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Abstract
Two techniques are presented in this paper: a subdivision depth computation technique and a label-driven

adaptive subdivision technique for Catmull-Clark subdivision surfaces (CCSSs). The subdivision depth computa-
tion technique also includes distance evaluation techniques for CCSS patches with their control meshes. All these
techniques work for CCSS patches with or without an extraordinary vertex.

The distance and the subdivision depth computation techniques provide the long-needed precision/error control
tools in subdivision surface trimming, finite element mesh generation, boolean operations, and surface tessellation
for rendering processes. The label-driven adaptive subdivision technique make all the above applications more
efficient by generating an adaptively refined mesh that is within the required approximation precision of the
limit surface, but with significantly fewer quadrilateral faces than uniformly refined mesh. An adaptively refined
mesh usually takes less than one-tenth of the total number of faces, edges and vertices required in the uniform case.

CR Categories: 1.3.5 [Computer Graphics]: Computational Geometry and Object Modeling —Curve, surface, solid,
and object representations. J.6 [Computer Applications]: Computer-Aided Engineering —Computer Aided Design
(CAD)

Keywords: subdivision surfaces, distance evaluation, subdivision depth computation, adaptive subdivision, mesh
generation, label-driven subdivision

1 Introduction

Subdivision surfaces have become popular recently in graphical modeling, animation and CAD/CAM because of
their stability in numerical computation, simplicity in coding and, most importantly, their capability in model-
ing/representing complex shape of arbitrary topology. Given a control mesh and a set of mesh refining rules (or,
more intuitively, corner cutting rules), one gets a limit surface by recursively cutting off corners of the control
mesh [4][7]. The limit surface is called a subdivision surface because the corner cutting (mesh refining) process is a
generalization of the uniform B-spline surface subdivision technique. Subdivision surfaces include uniform B-spline
surfaces and piecewise Bézier surfaces as special cases. It is also recently known that subdivision surfaces include
non-uniform B-spline surfaces and NURBS surfaces as special cases [21]. Subdivision surfaces can model/represent
complex shape of arbitrary topology because there is no limit on the shape and topology of the control mesh of
a subdivision surface. With the parametrization technique of subdivision surfaces becoming available [22], we now
know that subdivision surfaces cover both parametric forms and discrete forms. Since parametric forms are good for
design and representation and discrete forms are good for machining and tessellation (including FE mesh generation)
[2], we finally have a representation scheme that is good for all graphics and CAD/CAM applications.

Research work for subdivision surfaces has been done in several important areas, such as surface trimming [17],
boolean operations [3], and mesh editing [23]. However, two important areas are either completely blank or need
more work. The first area is precision/error control. For instance, given an error tolerance, how many levels of
recursive Catmull-Clark subdivision should be performed on the initial control mesh so that the distance between
the resultant control mesh and the limit surface would be less than the error tolerance? This error control technique
is required in all tessellation based applications such as subdivision surface trimming, finite element mesh generation,
boolean operations, and surface tessellation for rendering. A subdivision depth computation technique based on
bounds of second derivatives has been presented for tensor product rational surfaces [6]. But nothing in this area
has been done for subdivision surfaces yet. The technique used for tensor product rational surfaces can not be used
here because the parameter space of a subdivision surface usually does not fit into a rectangular grid structure.
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The second area is smart tessellation of subdivision surfaces. The purpose is to generate a refined mesh within the
required approximation precision of the limit surface but with significantly fewer faces than the uniformly refined
mesh. Such a technique would make all tessellation based applications and data communication more efficient.
Research work for reducing the number of faces in a mesh can be classified into three categories. Mesh simplification
[1, 8,9, 11, 12, 16, et al] is to remove over-sampled vertices and produce approximate meshes with various levels
of detail. The second category focuses on approximating the limit surface by surfaces that we know of, such as a
displaced subdivision surface [15] or NURBS patches [19]. The last one is to apply adaptive refinement schemes to
subdivision surfaces. Kobbelt has presented methods for adaptively refining triangular meshes for v/3-subdivision
surfaces [14], and balanced nets for interpolatory subdivision surfaces [13].

In this paper we will present a subdivision depth computation technique for a Catmull-Clark subdivision surface
(CCSS) patch and then present a label-driven adaptive subdivision technique for a CCSS based on subdivision depths
computed for its patches. The subdivision depth computation technique also includes distance evaluation techniques
for a CCSS patch with its control mesh. The new techniques are based on the control points of the CCSS patch
only and work for CCSS patches with or without an extraordinary vertex. The label-driven adaptive subdivision
technique belongs to the third category. It is inspired by the works of [5] and [13] which use unbalanced subdivision
and “Y”-element, respectively, to avoid crack. The idea of [5] is followed in the label-driven process. A greedy
algorithm is used to eliminate illegal vertex labels in the initial mesh. The contributions of the new techniques
include: (1) provide the first and an efficient error control tool that works for all tessellation based applications of
subdivision surfaces, (2) significantly reduce the number of faces in an adaptively refined quadrilateral mesh in just
a few (3-5) subdivision steps and, consequently, make all tessellation based applications and data communication of
subdivision surfaces much more efficient. A potential disadvantage of the subdivision depth computation technique
is that it might generate a relatively large subdivision depth for a patch with an extraordinary vertex even though
the patch is already flat enough. This is due to the fact that the first order norm can not measure the curvature
difference between two points. A possible solution to this problem in given in the last section.

2 Subdivision Depth Computation

2.1 Patches not near an extraordinary vertex

Let Vg, V1, V3 and V3 be the control points of a uniform cubic B-spline curve segment C(t) whose parameter space
is [0,1]. If we parametrize the middle leg of the control polygon as follows: L(t) = Vi + (V2 —V1)t, 0 < ¢ < 1, then
the maximum of ||L(¢) — C(¢)|| is called the distance between the curve segment and its control polygon. It is easy

to see that
IL(#) — C@)l

3
= |85 @V1 - Vo = Vo) + £(2V5 = V1 = V3| (1)
< gmax{[|2Vy = Vo = Va|, [12V2 = V1 = V3][}.

