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Abstract

A subdivision depth computation technique for
Catmull-Clark subdivision surfaces (CCSS’s) is pre-
sented. The subdivision depth computation technique
also includes distance evaluation techniques for CCSS
patches with their control meshes. The distance and
the subdivision depth computation techniques provide
the long-needed precision/error control tools in subdivi-
sion surface trimming, finite element mesh generation,
boolean operations, and surface tessellation for render-
ing processes.
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1 Introduction

Subdivision surfaces have become popular recently in
graphical modeling, animation and CAD/CAM because
of their stability in numerical computation, simplicity in
coding and, most importantly, their capability in mod-
eling/representing complex shape of arbitrary topology.
Given a control mesh and a set of mesh refining rules
(or, more intuitively, corner cutting rules), one gets a
limit surface by recursively cutting off corners of the
control mesh [3][5]. The limit surface is called a subdi-
vision surface because the corner cutting (mesh refin-
ing) process is a generalization of the uniform B-spline
surface subdivision techmique. Subdivision surfaces in-
clude uniform B-spline surfaces and piecewise Bézier
surfaces as special cases. Actually subdivision surfaces
include non-uniform B-spline surfaces and NURBS sur-
faces as special cases as well [10]. Subdivision surfaces
can model /represent complex shape of arbitrary topol-
ogy because there is no limit on the shape and topol-
ogy of the control mesh of a subdivision surface. With
the parametrization technique of subdivision surfaces
becoming available [11], we now know that subdivi-
sion surfaces cover both parametric forms and discrete
forms. Since parametric forms are good for design and
representation and discrete forms are good for machin-
ing and tessellation (including FE mesh generation) [1],

we finally have a representation scheme that is good for
all graphics and CAD/CAM applications.

Research work for subdivision surfaces has been done
in several important areas, such as surface trimming
[7], boolean operations [2], and mesh editing [13]. How-
ever, the area of precision/error control for Catmull-
Clark subdivision surfaces (CCSS’s)is completely blank.
For instance, given an error tolerance, how many levels
of recursive Catmull-Clark subdivision should be per-
formed on the initial control mesh so that the distance
between the resultant control mesh and the limit surface
would be less than the error tolerance? This error con-
trol technique is required in all tessellation based appli-
cations such as subdivision surface trimming, finite ele-
ment mesh generation, boolean operations, and surface
tessellation for rendering. A subdivision depth compu-
tation technique based on bounds of second derivatives
has been presented for tensor product rational surfaces
[4]. But nothing in this area has been done for Catmull-
Clark subdivision surfaces yet. The technique used for
tensor product rational surfaces can not be used here
because the parameter space of a CCSS usually does
not fit into a rectangular grid structure.

In this paper we will present a subdivision depth com-
putation technique for a CCSS. The subdivision depth
computation technique also includes distance evaluation
techniques for a CCSS patch with its control mesh. The
new techniques are based on the control points of the
CCSS patch only and work for CCSS patches with or
without an extraordinary vertex. The presented subdi-
vision depth computation technique provides the first
and an efficient error control tool that works for all tes-
sellation based applications of CCSS’s. A potential dis-
advantage of the subdivision depth computation tech-
nique is that it might generate a relatively large subdi-
vision depth for a patch with an extraordinary vertex
even though the patch is already flat enough. This is
due to the fact that the first order norm can not measure
the curvature difference between two points. A possible
solution to this problem in given in the last section.



2 Subdivision Depth Computa-
tion for Patches not near an ex-
traordinary vertex

Let Vg, V1, V5 and V3 be the control points of a uni-
form cubic B-spline curve segment C(t) whose param-
eter space is [0,1]. If we parametrize the middle leg of
the control polygon as follows: L(t) = Vi + (Vs — V)i,
0 <t < 1, (see Figure 1) then the maximum of
[[L(t) — C(t)|| is called the distance between the curve
segment and its control polygon. It is easy to see that
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Since (2V1 — VU — V2)/6 and (2V2 — V1 — V3)/6 are
the values of L(t) — C(¢) at ¢t = 0 and ¢t = 1, we have
the following lemma.

Vi L(t) V2
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Figure 1: Definition of L(#).

Lemma 1: The maximum of ||L(¢) — C(¢)|| occurs at
the endpoints of the curve segment and can be expressed
as

maxg<¢<1 || L(t) — C(t)]|
= %max{||2V1 — VO - \/2”7 ||2V2 - V1 — V3||}

(2)

A form more general than (1) has been proved by Pe-

ters [8]. His result works for uniform B-spline curves of

any degree. However, the above result is more intuitive

and is all we need for subsequent results. We next define

the distance between a uniform bicubic B-spline surface
patch and its control mesh.

