
Subdivision Depth Computation for Catmull-ClarkSubdivision SurfaesFuhua (Frank) ChengUniversity of Kentuky, Lexington, KY 40506-0046, USAJun-Hai YongTsinghua University, Beijing, ChinaAbstratA subdivision depth omputation tehnique forCatmull-Clark subdivision surfaes (CCSS's) is pre-sented. The subdivision depth omputation tehniquealso inludes distane evaluation tehniques for CCSSpathes with their ontrol meshes. The distane andthe subdivision depth omputation tehniques providethe long-needed preision/error ontrol tools in subdivi-sion surfae trimming, �nite element mesh generation,boolean operations, and surfae tessellation for render-ing proesses.Keywords: subdivision surfaes, distane evaluation,subdivision depth omputation1 IntrodutionSubdivision surfaes have beome popular reently ingraphial modeling, animation and CAD/CAM beauseof their stability in numerial omputation, simpliity inoding and, most importantly, their apability in mod-eling/representing omplex shape of arbitrary topology.Given a ontrol mesh and a set of mesh re�ning rules(or, more intuitively, orner utting rules), one gets alimit surfae by reursively utting o� orners of theontrol mesh [3℄[5℄. The limit surfae is alled a subdi-vision surfae beause the orner utting (mesh re�n-ing) proess is a generalization of the uniform B-splinesurfae subdivision tehnique. Subdivision surfaes in-lude uniform B-spline surfaes and pieewise B�eziersurfaes as speial ases. Atually subdivision surfaesinlude non-uniform B-spline surfaes and NURBS sur-faes as speial ases as well [10℄. Subdivision surfaesan model/represent omplex shape of arbitrary topol-ogy beause there is no limit on the shape and topol-ogy of the ontrol mesh of a subdivision surfae. Withthe parametrization tehnique of subdivision surfaesbeoming available [11℄, we now know that subdivi-sion surfaes over both parametri forms and disreteforms. Sine parametri forms are good for design andrepresentation and disrete forms are good for mahin-ing and tessellation (inluding FE mesh generation) [1℄,

we �nally have a representation sheme that is good forall graphis and CAD/CAM appliations.Researh work for subdivision surfaes has been donein several important areas, suh as surfae trimming[7℄, boolean operations [2℄, and mesh editing [13℄. How-ever, the area of preision/error ontrol for Catmull-Clark subdivision surfaes (CCSS's)is ompletely blank.For instane, given an error tolerane, how many levelsof reursive Catmull-Clark subdivision should be per-formed on the initial ontrol mesh so that the distanebetween the resultant ontrol mesh and the limit surfaewould be less than the error tolerane? This error on-trol tehnique is required in all tessellation based appli-ations suh as subdivision surfae trimming, �nite ele-ment mesh generation, boolean operations, and surfaetessellation for rendering. A subdivision depth ompu-tation tehnique based on bounds of seond derivativeshas been presented for tensor produt rational surfaes[4℄. But nothing in this area has been done for Catmull-Clark subdivision surfaes yet. The tehnique used fortensor produt rational surfaes an not be used herebeause the parameter spae of a CCSS usually doesnot �t into a retangular grid struture.In this paper we will present a subdivision depth om-putation tehnique for a CCSS. The subdivision depthomputation tehnique also inludes distane evaluationtehniques for a CCSS path with its ontrol mesh. Thenew tehniques are based on the ontrol points of theCCSS path only and work for CCSS pathes with orwithout an extraordinary vertex. The presented subdi-vision depth omputation tehnique provides the �rstand an eÆient error ontrol tool that works for all tes-sellation based appliations of CCSS's. A potential dis-advantage of the subdivision depth omputation teh-nique is that it might generate a relatively large subdi-vision depth for a path with an extraordinary vertexeven though the path is already at enough. This isdue to the fat that the �rst order norm an not measurethe urvature di�erene between two points. A possiblesolution to this problem in given in the last setion.1



2 Subdivision Depth Computa-tion for Pathes not near an ex-traordinary vertexLet V0, V1, V2 and V3 be the ontrol points of a uni-form ubi B-spline urve segment C(t) whose param-eter spae is [0; 1℄. If we parametrize the middle leg ofthe ontrol polygon as follows: L(t) = V1+(V2�V1)t,0 � t � 1, (see Figure 1) then the maximum ofkL(t) � C(t)k is alled the distane between the urvesegment and its ontrol polygon. It is easy to see thatkL(t)�C(t)k= k (1�t)36 (2V1 �V0 �V2) + t36 (2V2 �V1 �V3)k� 16 maxfk2V1 �V0 �V2k; k2V2 �V1 �V3kg: (1)Sine (2V1 �V0 �V2)=6 and (2V2 �V1 �V3)=6 arethe values of L(t) � C(t) at t = 0 and t = 1, we havethe following lemma.
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Figure 1: De�nition of L(t).Lemma 1: The maximum of kL(t)�C(t)k ours atthe endpoints of the urve segment and an be expressedas max0�t�1 kL(t)�C(t)k= 16 maxfk2V1 �V0 �V2k; k2V2 �V1 �V3kg (2)A form more general than (1) has been proved by Pe-ters [8℄. His result works for uniform B-spline urves ofany degree. However, the above result is more intuitiveand is all we need for subsequent results. We next de�nethe distane between a uniform biubi B-spline surfaepath and its ontrol mesh.Let Vi;j , 0 � i; j � 3, be the ontrol points of auniform biubi B-spline surfae path S(u; v) with pa-rameter spae [0; 1℄�[0; 1℄. If we parametrize the entralmesh fae fV1;1;V2;1;V1;2;V2;2g as follows:L(u; v) = (1� v)[(1� u)V1;1 + uV2;1℄+v[(1� u)V1;2 + uV2;2℄; 0 � u; v � 1then the maximum of kL(u; v) � S(u; v)k is alled thedistane between S(u; v) and its ontrol mesh. If we

