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tA subdivision depth 
omputation te
hnique forCatmull-Clark subdivision surfa
es (CCSS's) is pre-sented. The subdivision depth 
omputation te
hniquealso in
ludes distan
e evaluation te
hniques for CCSSpat
hes with their 
ontrol meshes. The distan
e andthe subdivision depth 
omputation te
hniques providethe long-needed pre
ision/error 
ontrol tools in subdivi-sion surfa
e trimming, �nite element mesh generation,boolean operations, and surfa
e tessellation for render-ing pro
esses.Keywords: subdivision surfa
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omputation1 Introdu
tionSubdivision surfa
es have be
ome popular re
ently ingraphi
al modeling, animation and CAD/CAM be
auseof their stability in numeri
al 
omputation, simpli
ity in
oding and, most importantly, their 
apability in mod-eling/representing 
omplex shape of arbitrary topology.Given a 
ontrol mesh and a set of mesh re�ning rules(or, more intuitively, 
orner 
utting rules), one gets alimit surfa
e by re
ursively 
utting o� 
orners of the
ontrol mesh [3℄[5℄. The limit surfa
e is 
alled a subdi-vision surfa
e be
ause the 
orner 
utting (mesh re�n-ing) pro
ess is a generalization of the uniform B-splinesurfa
e subdivision te
hnique. Subdivision surfa
es in-
lude uniform B-spline surfa
es and pie
ewise B�eziersurfa
es as spe
ial 
ases. A
tually subdivision surfa
esin
lude non-uniform B-spline surfa
es and NURBS sur-fa
es as spe
ial 
ases as well [10℄. Subdivision surfa
es
an model/represent 
omplex shape of arbitrary topol-ogy be
ause there is no limit on the shape and topol-ogy of the 
ontrol mesh of a subdivision surfa
e. Withthe parametrization te
hnique of subdivision surfa
esbe
oming available [11℄, we now know that subdivi-sion surfa
es 
over both parametri
 forms and dis
reteforms. Sin
e parametri
 forms are good for design andrepresentation and dis
rete forms are good for ma
hin-ing and tessellation (in
luding FE mesh generation) [1℄,

we �nally have a representation s
heme that is good forall graphi
s and CAD/CAM appli
ations.Resear
h work for subdivision surfa
es has been donein several important areas, su
h as surfa
e trimming[7℄, boolean operations [2℄, and mesh editing [13℄. How-ever, the area of pre
ision/error 
ontrol for Catmull-Clark subdivision surfa
es (CCSS's)is 
ompletely blank.For instan
e, given an error toleran
e, how many levelsof re
ursive Catmull-Clark subdivision should be per-formed on the initial 
ontrol mesh so that the distan
ebetween the resultant 
ontrol mesh and the limit surfa
ewould be less than the error toleran
e? This error 
on-trol te
hnique is required in all tessellation based appli-
ations su
h as subdivision surfa
e trimming, �nite ele-ment mesh generation, boolean operations, and surfa
etessellation for rendering. A subdivision depth 
ompu-tation te
hnique based on bounds of se
ond derivativeshas been presented for tensor produ
t rational surfa
es[4℄. But nothing in this area has been done for Catmull-Clark subdivision surfa
es yet. The te
hnique used fortensor produ
t rational surfa
es 
an not be used herebe
ause the parameter spa
e of a CCSS usually doesnot �t into a re
tangular grid stru
ture.In this paper we will present a subdivision depth 
om-putation te
hnique for a CCSS. The subdivision depth
omputation te
hnique also in
ludes distan
e evaluationte
hniques for a CCSS pat
h with its 
ontrol mesh. Thenew te
hniques are based on the 
ontrol points of theCCSS pat
h only and work for CCSS pat
hes with orwithout an extraordinary vertex. The presented subdi-vision depth 
omputation te
hnique provides the �rstand an eÆ
ient error 
ontrol tool that works for all tes-sellation based appli
ations of CCSS's. A potential dis-advantage of the subdivision depth 
omputation te
h-nique is that it might generate a relatively large subdi-vision depth for a pat
h with an extraordinary vertexeven though the pat
h is already 
at enough. This isdue to the fa
t that the �rst order norm 
an not measurethe 
urvature di�eren
e between two points. A possiblesolution to this problem in given in the last se
tion.1



2 Subdivision Depth Computa-tion for Pat
hes not near an ex-traordinary vertexLet V0, V1, V2 and V3 be the 
ontrol points of a uni-form 
ubi
 B-spline 
urve segment C(t) whose param-eter spa
e is [0; 1℄. If we parametrize the middle leg ofthe 
ontrol polygon as follows: L(t) = V1+(V2�V1)t,0 � t � 1, (see Figure 1) then the maximum ofkL(t) � C(t)k is 
alled the distan
e between the 
urvesegment and its 
ontrol polygon. It is easy to see thatkL(t)�C(t)k= k (1�t)36 (2V1 �V0 �V2) + t36 (2V2 �V1 �V3)k� 16 maxfk2V1 �V0 �V2k; k2V2 �V1 �V3kg: (1)Sin
e (2V1 �V0 �V2)=6 and (2V2 �V1 �V3)=6 arethe values of L(t) � C(t) at t = 0 and t = 1, we havethe following lemma.
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Figure 1: De�nition of L(t).Lemma 1: The maximum of kL(t)�C(t)k o

