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Abstract

The problem of constructing a parametric triangular
patch to smoothly connect three surface patches is stud-
ied. Usually, these surface patches are defined on differ-
ent parameter spaces. Therefore, it is necessary to de-
fine interpolation conditions, with values from the given
surface patches, on the boundary of the triangular patch
that can ensure smooth transition between different param-
eter spaces. In this paper we present a new method to
define boundary conditions. Boundary conditions defined
by the new method have the same parameter space if the
three given surface patches can be converted into the same
form through affine transformation. Consequently,any of
the classic methods for constructing functional triangular
patches can be used directly to construct a parametric tri-
angular patch to connect the given surface patches withG1
continuity. The resulting parametric triangular patch pre-
serves precision of the adopted classic method.

1 Introduction

Construction of surfaces plays an important role in com-
puter aided geometric design (CAGD), free-form surface
modeling and computer graphics (CG). To make the pro-
cess of constructing complex surfaces simple, piecewise
techniques are frequently used, with four-sided and trian-
gular patches being the most popular choices. This paper
studies the problem of boundary condition determination in
the process of constructing parametric triangular patchesto
smoothly connect three given surface patches. These sur-
face patches can be of any form. Therefore, the problem
addressed here can also be viewed as an infinite interpola-
tion on triagles.

Infinite interpolation on triangles was first studied by
Barnhill, Birkhoff and Gordon [1], and a curved triangu-
lar patch that interpolates boundary conditions of any form

was proposed. The triangular patch is constructed using the
Boolean sum scheme. Gregory [2] used theconvex combi-
nation methodto construct a triangular patch. The trian-
gular patch is formed by the convex combination of three
interpolation operators, each of which satisfies the interpo-
lation conditions on two sides of a triangle. The idea [2]
was further extended in papers [3, 4]. Nielson [5] presented
a side-vertex methodto construct a curved triangular patch
using combination of three interpolation operators, each sat-
isfying the given boundary conditions at a vertex and its
opposite side. Hagen [6] extended Nielson’s approach to
constructgeometric patches. These results have been gen-
eralized to triangular patches with first and second order
geometric continuity [7, 8]. The problem of constructing
non-four-sided patches including curved triangular patches
was also studied in [9, 10]. In [11] a method to construct
a curved triangular patch by combining four interpolation
operators: aninterior interpolation operatorand threeside-
vertex operators[5] is presented. The constructed triangular
patch reproduces polynomial surfaces of degree four. An-
other method proposed recently [12] constructs a triangular
patch by abasic approximation operatorand aninterpola-
tion operator. The constructed triangular patch satisfiesC1
boundary condition and reproduces polynomial surfaces of
degree five.

The above methods all work on the assumption that the
interpolation conditions on the boundary of the triangle are
defined on the same parameter space. In practice, how-
ever, this is usually not the case. It is therefore necessary
to have a method to determine suitable interpolation con-
ditions so that the methods [1]-[12] can be used directly to
construct parametric triangular patches. In [13], a methodis
presented to construct the cross-boundary conditions. The
constructed cross-boundary conditions have suitable mag-
nitudes, but not suitable directions on the boundary of the
triangle. This paper overcomes this problem by presenting
a simple but efficient method to construct cross-boundary
conditions which have both suitable magnitudes and di-



rections. The combination of the new method and any of
the classic functional triangular patch construction methods
[1]-[12] can be used to construct aG1 parametric triangu-
lar patch to connect three given surface patches. The con-
structed parametric triangular patch has the same interpola-
tion precision as the adopted classic methods [1]-[12].

2 Problem description

SupposeP i(si; ti) = (xi(si; ti); yi(si; ti); zi(si; ti)),(0 � si; ti � 1), i = 1; 2; 3; are three given surface
patches, defined on differentsiti-parametric planes. The
three patches are of any form. The three patches meet in the
way shown in Figure 1. The goal is to construct a triangular
patch P T (s; t) to connect the three patchesP i(si; ti),i = 1; 2; 3; with G1 continuity. P T (s; t) andP i(si; ti),i = 1; 2; 3; beingG1 continuous means that they have a
common boundary and the normal vectors of them on the
common boundary have the same direction.