de�ne Qu;k, Qv;k, �Qu;k and �Qv;k as follows:Qu;k � (1� u)V1;k + uV2;k;Qv;k � (1� v)Vk;1 + vVk;2;�Qu;k � P3i=0Ni;3(u)Vi;k;�Qv;k � P3j=0Nj;3(v)Vk;jwhere Ni;3(t) are standard uniform B-spline basis fun-tions of degree three, we havekL(u; v)� S(u; v)k� (1� v)kQu;1 � �Qu;1k+ vkQu;2 � �Qu;2k+ 3Xi=0Ni;3(u)kQv;i � �Qv;ik:By applying Lemma 1 on kQu;1� �Qu;1k, kQu;2� �Qu;2kand kQv;i� �Qv;ik, i = 1; 2; 3, and by de�ningM0 as themaximum norm of the seond order forward di�erenesof the ontrol points of S(u; v), we havekL(u; v)� S(u; v)k � 16 [(1� v)M0 + vM0+P3i=0Ni;3(u)M0℄ � 13M0:M0 is alled the seond order norm of S(u; v). Thisleads to the following lemma.Lemma 2: The maximum of kL(u; v)�S(u; v)k sat-is�es the following inequalitymax0�u;v�1 kL(u; v)� S(u; v)k � 13M0 (3)where M0 is the seond order norm of S(u; v).Note that even though the maximum of kL(t)�C(t)kours at the end points of the urve segment C(t), themaximum of kL(u; v)�S(u; v)k for a surfae path usu-ally does not our at the orners of S(u; v). In the fol-lowing, we present subdivision depth omputation teh-nique for CCSS pathes not adjaent to an extraordi-nary vertex.Let Vi;j , 0 � i; j � 3, be the ontrol points of auniform biubi B-spline surfae path S(u; v). We useVki;j , 0 � i; j � 3 + 2k � 1, to represent the new ontrolpoints of the surfae path after k levels of reursive sub-division. The indexing of the new ontrol points followsthe onvention that Vk0;0 is always the fae point of themesh fae fVk�10;0 ;Vk�11;0 ;Vk�10;1 ;Vk�11;1 g. The new on-trol points Vki;j will be alled the level-k ontrol pointsof S(u; v) and the new ontrol mesh will be alled thelevel-k ontrol mesh of S(u; v).Note that if we divide the parameter spae of thesurfae path into 4k regions as follows:
km;n = [m2k ; m+ 12k ℄� [ n2k ; n+ 12k ℄; (4)2



where 0 � m;n � 2k � 1 and let the orre-sponding subpathes be denoted Skm;n(u; v), theneah Skm;n(u; v) is a uniform biubi B-spline sur-fae path de�ned by the level-k ontrol pointset fVkp;q j m � p � m + 3; n � q � n + 3g.Skm;n(u; v) is alled a level-k subpath of S(u; v).One an de�ne a level-k bilinear plane Lkm;n onfVkp;q j p = m+1;m+2; q = n+1; n+2g and measurethe distane between Lkm;n(u; v) and Skm;n(u; v). Wesay that the distane between S(u; v) and the level-kontrol mesh is smaller than � if the distane betweeneah level-k subpath Skm;n(u; v) and the orrespondinglevel-k bilinear plane Lkm;n(u; v), 0 � m;n � 2k � 1, issmaller than �. In the following, we will show how toompute a subdivision depth k for a given � so that thedistane between S(u; v) and the level-k ontrol meshis smaller than � after k levels of reursive subdivision.The following lemma is needed in the derivation of theomputation proess. If we use Mkm;n to represent theseond order norm of Skm;n(u; v), i.e., the maximumnorm of the seond order forward di�erenes of theontrol points of Skm;n(u; v), then the lemma shows theseond order norm of Skm;n(u; v) onverges at a rate of1=4 of the level-(k � 1) seond order norm. The proofof this lemma is given in Appendix A.Lemma 3 If Mkm;n is the seond order norm ofSkm;n(u; v) then we haveMkm;n � �14�kM0 (5)where M0 is the seond order norm of S(u; v).With Lemmas 2 and 3, it is easy to see that, for any0 � m;n � 2k�1, we havemax 0�u;v�1 kLkm;n(u; v)� Skm;n(u; v)k� 13Mkm;n � 13 � 14�kM0: (6)Hene, if k is large enough to make the right side of (6)smaller than �, we havemax0�u;v�1 kLkm;n(u; v)� Skm;n(u; v)k � �for every 0 � m;n � 2k�1. This leads to the followingmain result of this subsetion.Theorem 4 Let Vi;j , 0 � i; j � 3, be the on-trol points of a uniform biubi B-spline surfae pathS(u; v). For any given � > 0, ifk � d log4(M03� ) e (7)levels of reursive subdivision are performed on the on-trol points of S(u; v) then the distane between S(u; v)

