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Abstract. An automatic smooth surface connection
method that has the capability of tension control is pre-
sented. Given two trimmed NURBS surfaces, the new
method constructs a smooth connection surface to con-
nect the trimming regions of the trimmed surfaces at the
trimming curves. The connection satisfies pseudo-G1 or
pseudo-C1 smoothness requirement. The construction pro-
cess consists of four major steps: connection curves con-

struction and alignment, initial blends construction, setting
up continuity constraints, and internal and external bound-

ary smoothing. The advantages of the new method include:
(1) providing the users with more flexibility in adjusting
the shape of the connection surface, (2) the representation
of the connection surface is compatible with most of the
current data-exchange standards, (3) including the classi-
cal blending as a special case but with more flexibility on
the setting of the rail curves, and (4) smoother shape of
the resulting connection surface through an energy opti-
mization process. Test cases that cover typical CAD ap-
plications are included.

Keywords: constrained deformation, surface connection,
trimmed NURBS surfaces, rail curves, strain energy

1 Introduction
Surface connection refers to the process of smoothly con-
necting two or more surfaces, called base surfaces, with
or without an auxiliary surface. In an indirect connec-

tion, a connection surface is used to smoothly connect two
or more disjoint base surfaces along rail curves specified
by the user. In a direct connection, the base surfaces are
joined directly along a common boundary, called a connec-

tion curve. The smoothness of the connection process is
usually established by requiring tangential continuity be-
tween the base surfaces (for direct connection) or between
the connection surface and the base surfaces (for indirect
connection).

Direct connection is a frequently used process in indus-
try. For instance, components of a complex shape (such as
a car) may be designed by different groups separately or
taken from deformed versions of some previously designed

parts and then assembled into a complete object for ef-
ficiency purpose. Undesired positional or tangential dis-
continuity along the component boundary is usually fixed
manually. This problem can be regarded as a constrained

surface deformation problem by noticing that the connec-
tion process is equivalent to deforming the base surfaces
so that the boundary curves of the base surfaces would
coincide with the connection curve and appropriate con-
tinuity condition is satisfied along the connection curve.
Techniques in this area can be found in [3][4][22][23][24].

The indirect connection problem has been extensively
studied for two special cases. In the first case, the rail
curves are defined by the boundary curves of the base sur-
faces. A typical example is the indirect connection of two
cylinders with different diameters along their boundary
curves. The connection surface is usually generated as a
blending surface [1][12][13][21]. In some occasions the con-
nection surface is constructed by solving some interpola-
tion condition [2][6][15]. The S-patch [17][18] and Gregory
Patch [5], which can smoothly connect multiple surface
patches, are constructed using a similar approach.

In the second case, the base surfaces are two intersect-
ing surfaces and a connection surface is generated to re-
place the intersecting curve and its vicinity as a smooth-
ing (rounding) process. The connection surface is usually
a part of a canal surface generated by a rolling ball which
has G1 contact to the base surfaces. An extensive survey
in this case can be found in [20]. Connection surfaces that
have higher degree of continuity along the rail curves can
also be constructed [9][10][11].

Indirect connection of parametric surfaces with general
rail curves has not been well studied yet. Filip’s work [8]
and Kim/Elber’s work [14] seem to be the only known re-
sults in this area. They construct a connection surface with
G1 or C1 continuity by using Hermite interpolation, based
on the assumption that the rail curves are parametrically
defined in the domain of the base surfaces. The problem
with this approach is that the connection surface does not
have a NURBS representation and the degree of the sur-
face is high. For bicubic B-spline base surfaces, the degree
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of the resulting connection surface is at least 18, not suit-
able for stable numerical computation. Most importantly,
this approach can not handle industrial applications where
a rail (trimming) curve is defined as a closed polygon, not
a parametrically defined curve, in the domain of the base
surface.

We overcome these problems by presenting a new ap-
proach for indirect connection of trimmed NURBS sur-
faces. The connection satisfies the pseudo-G1 or pseudo-C1

smoothness condition (to be defined in Section 2), a condi-
tion not as strong asG1 or C1, but smooth enough for most
industrial applications. Most importantly, the connection
surface constructed by this method has a bicubic NURBS
representation and, hence, it is compatible with most of
the current data-exchange standards. The connection sur-
face is a composition of a set of small blends, instead of a
single blend. Hence, it takes more space for internal repre-
sentation. But the bicubic NURBS representation makes
it more efficient and stable for computation and render-
ing, a practically reasonable trade-off. The new approach
also allows tension control of the connection surface by the
user.