Let V;;, 0 < 4,5 < 3, be the control points of a
uniform bicubic B-spline surface patch S(u,v) with pa-
rameter space [0, 1] x [0, 1]. If we parametrize the central
mesh face {V1,1, Va1, Vi2, Vao} as follows:

L(u,v) = (1—0)[(1 —u)Vi1+uVaq]
+o[(1 —uw)Vis+uVaes], 0<u,v<1
then the maximum of ||L(u,v) — S(u,v)|| is called the
distance between S(u,v) and its control mesh. If we

define Qu ik, Qu.k, Quk and ka as follows:

Qur = (1—u)Vip+uVay,
9077€ = (]. — 7))Vk71 + 'UVk’Q,
Qui = Zzzo Nis(u) Vi,
Qur = Yo Nis(w) Vi,

where N; 3(t) are standard uniform B-spline basis func-
tions of degree three, we have

[|IL(u,v) — S(u,v)]]

S (1 - 'U)”ng - QUJH + 'UHQUJ - QU,2H

3
+Y  Nia(u)]|Qui — Qu.ill.
1=0

By applying I—*emma Lon [[Qui—Quill: [[Qu2 — Qu.z|l
and [|Q,,; — Q..ill, i = 1,2, 3, and by defining M as the
maximum norm of the second order forward differences
of the control points of S(u,v), we have

IL(u,v) = S(u,v)|| < £[(1 —v)M° + v M°
+ 300 o Nig(u)M°] < M0

M?O is called the second order nmorm of S(u,v). This
leads to the following lemma.

Lemma 2: The maximum of ||L(u,v) — S(u,v)|| sat-
isfies the following inequality

1
L - < -M°
pJhax | IL(u,v) = S(u,v)|| < 3 (3)

where MY is the second order norm of S(u,v).

Note that even though the maximum of ||L(¢) — C(¢)]|
occurs at the end points of the curve segment C(t), the
maximum of ||L(u,v) — S(u,v)|| for a surface patch usu-
ally does not occur at the corners of S(u,v). In the fol-
lowing, we present subdivision depth computation tech-
nique for CCSS patches not adjacent to an extraordi-
nary vertex.

Let V;;, 0 < 4,5 < 3, be the control points of a
uniform bicubic B-spline surface patch S(u,v). We use
Vf’j, 0<14,j <3+2% -1, to represent the new control
points of the surface patch after k levels of recursive sub-
division. The indexing of the new control points follows
the convention that V’&O is always the face point of the

mesh face {V(’]“’*OI,VII"’*OI,V(’]"EI,VTEI}. The new con-
trol points Vi-"’j will be called the level-k control points
of S(u,v) and the new control mesh will be called the
level-k control mesh of S(u,v).

Note that if we divide the parameter space of the

surface patch into 4* regions as follows:

PN (] m + 1 n n+1
Qon = [277 2—k] X [2—k7 2—k]= (4)



where 0 < m,n < 2¢¥ — 1 and let the corre-
sponding subpatches be denoted S, (u,v), then
each S¥ (u,v) is a uniform bicubic B-spline sur-
face patch defined by the level-k control point
set {V’;q | m < p <m+3n < qg < n+ 3}
Sk n(u,v) is called a level-k subpatch of S(u,v).
One can define a level-k£ bilinear plane Lfmn on
{V’;q |lp=m+1,m+2;g=n+1,n+2} and measure
the distance between L},  (u,v) and S,  (u,v). We
say that the distance between S(u,v) and the level-k
control mesh is smaller than € if the distance between
each level-k subpatch S, (u,v) and the corresponding
level-k bilinear plane L,’im(u,v), 0<m,n<2F_—1, is
smaller than €. In the following, we will show how to
compute a subdivision depth k for a given € so that the
distance between S(u,v) and the level-k control mesh
is smaller than e after k levels of recursive subdivision.
The following lemma is needed in the derivation of the
computation process. If we use ijln to represent the
second order norm of SF (u,v), i.e., the maximum
norm of the second order forward differences of the
control points of S, (u,v), then the lemma shows the
second order norm of S  (u,v) converges at a rate of
1/4 of the level-(k — 1) second order norm. The proof
of this lemma is given in Appendix A.

Lemma 3 If M*

m,n

Sk, .(u,v) then we have

is the second order norm of

I\F
MARS(Z>M° (5)
where MY is the second order norm of S(u,v).

With Lemmas 2 and 3, it is easy to see that, for any
0<m,n <21 we have

max g<uw<t || Ly, o (1,0) = S5, (u, 0)
<imk <1 () mo.

mn — 3 \4

(6)

Hence, if k is large enough to make the right side of (6)
smaller than e, we have

max || Ly, ,(u,v) = S5, ,(u,0)]| < e

0<u,v<1
for every 0 < m,n < 28~ This leads to the following
main result of this subsection.

Theorem 4 Let V,;;, 0 < 4,5 < 3, be the con-
trol points of a uniform bicubic B-spline surface patch
S(u,v). For any given € > 0, if

k> log () ] ©

levels of recursive subdivision are performed on the con-
trol points of S(u,v) then the distance between S(u,v)

and the level-k control mesh is smaller than € where M°
is the second order norm of S(u,v).