and the level-k ontrol mesh is smaller than � whereM0is the seond order norm of S(u; v).3 Subdivision Depth Computa-tion for Pathes near an ex-traordinary vertexThe subdivision depth omputation proess for a CCSSpath near an extraordinary vertex is di�erent. This isbeause in the viinity of an extraordinary vertex onedoes not have a uniform B-spline surfae path repre-sentation and, onsequently, annot use the tehniqueof Theorem 4 diretly. Fortunately, the size of suh aviinity an be made as small as possible, therefore, onean redue the size of suh a viinity to a degree that istolerable (i.e., within the given error bound) and use thetehnique of Theorem 4 to work on the remaining partof the surfae path. A subdivision depth omputationtehnique based on this onept for a CCSS path nearan extraordinary vertex will be presented below. we as-sume the initial mesh has been subdivided at least twieso that eah mesh fae is a quadrilateral and ontainsat most one extraordinary vertex. We need to de�ne afew notations �rst.Let �00 = f Vi j 1 � i � 2N +8 g be a level-0 ontrolpoint set that inuenes the shape of a surfae pathS(u; v) (= S00(u; v)). V1 is an extraordinary vertex withvalene N . The ontrol verties are ordered followingStam's fashion [11℄ (see Figure 2).
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Figure 2: Ordering of ontrol points for a CCSS pathwith an extraordinary vertex.If we use Vni to represent the level-n ontrol vertiesgenerated after n levels of reursive Catmull-Clark sub-division, and use Sn0 , Sn1 , Sn2 and Sn3 to represent thesubpathes of Sn�10 de�ned over the tiles
n0 = [0; 12n ℄� [0; 12n ℄;
n1 = [ 12n ; 12n�1 ℄� [0; 12n ℄;
n2 = [ 12n ; 12n�1 ℄� [ 12n ; 12n�1 ℄;
n3 = [0; 12n ℄� [ 12n ; 12n�1 ℄;3
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Figure 3: Control point sets �n1 , �n2 and �n3 .respetively, then the shape of Sn0 , Sn1 , Sn2 and Sn3 areinuened by the level-n ontrol point sets �n0 , �n1 , �n2and �n3 , respetively. �n0 is de�ned below and de�nitionof �n1 , �n2 and �n3 an be found in Figure 3.�n0 = f Vni j 1 � i � 2N + 8 gSn1 , Sn2 and Sn3 are standard uniform biubi B-splinesurfae pathes beause their ontrol meshes satisfy a 4-by-4 struture. Hene, the tehnique desribed in The-orem 4 an be used to ompute a subdivision depth foreah of them. Sn0 is not a standard uniform biubi B-spline surfae path. Hene, Theorem 4 an not be usedto ompute a subdivision depth for Sn0 diretly. For theonveniene of referene, we shall all Sn0 a level-n ex-traordinary subpath of S(u; v) beause it ontains thelimit point of the extraordinary points.1 Note that ifH0 and Hn are olumn vetor representations of theontrol points of �00 and �n0 , respetively,H0 � (V0;V1; � � � ;V2N+8)t;Hn � (Vn0 ;Vn1 ; � � � ;Vn2N+8)twhere (X; X; � � � ;X)t represents the transpose of therow vetor (X; X; � � � ;X) then we haveHn = (T )n H0 (8)where T is the (2N+8)�(2N+8) (extended) subdivisionmatrix de�ned as follows [6℄[11℄:T � � �T 0�T1;1 �T1;2 � ; (9)1To be proved in the next subsetion.
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�T = 0BBBBBBBBBBB�
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1CCCCCCCCA ; (11)
�T1;2 = 0BBBBBBBB�  b  0 b  00 e e 0 0 0 00  b  0 0 00 0 e e 0 0 00 0 0 0 e e 00 0 0 0  b 0 0 0 0 0 e e

1CCCCCCCCA (12)and aN = 1� 74N ; bN = 32N2 ; N = 14N2 ; a = 916 ;b = 332 ;  = 164 ; d = 38 ; e = 116 ; f = 14 :3.1 Computing subdivision depth for aviinity of the extraordinary vertexThe goal here is to �nd an integer n� for a given � > 0so that if n (� n�) reursive subdivisions are performedon �00, then the ontrol point set of the level-n extraor-dinary subpath Sn0 of S(u; v), �n0 = f Vni j 1 � i �2N +8 g, is ontained in the sphere B(Vn+15 ; �=2) withenter Vn+15 � (Vn1 + Vn4 + Vn5 + Vn6 )=4 and radius�=2. Note that if the (2N +8)-point ontrol mesh �n0 isontained in the sphere B(Vn+15 ; �=2) then the level-nextraordinary subpath Sn0 is ontained in the sphereB(Vn+15 ; �=2) as well. This follows from the fat thatSn0 , as the limit surfae of �n0 , is ontained in the onvexhull of �n0 and the onvex hull of �n0 is ontained in thesphere B(Vn+15 ; �=2). But then we havemax kSn0 (u; v)� Ln0 (u; v)k < � (13)where Ln0 (u; v) is a bilinear plane de�ned on the level-n mesh fae f Vn1 ; Vn4 ; Vn5 ; Vn6 g. The onstrutionof suh an n� depends on several properties of the (ex-tended) subdivision matrix T and the ontrol point setsf�n0g.First note that sine all the entries of the extendedsubdivision matrix T are non-negative and the sum of4