P 1(s1; t1) P 2(s2; t2)P 3(s3; t3)
Figure 1. Three surfaces meet

If these three patches are defined on the same parametricst-plane, then the methods for constructing functional trian-
gular patches can be used directly to construct a parametric
triangular patch to connect these patches withC1 continu-
ity. In most applications of CAGD, CG and related areas,
however, these three patches usually are not defined on the
same parameter space. In this case, one needs to defineC1
boundary conditions by the three patches so that the con-
structed parametric triangular patch can smoothly connect
these patches with a ”visually pleasing shape” suggested by
these three patches. After theC1 boundary conditions are
defined, the functional methods of constructing triangular
patches can be used to construct parameter triangular patch
directly. AsP T (s; t) andP i(si; ti), i = 1; 2; 3; are de-
fined on different parameter spaces,P T (s; t), satisfyingC1
boundary conditions, will connect these three patches withG1 continuity.

LetT be an equilateral triangle with verticesv1 = (0; 0),v2 = (1; 0) andv3 = (1=2;p3=2) in the st-parametric

space,ei denote the opposite side ofvi and�i is the unit
outward normal vector ofei, as shown in Figure 2. Let�1
denote the unit vector fromv2 to v3. �2 and�3 are defined
similarly. The sidesei, i = 1; 2; 3, can be parameterized as
follows: e1(u) = (1� u)v2 + uv3;e2(u) = (1� u)v1 + uv3;e3(u) = (1� u)v1 + uv2; 0 � u � 1 (1)

The parametric triangular patchP T (s; t) to be con-
structed will be defined on the equilateral triangleT , as
shown in Figure 2. On the three sides ofT , the bound-
ary curve and cross-boundary slope conditions given by the
three surfaces,P i(si; ti), i = 1; 2; 3 are as followsP i(ei(u)); �P i�si (ei(u)); i = 1; 2; 3 (2)

where ei(u)’s are defined in Eq. (1),P i(ei(u)) and�P i�si (ei(u)) denote the boundary value and the cross-

boundary slope ofP i(si; ti) on the sideei, respectively.
As the boundary conditions (2) cannot be used directly

to construct the triangular patch onT , we will use them to
define the new boundary conditions. Let the new boundary
conditions beP T (ei(u)); �P T��i (ei(u)); i = 1; 2; 3: (3)

The new boundary conditions (3) should be defined in a way
so that if the three patchesP i(si; ti),i = 1; 2; 3 are defined
by the same surfaceP (s; t), but with different parameter

spaces, thenP T (ei(u)), �P T��i (ei(u)), i = 1; 2; 3 on the

three sides ofT in Figure 2 can be defined byP (s; t), i.e.,
by P T (ei(u)) = P (ei(u));�P T��i (ei(u)) = �P��i (ei(u)); ; i = 1; 2; 3 (4)

3 Constructing the boundary Conditions

We show how to determineP T (ei(u)), �P T��i (ei(u)),i = 1; 2; 3, in this section. As shown in Figure 3, sup-
pose that the surface patchP 1(s1; t1) is defined on the
parallelogram regionv2v3v4v5,P 2(s2; t2) andP 3(s3; t3)
are similarly defined. TheP T (s; t) and P i(si; ti) areG1 continuous on the common boundary, thusP T (ei(u)),�P T��i (ei(u)), i = 1; 2; 3 can be defined byP i(si; ti),i = 1; 2; 3 as follows:
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Figure 2. Three patches meet on T .P T (ei(u)) = P i(ei(u));�P T��i (ei(u)) = �i(ei(u))�P i�si (ei(u))+�i(ei(u))�P i�ti (ei(u)); i = 1; 2; 3 (5)

where�i(ei(u)) and�i(ei(u)) are functions ofu to be con-
structed, respectively.
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Figure 3. Three patches meet on T .

Now, constructing the boundary conditions becomes a
problem of defining the functions�i(ei(u)) and�i(ei(u))
(5), i = 1; 2; 3. For simplicity, we shall show the con-
struction process of�1(e1(u)) and�1(e1(u)) only. The�i(ei(u)) and�i(ei(u)), i = 2; 3 can be constructed simi-
larly.

