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Abstract

In this paper, a new subdivision scheme with Polar embedded Catmull-Clark mesh structure is presented. In this new
subdivision scheme, the control mesh divides into two parts, quadrilateral part (CCS) and triangular part (Polar), and
one can generate limit surfaces which are exactly the same as those of CCS on quad part and G2 on triangular part. The
common ripple effect surrounding high-valence extraordinary points in CCS surface is improved by replacing high-
valence CCS extraordinary faces with triangular Polar faces. The new scheme is valence independent and stationary.
By using the same subdivision masks on both CCS part and Polar part, the artifact of earlier researches (mismatch
of subdivision masks, exponential subfaces at nth subdivision level) is resolved. Test results show that, with the new
scheme, one can generate very high quality, curvature continuous subdivision surfaces on the Polar part. Together
with current available CCS G2 schemes, one can generate high quality subdivision surfaces appropriate for most
engineering applications.
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1. Introduction1

Subdivision surfaces have been widely used in CAD,2

gaming and computer graphics. Catmull-Clark subdi-3

vision (CCS) [1], based on tensor product bi-cubic4

B-Splines, is one of the most important subdivision5

schemes. The surfaces generated by the scheme are C2
6

continuous everywhere except at extraordinary points,7

where they are C1 continuous.8

The works of Doo and Sabin [2] , and Stam [3] il-9

lustrate the behavior of a CCS surface at extraordi-10

nary points. Much research has been performed to im-11

prove the curvature surrounding extraordinary points.12

Prautzsch [4] modifies the scheme to generate zero cur-13

vature at extraordinary points. Levin [5] gives a scheme14

to generate a C2 continuous surface at extraordinary15

points by blending the surface with a low degree poly-16

nomial. Karčiauskas, K. and Peters [6] present a guided17

scheme, which fills a series of subsequently λ-scaled18

surface rings to an N-sided hole. Loop and Schaefer [7]19

present a second order smooth filling of an N-valence20

Catmull-Clark spline ring with N bi-septic patches.21

A shortcoming inherent in CCS surfaces is the rip-22

ple problem, that is, ripples tend to appear around ex-23

traordinary points with high valence. In the past, re-24

search focused on improving the curvature at extraor-25

dinary points. However, with quad mesh structure of26

CCS surfaces, the ripples could not be avoided in high27

Figure 1: Left: original CCS mesh for an airplane. Right: the top
shows the limit surface and the original CCS mesh for the head of
plane, with zero curvature on the tip, the bottom shows the limit sur-
face and the new mesh with a high valence Polar extraordinary point
on the plane head, with non-zero curvature and G2 on the tip of the
plane head.

valence cases. The technique of fairing [8] is used to28

address the smoothness issue on the limit surface, but29

the computation is quite expensive and it changed the30

limit surface to the extent that it does not generate the31

desired shape.32

To handle this artifact, Polar surface has been stud-33

ied by a number of researchers. Polar surface has a34

quad/triangular mixed mesh structure. [9] shows a35

guided subdivision scheme that uses a Bezier surface as36

a guide for each subdivision step, and a C2 accelerated37
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bi-cubic guided subdivision that uses 2m subfaces in the38