3 Subdivision Depth Computa-
tion for Patches near an ex-
traordinary vertex

The subdivision depth computation process for a CCSS
patch near an extraordinary vertex is different. This is
because in the vicinity of an extraordinary vertex one
does not have a uniform B-spline surface patch repre-
sentation and, consequently, cannot use the technique
of Theorem 4 directly. Fortunately, the size of such a
vicinity can be made as small as possible, therefore, one
can reduce the size of such a vicinity to a degree that is
tolerable (i.e., within the given error bound) and use the
technique of Theorem 4 to work on the remaining part
of the surface patch. A subdivision depth computation
technique based on this concept for a CCSS patch near
an extraordinary vertex will be presented below. we as-
sume the initial mesh has been subdivided at least twice
so that each mesh face is a quadrilateral and contains
at most one extraordinary vertex. We need to define a
few notations first.

Let I = { V,; | 1 <i < 2N +8 } be a level-0 control
point set that influences the shape of a surface patch
S(u,v) (= SY(u,v)). Vi is an extraordinary vertex with
valence N. The control vertices are ordered following
Stam’s fashion [11] (see Figure 2).
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Figure 2: Ordering of control points for a CCSS patch
with an extraordinary vertex.

If we use V' to represent the level-n control vertices
generated after n levels of recursive Catmull-Clark sub-
division, and use S§, ST, S5 and S§ to represent the
subpatches of Sz}*l defined over the tiles

Q= [0,57] x [0, 5],

Q711 = [QLTLJ 2n171] X [07 2%]7
Qg = [QLTLJ 2n171] X [2%/ 2,},1],
Q5 = [0,55] % [5m: 5e=tl,
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Figure 3: Control point sets I17, 113 and 11%.

respectively, then the shape of Sj , ST , S5 and S§ are
influenced by the level-n control point sets IIf}, 117, 113
and II7, respectively. IIg is defined below and definition
of II7, I} and II} can be found in Figure 3.

My ={V/|1<i<2N+8}

St , Sy and S% are standard uniform bicubic B-spline
surface patches because their control meshes satisfy a 4-
by-4 structure. Hence, the technique described in The-
orem 4 can be used to compute a subdivision depth for
each of them. S§ is not a standard uniform bicubic B-
spline surface patch. Hence, Theorem 4 can not be used
to compute a subdivision depth for S§ directly. For the
convenience of reference, we shall call Sfi a level-n ez-
traordinary subpatch of S(u,v) because it contains the
limit point of the extraordinary points.® Note that if
Hy and H,, are column vector representations of the
control points of II{) and I17, respectively,

H,
H,

(V07V17 o '7V2N+8)t7
(V(T)L7V?> T >V£LN+8)t

where (X, X,---,X)? represents the transpose of the
row vector (X, X,---,X) then we have

H, = (T)" Ho (8)

where T is the (2N +8) x (2N +8) (extended) subdivision
matrix defined as follows [6][11]:

T 0
T = — ~ , 9
< Tvy, Tio ) ' 9)

ITo be proved in the next subsection.

with

an bN CN bN CN bN bN CN
d d e e 0 0 e e
f f f f 0O 0 0 0
B d e e d e e 0 0
=y o o f f f 0 0
d e 0 0 0 d e
f f 0 0 0 0 f f
(10)
c 00 b a b 0 0 O0
e 00 e d d 0 0 O
b 00 ¢ b a b ¢ O
Tyq = e 00 0 0 d d e O (11)
e 00 dd e 0 0 0
b ¢ b a b ¢ 0 0 O
e e d d 0 0 0 0 O
c b c 0b ¢ O
0O e e 00 0 O
0 ¢c b c 0 00
Tl’g = 0 0 e e 0 0O (12)
0 00 0 e e O
0 00 0 ¢ b ¢
0 0 0 0 0 e e
and
aN = . %71’1\1’ = 23237CN :14&!2#1: 16
=@ =g d=5e=5f=1

3.1 Computing subdivision depth for a
vicinity of the extraordinary vertex

The goal here is to find an integer n. for a given € > 0
so that if n (> n.) recursive subdivisions are performed
on 1Y), then the control point set of the level-n extraor-
dinary subpatch S§ of S(u,v), I = { VI | 1 <i <
2N +8 }, is contained in the sphere B(VZ 1!, ¢/2) with
center Vit = (V] + V7 + V? + V7)/4 and radius
€/2. Note that if the (2N + 8)-point control mesh IIf is
contained in the sphere B(VZ1!, €/2) then the level-n
extraordinary subpatch S§ is contained in the sphere
B(VITh €/2) as well. This follows from the fact that
S§, as the limit surface of I1{], is contained in the convex
hull of TI§ and the convex hull of II§j is contained in the
sphere B(VZ™! ¢/2). But then we have

max ||S{ (u,v) — Li (u,v)|| < e (13)

where L{} (u,v) is a bilinear plane defined on the level-
n mesh face { V', VI, VZ VZ }. The construction
of such an n. depends on several properties of the (ex-
tended) subdivision matrix 7" and the control point sets
{11z }.