eah row equals one, the extended subdivision matrixis a transition probability matrix of a (2N + 8)-stateMarkov hain [9℄. In partiular, the (2N+1)� (2N+1)blok �T of T is a transition probability matrix of a(2N+1)-state Markov hain. The entries in the �rst rowand �rst olumn of �T are all non-zero. Therefore, thematrix �T is irreduible beause ( �T )2 has no zero entriesand, onsequently, all the states are aessible to eahother. On the other hand, sine all the diagonal entriesof �T are non-zero and entries of ( �T )n are non-zero forall n � 2, it follows that all the states of �T are aperiodiand positive reurrent. Consequently, the Markov hainis irreduible and ergodi. By the well-known theoremof Markov hain ([9℄, Theorem 4.1), ( �T )n onverges toa limit matrix �T � whose rows are idential. More pre-isely,limn!1( �T )n = �T � � 0BBB� �1 �2 � � � �2N+1�1 �2 � � � �2N+1... ... . . . ...�1 �2 � � � �2N+1 1CCCA (14)where �i are the unique non-negative solution of�j =P2N+1i=1 �i�ti;j ; j = 1; 2; � � � ; 2N + 1P2N+1j=1 �j = 1 (15)with �ti;j being the entries of �T . One an easily get thefollowing observations.� The vetor (�1;�2; � � � ;�2N+1) satis�es the fol-lowing properties:�1 = NN+5�2 = �4 = � � � = �2N = 4N(N+5)�3 = �5 = � � � = �2N+1 = 1N(N+5)� The matrix �T � is an idempotent matrix, i.e., �T � �T �= �T �. Hene, �T � has two eigenvalues, 1 and 0 (withmultipliity 2N).� �T has 1 as an eigenvalue and all the other 2N eigen-values of �T have a magnitude smaller than one.� As it is well known [6℄, the limit point of fVn1 g isV�1 � �1V1 +�2V2 + � � �+�2N+1V2N+1:But V�1 is atually the limit point of all Vnj ,j = 1; 2; � � � ; 2N + 8. Therefore, the onvex hullof fVn1 ; Vn2 ; � � � ; Vn2N+8g onverges to V�1 when ntends to in�nity and, onsequently, V�1 = S(0; 0).The fat that V�1 is the limit point of fVn1 ;Vn2 ; � � � ;Vn2N+1g follows from (8) and (14). The fat thatV�1 is also the limit point of fVn2N+2;Vn2N+3; � � � ;Vn2N+8g is proved in Appendix B.

The last observation is important beause it shows thatmaxV2�n0 kVn+15 �Vk (16)onverges. Therefore, it is possible to redue the sizeof Sn0 to a degree that is tolerable if n is large enough.For a given � > 0 we will �nd an n� so that if n � n�then the level-n ontrol point set �n0 is ontained in thesphere B(Vn+15 ; �=2). To do this, we need to know howfast (16) onverges.
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Figure 4: Control point sets �n0 , �n1 , �n2 and �n3 .Let �k0 , �k1 , �k2 and �k3 be subsets of �k0 de�ned asfollows (see Figure 4):�k0 = fVkj j j = 1; 2; � � � ; 2N + 1g;�k1 = fVkj j j = 1; 4; 5; � � � ; 8; 2N + 3; 2N + 4;2N + 5g;�k2 = fVkj j j = 1; 4; 5; 6; 2N + 2; 2N + 3;2N + 4; 2N + 6; 2N + 7g;�k3 = fVkj j j = 1; 2; � � � ; 6; 2N + 6; 2N + 7;2N + 8g (17)(Vk8 in �k1 should be replaed with Vk2 if N = 3) andde�ne Gk0 , Gk1 , Gk2 and Gk3 as follows:Gk0 = maxV2�k0 kVk1 �Vk;Gk1 = maxV2�k1 kVk6 �Vk;Gk2 = maxV2�k2 kVk5 �Vk;Gk3 = maxV2�k3 kVk4 �Vk: (18)Gki is alled the �rst order norm of �ki , i = 0; 1; 2; 3.We need the following lemma for the onstrution ofn�. The proof is shown in Appendix C.Lemma 5 If �ki and Gki are de�ned as above then,for i = 0; 1; 2; 3, we haveGki �8><>: � 34�kG0; if N = 3� 34 + 74N � 132N2 �kG0; if N � 5 (19)5