mth level for surface patches surrounding extraordinary39

points. In the second case, they show that although this40

scheme is not practical for CCS surfaces, it can be ap-41

plied in a Polar configuration. A bi-cubic Polar subdivi-42

sion scheme is presented in [10] that sets up the control43

mesh refinement rules for Polar configuration so that the44

limit surface is C1 continuous and curvature bounded.45

As a further step, Myles and Peters [11] presented a bi-46

cubic C2 Polar subdivision scheme that gets a C2 Polar47

surface by modifying the weights of Polar subdivision48

scheme for different valences.49

Although a Polar surface handles high valence cases50

well, there are issues preventing its application in sub-51

division surfaces. Mismatch of subdivision masks be-52

tween Polar and CCS makes it difficult to connect Polar53

to CCS meshes . Although in [12], the effort is made to54

connect Polar to CCS meshes. The scheme suffers the55

problem of inconsistent limit surfaces with refined con-56

trol mesh at different subdivision levels, and it generates57

2m CCS subfaces in the mth level.58

A free-form quad/triangular scheme was presented in59

[13], [14] and [15]. However, the scheme was not de-60

signed to handle high-valence ripples as Polar surface.61

In this paper, we redefined a quad/tri mesh struc-62

ture, named the Polar Catmull-Clark mesh (PCC mesh),63

which embeds Polar configuration into the Catmull-64

Clark mesh structure to solve the high valence issue. A65

new subdivision scheme is developed on PCC mesh.66

In contrast to the work in [12], our new scheme has67

the equivalent subdivision masks on both Polar and CCS68

parts, such that there are no mismatches of subdivision69

rules on the boundaries between Polar and CCS parts70

and avoid the artifact of inconsistent limit surface at dif-71

ferent subdivision levels. The scheme will generate 2m72

CCS subfaces at mth subdivision level which makes pa-73

rameterization possible. We also show that the gener-74

ated limit surface on triangular part is G2 at extraordi-75

nary points and the artifact of high valence ripples is re-76

solved effectively. Fig 1 shows a CCS control mesh of77

an airplane, at the plane head, although one has tried to78

avoid ripples by adding a flat area on the tip, ripples still79

appear at the surrounding area. With the mesh modi-80

fied to embed a Polar configuration at plane head, by81

our new G2 scheme on Polar part, ripples are eliminated82

and generates non-zero curvature on the tip of the plane83

head.84

The rest of the paper is organized as follows. Section85

2 discusses the earlier works, Section 3 covers prepro-86

cessing of PCC mesh, Section 4 introduces Guided U-87

Subdivision and its construction, Section 5 applies the88

scheme to Polar parts of the new control mesh, Section 689

evaluates behavior of the limit surfaces around extraor-90

dinary points of the Polar parts, Section 7 concludes.91

2. Earlier works of Polar Catmull-Clark Mesh92

In this section, we introduce the earlier works on Po-93

lar Catmull-Clark (PCC) mesh.94

CCS works on arbitrary topology. The subdivision re-95

quires all quad faces with no extraordinary points neigh-96

bor to each other, which is obtained by twice subdivi-97

sion on original mesh [1]. Polar surfaces have the fol-98

lowing properties on mesh structure: faces adjacent to99

the extraordinary points are triangular, all other faces100

are regular [9] [10] [16]. Fig 2 left and middle show101

typical meshes of Polar and Catmull-Clark respectively.102

Since Polar mesh has a special mesh structure, all103

faces are arranged radially, so it will not work on arbi-104

trary topology. Efforts are made to combine Polar with105

Catmull-Clark mesh [12]. Fig 1 right shows a typical106

Polar embedded Catmull-Clark mesh, which allows ex-107

traordinary points also in quad mesh part. In this paper,108

we develop our new subdivision scheme on this mesh109

structure named Polar Catmull-Clark (PCC) mesh.110

Figure 2: From left to right, Polar mesh, CCS mesh, and PCC mesh.

A PCC mesh is flexible to design, and works on arbi-111

trary topology. Given an arbitrary control mesh, one just112

subdivides it twice to generate a control mesh suitable113

for further CCS [1] [17], then analyze the mesh and114

find out where one wants to put Polar structure, typi-115

cally for high valence extraordinary faces. By taking out116

these extraordinary faces and replacing them with trian-117

gular/quad meshes (inside the bold edges on the right of118

Fig 2), one obtain a PCC mesh.119

In an earlier effort to handle PCC mesh by Myles’120

work [12], to connect Polar and CCS, it has 4 steps to121

process the Polar part. 1) separate subdivision into two122

parts, 2) performing k times subdivision radially and123

then k times circularly, 3) performing k times subdivi-124

sion on remaining CCS mesh, 4) merge boundaries set125

by 2) and 3). This algorithm suffers the problem that the126

limit surface of the merged control mesh will be differ-127

ent with different subdivision levels. By analyzing its128
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algorithm, one can find this artifact is caused by mis-129