urs atthe endpoints of the 
urve segment and 
an be expressedas max0�t�1 kL(t)�C(t)k= 16 maxfk2V1 �V0 �V2k; k2V2 �V1 �V3kg (2)A form more general than (1) has been proved by Pe-ters [8℄. His result works for uniform B-spline 
urves ofany degree. However, the above result is more intuitiveand is all we need for subsequent results. We next de�nethe distan
e between a uniform bi
ubi
 B-spline surfa
epat
h and its 
ontrol mesh.Let Vi;j , 0 � i; j � 3, be the 
ontrol points of auniform bi
ubi
 B-spline surfa
e pat
h S(u; v) with pa-rameter spa
e [0; 1℄�[0; 1℄. If we parametrize the 
entralmesh fa
e fV1;1;V2;1;V1;2;V2;2g as follows:L(u; v) = (1� v)[(1� u)V1;1 + uV2;1℄+v[(1� u)V1;2 + uV2;2℄; 0 � u; v � 1then the maximum of kL(u; v) � S(u; v)k is 
alled thedistan
e between S(u; v) and its 
ontrol mesh. If we

de�ne Qu;k, Qv;k, �Qu;k and �Qv;k as follows:Qu;k � (1� u)V1;k + uV2;k;Qv;k � (1� v)Vk;1 + vVk;2;�Qu;k � P3i=0Ni;3(u)Vi;k;�Qv;k � P3j=0Nj;3(v)Vk;jwhere Ni;3(t) are standard uniform B-spline basis fun
-tions of degree three, we havekL(u; v)� S(u; v)k� (1� v)kQu;1 � �Qu;1k+ vkQu;2 � �Qu;2k+ 3Xi=0Ni;3(u)kQv;i � �Qv;ik:By applying Lemma 1 on kQu;1� �Qu;1k, kQu;2� �Qu;2kand kQv;i� �Qv;ik, i = 1; 2; 3, and by de�ningM0 as themaximum norm of the se
ond order forward di�eren
esof the 
ontrol points of S(u; v), we havekL(u; v)� S(u; v)k � 16 [(1� v)M0 + vM0+P3i=0Ni;3(u)M0℄ � 13M0:M0 is 
alled the se
ond order norm of S(u; v). Thisleads to the following lemma.Lemma 2: The maximum of kL(u; v)�S(u; v)k sat-is�es the following inequalitymax0�u;v�1 kL(u; v)� S(u; v)k � 13M0 (3)where M0 is the se
ond order norm of S(u; v).Note that even though the maximum of kL(t)�C(t)ko

urs at the end points of the 
urve segment C(t), themaximum of kL(u; v)�S(u; v)k for a surfa
e pat
h usu-ally does not o

ur at the 
orners of S(u; v). In the fol-lowing, we present subdivision depth 
omputation te
h-nique for CCSS pat
hes not adja
ent to an extraordi-nary vertex.Let Vi;j , 0 � i; j � 3, be the 
ontrol points of auniform bi
ubi
 B-spline surfa
e pat
h S(u; v). We useVki;j , 0 � i; j � 3 + 2k � 1, to represent the new 
ontrolpoints of the surfa
e pat
h after k levels of re
ursive sub-division. The indexing of the new 
ontrol points followsthe 
onvention that Vk0;0 is always the fa
e point of themesh fa
e fVk�10;0 ;Vk�11;0 ;Vk�10;1 ;Vk�11;1 g. The new 
on-trol points Vki;j will be 
alled the level-k 
ontrol pointsof S(u; v) and the new 
ontrol mesh will be 
alled thelevel-k 
ontrol mesh of S(u; v).Note that if we divide the parameter spa
e of thesurfa
e pat
h into 4k regions as follows:
km;n = [m2k ; m+ 12k ℄� [ n2k ; n+ 12k ℄; (4)2



where 0 � m;n � 2k � 1 and let the 
orre-sponding subpat
hes be denoted Skm;n(u; v), thenea
h Skm;n(u; v) is a uniform bi
ubi
 B-spline sur-fa
e pat
h de�ned by the level-k 
ontrol pointset fVkp;q j m � p � m + 3; n � q � n + 3g.Skm;n(u; v) is 
alled a level-k subpat
h of S(u; v).One 
an de�ne a level-k bilinear plane Lkm;n onfVkp;q j p = m+1;m+2; q = n+1; n+2g and measurethe distan
e between Lkm;n(u; v) and Skm;n(u; v). Wesay that the distan
e between S(u; v) and the level-k
ontrol mesh is smaller than � if the distan
e betweenea
h level-k subpat
h Skm;n(u; v) and the 
orrespondinglevel-k bilinear plane Lkm;n(u; v), 0 � m;n � 2k � 1, issmaller than �. In the following, we will show how to
ompute a subdivision depth k for a given � so that thedistan
e between S(u; v) and the level-k 
ontrol meshis smaller than � after k levels of re
ursive subdivision.The following lemma is needed in the derivation of the
omputation pro
ess. If we use Mkm;n to represent these
ond order norm of Skm;n(u; v), i.e., the maximumnorm of the se
ond order forward di�eren
es of the
ontrol points of Skm;n(u; v), then the lemma shows these
ond order norm of Skm;n(u; v) 
onverges at a rate of1=4 of the level-(k � 1) se
ond order norm. The proofof this lemma is given in Appendix A.Lemma 3 If Mkm;n is the se
ond order norm ofSkm;n(u; v) then we haveMkm;n � �14�kM0 (5)where M0 is the se
ond order norm of S(u; v).With Lemmas 2 and 3, it is easy to see that, for any0 � m;n � 2k�1, we havemax 0�u;v�1 kLkm;n(u; v)� Skm;n(u; v)k� 13Mkm;n � 13 � 14�kM0: (6)Hen
e, if k is large enough to make the right side of (6)smaller than �, we havemax0�u;v�1 kLkm;n(u; v)� Skm;n(u; v)k � �for every 0 � m;n � 2k�1. This leads to the followingmain result of this subse
tion.Theorem 4 Let Vi;j , 0 � i; j � 3, be the 
on-trol points of a uniform bi
ubi
 B-spline surfa
e pat
hS(u; v). For any given � > 0, ifk � d log4(M03� ) e (7)levels of re
ursive subdivision are performed on the 
on-trol points of S(u; v) then the distan
e between S(u; v)