Since (2V1 — Vg — V3)/6 and (2V; — V1 — V3)/6 are the values of L(t) — C(¢) at ¢ = 0 and ¢t = 1, we have the
following lemma.

Lemma 1: The maximum of ||L(t) — C(t)|| occurs at the endpoints of the curve segment and can be expressed as

maxop<¢<i ||L(t) - C(t)” (2)
= I max{||2V1 — Vo — V3|, [|12V2 — Vi — V;|}

A form more general than (1) has been proved by Peters [18]. His result works for uniform B-spline curves of any
degree. However, the above result is more intuitive and is all we need for subsequent results. We next define the
distance between a uniform bicubic B-spline surface patch and its control mesh.

Let V;;, 0 <4,j < 3, be the control points of a uniform bicubic B-spline surface patch S(u,v) with parameter
space [0,1] x [0,1]. If we parametrize the central mesh face {V1,1, Va1, V12, Vas} as follows:

L(u,v) = (1—v)[(1-u)Vi1+uVaq]
+o[(1 —u)Via+uVsys], 0<u,v<1

then the maximum of ||L(u,v) — S(u,v)|| is called the distance between S(u,v) and its control mesh. If we define
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Quk, Quk, Qui and Q, 1 as follows:

Quir = (1—u)Vig+uVay,
Qur = (1—-v)Vi1+0Vyp,
Qu,k = E?:[) Ni’3 (U)Vi’k,
Qui = Yo Nis()Vi,;

where N; 3(t) are standard uniform B-spline basis functions of degree three, we have

IL(u, v) — S(u,v)||
< (1-9)1Qu1 — Quall +v/1Quz2 — Quzll

3
+ 3 Nia()Qui — Qull
=0
By applying Lemma 1 on [|Qu,1 — Qu1ll, [|Qu,2 — Quz2|l and ||Qu,i — Qu.ill, i = 1,2,3, and by defining M as the
maximum norm of the second order forward differences of the control points of S(u,v), we have

IM(u, v) — S(u, v)] < sl —v)M° +oM°
+Ez_ NzS( )MO] S 1M0-

M? is called the second order norm of S(u,v). This leads to the following lemma.

Lemma 2: The maximum of ||L(u,v) — S(u,v)|| satisfies the following inequality

1
L < -M°
p2nax [IT(u,v) = S(u,0)|| < 3 3)

where M? is the second order norm of S(u,v).

Note that even though the maximum of ||L(t) — C(t)|| occurs at the end points of the curve segment C(t), the
maximum of ||L(u, v) — S(u,v)|| for a surface patch usually does not occur at the corners of S(u,v). We are ready to
present the subdivision depth computation technique for subdivision surface patches not adjacent to an extraordinary
vertex.

Let V;;, 0 < i,7 < 3, be the control points of a uniform bicubic B-spline surface patch S(u,v). We use V¥, i
0<14,j <342F —1, to represent the new control points of the surface patch after k levels of recursive subdivision.
The indexing of the new control points follows the convention that V0 o is always the face point of the mesh face
{Véc oL vE 01, V’S 14 Vf 1'}. The new control points V7§, will be called the level-k control points of S(u,v) and the
new control mesh will be called the level-k control mesh of S(u,v).

Note that if we divide the parameter space of the surface patch into 4* regions as follows:

m m+1 n n+1
_[Zk’Z—k] X [2_k’2—k]’ (4)

where 0 < m,n < 2¥ — 1 and let the corresponding subpatches be denoted S, . (u,v), then each S¥, . (u,v)
is a uniform bicubic B-spline surface patch defined by the level-k control point set {Vf,,q |m<p<m+3n<
q < n+3}. Sk (u,v) is called a level-k subpatch of S(u,v). One can define a level-k bilinear plane Lf, . on
{Vi,|p=m+1,m+2q=mn+1,n+2} and measure the distance between LY, , (u,v) and S}, (u,v). We say
that the distance between S(u,v) and the level-k control mesh is smaller than € if the distance between each level-k
subpatch S , (u,v) and the corresponding level-k bilinear plane L, ,,(u,v), 0 < m,n < 2¥ — 1, is smaller than . In
the following, we will show how to compute a subdivision depth & for a given € so that the distance between S(u,v)
and the level-k control mesh is smaller than e after k levels of recursive subdivision. The following lemma is needed
in the derivation of the computation process. If we use M,’,“z’n to represent the second order norm of an,n(u, v), i.e.,
the maximum norm of the second order forward differences of the control points of Sfmn(u, v), then the lemma shows
the second order norm of S%, , (u,v) converges at a rate of 1/4 of the level-(k — 1) second order norm. The proof of
this lemma, is given in Appendix A.
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Lemma 3 If M}, . is the second order norm of 8%, (u,v) then we have

k 1 ¢ 0
Myn.<(7) M (5)

where M9 is the second order norm of S(u,v).

With Lemmas 2 and 3, it is easy to see that, for any 0 < m,n < 271, we have

Max g<u,v<t || Ly, (u,v) — an,n(ga o)l
<k, < L) e

Hence, if k is large enough to make the right side of (6) smaller than €, we have

k k
Oﬁniyal;XSl “Lm,n(uav) - Sm,n(u’ vl <e

for every 0 < m,n < 2F~!. This leads to the following main result of this subsection.

Theorem 4 Let V; ;, 0 < i,j < 3, be the control points of a uniform bicubic B-spline surface patch S(u,v). For

any given € > 0, if
0

F> [ log (%) ] (7

levels of recursive subdivision are performed on the control points of S(u,v) then the distance between S(u,v) and
the level-k control mesh is smaller than € where M? is the second order norm of S(u,v).