The remaining part of the paper is arranged as follows.
A formal description of the problem and the basic idea
of the proposed method are given in Section 2. Tech-
niques needed in constructing the connection surface are
described in Sections 3-7. Test results of the proposed
method, including a comparison of the new approach with
Filip’s approach, are included in Section 8. Concluding
remarks are given in Section 9.

2 Problem Formulation and Basic

Idea
Given two trimmed surfaces S0 and S1 with trimming
curves T0 and T1, respectively, our goal is to construct
a new surface S that smoothly connects the trimming re-
gions of S0 and S1 at T0 and T1, respectively. S0 and
S1 are called the base surfaces and S is called a connec-

tion surface. The trimming curves where the connection is
performed are called the connection curves. The connec-
tion between the base surfaces and the connection surface
should satisfy some smoothness condition along the con-
nection curves. Due to the fact that popular smoothness
conditions such as G1 and C1 continuity are not possi-
ble to achieve when T0 and T1 are arbitrarily defined, we
will use a lower smoothness requirement for the connection
process.

Definition. The connection between a connection sur-
face and a base surface is said to be pseudo-G1 (pseudo-C1)
continuous if the connection is C0 on the entire connection

curve but G1 (C1) on finitely many points of the connec-
tion curve only. The points where the connection satisfies
G1 (C1) condition must be densely populated over the con-
nection curve so that the connection curve is contained in
the union of the ǫ-neighborhoods of such points for some
small positive number ǫ.

The connection curves have been called rail curves in the
blending process. However, since our connection process
is more general than the classical blending process (which
focuses on smoothly joining parametric surfaces along their
boundary curves or offset curves of the boundary curves,
see Figures 7 and 8), and these curves are not generated
in the same manner as in the blending process, we choose
not to use the same term here to avoid confusion.

The base surfaces S0 and S1 are NURBS surfaces of
degrees p0 and p1 in u direction and degrees q0 and q1 in
v direction, respectively,

Sk(u, v) =

∑mk

i=0

∑nk

j=0
wk

i,jQ
k
i,jN

k
i,pk

(u)Nk
j,qk

(v)
∑mk
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∑nk

j=0
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i,jN
k
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(v)
, (1)

k = 0, 1 (u, v) ∈ [0, 1]× [0, 1]

where Qk
i,j are 3D control points, Nk

i,pk
(u) and Nk

j,qk
(v)

are B-spline basis functions of degrees pk and qk, re-
spectively, and wk

i,j are weight functions. Ni,pk
(u) and

Nj,qk(v) are defined with respect to the knot vectors τk =
{τk0 , τ

k
1 , ... , τkmk+pk+1}, and σk = {σk

0 , σ
k
1 , ... , σk

nk+qk+1},

respectively, with τk0 = ... = τkpk
= σk

0 = ... = σk
qk

= 0 and

τkmk+1 = ... = τkmk+pk+1 = σk
nk+1 = ... = σk

nk+qk+1 = 1.

A trimming curve, in industrial applications, is typically
defined by a set of points in the domain of the surface
(due to the fact that trimming curves are usually gener-
ated through the surface-surface intersection operation).
We follow the industrial standard in this work, i.e., the
trimming curves Tk, k = 0, 1, are defined by closed lin-
ear polygons in the domains of surfaces Sk with lk vertices
Vk

0 , V
k
1 , V

k
2 , ... , Vk

lk
= Vk

0 , k = 0, 1, respectively. The
trimming curves do not intersect themselves. The trim-
ming region of a trimmed NURBS surface is determined
by the curve handedness rule, i.e., a point is in the trim-
ming region if it is on the left side when one traverses the
trimming curve.

The connection surface S should connect the trimming
regions of the given trimmed NURBS surfaces at the trim-
ming curves. The connection should be at least pseudo-G1

or pseudo-C1 continuous. The connection surface should
have a NURBS representation to be compatible with the
current data-exchange standards. The shape of the connec-
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tion surface should be smooth enough to meet design cri-
teria. Besides, the user should be able to control the shape
of the connection surface through some simple mechanism
to satisfy both aesthetic and aerodynamic requirements.