match between subdivision masks for Polar parts and130

CCS parts. This artifact needs to be resolved, since in131

CAGD and other high precision graphics applications,132

limit surface is generally required to be unchanged with133

refined control meshes. Also at kth subdivision level,134

one has to handle undesired 2k CCS subfaces.135

We have the following research question naturally136

arise: Can we develop a subdivision scheme to process137

the Polar part of PCC mesh, such that subdivision mask138

is the same as the CCS part to form a natural C2 join be-139

tween Polar part and CCS part, and only O(n) subfaces140

generated at the nth subdivision level?141

To achieve this goal, we need to develop a new sub-142

division scheme for Polar part.143

3. Preprocessing of PCC mesh144

The valence of a Polar extraordinary point in a PCC145

mesh can be even or odd.146

Figure 3: convert Polar odd valence to even by one subdivision

Since for odd valence, the curvature continuity is147

more difficult to achieve than even cases, before we148

work on Polar part, we need to convert odd valence to149

even. Performing one CCS so that the new extraordi-150

nary point will have an even valence (as shown on right151

side of Fig. 3). In this subdivision, each triangular152

face will be treated as a quad face by vertex splitting153

of Polar extraordinary point V (see Fig 4). The new154

edge and face points of triangular faces are defined by155

CCS rules, but for a new vertex point, we use the origi-156

nal CCS vertex point rule on arbitrary topology [1] by157

V ′ = N−2
N V + 1

N2

∑N
i=1 Ei + 1

N2

∑N
i=1 F′i .158

Above we introduced the preprocessing of a PCC159

mesh structure to convert all Polar extraordinary points160

to even valence. The next section will focus on our new161

scheme to handle Polar part.162

4. Guided U-Subdivision163

In preprocessing of PCC mesh, triangular face is164

treated as a quad face with two control points coincides.165

Figure 4: Control mesh conversion for triangular faces adjacent to an
extraordinary point.

If we can find a CCS equivalent radially recursive sub-166

division scheme to work on triangular faces after vertex167

splitting, then it is possible to avoid mismatch between168

Polar and CCS. The limit surface generated will be C2
169

between Polar and CCS parts without exponential num-170

ber of subfaces at nth level.171

In this section, we first introduce a CCS equiva-172

lent subdivision scheme, the U-Subdivision. Then we173

present a Guided U-Subdivision (GUS). With GUS, we174

will be able to generate a G2 limit surface on Polar175

part of a PCC mesh. Our new subdivision scheme has176

the equivalent subdivision mask with neighboring CCS,177

such that one can generate a C2 natural join between178

Polar part and CCS part.179

4.1. U-Subdivision180

Recall that the CCS scheme divides the control ver-
tices into three categories: vertex points, edge points,
and face points. A popular way to index the control ver-
tices is shown in Fig 5, where V is a vertex point, Ei’s
are edge points, Fi’s are face points and Ii, j’s are inner
ring control vertices. New vertices within each subdivi-
sion step are generated as follows:

V ′ = αNV + βN

N∑
i=1

Ei/N + γN

N∑
i=1

Fi/N

E′i =
3
8

(V + Ei) +
1

16
(Ei+1 + Ei−1 + Fi + Fi−1)

F′i =
1
4

(V + Ei + Ei+1 + Fi) (1)

where N is the valence of vertex V , with αN = 1 −181

7
4N , βN = 3

2N , and γN = 1
4N .182

A regular bi-cubic B-spline patch with parameters u183

and v can be expressed as184

S (u, v) = [1 u u2 u3] MPMT [1 v v2 v3]T (2)

where P is a 4×4 matrix of control points Pi j, 1 ≤ i, j ≤185

4, M is the coefficient matrix and MT is its transpose.186
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Figure 5: Control meshes of Catmull- Clark subdivision. Left side: a
regular face; right side: an extraordinary face

Figure 6: Left is a CCS, right is a U-Subdivision

The subdivision process of control points are obtained187

by subdivision rules shown in (1).188

We notice that CCS on a regular face can be ex-
pressed as first to subdivide in u direction then in v
direction. If the subdivision in v direction is dropped,
we obtain a CCS equivalent subdivision surface involv-
ing parameter u only, named unilateral subdivision (U-
Subdivision), with subdivision rules as follows:

V ′ =
3
4

V +
1
8

E1 +
1
8

E3

E′i =
1
2

V +
1
2

Ei (3)