As vectors�1 and t1 are same, see Figure 3, so vec-

tors �1 and t1 are orthonormal, thus
�P T��1 (e1(u)) and�P T�t1 (e1(u)) satisfyh�P T��1 (e1(u)) � �P T�t1 (e1(u))i = 0

whereha � bi denotes the dot product of vectorsa andb.
It follows from (5) thatA1�1(e1(u)) +B1�1(e1(u)) = 0 (6)

where A1 = h�P 1�s1 (e1(u)) � �P 1�t1 (e1(u))i;B1 = h�P 1�t1 (e1(u)) � �P 1�t1 (e1(u))i
If s1 andt1 are orthonormal,A1 = h�P 1�s1 (e1(u)) � �P 1�t1 (e1(u))i = 0,

thus the function relation between�1(e1(u)) and�1(e1(u)) is taken as�1(e1(u)) = �A1�1(e1(u))=B1 (7)

The Eq. (7) shows that if�1(e1(u)) is defined, then�1(e1(u)) is defined. In the following we show how to
construct�1(e1(u)). We first determine the values of�1(e1(u)) and�1(e1(u)) at pointsv2 andv3, respectively.
At point v2, we have�P T��1 (v2) = �1(v2)�P 1�s1 (v2) + �1(v2)�P 1�t1 (v2): (8)

The angle�1 between vectors�1 andt3 is 30o, thus�P 3�t3 (v2) = p32 �P T��1 (v2)� 12 �P T��1 (v2):
From �P T��1 (v2) = �P 1�t1 (v2);
we have�P T��1 (v2) = 2p33 �P 3�t3 (v2) + p33 �P 1�t1 (v2): (9)

It follows from Eq. (8) and Eq. (9) that�1(v2) and�1(v2)
in Eq. (5), denoted�01 and�01 , can be determined by the
following equations.h�P 1�s1 (v2) � �P 1�s1 (v2)i�01 + h�P 1�t1 (v2) � �P 1�s1 (v2)i�01 =h�P T��1 (v2) � �P 1�s1 (v2)i;h�P 1�s1 (v2) � �P 1�t1 (v2)i�01 + h�P 1�t1 (v2) � �P 1�t1 (v2)i�01 = 0

(10)



On the other hand, atv3 we have�P T��1 (v3) = �1(v3)�P 1�s1 (v3) + �1(v3)�P 1�t1 (v3);�P T��1 (v3) = �2p33 �P 2�t2 (v3)� p33 �P 1�t1 (v3):
(11)

Thus�1(v3) and�1(v3) in Eq. (5), denoted�11 and�11 , can
be determined by the following equations.h�P 1�s1 (v3) � �P 1�s1 (v3)i�11 + h�P 1�t1 (v3) � �P 1�s1 (v3)i�11 =h�P T��1 (v3) � �P 1�s1 (v3)i;h�P 1�s1 (v3) � �P 1�t1 (v3)i�11 + h�P 1�t1 (v3) � �P 1�t1 (v3)i�11 = 0:

(12)
For�(e1(u)), two values�01 and�11 are computed, thus

a suitable choice is that�1(e1(u)) is defined by a linear
interpolation as follows:�1(e1(u)) = (1� u)�01 + u�11 0 � u � 1 (13)

where�01 and�11 are defined by (10) and (12).
Based on (7) and (13),�1(e1(u)) and�1(e1(u)) are de-

fined by�1(e1(u)) = (1� u)�01 + u�11�1(e1(u)) = �A1�1(e1(u))=B1: ; 0 � u � 1 (14)

whereA1 andB1 are defined by (6).
Similarly, one can define�i(ei(u)) and�i(ei(u)) fori = 2; 3 as follows:�2(e2(u)) = (1� u)�02 + u�12�2(e2(u)) = �A2�2(e2(u))=B2:�3(e3(u)) = (1� u)�03 + u�13�3(e3(u)) = �A3�3(e3(u))=B3: 0 � u � 1: (15)

The above construction process ofC1 boundary con-
ditions shows that when the methods for constructingC1
functional triangular patch are directly applied to the bound-
ary conditions in Eq. (5), a parameter patchP T (s; t) is
constructed, which connectsP i(si; ti), i = 1; 2; 3 with G1
continuity and smooth shape.