and the level-k 
ontrol mesh is smaller than � whereM0is the se
ond order norm of S(u; v).3 Subdivision Depth Computa-tion for Pat
hes near an ex-traordinary vertexThe subdivision depth 
omputation pro
ess for a CCSSpat
h near an extraordinary vertex is di�erent. This isbe
ause in the vi
inity of an extraordinary vertex onedoes not have a uniform B-spline surfa
e pat
h repre-sentation and, 
onsequently, 
annot use the te
hniqueof Theorem 4 dire
tly. Fortunately, the size of su
h avi
inity 
an be made as small as possible, therefore, one
an redu
e the size of su
h a vi
inity to a degree that istolerable (i.e., within the given error bound) and use thete
hnique of Theorem 4 to work on the remaining partof the surfa
e pat
h. A subdivision depth 
omputationte
hnique based on this 
on
ept for a CCSS pat
h nearan extraordinary vertex will be presented below. we as-sume the initial mesh has been subdivided at least twi
eso that ea
h mesh fa
e is a quadrilateral and 
ontainsat most one extraordinary vertex. We need to de�ne afew notations �rst.Let �00 = f Vi j 1 � i � 2N +8 g be a level-0 
ontrolpoint set that in
uen
es the shape of a surfa
e pat
hS(u; v) (= S00(u; v)). V1 is an extraordinary vertex withvalen
e N . The 
ontrol verti
es are ordered followingStam's fashion [11℄ (see Figure 2).
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Figure 2: Ordering of 
ontrol points for a CCSS pat
hwith an extraordinary vertex.If we use Vni to represent the level-n 
ontrol verti
esgenerated after n levels of re
ursive Catmull-Clark sub-division, and use Sn0 , Sn1 , Sn2 and Sn3 to represent thesubpat
hes of Sn�10 de�ned over the tiles
n0 = [0; 12n ℄� [0; 12n ℄;
n1 = [ 12n ; 12n�1 ℄� [0; 12n ℄;
n2 = [ 12n ; 12n�1 ℄� [ 12n ; 12n�1 ℄;
n3 = [0; 12n ℄� [ 12n ; 12n�1 ℄;3
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Figure 3: Control point sets �n1 , �n2 and �n3 .respe
tively, then the shape of Sn0 , Sn1 , Sn2 and Sn3 arein
uen
ed by the level-n 
ontrol point sets �n0 , �n1 , �n2and �n3 , respe
tively. �n0 is de�ned below and de�nitionof �n1 , �n2 and �n3 
an be found in Figure 3.�n0 = f Vni j 1 � i � 2N + 8 gSn1 , Sn2 and Sn3 are standard uniform bi
ubi
 B-splinesurfa
e pat
hes be
ause their 
ontrol meshes satisfy a 4-by-4 stru
ture. Hen
e, the te
hnique des
ribed in The-orem 4 
an be used to 
ompute a subdivision depth forea
h of them. Sn0 is not a standard uniform bi
ubi
 B-spline surfa
e pat
h. Hen
e, Theorem 4 
an not be usedto 
ompute a subdivision depth for Sn0 dire
tly. For the
onvenien
e of referen
e, we shall 
all Sn0 a level-n ex-traordinary subpat
h of S(u; v) be
ause it 
ontains thelimit point of the extraordinary points.1 Note that ifH0 and Hn are 
olumn ve
tor representations of the
ontrol points of �00 and �n0 , respe
tively,H0 � (V0;V1; � � � ;V2N+8)t;Hn � (Vn0 ;Vn1 ; � � � ;Vn2N+8)twhere (X; X; � � � ;X)t represents the transpose of therow ve
tor (X; X; � � � ;X) then we haveHn = (T )n H0 (8)where T is the (2N+8)�(2N+8) (extended) subdivisionmatrix de�ned as follows [6℄[11℄:T � � �T 0�T1;1 �T1;2 � ; (9)1To be proved in the next subse
tion.
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1CCCCCCCCA (12)and aN = 1� 74N ; bN = 32N2 ; 
N = 14N2 ; a = 916 ;b = 332 ; 
 = 164 ; d = 38 ; e = 116 ; f = 14 :3.1 Computing subdivision depth for avi
inity of the extraordinary vertexThe goal here is to �nd an integer n� for a given � > 0so that if n (� n�) re
ursive subdivisions are performedon �00, then the 
ontrol point set of the level-n extraor-dinary subpat
h Sn0 of S(u; v), �n0 = f Vni j 1 � i �2N +8 g, is 
ontained in the sphere B(Vn+15 ; �=2) with
enter Vn+15 � (Vn1 + Vn4 + Vn5 + Vn6 )=4 and radius�=2. Note that if the (2N +8)-point 
ontrol mesh �n0 is
ontained in the sphere B(Vn+15 ; �=2) then the level-nextraordinary subpat
h Sn0 is 
ontained in the sphereB(Vn+15 ; �=2) as well. This follows from the fa
t thatSn0 , as the limit surfa
e of �n0 , is 
ontained in the 
onvexhull of �n0 and the 
onvex hull of �n0 is 
ontained in thesphere B(Vn+15 ; �=2). But then we havemax kSn0 (u; v)� Ln0 (u; v)k < � (13)where Ln0 (u; v) is a bilinear plane de�ned on the level-n mesh fa
e f Vn1 ; Vn4 ; Vn5 ; Vn6 g. The 
onstru
tionof su
h an n� depends on several properties of the (ex-tended) subdivision matrix T and the 
ontrol point setsf�n0g.First note that sin
e all the entries of the extendedsubdivision matrix T are non-negative and the sum of4