First note that since all the entries of the extended
subdivision matrix 7" are non-negative and the sum of



each row equals one, the extended subdivision matrix
is a transition probability matriz of a (2N + 8)-state
Markov chain [9]. In particular, the (2N +1) x (2N +1)
block T of T is a transition probability matriz of a
(2N +1)-state Markov chain. The entries in the first row
and first column of T are all non-zero. Therefore, the
matrix T is irreducible because (T)? has no zero entries
and, consequently, all the states are accessible to each
other. On the other hand, since all the diagonal entries
of T' are non-zero and entries of (7)™ are non-zero for
all n > 2, it follows that all the states of T' are aperiodic
and positive recurrent. Consequently, the Markov chain
is irreducible and ergodic. By the well-known theorem
of Markov chain ([9], Theorem 4.1), (T')" converges to
a limit matrix 7* whose rows are identical. More pre-
cisely,

Ar A Asnt1
. _ _ Ar A Asnt1
lim (T)"=T"=| . . (14)
noreo : : :
Ar A Asn 41
where A; are the unique non-negative solution of
Ay =N Ay, j=1,2, 2N +1
(15)
IN+1
Zj:1+ Aj=1

with #; ; being the entries of 7. One can easily get the
following observations.

e The vector (Ay,As, -+, Asny1) satisfies the fol-
lowing properties:

A= )
Ay =Ag == Bon =y
Az =45 = =Donp1 = s

e The matrix T* is an idempotent matrix, i.e., T*T*
= T*. Hence, T* has two eigenvalues, 1 and 0 (with
multiplicity 2N).

e T has 1 as an eigenvalue and all the other 2N eigen-
values of T' have a magnitude smaller than one.

e As it is well known [6], the limit point of {V7} is
Vi=A1Vy +AsVo+ -+ Aoni1Vania.

But V7 is actually the limit point of all V7,
j =1,2,---,2N + 8. Therefore, the convex hull
of {V}, V3, -+, Viy, e} converges to Vi when n
tends to infinity and, consequently, Vi = S(0,0).
The fact that V7 is the limit point of {V}, V2, -]
Viny1) follows from (8) and (14). The fact that
Vi is also the limit point of {V5y_ ., Vin g, ",
Vin.g} is proved in Appendix B.

The last observation is important because it shows that

n+1

e [V -V (16)
converges. Therefore, it is possible to reduce the size
of S{ to a degree that is tolerable if n is large enough.
For a given ¢ > 0 we will find an n. so that if n > n.
then the level-n control point set IIj} is contained in the
sphere B(VEt!, ¢/2). To do this, we need to know how
fast (16) converges.
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Figure 4: Control point sets @, ®7, ®3 and ®7.

Let ®F, ®% &5 and ®% be subsets of 11} defined as
follows (see Figure 4):

o = {V} | j=12,---,2N +1},

dy = {V; | j=1,45--,82N+3,2N +4,
2N + 5},

o = {V¥ | j=14562N+22N+3,
2N +4,2N + 6,2N + 7},

d; = {V) | j=12,---,6,2N +6,2N +7,
2N + 8}

(17)
(VE in ®% should be replaced with V& if N = 3) and
define G§, GY, G5 and G% as follows:

Gy = MaXy e qk Vi =V,
GY = MaXy ¢k IVE = VI, (18)
Gy = MaXy e gk IVE— VI,
G5 = maxyee [VE - V.

G* is called the first order norm of ®% i = 0,1,2,3.
We need the following lemma for the construction of
ne. The proof is shown in Appendix C.

Lemma 5 If % and G} are defined as above then,
for i =0,1,2,3, we have

() a0, it N =3
P < (19)
( if N>5

W
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w
~—
ES
Q
(==}



where G = max{G), GY, GY, GI}. GV is called the
first order norm of TIY.

To construct n., note that if V € Il and V € &g,
we have

[V =V < vy Vi +Lve -y

+1lIVE = VI + VY = V]| < IGg.

It is easy to prove that similar inequalities hold for ®7,
@7 and @7 as well. Hence, for each V € IIj}, by Lemma
5, we have

n

(3" a", if N =3
Vi v <
PG +ar o) G HN>5
(20)
Since the maximum of % + % — QﬁQ occurs at N =7,
(20) can be simplified as
7 (1\"
vitt v <[] G° 21
vt - vi< g (3) (21)
where
2 if N =3
0= . (22)
28 if N>5

85

Hence, ||[VEt' — V|| is smaller than €/2 if n is large
enough to make the right hand side of (21) smaller than
or equal to €/2. Consequently, we have the following
theorem.