4 Discussion

In this section, we will show that the cross-boundary
slopes defined by Eqs. (5), (14) and (15) are well defined.
To do this, one only needs to prove that if the three sur-
facesP i(si; ti), i = 1; 2; 3; are defined by the same surfaceP (s; t) but in different forms, which are formed by apply-
ing affine transformations onP (s; t), then the new bound-
ary conditions are defined by (4), i.e., byP (s; t). This

means that if a method reproduces polynomials of degreen when it is used to construct functional triangular patches,
then when it is used with the boundary conditions (5) to
construct a parametric triangular patchP T (s; t), P T (s; t)
will reproduce parametric polynomials of degreen.

Theorem 1 If surface patchesP i(si; ti), i = 1; 2; 3;
are defined by the same surfaceP (s; t), i.e,P (�1; �1) , and
the transformations from coordinate systemst to coordinate
systemsiti are affine, then there exist unique constantsi
anddi satisfying the following conditions�i = 1=i;�i = �di=i (16)

where�i and�i satisfy�i(ei(u)) = �i and�i(ei(u)) =�i, which means�i(ei(u)) and �i(ei(u)) in Eq. (5) are
constants in this case.

Proof Only the casei = 1 will be considered. The other
two cases can be handled similarly. LetV be any point in
parametric space, in�1�1 ands1t1 coordinate systems, the
coordinates ofV be (�1; �1) and(s1; t1), respectively. As
the transformation from coordinate systemst to coordinate
systems1t1 is affine, vectors~�1 and~t1 are same, as shown
in Figure 3, the relationship between(�1; �1) and(s1; t1)
can be written as �1 = 1s1;�1 = d1s1 + t1: (17)

As P i(s1; t1) is defined byP (�1; �1), it follows from Eq.
(17) thatP 1(s1; t1) can be expressed asP 1(s1; t1) = P (1s1; d1s1 + t1) = P (�1; �1):
Now �P 1(s1; t1)�s1 = 1 �P (�1; �1)��1 + d1 �P (�1; �1)��1 ;�P 1(s1; t1)�t1 = �P (�1; �1)��1
Thus�P (�1; �1)��1 = 11 �P (s1; t1)�s1 � d11 �P (s1; t1)�t1 :�P (�1; �1)��1 = �P (s1; t1)�t1
and this completes the proof of the theorem.

In CAGD and CG applications, the curves and surfaces
are generally defined on normalized domains, [0,1] for
curves and[0; 1℄ � [0; 1℄ for surfaces. In most cases, the
domains of curves and surfaces are normalized by affine
transformations, thus in Theorem 1, that the transforma-
tion fromsP (s; t) to P i(si; ti), i = 1; 2; 3; are restricted
as affine transformations is reasonable. Theorem 1 shows
that if surfacesP i(si; ti), i = 1; 2; 3; are defined by the



same surface, then�01 and�01 in Eq.(10) and�11 and�11 in
Eq. (12) satisfy�01 = �11 and�01 = �11 , so the functions�i(ei(u)) and�i(ei(u)) in Eq.(5),i = 1; 2; 3; are uniquely
determined, i.e., determined by Eq.(4). Consequently, the
interpolation conditions are determined uniquely, thus the
triangular patch to be constructed is determined uniquely.
Therefore the following theorem follows.

Theorem 2 If the method of constructing functional tri-
angular patch reproduces polynomials of degreen, and the
method is directly applied on the interpolation conditions
in Eq.(5), then the constructed parametric triangular patchP T (s; t) reproduces parametric polynomials of degreen.