ea
h row equals one, the extended subdivision matrixis a transition probability matrix of a (2N + 8)-stateMarkov 
hain [9℄. In parti
ular, the (2N+1)� (2N+1)blo
k �T of T is a transition probability matrix of a(2N+1)-state Markov 
hain. The entries in the �rst rowand �rst 
olumn of �T are all non-zero. Therefore, thematrix �T is irredu
ible be
ause ( �T )2 has no zero entriesand, 
onsequently, all the states are a

essible to ea
hother. On the other hand, sin
e all the diagonal entriesof �T are non-zero and entries of ( �T )n are non-zero forall n � 2, it follows that all the states of �T are aperiodi
and positive re
urrent. Consequently, the Markov 
hainis irredu
ible and ergodi
. By the well-known theoremof Markov 
hain ([9℄, Theorem 4.1), ( �T )n 
onverges toa limit matrix �T � whose rows are identi
al. More pre-
isely,limn!1( �T )n = �T � � 0BBB� �1 �2 � � � �2N+1�1 �2 � � � �2N+1... ... . . . ...�1 �2 � � � �2N+1 1CCCA (14)where �i are the unique non-negative solution of�j =P2N+1i=1 �i�ti;j ; j = 1; 2; � � � ; 2N + 1P2N+1j=1 �j = 1 (15)with �ti;j being the entries of �T . One 
an easily get thefollowing observations.� The ve
tor (�1;�2; � � � ;�2N+1) satis�es the fol-lowing properties:�1 = NN+5�2 = �4 = � � � = �2N = 4N(N+5)�3 = �5 = � � � = �2N+1 = 1N(N+5)� The matrix �T � is an idempotent matrix, i.e., �T � �T �= �T �. Hen
e, �T � has two eigenvalues, 1 and 0 (withmultipli
ity 2N).� �T has 1 as an eigenvalue and all the other 2N eigen-values of �T have a magnitude smaller than one.� As it is well known [6℄, the limit point of fVn1 g isV�1 � �1V1 +�2V2 + � � �+�2N+1V2N+1:But V�1 is a
tually the limit point of all Vnj ,j = 1; 2; � � � ; 2N + 8. Therefore, the 
onvex hullof fVn1 ; Vn2 ; � � � ; Vn2N+8g 
onverges to V�1 when ntends to in�nity and, 
onsequently, V�1 = S(0; 0).The fa
t that V�1 is the limit point of fVn1 ;Vn2 ; � � � ;Vn2N+1g follows from (8) and (14). The fa
t thatV�1 is also the limit point of fVn2N+2;Vn2N+3; � � � ;Vn2N+8g is proved in Appendix B.

The last observation is important be
ause it shows thatmaxV2�n0 kVn+15 �Vk (16)
onverges. Therefore, it is possible to redu
e the sizeof Sn0 to a degree that is tolerable if n is large enough.For a given � > 0 we will �nd an n� so that if n � n�then the level-n 
ontrol point set �n0 is 
ontained in thesphere B(Vn+15 ; �=2). To do this, we need to know howfast (16) 
onverges.
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Figure 4: Control point sets �n0 , �n1 , �n2 and �n3 .Let �k0 , �k1 , �k2 and �k3 be subsets of �k0 de�ned asfollows (see Figure 4):�k0 = fVkj j j = 1; 2; � � � ; 2N + 1g;�k1 = fVkj j j = 1; 4; 5; � � � ; 8; 2N + 3; 2N + 4;2N + 5g;�k2 = fVkj j j = 1; 4; 5; 6; 2N + 2; 2N + 3;2N + 4; 2N + 6; 2N + 7g;�k3 = fVkj j j = 1; 2; � � � ; 6; 2N + 6; 2N + 7;2N + 8g (17)(Vk8 in �k1 should be repla
ed with Vk2 if N = 3) andde�ne Gk0 , Gk1 , Gk2 and Gk3 as follows:Gk0 = maxV2�k0 kVk1 �Vk;Gk1 = maxV2�k1 kVk6 �Vk;Gk2 = maxV2�k2 kVk5 �Vk;Gk3 = maxV2�k3 kVk4 �Vk: (18)Gki is 
alled the �rst order norm of �ki , i = 0; 1; 2; 3.We need the following lemma for the 
onstru
tion ofn�. The proof is shown in Appendix C.Lemma 5 If �ki and Gki are de�ned as above then,for i = 0; 1; 2; 3, we haveGki �8><>: � 34�kG0; if N = 3� 34 + 74N � 132N2 �kG0; if N � 5 (19)5



where G0 � maxfG00; G01; G02; G03g. G0 is 
alled the�rst order norm of �00.To 
onstru
t n�, note that if V 2 �n0 and V 2 �n0 ,we havekVn+15 �Vk � 14kVn4 �Vn1 k+ 14kVn5 �Vn1 k+ 14kVn6 �Vn1 k+ kVn1 �Vk � 74Gn0 :It is easy to prove that similar inequalities hold for �n1 ,�n2 and �n3 as well. Hen
e, for ea
h V 2 �n0 , by Lemma5, we havekVn+15 �Vk � 8<: 74 � 34�nG0; if N = 374 � 34 + 74N � 132N2 �nG0; if N � 5(20)Sin
e the maximum of 34 + 74N � 132N2 o