Theorem 6 Let I = {V; | 1 < i < 2N + 8} be
a level-0 control point set that influences the shape of
a CCSS patch S(u,v) (= SY(u,v)). Vi is an extraor-
dinary vertex with valence N. The control vertices are
ordered following Stam’s fashion [11] (see Figure 2). For
a given € > 0, if n. is defined as follows:

4 ifN=3
7G0 3 1
Ne = |—10g5 <2—>-| 5 0= (23)
€ .
%, it N>5

where GY is the first order norm of I}, then the
distance between the level-n extraordinary subpatch
S§(u,v) and the corresponding bilinear plane L{ (u, v)
is smaller than or equal to € if n > n..

Theorem 6 shows that the rate of convergence of the
control mesh in the vicinity of an extraordinary vertex
is fastest when valence of the extraordinary vertex is
three.

3.2 Computing subdivision depth for
the remaining part
The idea here is, for each k between 1 and n., to deter-

mine a subdivision depth Dy (> n.) so that if Dy, recur-
sive subdivisions are performed on the control mesh I1)

of S(u,v), then the distance between the level-Dy con-
trol mesh and the subpatches S¥, i = 1,2,3, is smaller
than e. Consequently, if we define D to be the maxi-
mum of these Dy (i.e., D = max{Dg|1 < k < n.}), then
after D recursive subdivisions, the distance between the
level-D control mesh and the subpatches S¥, i = 1,2, 3,
would be smaller than e for all 1 < k£ < n.. Note that
the distance between the level-D control mesh and the
subpatches S¥, Sk and S% for n. +1 < k < D, and the
distance between the level-D control mesh and the level-
D extraordinary subpatch SP would be smaller than e
as well. This is because these subpatches are subpatches
of Sj¢ and the distance between S{< and the level-n,
control mesh is already smaller than €. Hence, the key
here is the construction of D;. We will show the con-
struction of Dy, for S (u, v). This Dy, works for S¥(u, v)
and Sk (u,v) as well.
For 0 < u,v < 1, define a bilinear plane L (u,v) on
the mesh face {V}, VE Vi - Vi o} as follows:
Li(u,v) = (1-0)[(1 —u)VE +uVE 94
+o[(1 = u)Vin 7 +uViy, el (24)
Since S%(u,v) is a uniform bicubic B-spline surface
patch with control mesh TI%, we have, by Lemma 2,

1
L5 (u, 0) = S5 (u,0)]| < 573 (25)
where Z¥ is the second order norm of S&(u,v). If we

define Z} to be the second order norm of S{(u,v), we
have

ZE<WZET < (W)h4Y (26)
where
2 H —
3 lf N = 3
W=1{ 3+w+0 ifN=5 . (27

itN>5

3 2 21
1T~ N

The proof of (26) is shown in Appendix D. Hence, by
combining the above results, we have

Lemma 7 The maximum distance between S% and
L% satisfies the following inequality

max || Lz (u, v) — S3(u,0)|| < Z(W)" 2y (28)

W =

where W is defined in (27) and Z3 is the second order
norm of S(u,v).

It should be pointed out that when defining Z¢, only
the following items are needed for second order forward
differences involving Vi:

12V] = Vi — Vgumumll  7=1,2,--,N.



Lemma 7 shows that if £(W)*Z{ < e then the dis-
tance between S5 and L} is already smaller than e.
However, since n. subdivisions have to be performed
on II§ to get Sy anyway, Dy, for S5 in this case is set
to n.. This condition holds for S¥ and S& as well.

If $(W)*Z) > e, further subdivisions are needed
on T¥ i = 1,2,3, to make the distance between Sk,
1 = 1,2,3, and the corresponding mesh faces smaller
than e. Consider S¥ again. S% is a uniform bicubic B-
spline surface patch with control mesh I15. Therefore,
if I, recursive subdivisions are performed on the control
mesh I1%, by Lemma 2 and Lemma 3, we would have

: 1.1
1L (w0) = Sk o)l < 5("7E (29)

where LY (u, v) is a level-l control mesh relative to TT%
and Z¥ is the second order norm of S&(u,v). Therefore,
by combining the above result with (26), we have

1,1
L3 (u,v) = S5(u,0)|| < 7(5

St Zg. (30)

We get the following Lemma by setting the right hand
side of (30) smaller than or equal to e.

Lemma 8 In Lemma 7, if the distance between S%
and L% is not smaller than €, then one needs to perform

n = os, (Y34, (31)

Uy

3€

more recursive subdivisions on the level-k control mesh
15 of Sk to make the distance between S% and the
level-(k + I;) control mesh smaller than e.

This result works for S¥ and S& as well. Note that
the value of (W)*Z0 is already computed in Lemma 7
and W has to be computed only once. Therefore, the
subdivision depth Dy for S¥, S5 and S% is defined as
follows:

W)k ZY
Dy, = maz{n., k+ [log, <(;70 >1} (32)
€
Consequently, we have the following main theorem:

Theorem 9 Tet I = { V;| 1 < i < 2N + 8} be
the control mesh of a CCSS patch S(u,v). The control
points are ordered following Stam’s fashion [11] with V;
being an extraordinary vertex of valence N (see Figure
2). For a given € > 0, if we compute n. as in (23) and
D as follows:

D =maz{Di|]1 <k <n.} (33)

where Dy, is defined in (32) then after D recursive sub-
divisions, the distance between S(u,v) and the level-D
control mesh is smaller than e.

