti;j being the entries of �T . One 
an easily get the following observations.� The ve
tor (�1;�2; � � � ;�2N+1) satis�es the following properties:�1 = NN + 5 ; �2 = �4 = � � � = �2N = 4N(N + 5) ; �3 = �5 = � � � = �2N+1 = 1N(N + 5)� The matrix �T � is an idempotent matrix, i.e., �T � �T � = �T �. Hen
e, �T � has two eigenvalues, 1 and 0 (withmultipli
ity 2N).� �T has 1 as an eigenvalue and all the other 2N eigenvalues of �T have a magnitude smaller than one.� As it is well known [7℄, the limit point of fVn1 g isV�1 � �1V1 +�2V2 + � � �+�2N+1V2N+1:5



ButV�1 is a
tually the limit point of allVnj , j = 1; 2; � � � ; 2N+8. Therefore, the 
onvex hull of fVn1 ; Vn2 ; � � � ; Vn2N+8g
onverges to V�1 when n tends to in�nity and, 
onsequently, V�1 = S(0; 0). The fa
t that V�1 is the limit point offVn1 ;Vn2 ; � � � ;Vn2N+1g follows from (8) and (13). The fa
t thatV�1 is also the limit point of fVn2N+2;Vn2N+3; � � � ;Vn2N+8g is proved in the 
omplete version [5℄.The last observation is important be
ause it shows thatmaxV2�n0 kVn+15 �Vk (15)
onverges. Therefore, it is possible to redu
e the size of Sn0 to a degree that is tolerable if n is large enough. Fora given � > 0 we will �nd an n� so that if n � n� then the level-n 
ontrol point set �n0 is 
ontained in the sphereB(Vn+15 ; �=2). To do this, we need to know how fast (15) 
onverges.
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Figure 2: Control point sets �n0 , �n1 , �n2 and �n3 .Let �k0 , �k1 , �k2 and �k3 be subsets of �k0 de�ned as follows (see Figure 2):�k0 = fVkj j j = 1; 2; � � � ; 2N + 1g;�k1 = fVkj j j = 1; 4; 5; � � � ; 8; 2N + 3; 2N + 4; 2N + 5g;�k2 = fVkj j j = 1; 4; 5; 6; 2N + 2; 2N + 3; 2N + 4; 2N + 6; 2N + 7g;�k3 = fVkj j j = 1; 2; � � � ; 6; 2N + 6; 2N + 7; 2N + 8g (16)(Vk8 in �k1 should be repla
ed with Vk2 if N = 3) and de�ne Gk0 , Gk1 , Gk2 and Gk3 as follows:Gk0 = maxV2�k0 kVk1 �Vk; Gk1 = maxV2�k1 kVk6 �Vk;Gk2 = maxV2�k2 kVk5 �Vk; Gk3 = maxV2�k3 kVk4 �Vk: (17)Gki is 
alled the �rst order norm of �ki , i = 0; 1; 2; 3. We need the following lemma for the 
onstru
tion of n�. Theproof is shown in the 
omplete version [5℄.Lemma 5 If �ki and Gki are de�ned as above then, for i = 0; 1; 2; 3, we haveGki �8><>: � 34�kG0; if N = 3� 34 + 74N � 132N2 �kG0; if N � 5 (18)where G0 � maxfG00; G01; G02; G03g. G0 is 
alled the �rst order norm of �00.To 
onstru
t n�, note that if V 2 �n0 and V 2 �n0 , we havekVn+15 �Vk � 14kVn4 �Vn1 k+ 14kVn5 �Vn1 k+ 14kVn6 �Vn1 k+ kVn1 �Vk � 74Gn0 :6



