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Abstrat

The initial attempt was to �nd eÆient tehnique to identify shadow polygons in

the shadow-volume based shadow generation algorithm. It was observed that shadows

are orresponding to loops of ridge edges (REs). By identifying all the non-overlapping

RE loops of a 3D objet, one �nds all the shadow polygons and, onsequently, all the

shadows it generates on other objets as well as shadows it generates on itself. This,

however, requires extensive edge-edge intersetion tests.

It was subsequently realized that by storing the angular representations of the RE

loops in a look up table, one an avoid the need of deomposing RE loops into non-

overlapping loops and, onsequently, the need of performing extensive edge-edge inter-

setion tests. Atually, by building the look up table in a way similar to the buket-sorted

edge table of the standard san-line method, one an use the table in the san onversion

proess to mark the pixels that are in shadow diretly, without the need of performing

any ray-polygon intersetion tests as required in the shadow-volume based shadow gen-

eration algorithm. Hene, one gets a new shadow generation tehique without the need

of performing expensive tests.

Keywords. shadow, shadow polygon, ridge edge, ridge edge loop, pseudo intersetion

point

1 Introdution

Shadow generation is a lassi problem in omputer graphis. The problem is to identify

the regions that are in shadow and then modify the illumination aordingly. A region is in

shadow if it is visible from the view point, but not from the light soure (we assume that there

is only one light soure in the sene. When there are multiple light soures, we simply lassify

the region relative to eah of them using the same tehnique). Shadow generation is important

in that shadows not only inrease realism of a piture, but also provide better understanding
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of the spatial relationships between objets: if objet A asts a shadow on objet B, then

obviously A is between B and the light soure [4℄[7℄[9℄.

The problem of shadow generation has been studied for more than thirty years. Various

methods for shadow generation have been suggested. An exellent survey of these methods an

be found in [16℄. These methods an be lassi�ed as shadow volume method, area subdivision

method, depth bu�er method and ray traing method. In a shadow volume method, shadow

polygons are generated as preproessing and then eah ray is tested for shadow ount [7℄. Later

this method was re�ned by BSP trees [4℄. Most reently, Chrysanthou and Slater [5℄ proposed

a BSP tree based approah, whih is a generalization of SVBSP tree approah proposed by

Chin and Feiner [4℄. In an area subdivision method [2℄[10℄, two passes of polygon lipping

are used to alulate the region in shadow In a depth bu�er method [15℄, a depth map from

light soure is used to generate shadows. In a ray traing method [1℄[8℄, a ray is shot from

the view point, a surfae with minimum hit distane is delared as visible. From eah visible

point a ray is shot to the light soure, if it intersets with any other objet then the point is

in shadow.

All these methods have some advantages and disadvantages, but they have one thing in

ommon, they do not sale well for large senes. One reason is that they fail to exploit one or

both of the following fats: (1) the atual shadow is a logial OR of shadows produed by all

objets and (2) the angular span of a shadow remains the same at all depths for a given light

soure and a given objet. The �rst fat ditates that we stop our searh for shadow when we

found one. The seond suggests that angular oordinate system is a more natural hioe for

this problem. In this paper, we present a ompletely new method for the lassi problem of

shadow generation for 3D polyhedra. This method, ombined with the above fats, beomes

muh faster.

We start with the observation that shadows produed by an objet are bounded by loops

of ridge edges (REs). A ridge edge is an edge whose one adjeent fae is visible and another is

hidden from the light soure. We further prove that ridge edges always form losed loops. The

union of all the Ridge Edge loops is the boundary of the shadow volume. As we show later,

these RE loops are very easy to �nd. We represent RE loops in an angular oordinate system.