5 Experiment

Experiment results presented in this section are carried
out by constructing a parametric triangular patch to con-
nect three patches. The first experiment is to construct a
triangular patch to connect three surfaces,P i(si; ti), (0 �si; ti � 1), i = 1; 2; 3, as shown in Figure 4. The triangular
patches are produced by Nielson’s method [5]. In Figure
5, the triangular patch in (a) is produced by directly apply-
ing Nielson’s method [5] on the boundary curves and cross-
boundary slopes defined by the three rectangle patches. The
triangular patches in (b) and (c) are produced by using the
method presented in [13] and the technique presented in this
paper, respectively, to redefine the cross-boundary slopes
taken from the three given rectangular patches, then apply-
ing Nielson’s method [5] on the boundary curves and the re-
defined cross-boundary slopes. In Figure 5, some portions
of the surfaces on the common boundary of the triangular
patch with the three rectangular patches are visually not
very smooth. This is the result of Mach band phenomenon.
Figures 5 show that surfaces in (c) have less Mach band
phenomenon than those of (b).P 1(s1; t1)P 2(s2; t2)P 3(s3; t3)

Figure 4. Three surfaces meet

Highlight lines [14] have been proved to be effective tool
in assessing the quality of a surface. In Figure 6, the high-
light line model is used to compare the above three methods.
The figures in Figure 6 are highlight lines of the horizontal

(a)
(b)
()

Figure 6. Example 4

fillets of the surfaces in Figure 5. The figures in Figure 6
show that the new method gets better results than the other
two methods.

The second experiment is to test the new method using
the two functions presented by Franke [15] are used in the
comparison process. They areF4(x; y) = 5:2exp[�81((x� 0:5)2 + (y � 0:5)2)=16℄=3;F5(x; y) = 5:2exp[�81((x� 0:5)2 + (y � 0:5)2)=4℄=3
The set of data points (including 33 points) presented in [15]
is used to produce triangles for comparison. The triangula-
tion of the data set is performed using the max-min criterion
proposed by Lawson [16] (see Figure 7).

The new method is compared by applying it to Niel-
son’s method (Theorem 3.1 of [5]), ZC’s method[11]
and ZJY’s method[12]. Nielson’s method, ZC’s method
and ZJY’s method have the polynomial interpolation
precision of degree three, four and five, respectively.
The new method is tested by expressing the two func-
tions F4(x; y) and F5(x; y) above by parametric form,P4(u; v) = (x(u; v); y(u; v); F4(u; v)) and P5(u; v) =



(a) (b) ()
Figure 5. Example 2

Figure 7. Triangulation of 33 points.(x(u; v); y(u; v); F5(u; v)), which are defined byF4(u; v) = 5:2exp[�81((u� 0:5)2 + (v � 0:5)2)=16℄=3;F5(u; v) = 5:2exp[�81((u� 0:5)2 + (v � 0:5)2)=4℄=3;x(u; v) = u;y(u; v) = v
(18)

Two surfaces defined by (18) are used to define the
boundary curves and cross-boundary slopes on the sides
of the triangles in Figure 7, for each side of the triangles,
the cross-boundary slopes defined by (18) is multiplied by
0.8 to simulate it to be of any form. For the interpolation
conditions on the triangles, the surfaces by directly using
the three methods,respectively, are shown in Figures 8-9.
While for the interpolation conditions on the triangles, the
cross-boundary conditions are first redefined by the new
method, then the surfaces by directly using the three meth-
ods,respectively, are shown in Figures 10-11.

6 Conclusions

A new method that uses functional triangular patch con-
struction methods to construct parametric triangular patches
is presented. The new method improves previous methods
in both surface shape and surface quality. This is testified

Figure 8. (A) Nielson’s method, (B) ZC’s
method, (C) ZJY’s method, (D) F4(x; y).

Figure 9. (A) Nielson’s method, (B) ZC’s
method, (C) ZJY’s method, (D) F5(x; y).



Figure 10. (A) Nielson’s method, (B) ZC’s
method, (C) ZJY’s method, (D) P4(u; v).

Figure 11. (A) Nielson’s method, (B) ZC’s
method, (C) ZJY’s method, (D) P5(u; v).

by examining Mach band effect and highlight line models
of the resulting surface patches. The key in achieving the
improvement is a technique to define the cross-boundary
conditions. The resulting cross-boundary conditions have
not only suitable magnitudes but suitable directions as well.

With the new method, one can directly apply any of the
classic functional triangular patch construction methodsto
construct aC1 parametric triangular patch to smoothly con-
nect three surface patches. The new method preserves pre-
cision of the adopted classic method. If the adopted classic
method has a precision of polynomials of degreen, then the
constructed parametric triangle patches have a precision of
parametric polynomials of degreen.
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