2.2 Patches near an extraordinary vertex

The subdivision depth computation process for a surface patch near an extraordinary vertex is different. This is
because in the vicinity of an extraordinary vertex one does not have a uniform B-spline surface patch representation
and, consequently, cannot use the technique of Theorem 4 directly. Fortunately, the size of such a vicinity can be
made as small as possible, therefore, one can reduce the size of such a vicinity to a degree that is tolerable (i.e.,
within the given error bound) and use the technique of Theorem 4 to work on the remaining part of the surface
patch. A subdivision depth computation technique based on this concept for a CCSS patch near an extraordinary
vertex will be presented below. we assume the initial mesh has been subdivided at least twice so that each mesh face
is a quadrilateral and contains at most one extraordinary vertex. We need to define a few notations first.

Let I = { V; | 1 <i < 2N +8 } be a level-0 control point set that influences the shape of a surface patch S(u,v)
(= S3(u,v)). Vi is an extraordinary vertez with valence N. The control vertices are ordered following Stam’s fashion
[22] (see Figure 1).

N1
SN
‘9/ \i
\ 8/\.1/\4 \3N+8
[ J [
/ 6/ \.4+7
[ J
7.// -5/
/ / ¢ MN+6
N A~
N+5® 2%%.21\“2

Figure 1: Ordering of control points for a CCSS patch with an extraordinary vertex.

Online Number: papers_0041 Page: 4



Q0
OO0
&0
OO

3

NE]
2
O NO‘”©+
®
2
- » <
4
]
o a =
¥
o

N N

z z< >N
+ + z
IS » +
N

O

O

O
O
O
O

Y]
z
+
~
N
z
+
=)
N
z
+
IN)
)
z
+
5
N
z
+
=
)
N
z
+
=
o
Y]
z
+
IS
)
z
+
©

N
z
+

@
N
z
+

B
[
N
z
+

~
N
P4
+

)
N

4
+
N
5

O
O
O
YGRe
€
@

N
z
+
IS
N
z
+
2
N

JOLCLO)
OGO
O:0:0
OO0
O

9
O

N
z
+
w
N
z
I
N
B

-O-0O0

-

6

N
z
+
@
N
z
+
IS
N
z
+
e
N

2N +13

Figure 2: Control point sets IIT, 113 and II%.

If we use V7 to represent the level-n control vertices generated after n levels of recursive Catmull-Clark subdivision,
and use S7, ST, S and S7 to represent the subpatches of S§ ' defined over the tiles

Qg = [0,5] x[0, 5],

Q? = [zina 2n1—1] X [07 an]a
Q’g = [QL'nJ 2n1—1] X [QL’n) 271.1—1]7
Qg = [07 QLn] [2%7 2n1—1 )

respectively, then the shape of Sf , ST , S5 and S are influenced by the level-n control point sets IIf}, IIT, II3 and
I1%, respectively. II} is defined below and definition of II7, II3 and IIF can be found in Figure 2.

M ={VP|1<i<2N+8}

ST , S and S% are standard uniform bicubic B-spline surface patches because their control meshes satisfy a 4-by-4
structure. Hence, the technique described in Theorem 4 can be used to compute a subdivision depth for each of
them. Sg is not a standard uniform bicubic B-spline surface patch. Hence, Theorem 4 can not be used to compute a
subdivision depth for S{ directly. For the convenience of reference, we shall call S§ a level-n extraordinary subpatch
of S(u,v) because it contains the limit point of the extraordinary points.! Note that if Hy and H,, are column vector
representations of the control points of IIJ and IIf, respectively,

H, (V07V17"'7V2N+8)t7
H, (V(T)L7Vil7"'7V;N+8)t

where (X, X,---,X)? represents the transpose of the row vector (X, X,---,X) then we have

H, =(T)" Ho (8)
where T is the (2N + 8) x (2N + 8) (extended) subdivision matrix defined as follows [10][22]:
T 0
T=\{ & = 9
( Tin Tip ) ’ ®)
with
anN bN CN bN CN bN bN CN
d d e e 0 0 e e
f r f f 0 0 0 0
_ d e e d e e 0 0
T=| f o o f f f o o | (10)
d e 0 0 0 0 d e
f f 0 0 0 0 f

ITo be proved in the next subsection.
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c 00 b a b 0 O00O0
e 00 edd 0 00O
b 00 ¢ b a b ¢ O
Tio=|e 00 0 0 dde 0|, (11)
e 00 dde 000
b ¢ b a b c 0 00
e e dd 0 0 0 00O
c b c 0b ¢ O
0O e e 00 0O
0O ¢c b ¢c 000
Tl,zz 0 0 e e 0 0O (12)
0 0 0 0 e e O
0 00 0 ¢ b ¢
0 0 0 0 0 e e
and
ay=1-— 4’17\[;bN:2327CN: IN2 01219—6,
b=de=dd=de=f =L

2.2.1 Computing subdivision depth for a vicinity of the extraordinary vertex

The goal here is to find an integer n. for a given € > 0 so that if n (> n.) recursive subdivisions are performed on
I13, then the control point set of the level-n extraordinary subpatch S§ of S(u,v), I ={ V? | 1<i < 2N +8 }, is
contained in the sphere B(VE'!, ¢/2) with center Vi = (V7 4 V7 +V" +V?2)/4 and radius €/2. Note that if the
(2N + 8)-point control mesh IIf is contained in the sphere B(VZ* €/2) then the level-n extraordinary subpatch
Sg is contained in the sphere B(Vg“, €/2) as well. This follows from the fact that Sg, as the limit surface of II,
is contained in the convez hull of II§ and the convex hull of TI} is contained in the sphere B(Vy™!, ¢/2). But then
we have

max [|Sg (u, v) — Lg (u, 0)|| <€ (13)
where L (u,v) is a bilinear plane defined on the level-n mesh face { VI, VI, V2, V2 }. The construction of such
an n. depends on several properties of the (extended) subdivision matrix T and the control point sets {IIf }.