urs at N = 7,(20) 
an be simpli�ed askVn+15 �Vk � 74 �1Æ�nG0 (21)where Æ = 8<: 43 ; if N = 39885 ; if N � 5 : (22)Hen
e, kVn+15 � Vk is smaller than �=2 if n is largeenough to make the right hand side of (21) smaller thanor equal to �=2. Consequently, we have the followingtheorem.Theorem 6 Let �00 = fVi j 1 � i � 2N + 8g bea level-0 
ontrol point set that in
uen
es the shape ofa CCSS pat
h S(u; v) (= S00(u; v)). V1 is an extraor-dinary vertex with valen
e N . The 
ontrol verti
es areordered following Stam's fashion [11℄ (see Figure 2). Fora given � > 0, if n� is de�ned as follows:n� � dlogÆ �7G02� �e ; Æ = 8<: 43 ; if N = 39885 ; if N � 5 (23)where G0 is the �rst order norm of �00, then thedistan
e between the level-n extraordinary subpat
hSn0 (u; v) and the 
orresponding bilinear plane Ln0 (u; v)is smaller than or equal to � if n � n�.Theorem 6 shows that the rate of 
onvergen
e of the
ontrol mesh in the vi
inity of an extraordinary vertexis fastest when valen
e of the extraordinary vertex isthree.3.2 Computing subdivision depth forthe remaining partThe idea here is, for ea
h k between 1 and n�, to deter-mine a subdivision depth Dk (� n�) so that if Dk re
ur-sive subdivisions are performed on the 
ontrol mesh �00

of S(u; v), then the distan
e between the level-Dk 
on-trol mesh and the subpat
hes Ski , i = 1; 2; 3, is smallerthan �. Consequently, if we de�ne D to be the maxi-mum of these Dk (i.e., D = maxfDkj1 � k � n�g), thenafter D re
ursive subdivisions, the distan
e between thelevel-D 
ontrol mesh and the subpat
hes Ski , i = 1; 2; 3,would be smaller than � for all 1 � k � n�. Note thatthe distan
e between the level-D 
ontrol mesh and thesubpat
hes Sk1 , Sk2 and Sk3 for n� + 1 � k � D, and thedistan
e between the level-D 
ontrol mesh and the level-D extraordinary subpat
h SD0 would be smaller than �as well. This is be
ause these subpat
hes are subpat
hesof Sn�0 and the distan
e between Sn�0 and the level-n�
ontrol mesh is already smaller than �. Hen
e, the keyhere is the 
onstru
tion of Dk. We will show the 
on-stru
tion of Dk for Sk3(u; v). This Dk works for Sk1(u; v)and Sk2(u; v) as well.For 0 � u; v � 1, de�ne a bilinear plane Lk3(u; v) onthe mesh fa
e fVk4 , Vk5 ;Vk2N+7;Vk2N+6g as follows:Lk3(u; v) = (1� v)[(1� u)Vk4 + uVk5 ℄+v[(1� u)Vk2N+7 + uVk2N+6℄: (24)Sin
e Sk3(u; v) is a uniform bi
ubi
 B-spline surfa
epat
h with 
ontrol mesh �k3 , we have, by Lemma 2,kLk3(u; v)� Sk3(u; v)k � 13Zk3 (25)where Zk3 is the se
ond order norm of Sk3(u; v). If wede�ne Zi0 to be the se
ond order norm of Si0(u; v), wehave Zk3 �WZk�10 � (W )kZ00 (26)whereW =8>>>><>>>>: 23 ; if N = 312 + 14N + 214N2 ; if N = 534 + 2N � 212N2 ; if N > 5 : (27)The proof of (26) is shown in Appendix D. Hen
e, by
ombining the above results, we haveLemma 7 The maximum distan
e between Sk3 andLk3 satis�es the following inequalitymax kLk3(u; v)� Sk3(u; v)k � 13(W )kZ00 (28)where W is de�ned in (27) and Z00 is the se
ond ordernorm of S(u; v).It should be pointed out that when de�ning Zi0, onlythe following items are needed for se
ond order forwarddi�eren
es involving Vi1:k2Vi1 �Vi2j �Vi2[(j+2)%N ℄k; j = 1; 2; � � � ; N:6



Lemma 7 shows that if 13 (W )kZ00 � � then the dis-tan
e between Sk3 and Lk3 is already smaller than �.However, sin
e n� subdivisions have to be performedon �00 to get Sn�0 anyway, Dk for Sk3 in this 
ase is setto n�. This 
ondition holds for Sk1 and Sk2 as well.If 13 (W )kZ00 > �, further subdivisions are neededon �ki , i = 1; 2; 3, to make the distan
e between Ski ,i = 1; 2; 3, and the 
orresponding mesh fa
es smallerthan �. Consider Sk3 again. Sk3 is a uniform bi
ubi
 B-spline surfa
e pat
h with 
ontrol mesh �k3 . Therefore,if lk re
ursive subdivisions are performed on the 
ontrolmesh �k3 , by Lemma 2 and Lemma 3, we would havekLlk3 (u; v)� Sk3(u; v)k � 13(14)lkZk3 (29)where Llk3 (u; v) is a level-lk 
ontrol mesh relative to �k3and Zk3 is the se
ond order norm of Sk3(u; v). Therefore,by 
ombining the above result with (26), we havekLlk3 (u; v)� Sk3(u; v)k � 13(14)lk (W )kZ00 : (30)We get the following Lemma by setting the right handside of (30) smaller than or equal to �.Lemma 8 In Lemma 7, if the distan
e between Sk3and Lk3 is not smaller than �, then one needs to performlk lk = dlog4� (W )kZ003� �e (31)more re
ursive subdivisions on the level-k 
ontrol mesh�k3 of Sk3 to make the distan
e between Sk3 and thelevel-(k + lk) 
ontrol mesh smaller than �.This result works for Sk1 and Sk2 as well. Note thatthe value of (W )kZ00 is already 
omputed in Lemma 7and W has to be 
omputed only on
e. Therefore, thesubdivision depth Dk for Sk1 , Sk2 and Sk3 is de�ned asfollows:Dk = maxfn�; k + dlog4� (W )kZ003� �eg (32)Consequently, we have the following main theorem:Theorem 9 Let �00 = f Vij 1 � i � 2N + 8g bethe 
ontrol mesh of a CCSS pat
h S(u; v). The 
ontrolpoints are ordered following Stam's fashion [11℄ with V1being an extraordinary vertex of valen
e N (see Figure2). For a given � > 0, if we 
ompute n� as in (23) andD as follows: D = maxfDkj1 � k � n�g (33)where Dk is de�ned in (32) then after D re
ursive sub-divisions, the distan
e between S(u; v) and the level-D
ontrol mesh is smaller than �.