This means, we an use the same representation to alulate shadow on all objets without any

transformation. We onstrut a lookup table to store these representations. While looking

up the shadow we stop the �rst time we �nd shadow. As seen by the simulation results,

this method sales very well for large senes and is very fast. This algorithm takes less than

a seond for a sene ontaining 2000 ubes (in the worst ase). In fat the bottle nek is

due to the san onversion proess. There is a limitation however, so far it works only for

a sene on�ned in one hemisphere of the light soure. To enhane this method to handle

light-in-sene would be our future work.

The ontributions of this paper inlude: (1) establishing a orrespondene between shadows

and RE loops, (2) developing eÆient algorithms to identify and traverse the RE loops, (3)

developing an angular representation of the RE loops so that a lookup table of RE loops an

be onstruted and used in the san onversion proess (using, for instane, z-bu�er method)

eÆiently. The proposed new shadow generation algorithm an also be used to generate soft
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shadows and remove hidden edges and surfaes.

The remaining part of the paper is arranged as follows. Setion 2 desribes in detail

of the RE loops traversing tehniques, inluding external loops, internal loops, interset-

ing/overlapping loops, and loops orresponding to holes. In Setion 3 we demonstrate how to

use the results identi�ed in Setion 3 in the shadow generation proess. Results of our test

ases are presented in Seiton 4. Conluding remarks are given in Setion 5.

2 Identifying Ridge Edge Loops

We will show in this setion that shadows are orresponding to ridge edge loops. By (properly)

identifying all the ridge edge loops of a 3D objet, one an �nd the shadows it generates on

other objets as well as shadows it generates on itself. The 3D objets onsidered in this work

are 3-manifolds. Therefore, eah edge is shared by exatly two faes and an objet an not

have dangling edges and dangling faes.

2.1 De�nitions and Basi Properties

To �nd the outline of an objet, it is suÆient to onsider only visible faes or only invisible

faes. (A fae is de�ned to be visible if the dot produt of its outward normal and a ray from

the light soure to any point on the fae is less than zero.) In fat the edges of the outline are

always the edges between visible and invisible faes. Suh edges are alled ridge edges (REs).

In this paper REs have been shown by red lines. REs always form a losed loop (will be proved

shortly). Figure 1 shows an objet with a very simple RE loop. For more ompliated objets

Figure 1: An objet with a simple RE loop.

there an be more than one loop. These loops an be joint (through a vertex) or disjoint,

overlapping or ompletely inside another loop. Figures 2-4 shows some of these situations.

All the RE loops of a given objet are potential soure of shadow on all objets. If an RE loop

is oiled more than one, we separate the loop into simpler ones via VREPIPs (to be de�ned

later). In the following we prove that REs always form a losed loop.

Consider a vertex `p' in Figure 6, where a number of faes are onverging. Faes are

labeled as `V' or `H' depending on whether they are visible or hidden. Now let us ount

the REs onverging at `p'. The edges between two visible (invisible) faes are not REs, so

3



Figure 2: Two disjoint loops.

Figure 3: Single loop whih is oiled twie.

for ounting purposes we an merge all the adjaent visible (invisible) faes. Then Figure 6

redues to Figure 7. Now we see that any visible (invisible) fae has two invisible(visible)

neighbors, exept for the ase when we started with all faes visible (invisible). In any ase,

a fae after merging, will have zero or two neighbors of other kind. So if there are n visible

(invisible) faes after merging, there will be 2n REs (zero if n = 1). Thus at any vertex, only

even number of REs an onverge. This implies that there an not be any broken RE loop.

(If a RE loop is broken at any vertex, there must be an odd number of REs). This ompletes

the proof.

REs an be lassi�ed into two ategories, based on the two faes they share. If the visible

fae is loser to the light soure then the Ridge Edge is alled a visible ridge edge (VRE).

Otherwise, the ridge edge is alled a hidden ridge edge (HRE). In this paper VREs and HREs

have been shown by solid and dashed red lines, respetively. An HRE implies that there is an

invisible fae between the visible fae and the light soure. So there must be a shadow on the

visible fae, or in other words, shadow on the objet itself. This lassi�ation is more useful

when we deal with holes.