First note that since all the entries of the extended subdivision matrix 7" are non-negative and the sum of each row
equals one, the extended subdivision matrix is a transition probability matriz of a (2N + 8)-state Markov chain [20].
In particular, the (2N +1) x (2N +1) block T of T is a transition probability matriz of a (2N +1)-state Markov chain.
The entries in the first row and first column of T are all non-zero. Therefore, the matrix T is irreducible because
(T)? has no zero entries and, consequently, all the states are accessible to each other. On the other hand, since all
the diagonal entries of T' are non-zero and entries of (T')™ are non-zero for all n > 2, it follows that all the states of T'
are aperiodic and positive recurrent. Consequently, the Markov chain is zrreduczble and ergodic. By the well-known
theorem of Markov chain ([20], Theorem 4.1), (T')" converges to a limit matrix 7% whose rows are identical. More
precisely,

A1 AZ ot A2]\7-‘,-1
_ _ A1 AZ ot A2]\7-‘,-1
lim (T)"=T*=| . . . . (14)
n—oo : : oo
Ay Ay o-- Aoy

where A; are the unique non-negative solution of

A _Z2N+1At,], j:1,2,"',2N+1
(15)
Zj”jl Aj=1
with ; ; being the entries of 7. One can easily get the following observations.

e The vector (A1, As, -+, Aan11) satisfies the following properties:

Ay = Y

1= N+5 .
AZ—A4 _AZN:N(N—F?)
A3—A5—"'=A2N+1=m



e The matrix T* is an idempotent matrix, i.e., T*T* = T*. Hence, T* has two eigenvalues, 1 and 0 (with
multiplicity 2N).

e T has 1 as an eigenvalue and all the other 2N eigenvalues of T have a magnitude smaller than one.
e As it is well known [10], the limit point of {V7} is
Vi=A1Vi+AVy+---+ Aoni1Vongs-

But V7 is actually the limit point of all VZ3,j=12,---,2N+8. Therefore, the convex hull of {V}, V2, ---| V2"N+8}
converges to VI when n tends to infinity and, consequently, Vi = S(0,0). The fact that V7 is the limit point of
{V,Vg,.--, V3x,, } follows from (8) and (14). The fact that V7 is also the limit point of {V3y_ 5, Vin a3, -,
V3n,g} is proved in Appendix B.

The last observation is important because it shows that

Vit -v 16

e [VE™ - V]| (16)

converges. Therefore, it is possible to reduce the size of S§ to a degree that is tolerable if n is large enough. For

a given € > 0 we will find an n. so that if n > n. then the level-n control point set IIf is contained in the sphere
B(VZ*!, €/2). To do this, we need to know how fast (16) converges.

VW TS e
Ny Y~y
AN S 5/ T—en+7

o 5
e/ T
7//.\5/ o Nl T~ @ 2N+6
< N/
& ~_
\8/\.1/\4 .\%r\ua
* 6/ .\0444
7/.\5
/. / /.\./2N+6
2N+5./2N$2z$ oN+2 1

.//2N$./

2N+5 2N +3
Figure 3: Control point sets &, ®7, ®7 and ®3.

Let ®%, ®% &% and ®% be subsets of II¥ defined as follows (see Figure 3):

o = {VF | j=1,4,5--,82N +3,2N +4,
2N + 5},
B = {VE | j=1,4,56,2N+2,2N +3, (17)

2N +4,2N +6,2N + 7},
(VE | j=1,2,---,6,2N +6,2N +7,
2N + 8}

o5

(VE in ®F should be replaced with V& if N = 3) and define G¥, G¥, GX and G¥ as follows:

Gy = maxyecek Vi =V,
Gt = maXy gk IvV§ - VI, (18)
G = maxyeq|[VE -V,
Gy = maxyecek IVE—=VI.

G* is called the first order norm of ®¥ i =0,1,2,3. We need the following lemma for the construction of n.. The
proof is shown in Appendix C.
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Lemma 5 If &% and G¥ are defined as above then, for i = 0,1,2, 3, we have

(¢)* o, if N =3
Gi < (19)
(3 + v —ohe)" €, if N>5

w

where G° = max{G}, GY, GY, G3}. G is called the first order norm of II.
To construct n., note that if V € IIj and V € ®f, we have

[Vitt -V < illlVZ‘—VI‘IIwLiIIVQ—V?II i
+ivy — v+ Ve - V| < IGp.

It is easy to prove that similar inequalities hold for ®7, ®7 and ®% as well. Hence, for each V € II}, by Lemma 5,
we have

. 3)"a, if N=3
vt - v < ) (20)
RS BT
Since the maximum of 2 + ;& — 5 occurs at N = 7, (20) can be simplified as
n 7 /1\"
vpr-vi< (5) ¢ (21)
where
: if N =3
5= . (22)
o8 if N>5

857

Hence, ||[VET! — V|| is smaller than €/2 if n is large enough to make the right hand side of (21) smaller than or equal
to €/2. Consequently, we have the following theorem.

Theorem 6 Let [T = {V; | 1 <i < 2N + 8} be a level-0 control point set that influences the shape of a CCSS
patch S(u,v) (= S3(u,v)). Vi is an extraordinary vertex with valence N. The control vertices are ordered following
Stam’s fashion [22] (see Figure 1). For a given € > 0, if n. is defined as follows:

ift N=3

4
0 3
ne = [logs (%)1 o= (23)
€ 98 .
2 ifN>5

85>
where G is the first order norm of II, then the distance between the level-n extraordinary subpatch S§(u,v) and
the corresponding bilinear plane L{ (u, v) is smaller than or equal to € if n > n..