A U-Subdivision splits a regular CCS patch into two189

regular CCS sub-patches.190

191

PROPERTY 1 : The limit surfaces of the two CCS192

sub-patches generated by a U-Subdivision are the same193

as the limit surface of that regular patch.194

Proo f : The two sub-patches generated by a U-195

Subdivision can be expressed as follows:196

S b(ū, v̄) = [1 ū ū2 ū3] MAbPMT [1 v̄ v̄2 v̄3]T (4)

where b = 1, 2, (ū, v̄) takes value from [0, 1] × [0, 1],197

A1 and A2 are U-Subdivision matrices for the 1st and198

the 2nd sub-patches, respectively. For the 1st sub-patch,199

because200

[1 ū ū2 ū3] MA1 = [1
1
2

ū
1
4

ū2 1
8

ū3] M

we can express the sub-patch as201

S 1(ū, v̄) = [1
1
2

ū (
1
2

ū)2 (
1
2

ū)3] MPMT [1 v̄ v̄2 v̄3]T

which is exactly the first half of the original (u, v)202

regular patch. Similarly, we can see that the 2nd203

sub-patch represents the 2nd half of the original patch.204

QED205

206

Consequently, we can prove that after n times U-207

Subdivision, the limit surfaces of 2n U-subdivided sub-208

patches are the same as the original CCS limit surface.209

4.2. Guided U-Subdivision210

Figure 7: Ω-Partitions, left for Catmull-Clark, right for GUS

In this section, we show how to perform a guided U-211

Subdivision (GUS) and how to obtain a GUS surface.212

Figure 8: Left side shows 5 layers in a U-Subdivision, right shows L1
and L2 will not change boundary (red) continuity.

213

For a regular patch, if we do a U-Subdivision, we get214

2 sub-patches with 20 control points. These points are215

distributed in 5 layers, with four points each. We denote216

them L1, L2, L3, L4 and L5, respectively (as shown in217
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Fig 5).218

219

PROPERTY 2: Only L3 ,L4, and L5 obtained after220

a U-Subdivision on a regular patch are needed to en-221

sure C2 continuity of the limit surface on the common222

boundary with an adjacent patch underneath it.223

Proo f : This property is trivial in CCS and can be224

derived from analysis of equation (2). QED225

226

This gives us an opportunity to set up a recursive sub-227

division scheme that takes L3, L4, and L5 from a U-228

Subdivision on previous control mesh, but leaves L1 and229

L2 at the user’s choice, so that the shape of the limit sur-230

face can be guided by the selected L1 and L2.231

Given an arbitrary regular patch with a 4 × 4 con-
trol point mesh P, we define the limit surface S (u, v) of
a GUS surface as the union of recursively generated U-
Subdivision surfaces S n,b(ū, v̄) (limit surface of nth GUS
and bth sub-patch), with an Ω-partition (see Fig. 7) de-
fined as follows:

Ωn,1 = [
1
2n ,

3
2n+1 ] × [0, 1], Ωn,2 = [

3
2n+1 ,

1
2n−1 ] × [0, 1]

Hence, each GUS will generate 2 regular sub-patches232

which require 5 layers of 20 control points. The GUS233

process is shown below.234

For this given regular patch, we need to define a 5× 4
basis control mesh P0 for the GUS first. The first three
layers of P0 are obtained by performing a U-Subdivision
on the last three layers of P and the last two layers of P0

are zero, i.e.,

P0 =

[
A3P′3,4P

0

]
, with A3 =


1
4

1
4 0

1
8

3
4

1
8

0 1
4

1
4

 (5)

and P′3,4 is a 3×4 picking matrix with I3 ( identity matrix235

of size 3) on the right side of the matrix.236

For each n ≥ 1, let Pn be the 5×4 control point matrix
of the nth GUS with layers Ln

i , 1 ≤ i ≤ 5. The last three
layers Ln

3, Ln
4 and Ln

5 of Pn are obtained by performing
a U-subdivision on the first three layers Ln−1