If two VRE's projetions on a plane perpendiular to the diretion of the light interset,

then the points on the VREs orresponding to the intersetion point are alled visible ridge

edge pseudo intersetion points (VREPIPs). At VREPIPs, two VREs do not really interset

but they seem to be interseting as seen from the light soure. Presene of VREPIPs implies

that one visible fae partially hides another visible fae from the light soure. Hene VREPIPs

also imply shadow on the objet itself. See Figures 8-9. If we join the VREPIPs in 3D by an

imaginary line, VREPIPs will be used to break the oiled loops into simple loops.

4



Figure 4: A loop oiled thrie. This an also be seen as three simple loops.

Figure 5: RE loop for a more omplex objet.

2.2 RE Loop Traversing: separating internal and external loops

The role of an RE loop in some ases is quite lear. For instane, the smaller loop in Figure

2 bounds a piee of shadow on the objet itself and the bigger loop bounds the objet, as

seen from the light soure. The smaller loop is alled an internal (RE) loop and the bigger

loop is alled an external (RE) loop. An external loop determines shadows generated on other

objets. However, in most of the ases, the role of an RE loop an not be so learly de�ned

as it might ontain RE segments from both groups. It is neessary to separate these segments

so that new RE loops with lear roles an be onstruted. This proess an be aomplished

by arefully traversing the RE loops.

We �rst obtain all the REs and VREPIPs. VREPIPs our in pairs (see Setion 2.4 for

a remark). One is near the light soure and another is far. An imaginery edge will be used

to onnet the orresponding VREPIPs. We start traversing the loops from any VRE, using

a �xed lokwise or ounterlokwise diretion (with respet to the outward normals of the

orresponding visible faes). When we hit a VREPIP, we split the edges at both VREPIPs.

After splitting the edges we move from the urrent VREPIP to the other VREPIP along the

imaginary edge, and then ontinue the traversing on the new edge that ontains the other

VREPIP in the same lokwise or ounterlokwise diretion of its adjaent visible fae. See

Figure 10. The traversing proess of the urrent loop stops when the start point is reahed.

We start the traversing of the next RE loop at the VREPIP where a new edge is seleted,

but move in the other diretion of the imaginary edge. For example, in Figure 9, P would be

the start point of the new loop, and we would move toward P

0

and then travel in the same

lokwise or ounterlokwise diretion on the edge that ontains P

0

. When the traversing of
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Figure 6: Many faes onverging at P.
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Figure 7: After merging.

all the RE loops are �nished, eah RE will be traversed one, but eah imaginary edge will be

traversed twie, one in eah dietion. This traversing poliy guarantees that one will always

get the external loop �rst, and then the internal loops.

Figure 12 shows the separated loops for the objet shown in Figure 4. The two internal

loops (in green) will ast shadow on the objet itself while the outer loop (in red) will ast

shadow on other objets.

2.3 Objets with holes

If the objet has a hole, there will be another loop of REs at the hole. We separate this loop

also into simpler loops by means of VREPIPs. A loop ontaining HREs will ast shadow on

the walls of the hole. The loop ontaining only VREs will be responsible for shadow on the

rest of the world. The light soure an look through this loop. See Figure 13. It is possible

that there is no loop whih ontains VREs only. This situation is shown in Figure 14.

2.4 Remarks

We make two remarks in this subsetion. First, it is possible that the projetions of more

than two VREPIPs interset at the same point. In the proess of traversing RE loops, if one

reahes suh a VREPIP, one should move along the imaginary edge from that VREPIP to the

VREPIP whose edge is losest to the inoming edge lokwisely, and ontinue the traversing

on the new edge. For example, in Figure 15, when the point A is reahed, one should ontinue
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P

Figure 8: Two VREs having a PIP.