Theorem 6 shows that the rate of convergence of the control mesh in the vicinity of an extraordinary vertex is
fastest when valence of the extraordinary vertex is three.

2.2.2 Computing subdivision depth for the remaining part

The idea here is, for each k between 1 and n., to determine a subdivision depth Dy (> n.) so that if Dy, recursive
subdivisions are performed on the control mesh IIJ of S(u,v), then the distance between the level-Dj, control mesh
and the subpatches S¥ i = 1,2, 3, is smaller than e. Consequently, if we define D to be the maximum of these Dy
(i.e., D = max{Dk|1 < k < n.}), then after D recursive subdivisions, the distance between the level-D control mesh
and the subpatches S¥, i = 1,2,3, would be smaller than € for all 1 < k < n.. Note that the distance between the
level-D control mesh and the subpatches S¥, S5 and S¥ for n. + 1 < k < D, and the distance between the level-D
control mesh and the level-D extraordinary subpatch SP would be smaller than € as well. This is because these
subpatches are subpatches of Sg¢ and the distance between Sg< and the level-n, control mesh is already smaller than
e. Hence, the key here is the construction of Dj. We will show the construction of Dy for S&(u,v). This Dy works
for S¥(u,v) and S&(u,v) as well.
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For 0 < u,v < 1, define a bilinear plane L5 (u,v) on the mesh face {V§, VE, Vi - VEL 1 as follows:

Li(u,v) = (1-0)[(1-u)V]+uV}]
k i (24)
+o[(1 = u)Vin, 7 + uVin el
Since S¥(u,v) is a uniform bicubic B-spline surface patch with control mesh I1¥, we have, by Lemma 2,
1
L3 (u, v) — S5(u,v)|| < gZe'f (25)

where Z¥ is the second order norm of S (u,v). If we define Z{ to be the second order norm of Sf(u,v), we have

Zy SWZy Tt < (W)FZ3 (26)
where
2, if N =3
W=1( :+ %+ 2 ifN=5 . (27)
32— 2, if N>5

The proof of (26) is shown in Appendix D. Hence, by combining the above results, we have
Lemma 7 The maximum distance between S% and L% satisfies the following inequality

max [L (u,v) — Sk (u, o) < 3 (W)* 23 (28)

Ll =

where W is defined in (27) and Z] is the second order norm of S(u,v).

It should be pointed out that when defining Z}, only the following items are needed for second order forward
differences involving Vi: . .
||2V‘]L._V%]_V 2[(j+2)%N ||5 .7:1;275N

Lemma 7 shows that if % (W) 79 < € then the distance between S% and L% is already smaller than e. However,
since n. subdivisions have to be performed on II to get S§< anyway, Dk for S% in this case is set to ne. This condltlon
holds for S¥ and Sk as well.

If %(W)’“Zg > ¢, further subdivisions are needed on II¥, i = 1,2,3, to make the distance between S¥, i = 1,2,3,
and the corresponding mesh faces smaller than e. Consider S¥ again. S¥ is a uniform bicubic B-spline surface patch
with control mesh II5. Therefore, if I; recursive subdivisions are performed on the control mesh II¥, by Lemma 2

and Lemma 3, we would have

1,1
L3 (u, 0) — S5 (u, )| < 3(7)" %8 (29)

where LY (u,v) is a level-l, control mesh relative to TI§ and Z¥ is the second order norm of S%(u,v). Therefore, by
combining the above result with (26), we have

L3 (u, 0) = S5 (u, 0)[| < Z(3)™(W)* Z3. (30)
We get the following Lemma by setting the right hand side of (30) smaller than or equal to e.

Lemma 8 In Lemma 7, if the distance between S¥ and L% is not smaller than €, then one needs to perform Iy,

= os, (P22, 1)

more recursive subdivisions on the level-k control mesh II% of S¥ to make the distance between S% and the level-
(k + lx) control mesh smaller than e.
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This result works for S¥ and S% as well. Note that the value of (W)*Z? is already computed in Lemma 7 and W
has to be computed only once. Therefore, the subdivision depth Dj, for S¥, S5 and S% is defined as follows:

Dy, = maz{n., k+ [log, (% )]} (32)

Consequently, we have the following main theorem:

Theorem 9 Let II3 = { V;| 1 < i < 2N + 8} be the control mesh of a CCSS patch S(u,v). The control points
are ordered following Stam’s fashion [22] with V; being an extraordinary vertex of valence N (see Figure 1). For a
given € > 0, if we compute 7 as in (23) and D as follows:

D =max{Dr|1 <k <ne} (33)

where Dy, is defined in (32) then after D recursive subdivisions, the distance between S(u,v) and the level-D control
mesh is smaller than e.

3 Label-Driven Adaptive Subdivision

Given a control mesh of arbitrary topology and an error tolerance € > 0, the goal here is to construct an adaptively
refined mesh that is close within € to the CCSS of the given control mesh, but with significantlyly fewer faces than
the traditional Catmull-Clark subdivision process. The mesh refining process is driven by labels of mesh vertices.
We need a few definitions first.

The given control mesh will be referred to as X° with the assumption that all the faces are quadrilaterals and
each face contains at most one extraordinary vertex (see Section 2.2 for the original assumption). The limit surface
of X0 will be referred to as F. For each positive integer k, $* refers to the result of applying k levels of recursive
Catmull-Clark subdivision on X°. A face of X* is called an interior face if it is not adjacent to the boundary of the
mesh. Otherwise, it is called an exterior face. All the faces of a closed control mesh are interior faces. Each interior
face f of ¥ has a corresponding surface patch in F, denoted S¢. The interior faces and their corresponding surface
patches are parametrized using the techniques presented in [22]. The distance between f and the limit surface F is
defined as the distance between f and the corresponding surface patch Sg.