4 ExamplesSome examples of the presented distan
e evaluating andsubdivision depth 
omputing te
hniques are shown inthis se
tion. In Figures 5(a), 5(b) and 5(
), the dis-tan
es between the blue fa
es of the 
ontrol meshes andthe 
orresponding limit surfa
e pat
hes are 0.034, 0.15and 0.25, respe
tively. For an error toleran
e of 0.01,the subdivision depths 
omputed for these mesh fa
esare 1, 22 and 24, respe
tively. The reason that the lasttwo 
ases have large subdivision depths is be
ause ea
hof them has an extraordinary vertex. For the blue meshfa
e shown in Figure 5(
), subdivision depths for errortoleran
es 0.25, 0.2, 0.1, 0.01, 0.001, and 0.0001 are 1,3, 9, 24, 40, and 56, respe
tively.
(a) (b)

(
)Figure 5: Distan
e and subdivision depth 
omputationfor a CCSS pat
h with: (a) no extraordinary vertex, (b)an extraordinary vertex of valen
e 8, (
) an extraordi-nary vertex of valen
e 5.5 Con
lusionsA subdivision depth 
omputation te
hnique for CCSS'sis presented. This te
hnique provides a pre
ision/error
ontrol tool for all tessellation based appli
ations of sub-division surfa
es.One possible disadvantage of the subdivision depth
omputation te
hnique is that it might generate a rel-atively large subdivision depth for a vi
inity of an ex-traordinary vertex whi
h is a
tually quite 
at. This isbe
ause the �rst order norm 
an dete
t the lo
ation dif-feren
e of two points, but not the di�eren
e betweentheir 
urvatures. Therefore, even though two points areon the same plane, as far as they are far apart, a largen� would still be generated by the subdivision depth7




omputation pro
ess (see Theorem 6). A possible solu-tion to this problem is to 
onsider se
ond order normfor �n0 , �n1 , �n2 and �n3 as well as the �rst order normwhen 
omputing n� for the vi
inity of an extraordinaryvertex.6 Appendix A: Proof of Lemma3It is suÆ
ient to show that, for ea
h positive integer i,one has M i+10;0 � 14M i0;0: (34)The sixteen se
ond order forward di�eren
es involvedin M i+10;0 
an be 
lassi�ed into four dategories: (C-1)F � E � F , (C-2) E � F � E, (C-3) E � V � E, and(C-4) V �E�V , based on the type of the verti
es. Forinstan
e, a se
ond order forward di�eren
e is said tobe in the �rst 
ategory if an edge vertex is sandwishedby two fa
e verti
es, su
h as 2Vi+11;0 � Vi+10;0 � Vi+12;0 .Ea
h 
ategory 
onsists of four se
ond order forwarddi�eren
es. We need to show that all these 
ategoriessatisfy (34). In the following, we prove (34) for one itemof ea
h 
ategory. The proof of the other items is similar.Case 1 (F �E � F ): 
onsider 2Vi+10;1 �Vi+10;2 �Vi+10;0 .k2Vi+10;1 �Vi+10;2 �Vi+10;0 k= k 18 (2Vi0;1 �Vi0;2 �Vi0;0) + 18 (2Vi1;1 �Vi1;2 �Vi1;0)k� 18M i0;0 + 18M i0;0 = 14M i0;0: (35)Case 2 (E � F �E): 
onsider 2Vi+10;2 �Vi+10;3 �Vi+10;1 .k2Vi+10;2 �Vi+10;3 �Vi+10;1 k= k 116 (2Vi0;2 �Vi0;3 �Vi0;1 + 2Vi0;1 �Vi0;2 �Vi0;0+ 2Vi1;2 �Vi1;3 �Vi1;1 + 2Vi1;1 �Vi1;2 �Vi1;0)k� 116M i0;0 + 116M i0;0 + 116M i0;0 + 116M i0;0 = 14M i0;0:(36)Case 3 (E � V �E): 
onsider 2Vi+11;1 �Vi+11;2 �Vi+11;0 .k2Vi+11;1 �Vi+11;2 �Vi+11;0 k= k 132 (2Vi0;1 �Vi0;2 �Vi0;0) + 316 (2Vi1;1 �Vi1;2 �Vi1;0)+ 132 (2Vi2;1 �Vi2;2 �Vi2;0)k� 132M i0;0 + 316M i0;0 + 132M i0;0 = 14M i0;0: (37)Case 4 (V �E � V ): 
onsider 2Vi+11;2 �Vi+11;3 �Vi+11;1 .k2Vi+11;2 �Vi+11;3 �Vi+11;1 k= k 164 (2Vi0;2 �Vi0;3 �Vi0;1 + 2Vi0;1 �Vi0;2 �Vi0;0)+ 332 (2Vi1;2 �Vi1;3 �Vi1;1 + 2Vi1;1 �Vi1;2 �Vi1;0)+ 164 (2Vi2;2 �Vi2;3 �Vi2;1 + 2Vi2;1 �Vi2;2 �Vi2;0)k� ( 164 + 164 + 332 + 332 + 164 + 164 )M i0;0 = 14M i0;0: (38)This 
ompletes the proof of the lemma. 2