P

P’

Figure 9: Two VREPIPs joined by an imaginary line. Separated simple loop segments are

also shown.

the traversing proess on the edge AB. Here, again, one the traversing of the urrent RE

loop is �nished, one should start the traversing of the next RE loop at the VREPIP where

the new edge is seleted, but move in the opposite diretion of the imaginary edge.

Seond, it is lear that to deompose RE loops into non-overlapping loops, the major

expense is the proess of �nding the VREPIPs. One needs to perform extensive edge-edge

intersetion tests to �nd the VREPIPs. This step of breaking RE loops into non-overlapping

loops is required for the shadow volume based shadow generation algorithm for, otherwise,

shadows that are supposed to be generated on an objet itself might be generated on other

objets, or, one might miss regions that are supposed to be in shadow. This is an expensive

proess, not to mention the extensive ray-polygon intersetion tests required in the subsequent

san-onversion proess.

In the next setion, we will show that by representing RE loops in an angular fashion,

and storing the angular representations of the RE loops in a look up table, one an avoid

the need of breaking RE loops into non-overlapping loops. Atually, the new representation

avoids the need of performing ray-polygon intersetion either beause shadow polygons are no

longer needed in the subsequent san onversion proess.
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Figure 10: Traversing the external loop.
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Figure 11: Traversing the internal loop.

3 Storing and Using the RE Loops

3.1 Basi idea

We know that the shadow of an objet has angular symmetry. That is, the angle subtended

on the light soure by the shadow remains the same no matter where the shadow is produed.

This angle is the same as the angle subtended by the shadow produing objet on the light

soure. See Figure 16 where L is the loation of a point light soure and A is the shadow

produing objet.

We also know that the boundary of a shadow is determined by RE loops. So if we represent

the RE loops in terms of angles, the same representation an be used to mark shadows on

all objets. For example, onsider a two dimensional ase of Figure 16. Objet 'A' will ast

shadow from �

A+

to �

A�

. If a polar oordiante system with respet to the light soure is used

then to know if a point (r, �) is in shadow, we hek if � is inside (�

i+

, �

i�

) for any objet i.

If this sueeds, we then ompare distanes to be sure. In the three dimensional ase, we need

to onsider one more angle �. To make the omparison proess more eÆient, a look up table

whih ontains (r, �, �) representations of all RE loops from all objets will be onstruted.

The struture of the look-up table is shown in Figure 17. (r, �, �) are de�ned as follows:

r =

p

X

2

+ Y

2

+ Z

2

,

� = tan

�1

(

Y

�Z

)

� = tan

�1

(

X

�Z

).
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Figure 12: Separated internal (green) and external (red) loops of the objet shown in Figure

4. Obviously, imaginary onneting lines are not visible.

Figure 13: Hole's RE loop with VREPIPs. There is an external loop, light soure an look

through this objet.

X, Y and Z are measured in a oordinate system �xed with the light soure whih is parallel

to the projetion plane. Note that this is not the general spherial oordinate system. It

an only represent points in one hemisphere uniquely. However, this de�nition of (r, �, �)

has some properties we wanted. Any line parallel to the x-axix of the projetion plane is a

onstant-� line and any line parallel to the y-axis is a onstant-� line. See Figures 18 and

19. To �nd the (r, �, �) representation of an RE loop, we �rst �nd the intersetion points of

the loop with onstant �-planes. We then �nd the � and r values of the intersetion points.

A onstant �-plane is a plane that passes through the light soure, origin of the oordinate

system, and is parallel to the x-axis.

This approah enables us to ombine the look up proess with the san onversion proess.

When we san onvert a polygon, we �rst �nd the orresponding � for the urrent san line

(y) then we �nd the spans (�

i+

, �

i�

) from the look up table entry at �. Of ourse the above

de�nition of � will be a oating point ranging from -�/2 to +�/2. We sale it to a large range

say 0-500 and then disretize it so that it an be used as an index. Choie of this range is a

matter of a trade-o� between quality and speed. Figures 20 and 21 illustrate two RE loops

and their representations in the look up table. The RE loops are due to the objet shown in

Figures 2. Several things are to be noted here. The above loops range from �=2 to �=10.