The initial label of an interior face f in X% denoted Ly(f), is set to k if k is the subdivision depth of the
corresponding surface patch S¢ with respect to €. The label of an exterior face is set to zero. The label of a vertex V
in 30 is defined as the maximum of labels of adjacent faces, i.e.,

L,(V) =max {Ls(f) | f € £° and V is a vertex of f} . (34)

The adaptive refinement procedure requires vertex labels of 3° to satisfy the consistent condition [5]. A face of X°
is said to be an illegal face if two adjacent vertices have non-zero labels and two adjacent vertices have zero labels.
The vertex labels of 0 are said to satisfy the consistent condition if £° contains no illegal faces. The consistent
condition ensures that the adaptively refined meshes are crack free [5]. Usually X° does not satisfy the consistent
condition. The easiest way to make X° satisfy the consistent condition is to set all the zero labels to 1. But this
would unnecessarily increase the number of faces generated in the resulting meshes since the number of faces in the
refined meshes is determined by the labels of the vertices. A better way is to construct an extension function E, (V)
of L,(V),

[ L,(V), if L,(V) > 0;
E,(V) = { Oorl,  if Ly(V)=0,

which satisfies the consistent condition but with as many zero labels as possible.

A greedy algorithm for the construction of E,(V) via a connection supporting graph Gy is presented here. The
vertices of Gy, are those of the illegal faces whose labels are zero. The edges of Gy, are those of X0 that connect
vertices of Gp. The extension function E,(V) is constructed by repeatedly selecting a vertex from Gy, changing
its label to 1 and then updating Gy accordingly. This process continues until Gy is empty. The complexity of
this process is that changing the label of a vertex from 0 to 1 changes the status of adjacent faces: an illegal face
might become legal and a legal face might become illegal. Therefore, after changing the label of a selected vertex
from 0 to 1, one needs to remove some old vertices and edges from Gy, while add some new vertices and edges into
Gyp. Obviously the greedy algorithm should remove as many old vertices from Gy, and add as few new vertices into

(35)
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Gy as possible during each selection and changing cycle. This is achieved by using the following rule in selecting
a vertex from Gy to change label. Let D(V) denote the degree of V in Gp and let N(V) be the number of new
vertices introduced into Gy if the label of V is changed from 0 to 1. If the number of D(V) = 1 vertices is not zero
then, in the pool of vertices which are adjacent to a D(V) = 1 vertex, select any one with a minimum N (V) among
those with a maximum D(V). Otherwise, select any vertex with a minimum N (V) among the vertices of Gy with
a maximum D(V).

The adaptive subdivision process is driven by vertex labels and is performed on individual mesh faces independently.
After each subdivision step, labels will be assigned to the newly generated vertices so they can drive the next
subdivision step. The resulting meshes are crack free. We shall assume that labels of the vertices of X0 are defined
by an extension function E, even though the extension function might be the same as the original label function L,,.
In the following, ¥*, k = 1,2, - - -, stand for the meshes generated by the adaptive refinement process. Also, variables
without a bar refer to elements in ¥*~1, and variables with a bar refer to elements in X*.

The adaptive subdivision of £*~1, k > 1, is performed as follows. If a face has two or more nonzero vertex labels,
a balanced Catmull-Clark subdivision is performed on that face (see Figure 4). A balanced Catmull-Clark subdivision
is a standard Catmull-Clark subdivision. However, coordinates of the new vertices will not be computed yet. The
new vertices will be marked “UPDATE” though. Labels of the new vertices are defined as follows. For each new
vertex point, E,(V;) = maz {0, E,(V;) — 1} ,i = 1,2, 3,4. For each new edge point, E,(V;) is the minimum of labels
of the new vertex points adjacent to V;, i = 5,6,7,8. For the new face point,

0, if E,(Vs)=E,(Vs)=E,(Vr)
= E,(Vs) = 0;
- 1, if some but not all of { E,(V3),
E,(V¢),E,(V7),E,(Vsg) } are zero;
min{ E,(V) | V € {V;5,Vs,V7,Vg,} },
otherwise.

If a face has only one vertex with nonzero label, an unbalanced Catmull-Clark subdivision with respect to that vertex
V)
% [

\% Vs @ face point
\3

Vs
)

\3

O edge point
X vertex point

Ve

L)

(b

Figure 4: Balanced Catmull-Clark subdivision (a) before; (b) after.

is performed (see Figure 5). An unbalanced Catmull-Clark subdivision generates three new faces only, as shown in
Figure 5(c). But Vg, Vg and the auxiliary structure shown in Figure 5(b) will still be computed and recorded; they
are needed in the computation of the vertices of £¥+1. Again, coordinates of the new vertices are not computed at
this moment. These vertices, except V3, are marked with an “UPDATE” to indicate that they will be evaluated
later. The labels of all the new points are set to zero except V which is defined as E, (V1) = E, (V1) — 1. The faces
without non-zero vertex labels will not be adaptively subdivided any more, but will be inherited topologically.

After all the faces of X*~! are processed, vertices marked with an “UPDATE” in X* are computed using the
Catmull-Clark subdivision scheme to find their coordinates in £*. Note that the vertices of £*~! required in the
computation process for the new vertices are available because they are stored with the auxiliary structure (see Figure
5(b)) even though not output. Other vertices (vertices not marked with an “UPDATE”) of £* will be inherited
from X*~1 directly. Keeping an “UPDATE” status for some of the vertices in the adaptive subdivision process is
necessary because whether a vertex should be inherited or updated depends on all of its adjacent faces. The adaptive
refinement process stops when labels of all the new vertices are zero.