1 , Ln−1
2 and

Ln−1
3 of Pn−1, i.e.,

P′3,5Pn = A3P3,5Pn−1, n ≥ 1 (6)

where P3,5 and P′3,5 are 3 × 5 picking matrices with I3237

on the left and right side of the matrix, respectively.238

The first two layers Ln
1 and Ln

2 of Pn are at the choice of239

the user (the selection criteria of these two layers will240

be discussed in Section 4 for a Polar configuration).241

Once these two layers have been selected, the control242

point computation process for the nth GUS is complete.243

244

THEOREM 1: Control points in Ln
1 and Ln

2 of the245

control point matrix Pn of an nth GUS surface can be246

changed without affecting C2 continuity of the limit sur-247

face inside the parameter space and on the boundary248

(u = 1) with its adjacent regular patch.249

Proo f : For Pn of an nth GUS surface, its Ln
3, Ln

4 and250

Ln
5 are obtained by doing one U-Subdivision on the 1st

251

three layers of Pn−1, by Property 2, it is C2 continuous252

at the boundary with previous GUS patch. Within an253

nth GUS surface, C2 continuity is trivial. QED254

255

With all control points in Pn defined, we can now de-256

fine the GUS surface. For any (u, v) ∈ [0, 1] × [0, 1],257

where (u, v) , (0, v), there is an Ωn,b containing (u, v).258

We can find the value of S (u, v) by mapping Ωn,b to the259

unit square [0, 1] × [0, 1] and finding the corresponding260

point of (u, v) in the unit square: (u, v), then compute261

S n,b (the limit surface of nth GUS and bth sub-patch) at262

(u, v). The value of S (0, v) is the limit of the GUS.263

In the above process, n and b can be computed by:264

n(u, v) = dlog 1
2

ue

b(u, v) =

{
1, if 2nu ≤ 1.5
2, else265

266

The mapping from Ωn,b to the unit square is defined267

as (u, v) = (φ(u), v) , with268

269

φ(u) =

{
2n+1u − 2, if 1.5 ≥ 2nu > 1
2n+1u − 3, if 2nu > 1.5270

271

The limit surface S (u, v) can be defined as follows:272

S (u, v) = WT (ū)MPn,bMT W(v̄) (7)

where Pn,b, a 4×4 matrix, contains the 16 control points
of S n,b, with Pn,1 = S 1Pn and Pn,2 = S 2Pn, S 1 and S 2
are picking matrices of size 4 × 5 with I4 (identity ma-
trix of size 4) on the left and right side of the matrix
respectively. W(x) is the 4-component power basis vec-
tor with WT (x) = [1, x, x2, x3], M is the B-spline curve
coefficient matrix. We can express WT (u) and WT (v) as
follows

WT (u) = WT (u)Kn+1Db, WT (v) = WT (v)

where K is a diagonal matrix, with K = Diag(1, 2, 4, 8).273

Db is an upper triangular matrix depending on b only, it274

maps (u, v) to (u, v). So we can rewrite the subdivision275

surface as276

S (u, v) = WT (u)Kn+1DbMS bPnMT W(v) (8)
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Thus we can decompose the limit surface into a277

sequence of recursively generated U-Subdivision sur-278

faces,279

S (u, v) = S 1,2 ∪ S 1,1 ∪ S 2,2 ∪ S 2,1 ∪ S 3,2 ∪ ...280

In the above, we have shown the construction of a281

GUS surface and proven its C2 continuity both inside282

the limit surface and on the boundary of u = 1. In283

the following section, we show how this subdivision284

scheme can be applied to the Polar configuration.285

5. Applying GUS to Polar Parts286

After preprocessing of PCC mesh (section 3), the va-287

lence of any Polar extraordinary point is even. Given a288

triangular face fi with valence N, we can apply GUS on289

this face with vertex splitting on its Polar extraordinary290

point.291

In order to apply GUS to fi, first we need to identify
its control point matrix of P. We can index the control
vertices surrounding fi as shown in Fig 3 ( fi is shaded
face). By Theorem 1 and (6), the 1st layer control points
in P is irrelevant to a deformed limit surface if we freely
choose Ln

1 and Ln
2 in each GUS, then we have

P =


0 0 0 0
V V V V

P31 P32 P33 P34
P41 P42 P43 P44


With (5), we can derive the 5 × 4 GUS basis control292

mesh P0 from P.293

For each n ≥ 1, like the situation discussed in the pre-
vious section, 2 regular sub-patches defined by a 5 × 4
control point matrix Pn will be generated by the GUS
process. The last three layers Ln

3, Ln
4 and Ln

5 of Pn are ob-
tained by performing a U-Subdivision on the first three
layers of Pn−1 (see Fig. 10). Hence, (6) works here as
well or, equivalently, Ln