�=0 in the table will orrespond to a point in an RE loop whih is a global (onsidering all

loops of all objets) minimum in � and �=N orresponds to a point in an RE loop whih is a

global maximum in �. Sine all RE loops are potential soure of shadow on all objets, we put

representations of all loops in our table in any order. Every two onseutive pairs of � and r
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Figure 14: Hole's RE loop without VREPIP. Light soure an not look through this objet.

A

B

Figure 15: Three VREPIPs interset at the same point.

in a table entry marks the beginning and end of shadow due to one loop for the orresponding

�. For example, in the entry � = 4 of Figure 21, the �rst two pairs of � and r mark the

beginning and end of shadow due to the external RE loop and the third and the fourth pairs

of � and r are the beginning and end of the shadow due to the internal RE loop.

3.2 Corretness of Pairing

The orretness of the above sheme relies on the orretness of pairing. As pairs mark the

beginning and end of shadows, both elements of a pair must ome from the same RE loop.

For example, it will be inorret to have list elements P

3

, P

4

, P

5

, P

6

in the seond entry of

Figure 21. To prevent this from happening we must append RE loops in the look up table

one at a time (in any order).

Sometimes a single loop an ontribute to more than one pair at the same �. Again we

must ensure orret pairing. Consider the objet of Figure 3. Its RE loop looks like the one

shown in Figure 22.

In this ase edge (a,b) must be paired with edge (e,f) and edge (g,h) must be paired with

edge (j, k) for the shown onstant-� line. If we inorretly pair (a,b) with (g,h) and (e,f) with

(j,k) then the region from (g,h) to (e,f) will be interpreted as a hole, whih is not the ase.

The ause of this problem is oiling of loop. A oil in general will look like the ase shown

in Figure 23. The problem is solved by the following sheme. Identify all loal peaks in the

loop (points A and B in Figure 23). Proess edges adjaent to the same loal peak together,

one peak at a time, going as muh down as possible eah time. Two groups are merged into
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Figure 16: Angular span of shadow remains the same for all distanes.

1

2

3

4

N

r              r              r             r1,     1          2,     2          3,      3         4,     4

Figure 17: Struture of a look up table.

one group when they both reah the same loal minimum. So in Figure 23 if we �rst piked

'A' then we will proess edges from 'A' to 'C' and 'A' to 'D'. Then we pik point 'B' and

proess edges from 'B' to 'C' and from 'B' to 'D'. Both proesses stop when the height of

'C' is reahed. After that point, the edge from 'A' to 'D' is proessed with the edge from 'B'

to 'D'. The result is shown in Figure 24.

We see as indiated by arrows that points are paired orretly. We will always avoid oiling

by not allowing us to traverse an RE loop in the upward diretion.

If two loal peaks of the same height are adjaent to eah other, the one on the left is

ignored, we only onsider the one on the right. The edge between them is also ignored. In

this ase, the other adjaent edge of the ignored loal peak is onsidered as an adjaent edge

of the kept loal peak. For example, in Figure 27, only verties i and  are onsidered as loal

peaks, and edge (a, b) is onsidered as an adjaent edge of  and edge (g, h) is onsidered as

an adjaent edge of i.

Improper pairing an also happen due to a hole or a hole-like situation, as shown in Figures

25 - 27.

As we an see, if we follow the above sheme in these ases we will end up doing improper

pairing as indiated above. To handle this situation we use the fat that a shadow is bounded

by REs with opposite diretions. Spei�ally, if the indies to faes are in lokwise order

with respet to the outward normals, then all the RE loops will be lokwise as seen from the

light soure. So, left boundary must be going up and right boundary must be going down.