The main idea of the new approach is to construct the
connection surface as a set of small blends instead of a sin-
gle blend. The small blends are constructed by splitting
the trimming curves of the base surfaces into small, aligned
segments and then blending corresponding segments with
an appropriate profile curve to form initial blends. The
connection surface is formed by piecing the small blends
together through an optimization process to achieve in-
ternal and external smoothness requirements. Each small
blend is a bicubic Bézier patch. The resulting connection
surface is a composite Bézier surface and, consequently, a
bicubic NURBS surface. The user can control the shape
of the blends and the connection surface by manipulating
a tension parameter contained in the profile curve.

The main steps of our approach are show below:

1. Connection curves construction and alignment;

2. Initial blending construction;

3. Setting up continuity control constraints;

4. Shape optimization.

The first step is the most critical step because the result of
this step determines the shape of the blends constructed
in the second step and, hence, essentially the shape of the
connection surface. Details of the above steps are given in
the subsequent sections.

3 Connection Curves Construc-

tion and Alignment
A trimming curve, represented as a closed linear polygon
in the parameter space of the trimmed surface, can not be
used as a connection curve directly. A connection curve
has to be constructed separately. An intuitive approach
is to construct a cubic B-spline or piecewise Bézier curve
that interpolates the vertices of the trimming curve in the
parameter space and use its image under the surface def-
inition as the connection curve [8][14]. This connection
curve, however, can not be used in the subsequent blend
construction process because, after the mapping of the sur-
face definition, it is no longer a B-spline or a piecewise
Bézier curve. Besides, a connection curve constructed for
bicubic B-spline base surfaces with cubic trimming curves
has a degree ≥ 18, not suitable for stable numerical com-
putation.

The connection curves will be constructed in the model-
ing space directly. These curves must satisfy the following
requirements:

1. they have the same number of curve segments and
their segments are properly aligned;

2. the number of curve segments is big enough so that
each connection curve can be covered by the ǫ-
neighborhoods of the endpoints of its curve segments;

3. each connection curve lies precisely on the correspond-
ing base surface.

The first requirement is to ensure components of the
connection surface are properly constructed (Section 4)
and satisfy the aesthetic and aerodynamic requirements on
their shape. The second requirement is to ensure pseudo-
G1 continuity between the connection surface and the base
surfaces. The third requirement is to ensure that there is
no gap between the connection surface and the base sur-
faces. The construction process is shown below.

First, for each base surface Sk, k = 0, 1, we construct
a cubic B-spline curve Ck that interpolates the vertices
of the trimming curve Tk in modeling space Sk(V

k
i ), i =

0, 1, ..., lk, as follows:

Ck(t) =

lk+2
∑

j=0

Nk
j,3(t)P

k
j t ∈ [t3, tlk+3] = [0, 1] (2)

where Pk
j are 3D control points and Nk

j,3(t) are cubic B-
spline basis functions defined with respect to the knot vec-
tor tk = {tk0 , t

k
1 , ... , tklk+6

}. The knots are defined using

the interpolation points Sk(V
k
i ), following the centripetal

model [16]. The control points Pk
j are computed by solving

the following system of equations:

Ck(ti) =

lk+2
∑

j=0

Nk
j,3(ti)P

k
j = Sk(V

k
i−3), (3)

i = 3, 4, ..., lk + 3.
Ck(t) is a closed curve, its control points are cyclic, i.e.,
Pk

j = Pk
j mod lk

.

To meet the first and the second requirements, let Pk
ctd

and Nk
ctd be the centroid and normal vector of the trim-

ming curve Tk defined as follows (see Figure 1):

Pk
ctd =

1

lk

lk
∑

i=1

Sk(V
k
i ), k = 0, 1 (4)

Nk
ctd =

1

lk

lk
∑

i=1

Nk
i , k = 0, 1 (5)

where Nk
i are the normal vectors of the trimmed surface

Sk at Sk(V
k
i ). Using these four items, one can construct

a cubic Bézier curve C(t) (t ∈ [0, 1]) with P0
ctd and P1

ctd

as its endpoints and N0
ctd and N1

ctd as its endpoint tan-
gent vectors (see Figure 1). This curve is the centroid line
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Figure 1: Construction of the centroid line.

of the connection surface to be constructed. Using the
first derivative and the second derivative of the curve C(t)
at the endpoints, one can construct a plane through each
endpoint (see Figure 2). Each plane has two or more in-
tersection points with the corresponding connection curve.
Take the two outmost intersection points on each connec-
tion curve and recursively divide the left and the right
portions of the connection curves simultaneously to gener-
ate a set of points Dk

i , i = 0, 1, 2, ..., N , on the connection
curves with Dk

0 = Dk
N , k = 0, 1. The subdivision process

stops when the following two conditions are satisfied: (1)
the Euclidean distance between each pair of consecutive
points is less than ǫ/2 in 3D domain of surface, and (2) for
each resulting sub-segment of the connection curves, the
distance between the chord and the arc is less than ǫ/2.
If a pair of consecutive points fail to satisfy any of these
conditions, the corresponding segments on both connection
curves are further recursively divided until these conditions
are satisfied by subsegments on both connection curves.