where G0 � maxfG00; G01; G02; G03g. G0 is alled the�rst order norm of �00.To onstrut n�, note that if V 2 �n0 and V 2 �n0 ,we havekVn+15 �Vk � 14kVn4 �Vn1 k+ 14kVn5 �Vn1 k+ 14kVn6 �Vn1 k+ kVn1 �Vk � 74Gn0 :It is easy to prove that similar inequalities hold for �n1 ,�n2 and �n3 as well. Hene, for eah V 2 �n0 , by Lemma5, we havekVn+15 �Vk � 8<: 74 � 34�nG0; if N = 374 � 34 + 74N � 132N2 �nG0; if N � 5(20)Sine the maximum of 34 + 74N � 132N2 ours at N = 7,(20) an be simpli�ed askVn+15 �Vk � 74 �1Æ�nG0 (21)where Æ = 8<: 43 ; if N = 39885 ; if N � 5 : (22)Hene, kVn+15 � Vk is smaller than �=2 if n is largeenough to make the right hand side of (21) smaller thanor equal to �=2. Consequently, we have the followingtheorem.Theorem 6 Let �00 = fVi j 1 � i � 2N + 8g bea level-0 ontrol point set that inuenes the shape ofa CCSS path S(u; v) (= S00(u; v)). V1 is an extraor-dinary vertex with valene N . The ontrol verties areordered following Stam's fashion [11℄ (see Figure 2). Fora given � > 0, if n� is de�ned as follows:n� � dlogÆ �7G02� �e ; Æ = 8<: 43 ; if N = 39885 ; if N � 5 (23)where G0 is the �rst order norm of �00, then thedistane between the level-n extraordinary subpathSn0 (u; v) and the orresponding bilinear plane Ln0 (u; v)is smaller than or equal to � if n � n�.Theorem 6 shows that the rate of onvergene of theontrol mesh in the viinity of an extraordinary vertexis fastest when valene of the extraordinary vertex isthree.3.2 Computing subdivision depth forthe remaining partThe idea here is, for eah k between 1 and n�, to deter-mine a subdivision depth Dk (� n�) so that if Dk reur-sive subdivisions are performed on the ontrol mesh �00

of S(u; v), then the distane between the level-Dk on-trol mesh and the subpathes Ski , i = 1; 2; 3, is smallerthan �. Consequently, if we de�ne D to be the maxi-mum of these Dk (i.e., D = maxfDkj1 � k � n�g), thenafter D reursive subdivisions, the distane between thelevel-D ontrol mesh and the subpathes Ski , i = 1; 2; 3,would be smaller than � for all 1 � k � n�. Note thatthe distane between the level-D ontrol mesh and thesubpathes Sk1 , Sk2 and Sk3 for n� + 1 � k � D, and thedistane between the level-D ontrol mesh and the level-D extraordinary subpath SD0 would be smaller than �as well. This is beause these subpathes are subpathesof Sn�0 and the distane between Sn�0 and the level-n�ontrol mesh is already smaller than �. Hene, the keyhere is the onstrution of Dk. We will show the on-strution of Dk for Sk3(u; v). This Dk works for Sk1(u; v)and Sk2(u; v) as well.For 0 � u; v � 1, de�ne a bilinear plane Lk3(u; v) onthe mesh fae fVk4 , Vk5 ;Vk2N+7;Vk2N+6g as follows:Lk3(u; v) = (1� v)[(1� u)Vk4 + uVk5 ℄+v[(1� u)Vk2N+7 + uVk2N+6℄: (24)Sine Sk3(u; v) is a uniform biubi B-spline surfaepath with ontrol mesh �k3 , we have, by Lemma 2,kLk3(u; v)� Sk3(u; v)k � 13Zk3 (25)where Zk3 is the seond order norm of Sk3(u; v). If wede�ne Zi0 to be the seond order norm of Si0(u; v), wehave Zk3 �WZk�10 � (W )kZ00 (26)whereW =8>>>><>>>>: 23 ; if N = 312 + 14N + 214N2 ; if N = 534 + 2N � 212N2 ; if N > 5 : (27)The proof of (26) is shown in Appendix D. Hene, byombining the above results, we haveLemma 7 The maximum distane between Sk3 andLk3 satis�es the following inequalitymax kLk3(u; v)� Sk3(u; v)k � 13(W )kZ00 (28)where W is de�ned in (27) and Z00 is the seond ordernorm of S(u; v).It should be pointed out that when de�ning Zi0, onlythe following items are needed for seond order forwarddi�erenes involving Vi1:k2Vi1 �Vi2j �Vi2[(j+2)%N ℄k; j = 1; 2; � � � ; N:6



Lemma 7 shows that if 13 (W )kZ00 � � then the dis-tane between Sk3 and Lk3 is already smaller than �.However, sine n� subdivisions have to be performedon �00 to get Sn�0 anyway, Dk for Sk3 in this ase is setto n�. This ondition holds for Sk1 and Sk2 as well.If 13 (W )kZ00 > �, further subdivisions are neededon �ki , i = 1; 2; 3, to make the distane between Ski ,i = 1; 2; 3, and the orresponding mesh faes smallerthan �. Consider Sk3 again. Sk3 is a uniform biubi B-spline surfae path with ontrol mesh �k3 . Therefore,if lk reursive subdivisions are performed on the ontrolmesh �k3 , by Lemma 2 and Lemma 3, we would havekLlk3 (u; v)� Sk3(u; v)k � 13(14)lkZk3 (29)where Llk3 (u; v) is a level-lk ontrol mesh relative to �k3and Zk3 is the seond order norm of Sk3(u; v). Therefore,by ombining the above result with (26), we havekLlk3 (u; v)� Sk3(u; v)k � 13(14)lk (W )kZ00 : (30)We get the following Lemma by setting the right handside of (30) smaller than or equal to �.Lemma 8 In Lemma 7, if the distane between Sk3and Lk3 is not smaller than �, then one needs to performlk lk = dlog4� (W )kZ003� �e (31)more reursive subdivisions on the level-k ontrol mesh�k3 of Sk3 to make the distane between Sk3 and thelevel-(k + lk) ontrol mesh smaller than �.This result works for Sk1 and Sk2 as well. Note thatthe value of (W )kZ00 is already omputed in Lemma 7and W has to be omputed only one. Therefore, thesubdivision depth Dk for Sk1 , Sk2 and Sk3 is de�ned asfollows:Dk = maxfn�; k + dlog4� (W )kZ003� �eg (32)Consequently, we have the following main theorem:Theorem 9 Let �00 = f Vij 1 � i � 2N + 8g bethe ontrol mesh of a CCSS path S(u; v). The ontrolpoints are ordered following Stam's fashion [11℄ with V1being an extraordinary vertex of valene N (see Figure2). For a given � > 0, if we ompute n� as in (23) andD as follows: D = maxfDkj1 � k � n�g (33)where Dk is de�ned in (32) then after D reursive sub-divisions, the distane between S(u; v) and the level-Dontrol mesh is smaller than �.