4 Examples

Some examples of the presented distance evaluating, subdivision depth computing and label-driven adaptive subdi-
vision techniques are shown in this section. In Figures 6(a), 6(b) and 6(c), the distances between the blue faces of
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E\(V1)>0 E.(V2)=0 N
(@ (b)
@ face point
O edge point
X vertex point

Figure 5: Unbalanced Catmull-Clark subdivision with respect to Vi (a) before subdivision; (b) auxiliary structure
stored after subdivision; (c¢) structure output after subdivision.

the control meshes and the corresponding limit surface patches are 0.034, 0.15 and 0.25, respectively. For an error
tolerance of 0.01, the subdivision depths computed for these mesh faces are 1, 22 and 24, respectively. The reason
that the last two cases have large subdivision depths is because each of them has an extraordinary vertex. For the
blue mesh face shown in Figure 6(c), subdivision depths for error tolerances 0.25, 0.2, 0.1, 0.01, 0.001, and 0.0001
are 1, 3, 9, 24, 40, and 56, respectively.

hoe
7SS
“\\’ N

\ AN
A
(c)
Figure 6: Distance and subdivision depth computation for a CCSS patch with: (a) no extraordinary vertex, (b) an
extraordinary vertex of valence 8, (c) an extraordinary vertex of valence 5.

The examples shown in Figures 7 and 8 are used to compare the performance of adaptive subdivision with uniform
Catmull-Clark subdivision. The first example is a rocker arm. For an error tolerance of 0.25, the maximum subdivision
depth is 2. Uniform Catmull-Clark Subdivision (Figure 7(c)) leads to 22,656 vertices, 45, 312 edges, and 22, 656 faces;
while the label-driven adaptive subdivision (Figure 7(d)) would generate 2, 706 vertices, 5,412 edges, and 2, 706 faces
only, i.e., only 23—5 of the total vertices, edges and faces required in the uniform case. When the error tolerance is
0.2, the maximum subdivision depth is 4. Uniform Catmull-Clark subdivision in this case leads to 362,496 vertices,
724,992 edges and 362,496 faces; while the label-driven adaptive subdivision would generate 9,022 vertices, 18,044
edges and 9,022 faces only, a forty times improvement on the total number of vertices, edges and faces.

The second example is a ventilation controller component. For an error tolerance of 0.15, the maximum subdivision
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Figure 7: Adaptive subdivision of a rocker arm: (a) input mesh, (b) limit surface, (c) uniform subdivision, (d)
adaptive subdivision.

depth of the mesh faces in the input control mesh is 3. Uniform Catmull-Clark subdivision (Figure 8(c)) in this case
generates 388,068 vertices, 776,192 edges and 388,096 faces. As a comparison, the label-driven adaptive subdivision
(Figure 8(d)) only leads to 9,814 vertices, 19,684 edges and 9,842 faces, again, a forty times improvement on the
total number of vertices, edges and faces. The reason that adaptive subdivision is performed in some of the flatter
regions is because those regions contain extraordinary vertices.

5 Conclusions

Two important techniques for subdivision surfaces have been presented. The subdivision depth computation tech-
nique provides an precision/error control tool for all tessellation based applications of subdivision surfaces. The
label-driven adaptive subdivision technique makes all tessellation based applications and data communication more
efficient by significantly reducing the number of faces in the resultant mesh while satisfying the given precision re-
quirement. This is the first technique that allows the adaptive subdivision process to be driven automatically by
errors between the resulting mesh and the limit surface. Comparing its performance with previous adaptive methods
would not be possible because the previous techniques are all visual examination based. Our results also show that
one should avoid using extraordinary vertices of valence five or higher in the design of a subdivision surface if it is
possible to achieve the same design objective with extraordinary vertices of valence three.

A comparison of the proposed adaptive subdivision technique with previous adaptive methods is quite impossible.
The proposed technique is the first one that allows the adaptive subdivision process to be driven automatically by
errors between the resulting mesh and the limit surface. The previous techniques are all visual examination based.
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One possible disadvantage of the subdivision depth computation technique is that it might generate a relatively
large subdivision depth for a vicinity of an extraordinary vertex which is actually quite flat. This is because the
first order norm can detect the location difference of two points, but not the difference between their curvatures.
Therefore, even though two points are on the same plane, as far as they are far apart, a large n. would still be
generated by the subdivision depth computation process (see Theorem 6). A possible solution to this problem is to
consider second order norm for @7, ®7, ®3 and ®% as well as the first order norm when computing n. for the vicinity
of an extraordinary vertex.

Another possible future work is to consider adaptive subdivision technique for triangular meshes. However, it
should be pointed out that quadrilateral elements are preferred than triangular elements in the tessellation process
because the rate of convergence of the second order norm for quadrilateral elements is faster than triangular elements.

6 Appendix A: Proof of Lemma 3

It is sufficient to show that, for each positive integer i, one has
i+1
Mgyt < 4M0 0 (36)

The sixteen second order forward differences involved in M&ng can be classified into four dategories: (C-1) F—E—F,
(C-2) E—F—E,(C3) E-V —E, and (C-4) V — E—V, based on the type of the vertices. For instance, a second
order forward difference is said to be in the first category if an edge vertex is sandwished by two face vertices, such
as ZV%1 - Véﬁ]l - V%l. Each category consists of four second order forward differences. We need to show that all
these categories satisfy (36). In the following, we prove (36) for one item of each category. The proof of the other
items is similar.