When the subdivision process stops, we construct a
closed cubic B-spline curve to interpolate D0

i , i =
0, 1, 2, ..., N , and a closed cubic B-spline curve to inter-
polate D1

i , i = 0, 1, 2, ..., N . These curves are (slightly)
different from C0 and C1. For simplicity, however, we
shall use C0 and C1 to represent these curves again. The
new C0 and C1 will be used as the connection curves for
the base surfaces S0(u, v) and S1(u, v), respectively. Note
that, with Dk

i , i = 0, 1, 2, ..., N , as interpolation points, C0

and C1 satisfy requirements 1 and 2 now. In general, the
curve Ck(t) does not lie on the base surface Sk.

point

Intersection

point

Intersection

(1)

(0)

(2)

(2)

C

C

C(t)

(1)

(0)

(1)
C

(1)
C

Figure 2: Construction of the endpoint planes.

To meet the third requirement, we deform the base sur-
face Sk(u, v) so that the deformed version would contain
the connection curve Ck. This process will be performed
as a constrained optimization process to ensure (1) the dif-
ference between the deformed base surface and the original
base surface is as small as possible, and (2) the shape and
curvature distribution of the deformed base surface are as
close to the original base surface as possible. Obviously,
the objective function of the optimization process should
be constructed based on the difference of the deformed
version and the given version of the base surface.

For each base surface Sk, k = 0, 1, let S̄k be the deformed
version of the base surface. The displacement function
¯̄Sk(u, v) is therefore

¯̄Sk(u, v) = Sk(u, v)− S̄k(u, v). (6)

To ensure that after the deformation process the connec-
tion curve Ck would lie on the deformed base surface S̄k

completely, one can consider a positive definite error func-
tional as follows:

δ = 1/2

∫ 1

0

(Ck(t)− S̄k(Ĉk(t))
2dt

where Ĉk(t) is a parametric curve in the domain of the
base surface Sk. The value of this error functional is zero
and a minimum when the curve Ck(t) is equal to the curve

S̄k(Ĉk(t)), i.e., when the connection curve is the image of
the deformed surface of some parametric curve in the do-
main of the surface. A natural choice for Ĉk(t) is the
cubic B-spline curve that interpolates the vertices of the
trimming curve Tk in the domain of Sk. Following a tech-
nique of Celniker and Welch [4], the above error functional

4



can be transformed to a linear constraint as follows by re-
quiring its value to be a minimum – that is, its gradient
with respect to the control points to be 0. Q is the set of
control points of the deformed surface S̄k.

BQ = b (7)
The deformed surface is computed by performing a con-

strained optimization on the thin plate energy model of the
displacement function. The optimization process will be
discussed in Section 8. The deformed surface now satisfies
all three requirements. Note that the difference between
Ck(t) and C̄k(t) is small. Hence, the difference between
the deformed version and the original version of the base
surface is small too. For simplicity, after this point we shall
use Sk(t), not S̄k, to refer to its deformed version.

4 Initial Blends Construction

Using the points Dk
i (i = 1, 2, ...N−1), k = 0, 1, generated

in the previous step, one can subdivide each of the connec-
tion curves Ck(t), k = 0, 1, into N cubic Bezier curve
segments: Ck

0(t), C
k
1(t), ..., C

k
N−1(t) where t ∈ [0, 1]. The

goal of this step is to construct a blend Ŝi(u, v) for each pair
of corresponding Bezier curve segments, C0

i (t) and C1
i (t)

(i = 0, ..., N − 1), of the connection curves. Combined,
these blends will form the initial shape of the connection
surface.

(b)(a)

C
0

i (t)

G
1

i

G
0

i

C
1

i (t)

C
1

i (1/2) = Ei,3

C
0

i (1/2) = Ei.0

Ei,1

Ei,2

Di(v)
D̄i(v)

Ωi(v)

Figure 3: Construction of a profile curve.