4 ExamplesSome examples of the presented distane evaluating andsubdivision depth omputing tehniques are shown inthis setion. In Figures 5(a), 5(b) and 5(), the dis-tanes between the blue faes of the ontrol meshes andthe orresponding limit surfae pathes are 0.034, 0.15and 0.25, respetively. For an error tolerane of 0.01,the subdivision depths omputed for these mesh faesare 1, 22 and 24, respetively. The reason that the lasttwo ases have large subdivision depths is beause eahof them has an extraordinary vertex. For the blue meshfae shown in Figure 5(), subdivision depths for errortoleranes 0.25, 0.2, 0.1, 0.01, 0.001, and 0.0001 are 1,3, 9, 24, 40, and 56, respetively.
(a) (b)

()Figure 5: Distane and subdivision depth omputationfor a CCSS path with: (a) no extraordinary vertex, (b)an extraordinary vertex of valene 8, () an extraordi-nary vertex of valene 5.5 ConlusionsA subdivision depth omputation tehnique for CCSS'sis presented. This tehnique provides a preision/errorontrol tool for all tessellation based appliations of sub-division surfaes.One possible disadvantage of the subdivision depthomputation tehnique is that it might generate a rel-atively large subdivision depth for a viinity of an ex-traordinary vertex whih is atually quite at. This isbeause the �rst order norm an detet the loation dif-ferene of two points, but not the di�erene betweentheir urvatures. Therefore, even though two points areon the same plane, as far as they are far apart, a largen� would still be generated by the subdivision depth7



omputation proess (see Theorem 6). A possible solu-tion to this problem is to onsider seond order normfor �n0 , �n1 , �n2 and �n3 as well as the �rst order normwhen omputing n� for the viinity of an extraordinaryvertex.6 Appendix A: Proof of Lemma3It is suÆient to show that, for eah positive integer i,one has M i+10;0 � 14M i0;0: (34)The sixteen seond order forward di�erenes involvedin M i+10;0 an be lassi�ed into four dategories: (C-1)F � E � F , (C-2) E � F � E, (C-3) E � V � E, and(C-4) V �E�V , based on the type of the verties. Forinstane, a seond order forward di�erene is said tobe in the �rst ategory if an edge vertex is sandwishedby two fae verties, suh as 2Vi+11;0 � Vi+10;0 � Vi+12;0 .Eah ategory onsists of four seond order forwarddi�erenes. We need to show that all these ategoriessatisfy (34). In the following, we prove (34) for one itemof eah ategory. The proof of the other items is similar.Case 1 (F �E � F ): onsider 2Vi+10;1 �Vi+10;2 �Vi+10;0 .k2Vi+10;1 �Vi+10;2 �Vi+10;0 k= k 18 (2Vi0;1 �Vi0;2 �Vi0;0) + 18 (2Vi1;1 �Vi1;2 �Vi1;0)k� 18M i0;0 + 18M i0;0 = 14M i0;0: (35)Case 2 (E � F �E): onsider 2Vi+10;2 �Vi+10;3 �Vi+10;1 .k2Vi+10;2 �Vi+10;3 �Vi+10;1 k= k 116 (2Vi0;2 �Vi0;3 �Vi0;1 + 2Vi0;1 �Vi0;2 �Vi0;0+ 2Vi1;2 �Vi1;3 �Vi1;1 + 2Vi1;1 �Vi1;2 �Vi1;0)k� 116M i0;0 + 116M i0;0 + 116M i0;0 + 116M i0;0 = 14M i0;0:(36)Case 3 (E � V �E): onsider 2Vi+11;1 �Vi+11;2 �Vi+11;0 .k2Vi+11;1 �Vi+11;2 �Vi+11;0 k= k 132 (2Vi0;1 �Vi0;2 �Vi0;0) + 316 (2Vi1;1 �Vi1;2 �Vi1;0)+ 132 (2Vi2;1 �Vi2;2 �Vi2;0)k� 132M i0;0 + 316M i0;0 + 132M i0;0 = 14M i0;0: (37)Case 4 (V �E � V ): onsider 2Vi+11;2 �Vi+11;3 �Vi+11;1 .k2Vi+11;2 �Vi+11;3 �Vi+11;1 k= k 164 (2Vi0;2 �Vi0;3 �Vi0;1 + 2Vi0;1 �Vi0;2 �Vi0;0)+ 332 (2Vi1;2 �Vi1;3 �Vi1;1 + 2Vi1;1 �Vi1;2 �Vi1;0)+ 164 (2Vi2;2 �Vi2;3 �Vi2;1 + 2Vi2;1 �Vi2;2 �Vi2;0)k� ( 164 + 164 + 332 + 332 + 164 + 164 )M i0;0 = 14M i0;0: (38)This ompletes the proof of the lemma. 2