However, inner boundaries of a hole or a hole-like situation is bounded by diretions down and

up from left to right. While following our aforesaid sheme we get points 'A' and 'B' as our
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Figure 18: Coordinate system �xed to the light soure.
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X

Constant
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Figure 19: Constant-� and � lines are parallel to the X and Y axes, respetively.

starting points for Figure 25 and Figure 27. When we proess branh pairs starting at 'B',

one we reah the region bounded by edges (C, E) and (D, F ), we know from their diretions

that they orrespond to a hole or a hole-like situation. We insert these branh pairs instead

of appending them. Any ambiguity is broken by these diretion onstraints.

We summarize our sheme for orret pairing here.

1. In any order but proess one loop at a time. This takes are of wrong pairing due to

two di�erent loops.

2. Identify loal peaks in the loop. Divide the loop into branh pairs starting at these

peaks. Proess them one at a time. This takes are of wrong pairing due to oils.

3. Be wary of diretion onstraints while performing the above steps. This takes are of

wrong pairing due to a hole or a hole-like situation.

3.3 Depth Information

So far our look up table ontains orret information about shadow boundaries only. It has

depth information of RE loops only. Sine RE loops are not planer it is possible that a line

joining two points of an RE loop may not pass entirely through the objet. In other words,

RE loops an not apture depth information about bumps or avities in the objet. To have

an exat depth map we also inlude hidden edges in our look up table. A hidden edge is one

whose adjaent faes are both hidden. Sine a hidden edge does not mark the beginning or

end of a piee of shadow, we insert them in dupliate to preserve the meaning of the look up
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P1 P2

P3 P4 P5 P6

P7 P8 P9 P10

P11 P12 P13 P14

P15 P16 P17 P18
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Figure 20: RE loops of the objet in Figure 2. P

i

are points on the loops.

2             P             P

3             P             P             P             P

4             P             P             P             P

5             P             P             P             P

6             P             P             P             P

1                  2

3                  6                  4                  5

7                  10                8                  9

11                14                12                13

15                18                16                17

19                207             P             P   

8             P             P21                22

Figure 21: Representation of the RE loops in Figure 2.

table. For example, when we insert hidden edges of the objet in Figure 2 into the look up

table of Figure 21, the table ontains the whole piture as in Figure 28.

Now we an �nd the depth of a shadow produing objet at any � inside a pair using simple

trigonometry as we know (r, �) of the end points. We an even do a linear interpolation if the

spanning angles are small. This is true beause now every line between any two points given

by pairs must entirely pass through the objet.

Inserting hidden edges is not diÆult. We maintain a graph like data struture for RE

loops where eah vertex of the RE loops also ontains information about hidden edges inident

to it. Hidden edges subsequently onnet to other hidden edges. While appending/inserting

an RE loop we also insert hidden edges at appropriate loations. Hidden edges have no

diretion so any ambiguity in plaing them is resolved by their �-values only. We an follow

any ommonly used graph traversing tehnique to make sure that we insert all hidden edges

one and only one (in dupliate).

3.4 Using the look up table

Now that we have a look up table, we an very easily determine if a point is in shadow while

doing san onversion. We simply �nd out (r, �, �) of the point in question and look up in

the table entry �. If we �nd a pair (�

1

, �

2

) suh that �

1

� � � �

2

then we �nd depth r(�)

from (r

1

, r

2

) and ompare it with r-value of the point in question. If this test fails we go to

the next pair. We stop when we �nd a math or we reah the end of the list. In fat the san

onversion proess does not have to inquire for eah pixel. The look up proedure an return
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Figure 22: RE loop of the objet shown in Figure 3.

A
B

D

C

Figure 23: A oil in general.

a span of angles for an asked �-value.

4 Implementation

We �rst review the steps involved in this algorithm.