4 Examples

Some examples of the presented distance evaluating and
subdivision depth computing techniques are shown in
this section. In Figures 5(a), 5(b) and 5(c), the dis-
tances between the blue faces of the control meshes and
the corresponding limit surface patches are 0.034, 0.15
and 0.25, respectively. For an error tolerance of 0.01,
the subdivision depths computed for these mesh faces
are 1, 22 and 24, respectively. The reason that the last
two cases have large subdivision depths is because each
of them has an extraordinary vertex. For the blue mesh
face shown in Figure 5(c), subdivision depths for error
tolerances 0.25, 0.2, 0.1, 0.01, 0.001, and 0.0001 are 1,
3,9, 24, 40, and 56, respectively.

Figure 5: Distance and subdivision depth computation
for a CCSS patch with: (a) no extraordinary vertex, (b)
an extraordinary vertex of valence 8, (c) an extraordi-
nary vertex of valence 5.

5 Conclusions

A subdivision depth computation technique for CCSS’s
is presented. This technique provides a precision/error
control tool for all tessellation based applications of sub-
division surfaces.

One possible disadvantage of the subdivision depth
computation technique is that it might generate a rel-
atively large subdivision depth for a vicinity of an ex-
traordinary vertex which is actually quite flat. This is
because the first order norm can detect the location dif-
ference of two points, but not the difference between
their curvatures. Therefore, even though two points are
on the same plane, as far as they are far apart, a large
n would still be generated by the subdivision depth



computation process (see Theorem 6). A possible solu-
tion to this problem is to consider second order norm
for @7, @7, ®7 and ®% as well as the first order norm
when computing n. for the vicinity of an extraordinary
vertex.

6 Appendix A: Proof of Lemma
3

It is sufficient to show that, for each positive integer i,
one has

i 1 7
Mgl < 1Mo.0- (34)

The sixteen second order forward differences involved
in M[ﬂ']l can be classified into four dategories: (C-1)
F-E-F (C2)E—-F—E, (C3)E—-V —E, and
(C-4) V — E -V, based on the type of the vertices. For
instance, a second order forward difference is said to
be in the first category if an edge verter is sandwished
by two face wertices, such as 2V§’+01 - Véﬁ]l - Véfol.
Each category consists of four second order forward
differences. We need to show that all these categories
satisfy (34). In the following, we prove (34) for one item
of each category. The proof of the other items is similar.

Case 1 (F — E — F): consider 2V647'11 - Vé;l - Vé*"ol.
12V5h — Vol — Vol |

= |1|%(2V6,11_ Vé,z _IVE'),'O) +
< §Mgo+5Mgo = Mg

1@Vi, = Vi, = Vil
: . (35)
Case 2 (E — F — E): consider 2V6§1 _ V(Z]J’rgl _ V647-11_

12Vl — Vi = V|
= ||%(2.V6,2 Vo 35— Vo1 +2Vy, = Vi, —Vi,
+2Vi, — Vi V§1+2V11*V12*V§0)H
S %M&O + 16M670 + 16 Mé,() + 16M6,0 Mé,()
(36)
Case 3 (E —V — E): consider 2Vﬁ1 - Vﬁ; — Vﬁ]l.

2V = vih = Vi
= ||32(2V621 - V(i],g - Vézo) + %(2‘/%,1 - Vli,Z - Vio)
(2V§1*V22*V20)H .
Méo"‘ SM§ o+ 35 Mo = M.
(37)
Case 4 (V — E — V): consider 2V{h' — ViF - vifl
||2V§+21 Vit - Vit
=I5z (2Vi2 — Vs — Vi1 +2Vi, — Vi, — Vi)
31( Vi,z Viz = Vi1 +2Vi; —Vis— Vi,o)
61_4( Voo = Vi3 = V5, +2Vh, — Vi, — Violl
<(grtat=+ts+tata)Mio=3M,. (38)

This completes the proof of the lemma. O

7 Appendix B: Convergence of
IN+20 -+ VON4s

Note that if one can prove that

. W T 0 " ._ (T 0
s =g (7, 7, ) =m=(r, o)
(39)
where T* is defined in (14) and Tt is a 7 x (2N +1)
version of T*, i.e.,

Ap Ay Aont1

. A Ay o Aonga

T171 = : : . : > (40)
A Ay Asnt1

TX(2N+1)
then, by (8), we have

V]n - V; = A1V1 + A2V2 i A2N+1V2N+1
for j = 2N +2,2N +3,...,2N + 8. Hence, to prove that
Vinias - Vinig converge to V7, it is sufficient to
show that (39) is true or, equivalently, to show that (i)
(T1.2)™ converges to a 7 x 7 zero matrix when n tends
to infinity, and (ii) the lower-left 7 x (2N + 1) block
of (T)*" converges to Ty";. (i) is obvious because T »
contains non-negative entries and the sum of each row
is smaller than one. To prove (ii), note that the sum of
each row of (7)™ is one and, from (i),

(Th 2)" — 0.