An intuitive approach one can think of immediately is
the Hermite Interpolation technique, that is, constructing
the blend Ŝi(u, v) as follows:

Ŝi(u, v) = H0(v)C
0
i (u) +H1(v)C

1
i (u)

+H2(v)Γ
0
i (u) +H3(v)Γ

1
i (u) (8)

where Hi(v) are Hermite basis functions

H0(v) = v2(2v − 3) + 1; H1(v) = 1−H1(v);

H2(v) = v(v − 1)2; H3(v) = v2(v − 1)

and Γ0
i (u) and Γ1

i (u) are tangent functions to be defined.
This is essentially what was done by Filip [8]. The repre-
sentation of the resulting connection surface in this case is
not compatible with that of the base surfaces. Note that
unless Γ0

i (u) and Γ1
i (u) are explicitly defined, the smooth-

ness between the connection surface and the base surfaces
is not G1, as Filip has claimed in [8]. In the following, we
present an approach that provides a compatible represen-
tation for the resulting connection surface. The new ap-
proach embeds the shape information of the base surfaces
into that of the connection surface in a more natural way.
The resulting connection surface satisfies the pseudo-G1

or pseudo-C1 smoothness requirement at the connection
curves.

For each pair of corresponding Bezier curve segments
C0

i (t) and C1
i (t) (i = 0, ..., N − 1), we first find a vector

Gk
i that is tangent to the surface Sk(u, v) and normal to

the Bezier curve segment Ck
i (t) at the point Ck

i (1/2), k =
0, 1. There are two such vectors. We take the one that
is going away from the trimming region of Sk(u, v) (see
Figure 2(a)). We then define two points, Ei,1 and Ei,2, as
follows (see Figure 2(b)):

Ei,1 = C0
i (1/2) + w1G

0
i ,

Fi,2 = C1
i (1/2) + w2G

1
i

where w0 and w1, called tension parameters, are real num-
bers between 0 and 1. The four points Ei,0 = C0

i (1/2),
Ei,1, Ei,2, and Ei,3 = C1

i (1/2) define a cubic bezier curve
as follows:

Di(v) = B0,3(v)Ei,0 +B1,3(v)Ei,1+

B2,3(v)Ei,2 +B3,3(v)Ei,3

where Bi,3(v) are Bernstein basis functions of degree three.
By using Ei,0, Ei,3, and two points in between, one can get
a cubic bezier curve representation for the line segment
Ei,0Ei,3, as follows:

D̄i(v) = B0,3(v)Ei,0 +B1,3(v)Ēi,1+

B2,3(v)Ēi,2 +B3,3(v)Ei,3

where Ēi,1 = (2C0
i (1/2) + C1

i (1/2))/3 and Ēi,2 =
(C0

i (1/2) + 2C1
i (1/2))/3. D̄i(v) is the base segment of

Di(v) (see Figure 2 (b)). We then compute the vector
Ωi(v) that is the difference between Di(v) and D̄i(v).

Ωi(v) = Di(v)− D̄i(v)
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Using a technique similar to the so called blending between

two cross-sections using one profile [7], one can define a

blending surface Ŝi(u, v) for C
0
i and C1

i , i = 0, 1, ..., N−1,
as follows:

Ŝi(u, v) = (1− φ(v))C0
i (u) + φ(v)C1

i (u) +Ωi(v) (9)

where φ(v) is a blending function defined as follows:

φ(v) = B0,3(v)α0 +B1,3(v)α1 +B2,3(v)α2 +B3,3(v)α3

with α0 = 0, α3 = 1, and α1 and α2 are determined based
on the shape of the base surfaces. If the angle between the
vector G0

i and the base plane of the trimming curve C0(t)
(the plane that passes through the centroid of C0(t) and is
perpendicular to the normal of C0(t)) is θ0, and the angle
between the vector G1

i and the base plane of the trimming
curve C1(t) is θ1, then α1 and α2 can be defined as follows
(see Figure 3):

α1 = |G0
i | w1 sin(θ0) (10)

α2 = α3 − |G1
i | w2 sin(θ1) (11)

The blending surface Ŝi(u, v) defined in eq. (9) is a bicubic

α1

α0 = 0

α3 = 1

α2

G
0

i

G
1

i

θ1

θ0
1

Figure 4: Construction of α1 and α2.