7 Appendix B: Convergen
e ofVn2N+2, ..., Vn2N+8Note that if one 
an prove thatlimn!1(T )n = limn!1� �T 0�T1;1 �T1;2 �n = T � � � �T � 0�T �1;1 0 �(39)where �T � is de�ned in (14) and �T �1;1 is a 7 � (2N + 1)version of �T �, i.e.,�T �1;1 = 0BBB� �1 �2 � � � �2N+1�1 �2 � � � �2N+1... ... . . . ...�1 �2 � � � �2N+1 1CCCA7�(2N+1) ; (40)then, by (8), we haveVnj ! V�1 � �1V1 +�2V2 + � � �+�2N+1V2N+1for j = 2N +2; 2N +3; :::; 2N +8. Hen
e, to prove thatVn2N+2, ..., Vn2N+8 
onverge to V�1, it is suÆ
ient toshow that (39) is true or, equivalently, to show that (i)( �T1;2)n 
onverges to a 7 � 7 zero matrix when n tendsto in�nity, and (ii) the lower-left 7 � (2N + 1) blo
kof (T )2n 
onverges to �T �1;1. (i) is obvious be
ause �T1;2
ontains non-negative entries and the sum of ea
h rowis smaller than one. To prove (ii), note that the sum ofea
h row of (T )n is one and, from (i),( �T1;2)n ! 0:Therefore, for ea
h of the last 7 rows of (T )n, the sumof the �rst 2N+1 entries is 
lose to one when n is large.On the other hand, when n is large, (14) is true, i.e.,ea
h 
olumn of ( �T )n has almost identi
al entries. Hen
e,
omputing an entry of the lower-left 7� (2N +1) blo
kof (T )2n = (T )n(T )n is like multiplying 2N + 1 almostidenti
al entries (in the same 
olumn of the upper-left(2N+1)�(2N+1) blo
k of the se
ond (T )n) by 2N+1non-negative numbers whose sum is 
lose to one (in thesame row of the lower-left 7 � (2N + 1) blo
k of the�rst (T )n). Consequently the value of that entry in thelower-left 7 � (2N + 1) blo
k of (T )2n = (T )n(T )n is
lose to the �rst 2N + 1 almost identi
al entries in thesame 
olumn of the se
ond (T )n and this 
ompletes theproof of (ii). 28 Appendix C: Rate of Conver-gen
e of �kjIn this appendix we prove Lemma 5 of Se
tion 2.2.1.Sin
e �k1 is symmetri
 to �k3 , we only need to 
onsiderGk0 , Gk2 and Gk3 for the lemma.8



(i) Gk0 : For an edge point su
h as Vi+14 , we havekVi+11 �Vi+14 k= kPNj=4 32N2 (Vi2j �Vi1) +PNj=3 14N2 (Vi2j+1 �Vi1)+ ( 32N2 � 116 )(Vi2 �Vi1) + ( 14N2 � 116 )(Vi3 �Vi1)+ ( 32N2 � 38 )(Vi4 �Vi1) + ( 14N2 � 116 )(Vi5 �Vi1)+ ( 32N2 � 116 )(Vi6 �Vi1)k� hPNj=4 32N2 +PNj=3 14N2 + j2( 32N2 � 116 )j+( 38 � 32N2 ) + 2( 116 � 14N2 )�Gi0= 8<: ( 38 + 74N � 4N2 )Gi0; if N = 3( 58 + 74N � 10N2 )Gi0; if N � 5 (41)where Gi0 is de�ned in (19).For a fa
e point su
h as Vi+13 , we havekVi+11 �Vi+13 k= kPNj=3 32N2 (Vi2j �Vi1) +PNj=2 14N2 (Vi2j+1 �Vi1)+ ( 32N2 � 14 )(Vi2 �Vi1) + ( 14N2 � 14 )(Vi3 �Vi1)+ ( 32N2 � 14 )(Vi4 �Vi1)� hPNj=3 32N2 +PNj=2 14N2 + 2( 14 � 32N2 ) + 14 � 14N2 iGi0= ( 34 + 74N � 132N2 )Gi0; N = 3 or N � 5: (42)The other 
ases are similar to (41) or (42). Hen
e, wehave the following inequality for N = 3 or N � 5:Gi+10 � ( 34 + 74N � 132N2 )Gi0� � 34 + 74N � 132N2 �i+1G00: (43)(ii) Gk3 : For an edge point su
h as Vi+12N+8, we havekVi+14 �Vi+12N+8k= k 116 (Vi2N+8 +Vi2N+7 �Vi6 �Vi5) + 516 (Vi3 �Vi1)k� k 116 (Vi2N+8 �Vi4) + 116 (Vi2N+7 �Vi4)+ 116 (Vi4 �Vi6) + 116 (Vi4 �Vi5) + 516 (Vi3 �Vi1)k� 916 maxfGi0; Gi3g (44)where Gi0 and Gi3 are de�ned in (19).For a fa
e point su
h as Vi+13 , we havekVi+14 �Vi+13 k= k 316 (Vi2 +Vi3)� 116 (Vi6 +Vi5)� 18 (Vi1 +Vi4)k� k 316 (Vi2 �Vi1) + 316 (Vi3 �Vi4) + 116 (Vi1 �Vi6)+ 116 (Vi4 �Vi5)k� 12 maxfGi0; Gi3g: (45)For a vertex point su
h as Vi+12n+7, we havekVi+14 �Vi+12N+7k= k 316Vi4 � 932Vi1 + 132 (Vi3 +Vi5) + 332Vi2N+7� 364 (Vi6 +Vi2) + 164 (Vi2N+8 +Vi2N+6)k� k 164 (Vi2N+8 �Vi4) + 332 (Vi2N+7 �Vi4)+ 164 (Vi2N+6 �Vi4) + 932 (Vi4 �Vi1) + 364 (Vi1 �Vi6)+ 364 (Vi1 �Vi2) + 132 (Vi3 �Vi1) + 132 (Vi5 �Vi1)� 916 maxfGi0; Gi3g: (46)