It is easy to prove that similar inequalities hold for �n1 , �n2 and �n3 as well. Hen
e, for ea
h V 2 �n0 , by Lemma 5,we have kVn+15 �Vk � 8<: 74 � 34�nG0; if N = 374 � 34 + 74N � 132N2 �nG0; if N � 5 (19)Sin
e the maximum of 34 + 74N � 132N2 o

urs at N = 7, (19) 
an be simpli�ed askVn+15 �Vk � 74 �1Æ�nG0 (20)where Æ = 8<: 43 ; if N = 39885 ; if N � 5 : (21)Hen
e, kVn+15 �Vk is smaller than �=2 if n is large enough to make the right hand side of (20) smaller than or equalto �=2. Consequently, we have the following theorem.Theorem 6 Let �00 = fVi j 1 � i � 2N + 8g be a level-0 
ontrol point set that in
uen
es the shape of a CCSSpat
h S(u; v) (= S00(u; v)). V1 is an extraordinary vertex with valen
e N . The 
ontrol verti
es are ordered followingStam's fashion [12℄ (see Figure ??). For a given � > 0, if n� is de�ned as follows:n� � dlogÆ �7G02� �e ; Æ =8<: 43 ; if N = 39885 ; if N � 5 (22)where G0 is the �rst order norm of �00, then the distan
e between the level-n extraordinary subpat
h Sn0 (u; v) andthe 
orresponding bilinear plane Ln0 (u; v) is smaller than or equal to � if n � n�.Theorem 6 shows that the rate of 
onvergen
e of the 
ontrol mesh in the vi
inity of an extraordinary vertex isfastest when valen
e of the extraordinary vertex is three.3.2 Computing subdivision depth for the remaining partThe idea here is, for ea
h k between 1 and n�, to determine a subdivision depth Dk (� n�) so that if Dk re
ursivesubdivisions are performed on the 
ontrol mesh �00 of S(u; v), then the distan
e between the level-Dk 
ontrol meshand the subpat
hes Ski , i = 1; 2; 3, is smaller than �. Consequently, if we de�ne D to be the maximum of these Dk(i.e., D = maxfDkj1 � k � n�g), then after D re
ursive subdivisions, the distan
e between the level-D 
ontrol meshand the subpat
hes Ski , i = 1; 2; 3, would be smaller than � for all 1 � k � n�. Note that the distan
e between thelevel-D 
ontrol mesh and the subpat
hes Sk1 , Sk2 and Sk3 for n� + 1 � k � D, and the distan
e between the level-D
ontrol mesh and the level-D extraordinary subpat
h SD0 would be smaller than � as well. This is be
ause thesesubpat
hes are subpat
hes of Sn�0 and the distan
e between Sn�0 and the level-n� 
ontrol mesh is already smaller than�. Hen
e, the key here is the 
onstru
tion of Dk. We will show the 
onstru
tion of Dk for Sk3(u; v). This Dk worksfor Sk1(u; v) and Sk2(u; v) as well.For 0 � u; v � 1, de�ne a bilinear plane Lk3(u; v) on the mesh fa
e fVk4 , Vk5 ;Vk2N+7;Vk2N+6g as follows:Lk3(u; v) = (1� v)[(1� u)Vk4 + uVk5 ℄ + v[(1� u)Vk2N+7 + uVk2N+6℄: (23)Sin
e Sk3(u; v) is a uniform bi
ubi
 B-spline surfa
e pat
h with 
ontrol mesh �k3 , we have, by Lemma 2,kLk3(u; v)� Sk3(u; v)k � 13Zk3 (24)where Zk3 is the se
ond order norm of Sk3(u; v). If we de�ne Zi0 to be the se
ond order norm of Si0(u; v), we haveZk3 �WZk�10 � (W )kZ00 (25)7