3
Ln

4
Ln

5

 = A3

 Ln−1
1

Ln−1
2

Ln−1
3

 (9)

where A3 is defined in eq. (5).294

The computation of Ln
2 involves Ln

1. We assume Ln
1 is

already available to us (this is the case in the real algo-
rithm, i.e., Ln

1 will be computed before the computation
of Ln

2). Ln
2 is computed as follows:

[Ln
2] = A′


Ln

1
Ln−1

1
Ln−1

2
Ln−1

3

 (10)

Figure 9: Pn (solid dots) generated after nth GUS, circles are the 1st

three layers of Pn−1

where A′ =
[

1
4

5
8

1
8 0

]
. (10) is the result of

a so-called virtual U-Subdivision. Note that, from U-
Subdivision rules of (3), if we define a virtual layer of
control points Ln−1

0 as follows:

Ln−1
0 = 2Ln

1 − Ln−1
1

and use Ln−1
0 , Ln−1

1 , Ln−1
2 and Ln−1

3 to form a 4 × 4 con-
trol mesh of a regular patch, then by performing a U-
Subdivision on this 4 × 4 control mesh, we get a 5 × 4
control mesh whose first, third, fourth and fifth layers
are exactly Ln

1, Ln
3, Ln

4 and Ln
5 (see Fig. 9). We call

such a reverse U-Subdivision a virtual U-Subdivision
and use the second layer of such a subdivision as the
second layer of Pn. Since Ln

2 corresponds to a vertex
layer, we have

Ln
2 =

1
8

Ln−1
0 +

3
4

Ln−1
1 +

1
8

Ln−1
2

=
1
4

Ln
1 +

5
8

Ln−1
1 +

1
8

Ln−1
2

which is exactly (10).295

Figure 10: Virtual U-subdivision: grey circles are virtual control
points, solid dots are Pn.

THEOREM 2: By applying virtual U-Subdivision,296

limit surfaces of the two sub-patches obtained in each297

GUS are the same and can be considered as the limit298

surface of a regular patch.299

Proo f : The virtual control point layer Ln−1
0 is300

obtained by reversing a U-Subdivision process for edge301

point, such that this can be derived from PROPERTY 1.302
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QED303