Bezier surface. If the control points of the Bezier curve
segment Ck

i (u) are P
i,k
0 , Pi,k

1 , Pi,k
2 and P

i,k
3 , k = 0, 1 and

i = 0, 1, ..., N − 1, then the control points of Ŝi(u, v), Q̂
i
j,l

(j = 0, .., 3, l = 0, ..., 3), can be expressed as follows:

[Q̂i
j,l] =









P
i,0
0 P

i,1
0 1

P
i,0
1 P

i,1
1 1

P
i,0
2 P

i,1
2 1

P
i,0
3 P

i,1
3 1













1− α0 1− α1 1− α2 1− α3

α0 α1 α2 α3

0 Ei,1 − Ēi,1 Ei,2 − Ēi,2 0





A connection surface constructed this way would only
satisfy C0 continuity on it boundaries with the base sur-
faces and on the boundaries of the component surfaces.
Smoother continuity condition will be achieved through
an optimization process. This will be discussed in Section
8.

To get a good connection surface shape, the user needs
to select proper values for the tension parameters, w1

and w2. In general, larger tension parameters will result
in smoother connection surface shape. However, larger
tension parameters sometimes could generate abnormal
shapes such as cusps or loops on isoparametric curves of the
connection surface. So these parameters sometimes have to
be iteratively adjusted to find the best values. A suggested
initial value for these parameter is 0.5. A rule of thumb
in adjusting these parameters is to decrease the values of
the tension parameters if abnormal portions are found in
the connection surface. Otherwise, increase the values of
the tension parameters to get smoother connection surface.
The maximum value for the tension parameters is one. At
that point the connection surface is pseudo-C1 continuous.

5 Setting Up Continuity Con-

straints
The purpose of this step is to set up continuity constraints
for the optimization process. Two types of continuity con-
straints will be considered: interior continuity constraint

and exterior continuity constraint. The first one refers to
continuity constraint between component surfaces of the
connection surface, the second one refers to continuity con-
straint between the connection surface and the base sur-
faces.

5.1 Interior continuity constraint

Adjacent component surfaces of the connection surface are
required to satisfy C1 continuity on their boundaries. If
two adjacent component surfaces Ŝi(u, v) and Ŝi+1(u, v),
0 <= i <= N − 1, have the same number of control points
in v direction, then their control points must satisfy the
following conditions:

Q̂i
ni,l

= Q̂i+1

0,l , l = 0, 1, ...,mi (12)

Q̂i
ni,l

− Q̂i
ni−1,l = Q̂i+1

1,l − Q̂i+1

0,l ., l = 0, 1, ...,mi (13)

In the above conditions, i+ 1 is modulo N .
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Sometimes, due to surface shape requirement, adjacent
component surfaces might have different number of control
points in v direction, i.e., mi 6= mi+1. In that case, adja-
cent component surfaces must satisfy pseudo C1 continuity
on their boundaries, i.e.,

Ŝi(1, v
i
l ) = Ŝi+1(0, v

i
l), l = 0, 1, ...,M (14)

d

du
Ŝi(1, v

i
l) =

d

du
Ŝi+1(0, v

i
l ), l = 0, 1, ...,M (15)

for some vil , where M ≥ max(mi,mi+1) and |vil − vil+1
| <

ǫ. In the above conditions, i+ 1 is modulo N too.

5.2 Exterior continuity constraint

Constraint for continuity condition between the connection
surface and the base surface is needed for v direction only.
This will be set up in three steps.

First, for each component surface Ŝk(u, v), k =
0, 1, ..., N−1, map the control points of its boundary curves
Ŝk(u, 0) and Ŝk(u, 1) onto the boundary curves using the
shortest distance technique. For instance, for the boundary
curve Ŝk(u, 0), this is equivalent to the process of identify-

ing the point (ui,0, 0) in the parameter space of Ŝk(u, 0) so

that the distance between Q̂k
i,0 and Ŝk(ui,0, 0) is the mini-

mum, i = 0, 1, ...,mk. Ŝk(ui,0, 0) is called the image of Q̂k
i,0

on the curve Ŝk(u, 0). Note that Ŝk(ui,0, 0) is also a point
on the connection curve T0 of the base surface S0(u, v).

Second, determine the direction of the outward normals
of the connection curves at the points determined in the
first step. For instance, for the point Ŝk(ui,0, 0) determined
in the first step, since it is also a point of the base surface
S0(u, v), we identify the point (u0

i,0, v
0
i,0) in the parame-

ter space of S0(u, v) such that S0(u
0
i,0, v

0
i,0) = Ŝk(ui,0, 0).