The other 
ases are similar to these 
ases. Hen
e, by
ombining the results of (44), (45) and (46), we haveGi+13 � 916 maxfGi0; Gi3g� 916 ( 34 + 74N � 132N2 )imaxfG00; G03g: (47)The se
ond inequality of (47) follows from (43). (47)works for N = 3 or N � 5.(iii) Gk2 : For an edge point su
h as Vi+12N+6, we havekVi+12N+6 �Vi+15 k= k � 316 (Vi1 +Vi6) + 18 (Vi4 +Vi5)+ 116 (Vi2N+7 +Vi2N+6)k= k 316 (Vi4 �Vi1) + 316 (Vi5 �Vi6) + 116 (Vi2N+7 �Vi4)+ 116 (Vi2N+6 �Vi5)k� 12 maxfGi1; Gi2; Gi3g: (48)For a vertex point su
h as Vi+12N+2, we havekVi+12N+2 �Vi+15 k= k 332 (Vi2N+6 �Vi5)� 164 (Vi2N+2 �Vi5)� 332 (Vi2N+3 +Vi5) + 164 (Vi2N+4 �Vi6)+ 164 (Vi2N+7 �Vi4) + 964 (Vi5 �Vi6)+ 964 (Vi5 �Vi4) + 1564 (Vi5 �Vi1)k� 34 maxfGi1; Gi2; Gi3g: (49)The other 
ases are similar to these two 
ases. Hen
e,by 
ombining the results of (48), (49), (43) and (47), wehaveGi+12 � 34 maxfGi1; Gi2; Gi3g� 8<: ( 34 )i+1G0; if N = 3( 34 )( 3N2+7N�264N2 )iG0; if N � 5(50)where G0 = maxfG00; G01; G02; G03g. The lemma now fol-lows from (43), (47) and (50). 29 Appendix D: Proof of (26)The proof of Lemma 3 shows that the norms of mostof the se
ond order forward di�eren
es of the 
ontrolpoints of �k3 satisfy the inequalityk2A�B�Ck � 14Zk�10ex
ept 2Vk1 �Vk2 �Vk6 , 2Vk6 �Vk1 �Vk2N+4 and 2Vk4 �Vk1 �Vk2N+7. The last two 
ases are similar. Hen
e, weonly need to 
onsider the �rst two 
ases.In the se
ond 
ase we havek2Vi+16 �Vi+11 �Vi+12N+4k= k 164N2 fN2(2Vi7 �Vi8 �Vi2N+5)9



+N2(2Vi5 �Vi2N+3 �Vi4)+6N2(2Vi6 �Vi1 �Vi2N+4)+8 NXj=1(2Vi2[j%N+1℄ �Vi2j+1 �Vi2[j%N+1℄+1)+(8N2 � 56)(�2Vi1 +Vi4 +Vi8)+56N+1Xj=3 (2Vi1 �Vi2[(j�1)%N+1℄ �Vi2[(j+1)%N+1℄)gk� (14 + 1N � 74N2 )Zi0; N = 3 or N � 5where Zi0 is the se
ond order norm of Si0. In the abovederivation, Vi8 should be repla
ed with Vi2 when N = 3.In the �rst 
ase, when N � 5, we havek2Vi+11 �Vi+12 �Vi+16 k= 116N2 k NXj=1 4(Vi2j�1 � 2Vi2j +Vi2j+1)+N2(2Vi2 �Vi2N+1 �Vi3)+N2(2Vi6 �Vi7 �Vi5)+(N2 � 28)(2Vi1 �Vi4 �Vi2N )+(N2 � 28)(2Vi1 �Vi4 �Vi8)�N�1Xj=5 28(2Vi1 �Vi2j �Vi2(j�2))�28(2Vi1 �Vi2N�4 �Vi2N )�28(2Vi1 �Vi2N�2 �Vi2)+(8N2 � 28)(2Vi1 �Vi2 �Vi6)k� � ( 12 + 14N + 214N2 )Zi0; if N = 5( 34 + 24N � 212N2 )Zi0; if N > 5 :In the �rst summation, one should useVi2N+1 forVi2j�1when j = 1. The di�eren
e between the 
ase N = 5 andN � 6 
omes from the fa
t that (N2 � 28) is negativewhen N = 5. when N = 3, we havek2Vi+11 �Vi+12 �Vi+16 k= 1144k5(2Vi2 �Vi3 �Vi7) + 5(2Vi6 �Vi7 �Vi5)�4(2Vi4 �Vi3 �Vi5)� 19(2Vi1 �Vi4 �Vi2)�19(2Vi1 �Vi4 �Vi6) + 44(2Vi1 �Vi2 �Vi6)k� 23Zi0; when N = 3Consequently, from the above results we have the �rstpart of (26). The se
ond part of (26) follows from theobservation that the norms of se
ond order forward dif-feren
es similar to 2Vi+11 �Vi+12 �Vi+16 dominates theother se
ond order forward di�eren
es in all subsequentnorm 
omputation. 2
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