Case 1 (F — E — F): consider 2Vih' — Vgh — Vil

||2V6*E1 Vol = Vol _ , ,
= |1| (2V0 1 Vo 2 Vo 0) (2Vi,1 - Vi,z - Vi,o)” (37)
s Mo+ M, = M& 0

Case 2 (E — F — E): consider 2Vt — Vit — Vit

I2V53 — Vi - ViR
= [I16(2Vo2 — Vi3 — Vi1 +2Vi, — Vi, — Vi,
+2V V13_V11+2V11_V12 i,p)”
M00+16M00+16M00+16M00 M&,o-

Case 3 (E —V — E): consider ZV{J’rll - V;'J’r21 _ Vfﬁl-

[2vih — vih - Vil
= 321(2V0 1 Vo s — Vi 0) T = (2Vi; = Vi, — Vi)
(2VE, = Vi, — Vi)l
M00+ 16M00+ 32M00 = Moo

(39)

Case 4 (V — E —V): consider 2V’ff21 — Vﬁl _ Vi—,i-ll_

12Vih — Vit - Vit

= 4(2V02—V03—V01+2V01_V02_V00)

+ 31(2 1,2 13— Vi1 +2Vi, 1 2~ Vig) (40)
+L4(2 V23 V21+2V Vzo)”
S(64+L4+32+32+64+64)M00_ 1]\/-’00

[~o

This completes the proof of the lemma. O
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The other cases are similar to (43) or (44). Hence, we have the following inequality for N =3 or N > 5:

GS—H S (%_}'& 2N2)G0

< Gedk-)Ta

(ii) G%: For an edge point such as V;ijlJrs, we have

Vit - VSJ{vlJrs |

= ||%( IN+8 +V2N+7 Vi — Vi) “*ﬂ%(vé -Vl
<l Vivas =V Ve =V

+ 15(Vi— V’) 16(V4 Vi) + 15(Vs = Vi)l
< 15 max{G§, G} }

where G§ and G} are defined in (19).
For a face point such as V§+1, we have

||V1+1 Vz+1|| | .
= [5VE V) — (Vi Vh) - (V£ Vi)l
<l (V3 = Vi) + 15(V5 = Vi) + 15 (Vi = V§)

For a vertex point such as V;J{jﬂ, we have

Vit - V’N+7||
9 Vz

(V" + Vi) + 2Vin,,

1
=I5V VitV 3ﬁ Vinis+V
7 + 2) 1 (Vanis + 2N+6)||

< I Vi - )%uMWW)
(Vinro = Vi) + 35 (Vi — Vi) +

ar(Vi— Vi)

T
+ 64 (Vi - Vv, ) 32 (V3 Vz ) 32 (VS Vz )

The other cases are similar to these cases. Hence, by combining the results of (46), (47) and (4

Gyt max{G £}

(+4N glﬁz)imaX{GS,Gg}-

The second inequality of (49) follows from (45). (49) works for N =3 or N > 5.

(iii) G5: For an edge point such as V3§l ¢, we have
||V§}Lv1+6 - Vi
= || 16 (Vi +V§) + 5(Vi+ Vi)
(V§N+7 + V2N+6) Il

ﬁw4w> £ (VE=V5) + &(Vinyr = Vi)

+ 16 (Vanie — Vs)”
L max{Gi, G, G5 }.

For a vertex point such as V;J[VlH, we have
i+1 i+l
||V2N+2 ,_ Vs |

||3%( 2N+6 V5) %ﬁ( §N+2
(V§N+3 + V) + :(Vinia

- Vs)

—Vs)

+ 614( 2N+7 V4) %(Vg - V%)

+ 5 (Vi — V4) + 2 (VE- Vi)
< 2 max{Gi, }
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The other cases are similar to these two cases. Hence, by combining the results of (50), (51), (45) and (49), we have

G < $max{G},Gh,Gi)

(2)*1ao, ifN=3 (52)
<
(%)(3N2L@r—26)iG0, if N>5

where G° = max{GY,GY,GY,GY}. The lemma now follows from (45), (49) and (52). O

9 Appendix D: Proof of (26)

The proof of Lemma 3 shows that the norms of most of the second order forward differences of the control points of
T1% satisfy the inequality

I2A -B-C| < Zk !
except 2V§ — VE —V§ 2VE —V§—VE  and 2V} — V] — V2 ~+7- The last two cases are similar. Hence, we only

need to consider the first two cases.
In the second case we have

12V — VHI V1N+4”
+N?(2Vy — §N+3 - Vi)
+6N*(2Vg — Vi — Vin4)

N
+8_(2Vijunia — Vi — Vajgna41)
j=1
+(8N? — 56)(—2Vi + Vi + Vi)
N+1 ) ) )
+56 Z (2V1 = Vi nan+1) — Vag+nan+ Hl
=3

1 1 7
< (=1~
- (4 + N 4N?
where Z} is the second order norm of Si. In the above derivation, V£ should be replaced with Vi when N = 3.
In the first case, when N > 5, we have
[2Vvitt - Vi - Vet

N
1 i i i
= —=ll 24(‘721—1 —2V5 +V311)
j=1

—)Z, N=3orN>5

16N2

+N?(2Vy — Vi, — Vi)

+N2(2Vi — Vi — Vi)

+(N? — 28)(2V] — Vi — Viy)

+(N? —28)(2Vi — Vi — Vi)
N—-1

— D 28(2V] = Vi; = Vi(;_y)
=5

—28(2V] — Vin 4 — Viy)
—28(2V] = Vi — Vi)
+(8N?% — 28)(2V’ Vi — Vi)

(2 + X )ZO, if N=5
< {413y

25) 248, ifN>5"
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In the first summation, one should use Viy , for Vi; ; when j = 1. The difference between the case N = 5 and
N > 6 comes from the fact that (N2 — 28) is negative when N = 5. when N = 3, we have

J2vit - ViR - Vi
= L I5VE - Vi - Vi) 450V - Vi - Vi)
—4(2Vi — Vi — Vi) —19(2Vi — Vi — Vi)
—19(2V] — V — Vi) +44(2V] — V, — Vi) ||
2

< 323, when N = 3

Consequently, from the above results we have the first part of (26). The second part of (26) follows from the
observation that the norms of second order forward differences similar to 2Vitt — Vitt — Vit dominates the other
second order forward differences in all subsequent norm computation. O
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Figure 8: Adaptive subdivision of a ventilation controller component: (a) input mesh, (b) limit surface, (¢) uniform
subdivision, (d) adaptive subdivision.
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