The point (u0
i,0, v

0
i,0) is located on the parametric connec-

tion curve in S0(u, v)’s parameter space. Consequently,
one can determine the tangent of the connection curve T0

at S0(u
0
i,0, v

0
i,0) which is the partial derivative of the com-

ponent surface Ŝk(u, v) at Ŝk(ui,0, 0) with respect to u.
From the tangent vector of the connection curve T0 at
S0(u

0
i,0, v

0
i,0) one can determine the outward normal of the

curve at the same point. The direction of the outward nor-
mal is the same as the direction of the partial derivative of
the component surface Ŝk(u, v) at Ŝk(ui,0, 0) with respect
to v. The angle between the outward normal at that point
and the u axis in the parameter space is noted αk

i .

The outward normals of the connection curve T1 at
the points determined in the first step can be determined
similarly and the angles between the outward normals
and the v axis in the parameter space are denoted βk

i ,
k = 0, 1, ..., N − 1, i = 0, 1, ...,mk.

The continuity constraints are then set up as follows:

Ŝk(u
k
i,0, 0) = S0(u

0
i,0, v

0
i,0) (16)

Ŝk(u
k
i,mk

, 1) = S1(u
1
i,m1

, v1i,m1
) (17)

∂Ŝk

∂v
(uk

i,0, 0) = w1[
∂S0

∂u
(u0

i,0, v
0
i,0)cosα

k
i

+
∂S0

∂v
(u0

i,0, v
0
i,0)sinα

k
i ] (18)

∂Ŝk

∂v
(uk

i,mk
, 1) = w2[

∂S1

∂u
(u1

i,m1
, v1i,m1

)cosβk
i

+
∂S1

∂v
(u1

i,m1
, v1i,m1

)sinβk
i ] (19)

where k = 0, 1, ..., N − 1, i = 0, 1, ...,mk, and w1 and w2

are tension parameters defined in Section 5. Note that
the connection curves usually have different lengths. This
makes it difficult to generate an appropriate connection
surface with C1 continuity. The purpose of the tension
parameters in the above equations is to ensure a G1 con-
tinuity between the connection surface and the the base
surfaces and in the meanwhile guarantee a proper shape
of the connection surface. The values of the tension pa-
rameters should be determined by the designer during the
design procedure.

6 Shape Control
In Section 5, two numbers w1 and w2, called tension pa-
rameters, are introduced into the second and third con-
trol points of the profile curve for each component surface.
These two parameters have great influence on the shape of
the resulting connection surface. A guideline in selecting
the values of these parameters is given below. Note that
when w1 = w2 = 1, the connection surface has pseudo-C1

continuity with the base surfaces S0 and S1.

Let Hs be the shortest distance between the two con-
nection curves. For each base surface, find the largest first
derivative along the connection curve and denote it by Dl

(l = 0, 1),

Dl = max{Sl
u(u(t), v(t)),S

l
v(u(t), v(t))}

where (u(t), v(t)) are the parameters of the connection
curve and t ∈ [0, 1]. A general guideline for avoiding ab-
normal connection surface shape is to choose w0 and w1

satisfying the following conditions:

w1D0 + w2D1 ≤ Hs, w1 > 0, w2 > 0

If w1 = w2, then we must have

w1 = w2 ≤
Hs

D0 +D1

.
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7 Shape Optimization
Optimization techniques have been widely used in surface
modification and design [3][4][19][23][24]. An important
part of the optimization process is the selection of the ob-
jective function. A quadratic objective function will induce
a system of linear equations and, consequently, is suitable
for computation process. One should try to use a quadratic
objective function whenever it is possible. In the follow-
ing, we will outline the optimization process used in this
paper for the smoothing of the connection surface. The
optimization process of the base surfaces (Section 4) can
be performed similarly.

Let Ŝ(u, v) and S(u, v) denote the initial connection sur-
face and the modified version of the connection surface,
respectively. S is called the target surface. The difference
between the target surface and the initial surface, called
the displacement function, is denoted V(u, v).