Therefore, for each of the last 7 rows of ('), the sum
of the first 2N +1 entries is close to one when n is large.
On the other hand, when n is large, (14) is true, i.e.,
each column of (T)" has almost identical entries. Hence,
computing an entry of the lower-left 7 x (2N + 1) block
of (T)2" = (T)"(T)" is like multiplying 2N + 1 almost
identical entries (in the same column of the upper-left
(2N +1) x (2N +1) block of the second (7')") by 2N +1
non-negative numbers whose sum is close to one (in the
same row of the lower-left 7 x (2N + 1) block of the
first (7')™). Consequently the value of that entry in the
lower-left 7 x (2N + 1) block of (T')*" = (T)™(T)" is
close to the first 2N + 1 almost identical entries in the
same column of the second (7)™ and this completes the
proof of (ii). O

8 Appendix C: Rate of Conver-
k
gence of @]

In this appendix we prove Lemma 5 of Section 2.2.1.

Since ®¥ is symmetric to ®%, we only need to consider
Gk, G% and G% for the lemma.



(i) GE: For an edge point such as Vi, we have
Vit = Vit
:||z?4w<v2] vz>+zj 3 7 (Vi — )
+(21§(2 _§1)(V4 Vi)+(4N2 _E)(V%_V?L)
+ (537 — 10) (Ve = Vi)l

< | 1 4q9(3. L

> Zj:4 2N2 + Zj:B 4N2 +| (2N2 16)|
+(3 = awz) +2(35 — )] G

8 2N?
¢+ % — 72)Gh if N =3
(5 + 15 — 322G} if N>5

(41)
where Gf is defined in (19).
For a face point such as Vg“, we have

||Vi+1 Vi+1||
i N i
= ||Z IN 1 ( *V 1)+ 1]:2 4132 (V2j+1 Vi)
ok RUVEMAIC VRS
+ (5a7 *z)( )

N i
< Zj 3 j:2 4N2 + 2(_ - 2N2) Go
=3 +5-55)G), N=3orN>5

(42)

The other cases are similar to (41) or (42). Hence, we
have the following inequality for N =3 or N > 5:

i+1 3 7 13 i
G(Z] < (Z+W*2N2)G(ZJ

(43)

(3 +ax —2ve) GS.

IN

(ii) G%: For an edge point such as V;TV1+8, we have

IViF — ViRl o
= ||?(V§N+8 + V2N+7 Vs —Vs) ‘*ﬂﬁ(V% =Vl
S ||_6( 2N+8 V4) 16 (V§N+7 Vfl)

+ 76 (Vi = Vi) + £5(Vi = V5) + §5(Vi = Vi)l
16

max{G},Gi}

IN

(44)
where Gy and G} are defined in (19).
For a face point such as Vg“, we have

= B(VE+ V) - (Vi + V) - LV + V)
< J135(Va = Vi) + 55(V3 = Vi) + 35 (Vi = V§)

-

< Lmax{Gj,Gi}
(45)
For a vertex point such as Véﬁlw, we have
Vi — Varql S
= ||16 Vi— 55 Vi+ 55 (Vi+ V) + 5 Vin,
- —(VZ + Vl) L4(V§N+8 + V2N+6)||
< ||64( IN+8 V4) + 5 (Vs - V4) ' ,
5 (Vivsa = Vi) + (Vi =V + (V- VD)
9—4<VZ Vi) 4 (Vi V) + (Vi Vi)
< & max{Gi, Gi}.
(46)

The other cases are similar to these cases. Hence, by
combining the results of (44), (45) and (46), we have

i+1
G (47)

INIA

The second inequality of (47) follows from (43). (47)

works for N =3 or N > 5.
(iii) GE: For an edge point such as V2N+6, we have

||V§Tvl+e \al o
= || (Vi + V) + 5(Vi + Vi)
16 (V§N+7 + V2N+6)|| '
||%( = Vi) + 515(VE = Vi) +
+ L6(V§N+6 , V5)||
: max{G{,Gj, Gi}.

25 (Viniz — Vi)

<
For a vertex point such as V2N+2 we have
it+1 i+1
||V2N+2 - V ||

= || 32 (V§N+6 VZ) 6%11(V§N+2 o Vg)
(V§N+3 + V3 ) 6_4(V22N+4 - Vé) (49)

+69 (V§N+7 Vi) + %(ngVé)
+a1(VE — Vi) + & (Vi — Vi)

< %max{G Ne ey

The other cases are similar to these two cases. Hence,
by combining the results of (48), (49), (43) and (47), we

have
Gy < 2max{Gi,G},Gi}
(3)*1@°, if N =3
<
(HEEEE)'6E, ifN>5
(50)

where G° = max{G},G?,GY,GS}. The lemma now fol-
lows from (43), (47) and (50). O

9 Appendix D: Proof of (26)

The proof of Lemma 3 shows that the norms of most
of the second order forward differences of the control
points of TI% satisfy the inequality

1
I2A-B-C| <<%
4

except 2VF — VI vk ovEk v _ V§N+4 and 2V —
Vi —VEy ... The last two cases are similar. Hence, we
only need to consider the first two cases.