7 Appendix B: Convergene ofVn2N+2, ..., Vn2N+8Note that if one an prove thatlimn!1(T )n = limn!1� �T 0�T1;1 �T1;2 �n = T � � � �T � 0�T �1;1 0 �(39)where �T � is de�ned in (14) and �T �1;1 is a 7 � (2N + 1)version of �T �, i.e.,�T �1;1 = 0BBB� �1 �2 � � � �2N+1�1 �2 � � � �2N+1... ... . . . ...�1 �2 � � � �2N+1 1CCCA7�(2N+1) ; (40)then, by (8), we haveVnj ! V�1 � �1V1 +�2V2 + � � �+�2N+1V2N+1for j = 2N +2; 2N +3; :::; 2N +8. Hene, to prove thatVn2N+2, ..., Vn2N+8 onverge to V�1, it is suÆient toshow that (39) is true or, equivalently, to show that (i)( �T1;2)n onverges to a 7 � 7 zero matrix when n tendsto in�nity, and (ii) the lower-left 7 � (2N + 1) blokof (T )2n onverges to �T �1;1. (i) is obvious beause �T1;2ontains non-negative entries and the sum of eah rowis smaller than one. To prove (ii), note that the sum ofeah row of (T )n is one and, from (i),( �T1;2)n ! 0:Therefore, for eah of the last 7 rows of (T )n, the sumof the �rst 2N+1 entries is lose to one when n is large.On the other hand, when n is large, (14) is true, i.e.,eah olumn of ( �T )n has almost idential entries. Hene,omputing an entry of the lower-left 7� (2N +1) blokof (T )2n = (T )n(T )n is like multiplying 2N + 1 almostidential entries (in the same olumn of the upper-left(2N+1)�(2N+1) blok of the seond (T )n) by 2N+1non-negative numbers whose sum is lose to one (in thesame row of the lower-left 7 � (2N + 1) blok of the�rst (T )n). Consequently the value of that entry in thelower-left 7 � (2N + 1) blok of (T )2n = (T )n(T )n islose to the �rst 2N + 1 almost idential entries in thesame olumn of the seond (T )n and this ompletes theproof of (ii). 28 Appendix C: Rate of Conver-gene of �kjIn this appendix we prove Lemma 5 of Setion 2.2.1.Sine �k1 is symmetri to �k3 , we only need to onsiderGk0 , Gk2 and Gk3 for the lemma.8



(i) Gk0 : For an edge point suh as Vi+14 , we havekVi+11 �Vi+14 k= kPNj=4 32N2 (Vi2j �Vi1) +PNj=3 14N2 (Vi2j+1 �Vi1)+ ( 32N2 � 116 )(Vi2 �Vi1) + ( 14N2 � 116 )(Vi3 �Vi1)+ ( 32N2 � 38 )(Vi4 �Vi1) + ( 14N2 � 116 )(Vi5 �Vi1)+ ( 32N2 � 116 )(Vi6 �Vi1)k� hPNj=4 32N2 +PNj=3 14N2 + j2( 32N2 � 116 )j+( 38 � 32N2 ) + 2( 116 � 14N2 )�Gi0= 8<: ( 38 + 74N � 4N2 )Gi0; if N = 3( 58 + 74N � 10N2 )Gi0; if N � 5 (41)where Gi0 is de�ned in (19).For a fae point suh as Vi+13 , we havekVi+11 �Vi+13 k= kPNj=3 32N2 (Vi2j �Vi1) +PNj=2 14N2 (Vi2j+1 �Vi1)+ ( 32N2 � 14 )(Vi2 �Vi1) + ( 14N2 � 14 )(Vi3 �Vi1)+ ( 32N2 � 14 )(Vi4 �Vi1)� hPNj=3 32N2 +PNj=2 14N2 + 2( 14 � 32N2 ) + 14 � 14N2 iGi0= ( 34 + 74N � 132N2 )Gi0; N = 3 or N � 5: (42)The other ases are similar to (41) or (42). Hene, wehave the following inequality for N = 3 or N � 5:Gi+10 � ( 34 + 74N � 132N2 )Gi0� � 34 + 74N � 132N2 �i+1G00: (43)(ii) Gk3 : For an edge point suh as Vi+12N+8, we havekVi+14 �Vi+12N+8k= k 116 (Vi2N+8 +Vi2N+7 �Vi6 �Vi5) + 516 (Vi3 �Vi1)k� k 116 (Vi2N+8 �Vi4) + 116 (Vi2N+7 �Vi4)+ 116 (Vi4 �Vi6) + 116 (Vi4 �Vi5) + 516 (Vi3 �Vi1)k� 916 maxfGi0; Gi3g (44)where Gi0 and Gi3 are de�ned in (19).For a fae point suh as Vi+13 , we havekVi+14 �Vi+13 k= k 316 (Vi2 +Vi3)� 116 (Vi6 +Vi5)� 18 (Vi1 +Vi4)k� k 316 (Vi2 �Vi1) + 316 (Vi3 �Vi4) + 116 (Vi1 �Vi6)+ 116 (Vi4 �Vi5)k� 12 maxfGi0; Gi3g: (45)For a vertex point suh as Vi+12n+7, we havekVi+14 �Vi+12N+7k= k 316Vi4 � 932Vi1 + 132 (Vi3 +Vi5) + 332Vi2N+7� 364 (Vi6 +Vi2) + 164 (Vi2N+8 +Vi2N+6)k� k 164 (Vi2N+8 �Vi4) + 332 (Vi2N+7 �Vi4)+ 164 (Vi2N+6 �Vi4) + 932 (Vi4 �Vi1) + 364 (Vi1 �Vi6)+ 364 (Vi1 �Vi2) + 132 (Vi3 �Vi1) + 132 (Vi5 �Vi1)� 916 maxfGi0; Gi3g: (46)