V(u, v) = (S− Ŝ)(u, v) (20)

Based on the theory of thin plate deformation, the energy
of a displacement function is defined as follows:

E(V) =
1

2

∫ ∫

D

F (u, v) dudv (21)

where D is the parameter space of the surface, and

F (u, v) = αF1(u, v) + βF2(u, v) + γF3(u, v) (22)

with F1(u, v), F2(u, v) and F3(u, v) being the bending,
stretching and spring components of the deformation pro-
cess, respectively. These quantity are defined as follows:

F1(u, v) = (
∂2V

∂u2
)2 + (

∂2V

∂v2
)2 + (

∂2V

∂u∂v
)2 + (

∂2V

∂u2
)(
∂2V

∂v2
)

F2(u, v) = (
∂V

∂u
)2 + (

∂V

∂v
)2 + (

∂V

∂u
)(
∂V

∂v
) (23)

F3(u, v) = V2

They have impact on the amount of surface displacement,
variation of surface area, and distribution of surface cur-
vature, respectively. α, β and γ are the weights of these
effects on the deformation energy. A study on the deter-
mination of these weights can be found in [24].

By substituting the representations of the initial con-
nection surface Ŝ and the target surface S into eqs. (23)
and then (21), the energy function can be expressed as a
quadratic function as follows:

E(Q− Q̂) =
1

2
[Q− Q̂]⊤A[Q− Q̂] (24)

where Q and Q̂ are the control points of the target surface
and the initial connection surface, respectively, and A is
a constant matrix defined by the basis functions of the
NURBS surface.

The internal and external continuity constraints ob-
tained in the previous section can be expressed as a set
of linear equations as follows:

BQ = b (25)

where Q is the control points of S to be determined, and
B and b are constant matrices.

One then solve this system using the LagrangeMultiplier
method. Since the objective function in (24) is quadratic
and the constraint equations (24) are linear, the final sys-
tem to be solved is linear.

To avoid solving an over-determined system, the initial
surface sometimes needs to be subdivided. The depth of
the subdivision process can be determined by requiring the
number of control points of the surface to be larger than
the number of constraints.

8 Implementation
The proposed technique has been implemented in Java on a
UNIX platform using OpenGL as the supporting graphics
system. Test results on four data sets are presented here.

The first result, shown in Figure 5, is to connect two
base surfaces along concave connection curves. The con-
nection surface connects the interior portion of the connec-
tion curve of one base surface with the exterior portion of
the connection curve of another base surface. The tension
control parameters are w1 = 0.5 and w2 = 0.5. This is a
typical example for feature based shape design in industry.

The second case is to show the robustness of the new
approach by connecting an elliptic cylinder with a bended
base surface (Figure 6). The tension control parameters
are w1 = 0.33 and w2 = 0.33. This is an example of classic
blending (filleting) process.

The third case (Figures 7 and 8) is to show effect of the
tension parameters on the shape of the connection sur-
face. Two elliptic cylinders with different orientations are
connected using different tension parameters. In Figure 7,
both tension parameters are set to 0.1 while the tension pa-
rameters in Figure 8 are both set to 1.0., The results show
that larger tension parameters usually generate smoother
connection surfaces. The last case is a comparison of the
new approach (Figure 9) with Filip’s Hermite blending ap-
proach (Figure 10). Since the Hermite blending approach
is actually piecewise G1 only, the smoothness of the result
shown in Figure 10 is not as good as the one shown in Fig-
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ure 9, as can be seen from the highlights on the resulting
connection surfaces.

All the test cases are carried out on an SGI machine
using FFODS (Free-Form Object Design System) devel-
oped by the Graphics & Geometric Modelling Lab of the
University of Kentucky.

9 Conclusion
Surface connection is a widely used process in automotive
and aerospace industries, as well as computer animation
and civil engineering. The technique proposed in this pa-
per provides a solution for a general indirect connection
environment. The new approach is promising in that it
has the following advantages:

1. providing the users with more flexibility in adjusting
the shape of the connection surface;

2. the NURBS representation of the connection surface
is compatible with most of the current data-exchange
standards;

3. including the classical blending as a special case and
yet allowing more flexibility on the setting of the rail
curves;

4. providing a smoother shape of the connection surface
through an energy optimization process.

The new approach takes more space for internal repre-
sentation because the connection surface is a composition
of many small Bézier patches. But this seems to be a rea-
sonable price to pay for gaining efficiency and stability in
the computation and rendering processes.

As far as future work is concerned, it seems that the
presented method can be used for three-way and four-way
connection as well. The study of such an extension will be
a future research topic.
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Figure 5: Connecting two general surfaces.

Figure 6: An elliptic cylinder connected with a surface.

Figure 7: Connecting two cylinders with w1 = w2 = 0.1.

Figure 8: Connecting two cylinders with w1 = w2 = 1.0.

Figure 9: The new approach.

Figure 10: The Hermite blending approach.
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