304

We have shown the construction of control point lay-305

ers Ln
2, Ln

3, Ln
4 and Ln

5 for Pn. We now discuss the choice306

of control point layer Ln
1.307

Due to properties of GUS, the unknown control308

points after nth GUS are those in L1
1, L2

1, ..., and Ln
1.309

These control points determine the shape of the limit310

surface.311

Since we expect our Polar part at V is at least C1
312

(tangent plane continuous) with common data point dV313

at (0,v) and common unit normal nV at dV , we have the314

following proposition for G2 continuous at V,315

316

PROPOSITION 1: For any fi and fi+ N
2

on the317

opposite side of Polar extraordinary point V, if each318

control point in Ln
1 of fi and its corresponding control319

point in Ln
1 of fi+ N

2
are on a C2 curve across dV and320

share the same unit normal nV , then if basis control321

mesh P0 does not appear in derivatives of any Po-322

lar parametric subdivision surface patch at dV up to323

the 2nd order, then it is G2 at Polar extraordinary point V.324

325

PROOF: The proof is trivial. If basis control326

mesh P0 does not appear in derivatives of any Polar327

parametric subdivision surface patch at dV up to the 2nd
328

order, it means that control points of P0 do not appear329

in derivative polynomials at nth GUS limit surface up to330

the 2nd order, when n → ∞. By construction of GUS,331

then in the derivative polynomials only control points332

of Ln
1 matters. Due to the symmetry of control points333

and all corresponding control points in Ln
1 of fi and334

fi+ N
2

form a C2 curve across dV and share same unit335

normal nV , an arbitrary control point in Pn of fi must be336

on a C2 curve across dV with its corresponding control337

point in Pn of fi+ N
2

(a linear combination of a set of338

C2 curves across dv and share the same unit normal nV339

must be a C2 curve across dV and have the unit normal340

nV ). Since a data point at (u,0) of fi at the nth GUS is341

generated by affine combination of its control points in342

Pn, with the symmetric arrangement of fi and fi+ N
2
, we343

can show that the arbitrary corresponding data points at344

the limit surface of nth GUS of fi and fi+ N
2

are on a C2
345

curve across dV and have the same unit normal nV . QED346

347

From Proposition 1, we expect for an arbitrary Polar348

patch fk, each control point in Ln
1 shall be on a C2 curve349

with its opposite control point in fk+ N
2
, this C2 curve350

shall be across dV and have a unit normal nV at dV .351

From this expectation, before picking the unknown
values L1

1, L2
1,...,Ln

1 of the GUS’s, we have to first deter-

mine the values of dV and nV . If we reorganize the con-
trol points surrounding V as {V, E1, E2, ..., EN}, where
E1, ...EN are edge points connected to the extraordinary
point V in a counterclockwise order, and define the tri-
angular face fk by {V, Ek, Ek%N+1}, k ∈ [1,N], we can
pick the values of these terms as follows:

dV =
2
3

V +
1

3N

N∑
k=1

Ek

nV = Norm(
N∑

k=1

n fk ) (11)

where Norm(x) is a function which returns unit normal352

of a normal x. n fk is the face normal of fk, can be ob-353

tained from n fk = (Ek − V) × (Ek%N+1 − V).354

We notice that CCS regular patch (Fig 5 left) is C2

continuous at V, so new E1 and E3 at nth CCS must be
on a C2 curve that across the limit point dV of V and lies
on the tangent plane of CCS limit surface at dV . This
inspires us to come up with the concept of dominative
control meshes. A dominative control mesh Cm of size
9 is defined as

Cm = [Vm, Em,1, ... , Em,4, Fm,1, ... , Fm,4]T ,

which is exactly the control point mesh of a regular bi-355

cubic patch without [I1, I2, I3, I4, I5, I6, I7]T .356

By applying midpoint knot insertion to Cm, we get

C(n)
m = A9C(n−1)

m = ... = (A9)nCm, n ≥ 1 (12)

where A9 is the midpoint insertion coefficient matrix, its
values can be derived from eq. (1). C(n)

m is the control
point mesh after nth midpoint knot insertion on Cm, and
can be expressed as

C(n)
m = [V (n)

m , E(n)
m,1, ... , E

(n)
m,4, F

(n)
m,1, ... , F

(n)
m,4]T

The reason Ii(i = 1, ..., 7) are ignored is: as shown in357

(1), the new vertex point, edge points and face points358

obtained from the midpoint knot insertion are indepen-359

dent of these inner ring control vertices. Since we plan360

to map recursively generated edge points of dominative361

control meshes into unknown values of Ln
1 in GUS’s, it362

will not be necessary to include these vertices into the363

control mesh.364

There are totally N faces surrounding V, so we need
N dominative control meshes to map these values, see
Fig. 11 for the mapping from the dominative control
meshes to the control points of the nth GUS on face fk.
The mapping is defined as follows:

Ln
1[1] = E(n+1)

k−1,1; Ln
1[2] = E(n+1)

k,1 ;

Ln
1[3] = E(n+1)

k+1,1; Ln
1[4] = E(n+1)

k+2,1 (13)

7



Figure 11: Mapping the recursively generated control points in domi-
native control meshes to Ln

1 of nth GUS on kth face fk .

Due to the ring structure of control points in GUS,365

for the nth GUS, the last three points in Ln
1 of fk−1 are366

exactly the first three points in Ln
1 of fk. Hence, for each367

fk, we only need to consider the mapping from E(n+1)
k,1 to368

Ln
1[2] and, yet, we get all the control points for each Ln

1369

once this mapping is considered for all k.370

To get the values of Ln
1[2] (n ≥ 1) for fk, we initialize

the dominative control mesh Ck as follows:

Ek,1 = Ek; Ek,3 = Ek+ N
2
;

Fk,1 = Ek+1; Fk,2 = Ek+ N
2 −1;

Fk,3 = Ek+ N
2 +1; Fk,4 = Ek−1;

As mentioned before, we treat a triangular face as
a special case of a quad face by vertex splitting. Let
Ek,2=Ek,4=Vk. Then we have:

Vk = Ek,2 = Ek,4 =
3
2

(dV −
1
9

(Ek,1 + Ek,3) −
1
36

4∑
i=1

Fk,i)