The other ases are similar to these ases. Hene, byombining the results of (44), (45) and (46), we haveGi+13 � 916 maxfGi0; Gi3g� 916 ( 34 + 74N � 132N2 )imaxfG00; G03g: (47)The seond inequality of (47) follows from (43). (47)works for N = 3 or N � 5.(iii) Gk2 : For an edge point suh as Vi+12N+6, we havekVi+12N+6 �Vi+15 k= k � 316 (Vi1 +Vi6) + 18 (Vi4 +Vi5)+ 116 (Vi2N+7 +Vi2N+6)k= k 316 (Vi4 �Vi1) + 316 (Vi5 �Vi6) + 116 (Vi2N+7 �Vi4)+ 116 (Vi2N+6 �Vi5)k� 12 maxfGi1; Gi2; Gi3g: (48)For a vertex point suh as Vi+12N+2, we havekVi+12N+2 �Vi+15 k= k 332 (Vi2N+6 �Vi5)� 164 (Vi2N+2 �Vi5)� 332 (Vi2N+3 +Vi5) + 164 (Vi2N+4 �Vi6)+ 164 (Vi2N+7 �Vi4) + 964 (Vi5 �Vi6)+ 964 (Vi5 �Vi4) + 1564 (Vi5 �Vi1)k� 34 maxfGi1; Gi2; Gi3g: (49)The other ases are similar to these two ases. Hene,by ombining the results of (48), (49), (43) and (47), wehaveGi+12 � 34 maxfGi1; Gi2; Gi3g� 8<: ( 34 )i+1G0; if N = 3( 34 )( 3N2+7N�264N2 )iG0; if N � 5(50)where G0 = maxfG00; G01; G02; G03g. The lemma now fol-lows from (43), (47) and (50). 29 Appendix D: Proof of (26)The proof of Lemma 3 shows that the norms of mostof the seond order forward di�erenes of the ontrolpoints of �k3 satisfy the inequalityk2A�B�Ck � 14Zk�10exept 2Vk1 �Vk2 �Vk6 , 2Vk6 �Vk1 �Vk2N+4 and 2Vk4 �Vk1 �Vk2N+7. The last two ases are similar. Hene, weonly need to onsider the �rst two ases.In the seond ase we havek2Vi+16 �Vi+11 �Vi+12N+4k= k 164N2 fN2(2Vi7 �Vi8 �Vi2N+5)9



+N2(2Vi5 �Vi2N+3 �Vi4)+6N2(2Vi6 �Vi1 �Vi2N+4)+8 NXj=1(2Vi2[j%N+1℄ �Vi2j+1 �Vi2[j%N+1℄+1)+(8N2 � 56)(�2Vi1 +Vi4 +Vi8)+56N+1Xj=3 (2Vi1 �Vi2[(j�1)%N+1℄ �Vi2[(j+1)%N+1℄)gk� (14 + 1N � 74N2 )Zi0; N = 3 or N � 5where Zi0 is the seond order norm of Si0. In the abovederivation, Vi8 should be replaed with Vi2 when N = 3.In the �rst ase, when N � 5, we havek2Vi+11 �Vi+12 �Vi+16 k= 116N2 k NXj=1 4(Vi2j�1 � 2Vi2j +Vi2j+1)+N2(2Vi2 �Vi2N+1 �Vi3)+N2(2Vi6 �Vi7 �Vi5)+(N2 � 28)(2Vi1 �Vi4 �Vi2N )+(N2 � 28)(2Vi1 �Vi4 �Vi8)�N�1Xj=5 28(2Vi1 �Vi2j �Vi2(j�2))�28(2Vi1 �Vi2N�4 �Vi2N )�28(2Vi1 �Vi2N�2 �Vi2)+(8N2 � 28)(2Vi1 �Vi2 �Vi6)k� � ( 12 + 14N + 214N2 )Zi0; if N = 5( 34 + 24N � 212N2 )Zi0; if N > 5 :In the �rst summation, one should useVi2N+1 forVi2j�1when j = 1. The di�erene between the ase N = 5 andN � 6 omes from the fat that (N2 � 28) is negativewhen N = 5. when N = 3, we havek2Vi+11 �Vi+12 �Vi+16 k= 1144k5(2Vi2 �Vi3 �Vi7) + 5(2Vi6 �Vi7 �Vi5)�4(2Vi4 �Vi3 �Vi5)� 19(2Vi1 �Vi4 �Vi2)�19(2Vi1 �Vi4 �Vi6) + 44(2Vi1 �Vi2 �Vi6)k� 23Zi0; when N = 3Consequently, from the above results we have the �rstpart of (26). The seond part of (26) follows from theobservation that the norms of seond order forward dif-ferenes similar to 2Vi+11 �Vi+12 �Vi+16 dominates theother seond order forward di�erenes in all subsequentnorm omputation. 2
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