In the second case we have

||2Vé+1 B ViJrl V1N+4||

— s AN @VE = Vi = Vin,)



+N2(2Vé - V§N+3 - Vi)
+6N?(2VE — Vi — Viy.,)

N
+8 Z(QV;[]‘%N+1] = Vi = Voo )

j=1

+(8N? — 56)(—2Vi + Vi + V§)
N+1

+56 Z 2V = Vogoywn+1 — Vag+nans) Hl
j=3

11 T
= — )7,
Gty )%

— N=3o0orN>5

where Z{ is the second order norm of Sj. In the above
derivation, V} should be replaced with Vi when N = 3.
In the first case, when N > 5, we have

[2Vitt — vt - vt
. N
WH 24(V§j71 —2Vy; + Vi)
j=1

+N?(2V5 — Viny, — Vi)
+N%(2V§ — Vi — Vi)

+(N? - 28)(2Vi — Vi — Vi)
+(N? —28)(2Vi — Vi — Vi)

N-—-1
— > 28(2V] = Vi, = Vi )
j=5

—28(2V} — Vin 4, — Viy)
—28(2V] — Vion o — Vy)
+(8N? —28)(2Vi — Vi — Vi)l

(3 + =~ + 25) 728, if N =5
< 4 4 ' . .
= { (§+%—Q%2)Z5, if N>5

In the first summation, one should use Vj, ., for V§j71
when j = 1. The difference between the case N = 5 and
N > 6 comes from the fact that (N2 — 28) is negative
when N = 5. when N = 3, we have

[2ViFt — ViR — vt
1 .
—_||5(2 V!
144|| (2V5
—4(2Vi — Vi — Vi) —19(2Vi =V} - V})
—19(2Vi — Vi — Vi) +44(2Vi — Vi — Vi)

= — Vi Vi) 4+ 502V - Vi - Vi)

IN

2 .
—Zg, when N =3
3

Consequently, from the above results we have the first
part of (26). The second part of (26) follows from the
observation that the norms of second order forward dif-
ferences similar to 2ViTH — Vir! Vé“ dominates the
other second order forward differences in all subsequent
norm computation. O

10

References

[1] Austin S, Jerard R, Drysdale R, 1997. Comparison
of discretization algorithms for NURBS surfaces
with application to numerically controlled machin-
ing, Computer Aided Design 29 1, 71-83.

Biermann, H., Kristjansson, D., and Zorin, D.
2001. Approximate Boolean Operations on Free-
Form Solids. In Proceedings of SIGGRAPH 2001,
185-194.

Catmull E, and Clark J, 1978. Recursively Gen-
erated B-spline Surfaces on Arbitrary Topological
Meshes. Computer-Aided Design 10, 6, 350-355.

Cheng F, 1992. Estimating Subdivision Depths for
Rational Curves and Surfaces. ACM Trans. on
Graphics 11, 2 140-151.

Doo D, and Sabin M, 1978. Behavior of Recur-
sive Division Surfaces near Extraordinary Points.
Computer-Aided Design 10, 6, 356-360.

Halstead M, Kass M, DeRose T, 1993. Efficient,
Fair Interpolation Using Catmull-Clark Surfaces.
In Proceedings of SIGGRAPH 1993, 35-44.

Litke N, Levin A, and Schréder P, 2001. Trimming
for Subdivision Surfaces. Computer Aided Geomet-
ric Design 18, 5, 463-481.

Lutterkort D, and Peters J, 2001, Tight linear en-
velopes for splines. Numerische Mathematik 89, 4,
735-748.

Sheldon M Ross, Introduction to Probability Mod-
els. Academic Press, Inc., Orlando, Florida, 1985.

Sederberg T W, 1998. Non-Uniform Recursive Sub-
division Surfaces. In Proceedings of SIGGRAPH
1999, 387-394.

Stam J, 1998. Exact Evaluation of Catmull-Clark
Subdivision Surfaces at Arbitrary Parameter Val-
ues. In Proceedings of SIGGRAPH 1998, 395-404.

Wang H, Qin K, 2004. Estimating Subidivision
Depth of Catmull-Clark Surfaces. J. Comput. Sci.
& Technol. 19,5, 657-664.

[12]

[13] Zorin D, Schroder P, and Sweldens W, Interac-
tive Multiresolution Mesh Editing. In Proceedings

of SIGGRAPH 1997, 259-268.