where W =8>>>><>>>>: 23 ; if N = 312 + 14N + 214N2 ; if N = 534 + 2N � 212N2 ; if N > 5 : (26)The proof of (25) is shown in the 
omplete version [5℄. Hen
e, by 
ombining the above results, we haveLemma 7 The maximum distan
e between Sk3 and Lk3 satis�es the following inequalitymax kLk3(u; v)� Sk3(u; v)k � 13(W )kZ00 (27)where W is de�ned in (26) and Z00 is the se
ond order norm of S(u; v).It should be pointed out that when de�ning Zi0, only the following items are needed for se
ond order forwarddi�eren
es involving Vi1: k2Vi1 �Vi2j �Vi2[(j+2)%N ℄k; j = 1; 2; � � � ; N:Lemma 7 shows that if 13 (W )kZ00 � � then the distan
e between Sk3 and Lk3 is already smaller than �. However,sin
e n� subdivisions have to be performed on �00 to get Sn�0 anyway, Dk for Sk3 in this 
ase is set to n�. This 
onditionholds for Sk1 and Sk2 as well.If 13 (W )kZ00 > �, further subdivisions are needed on �ki , i = 1; 2; 3, to make the distan
e between Ski , i = 1; 2; 3,and the 
orresponding mesh fa
es smaller than �. Consider Sk3 again. Sk3 is a uniform bi
ubi
 B-spline surfa
e pat
hwith 
ontrol mesh �k3 . Therefore, if lk re
ursive subdivisions are performed on the 
ontrol mesh �k3 , by Lemma 2and Lemma 3, we would have kLlk3 (u; v)� Sk3(u; v)k � 13(14)lkZk3 (28)where Llk3 (u; v) is a level-lk 
ontrol mesh relative to �k3 and Zk3 is the se
ond order norm of Sk3(u; v). Therefore, by
ombining the above result with (25), we havekLlk3 (u; v)� Sk3(u; v)k � 13(14)lk(W )kZ00 : (29)We get the following Lemma by setting the right hand side of (29) smaller than or equal to �.Lemma 8 In Lemma 7, if the distan
e between Sk3 and Lk3 is not smaller than �, then one needs to perform lklk = dlog4� (W )kZ003� �e (30)more re
ursive subdivisions on the level-k 
ontrol mesh �k3 of Sk3 to make the distan
e between Sk3 and the level-(k + lk) 
ontrol mesh smaller than �.This result works for Sk1 and Sk2 as well. Note that the value of (W )kZ00 is already 
omputed in Lemma 7 and Whas to be 
omputed only on
e. Therefore, the subdivision depth Dk for Sk1 , Sk2 and Sk3 is de�ned as follows:Dk = maxfn�; k + dlog4� (W )kZ003� �eg (31)Consequently, we have the following main theorem:Theorem 9 Let �00 = f Vij 1 � i � 2N + 8g be the 
ontrol mesh of a CCSS pat
h S(u; v). The 
ontrol pointsare ordered following Stam's fashion [12℄ with V1 being an extraordinary vertex of valen
e N (see Figure ??). Fora given � > 0, if we 
ompute n� as in (22) and D as follows:D = maxfDkj1 � k � n�g (32)where Dk is de�ned in (31) then after D re
ursive subdivisions, the distan
e between S(u; v) and the level-D 
ontrolmesh is smaller than �. 8



4 ExamplesSome examples of the presented distan
e evaluating and subdivision depth 
omputing te
hniques are shown in thisse
tion. In Figures 3(a), 3(b) and 3(
), the distan
es between the blue fa
es of the 
ontrol meshes and the 
orre-sponding limit surfa
e pat
hes are 0.034, 0.15 and 0.25, respe
tively. For an error toleran
e of 0.01, the subdivisiondepths 
omputed for these mesh fa
es are 1, 22 and 24, respe
tively. The reason that the last two 
ases have largesubdivision depths is be
ause ea
h of them has an extraordinary vertex. For the blue mesh fa
e shown in Figure 3(
),subdivision depths for error toleran
es 0.25, 0.2, 0.1, 0.01, 0.001, and 0.0001 are 1, 3, 9, 24, 40, and 56, respe
tively.
(a) (b) (
)Figure 3: Distan
e and subdivision depth 
omputation for a CCSS pat
h with: (a) no extraordinary vertex, (b) anextraordinary vertex of valen
e 8, (
) an extraordinary vertex of valen
e 5.5 Con
lusionsA subdivision depth 
omputation te
hnique for CCSS's is presented. This te
hnique provides a pre
ision/error 
ontroltool for all tessellation based appli
ations of subdivision surfa
es.One possible disadvantage of the subdivision depth 
omputation te
hnique is that it might generate a relativelylarge subdivision depth for a vi
inity of an extraordinary vertex whi
h is a
tually quite 
at. This is be
ause the�rst order norm 
an dete
t the lo
ation di�eren
e of two points, but not the di�eren
e between their 
urvatures.Therefore, even though two points are on the same plane, as far as they are far apart, a large n� would still begenerated by the subdivision depth 
omputation pro
ess (see Theorem 6). A possible solution to this problem is to
onsider se
ond order norm for �n0 , �n1 , �n2 and �n3 as well as the �rst order norm when 
omputing n� for the vi
inityof an extraordinary vertex.Referen
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