1. Identify Visible/Hidden faes.

2. Identify Ridge/Hidden edges.

3. Construt an ordered irularly linked list of Ridge Edges (RE loop).

4. Attah Hidden edges to the verties of the above list.

5. Identify verties whih are loal peaks.

6. Append/Insert angular representation of all points (saled and quantized in �) of RE

loop/Hidden edge starting from these peaks. Observe pair orretness sheme disussed

earlier.

7. Use the above prepared look up table while doing san onversion.
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Figure 24: Appending two pairs of branhes starting from peaks.

A
B

E                             F

C                         D

Figure 25: RE loops of an objet with a hole.

This method is implemented on a Silion Graphis mahine using X-windows as the graph-

is system. The Z-bu�er method is used for the san onversion proess. Figures on olor

plate show some of the test ases.

The following table presents a omparison of performanes for the presented tested ases.

Figure #Polygons �-Range Table #Lookup Look up

onstrution alls time (ms)

time (ms)

1 26 0-599 25 16229 106

2 330 0-599 44 21765 135

3 38 0-599 40 16834 116

4 330 0-599 54 31552 184

All times are CPU time measured in milli seonds. Number of ridge edges and omplexity

of shadow hanges with hange in light positions and viewing angles. In the table above what

you see is the average over a few viewing angles and light positions.

The table onstrution time starts when we read the data �le and time stops when the

lookup table is ready. The look up time listed in the last olumn is the total time elapsed in

all look up alls.

We did a simulation to test the eÆieny and salability of our method. We assume that

omplexity of a sene is related to the number of elementary objets in the sene. We piked a

ube as our elementary objet so the data an be generated automatially. We experimented

with a large number of ubes. Figure 29 shows the result.
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Figure 26: A hole-like situation in an objet.

A
B

Figure 27: RE loop of objet shown in Figure 26.

For omparison purposes, we also plotted the performane of BSP tree algorithm reported

in Chrysanthou[1995℄. This algorithm was implemented on SUN SparStation 2. Assuming

its lok speed to be 50MHz, our system is approximately 3.5 times faster. So for fairness, we

devide the time reported in Chrysanthou[1995℄ by 3.5 before omparison. Of ourse a truly

fair omparison is impossible sine the performane depends on other system parameters also

like memory et. performane will also vary with di�erent data set.

The best thing would be to get the performane in big-O notation. But there are so many

variables that a�et the speed that we end up doing too many approximations to get a result

in losed form. This makes the result useless. We like to be rather sloppy and laim that "our

method is very salable as ost does not even grow linearly with sene size" as one an see

from the plot. The speed of our method depends more on the total area of polygons rather

than the number of polygons. This an be understood by onsidering the fat that table

onstrution time is very small and individual look up time is even smaller (about 10�s).

Sine the lookup table is made only one, total time depends upon how many look up alls

we make. The number of lookup alls depend on the size of polygons and their slope. If the Z

oordinate hanges very rapidely with X for a given sanline then � will hange many times

for the same sanline and we have to make more lookup alls. In the introdution, we laimed

that our algorithm takes less than a seond for a sene ontaining 2000 ubes "in the worst

ase". This is based on the fat that our simulation generates ubes in bak to front order,

i.e. we sanonvert faes of all the ubes leading to a maximum number of look up alls. The

best ase would be when the objets are already sorted in front to bak order.
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Figure 28: Complete representation of the objet in Figure 2.

5 Conlusion

An initial attemp to �nd eÆient tehnique to identify shadow polygons turns into the proess

of developing a new shadow method for 3D polyhedra. The new method is based on building

a look up table of the RE loops so that one an use the table in the san onversion proess to

mark the pixels that are in shadow diretly. The new approah avoids the need of performing

ray-polygon intersetion tests required in the lassial shadow volume based approah. Sine

the RE loops are not required to be deomposed into non-overlapping loops, the new approah

does not required edge-edge intersetion tests to identify VREPIPs either.

The urrent approah an not handle the ase when the light soure is inside the view

volume yet. This will be a future researh topi.
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