This initialization guarantees that the limit point of371

the dominative control mesh equals dV . In order to372

make the GUS surface is tangent plane continuous at the373

extraordinary point, we will further process the domi-374

native control meshes such that they have the same unit375

normal nV at the limit data point. The algorithm is as376

follows:377

(1) get the first order derivatives Du, Dv at dVk . Since378

Ck is a part of a regular patch, it can be easily cal-379

culated.380

(2) get t = Du · nV , the projection of Du on nV381

(3) let Fk,1− = 3t, Fk,4− = 3t, Fk,2+ = 3t, Fk,3+ = 3t,382

which ensure Du · nV = 0383

(4) get t = Dv · nV , the projection of Dv on nV384

Figure 12: left: original CCS mesh and its limit surface, right: revised
PCC mesh and its limit surface. The bottom left photo shows irregu-
larity at boundaries of high-valence CCS extraordinary faces, and the
bottom right is smooth.

(5) let Fk,1− = 3t, Fk,2− = 3t, Fk,3+ = 3t, Fk,4+ = 3t,385

which ensure Dv · nV = 0386

From above algorithm and initialization, since N is387

even, the opposite dominative control meshes Ck and388

Ck+ N
2

will share the same set of control points, differing389

only in the ordering.390

With all control points in Ln
1 defined in (13), we are391

now complete with the selection process for control392

points in Pn. Let us reinstate (8) of parameterization393

surface at fk as follows:394

S (k, u, v) = WT (u)KnDbMS bPnMT W(v) (14)
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Pn = A5Pn−1 + S 5An+1
9 Tk, n ≥ 1 (15)

with A5 =


0 0 0 0 0
5
8

1
8 0 0 0

1
2

1
2 0 0 0

1
8

3
4

1
8 0 0

0 1
2

1
2 0 0

 , S 5 =


0 1 0 0 0 0 0 0 0
0 1

4 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

 ,

P0 =

[
A3P′3,4P

0

]
,

Tk = [Ck−1 Ck Ck+1 Ck+2], is a matrix of size 9 × 4, with395

each column representing one of the four dominative396

control meshes related to fk. A9 is defined in eq. (12).397

In this section, we have shown how to construct a398

GUS surface on Polar triangular faces in a PCC mesh.399

In next section, we will show the behavior of the PCC400

surfaces.401

6. Evaluating the PCC surface402

A PCC surface composes of two parts, CCS part and403

Polar part. For the CCS part, the behavior of the limit404

surface was already covered in [2]. In this section, we405

focus on the behavior of the limit surface on Polar part.406

As shown in the previous sections, a GUS surface of407

a triangular face is C2 on the limit surface and also C2
408

continuous with its adjacent quad faces. We will now409

evaluate the surface at Polar extraordinary points.410

(15) is a recursive formula , the evaluation of the GUS411

surface at Polar extraordinary point needs an explicit ex-412

pression for Pn. We can expand (15) as follows:413

Pn =An
5P0 + An−1

5 S 5A2
9Tk + An−2

5 S 5A3
9Tk + ...

+ A5S 5An
9Tk + S 5An+1

9 Tk

=An
5P0 +

n∑
i=1

An−i
5 S 5Ai+1

9 Tk n ≥ 1 (16)

A5 has a single eigenvalue of 1
8 , and has the following414

properties:415

A5 =
1
8


0 0 0 0 0
5 1 0 0 0
4 4 0 0 0
1 6 1 0 0
0 4 4 0 0

 , A2
5 =

1
8

2


0 0 0 0 0
5 1 0 0 0
20 4 0 0 0
34 10 0 0 0
36 20 0 0 0

 ,

An
5 =

1
8

n


0 0 0 0 0
5 1 0 0 0

20 4 0 0 0
50 10 0 0 0

100 20 0 0 0

 =
1
8

n

Θ, n ≥ 3

A9 is a 9 × 9 regular midpoint insertion coefficient ma-
trix, its eigenstructure is studied in an earlier work on
CCS surfaces [3] [18]. The eigenvalues of A9 are 1, 1

2 ,
1
4 , 1

8 and 1
16 , and we define their corresponding eigen-

bases as Θ1, Θ2, Θ3, Θ4 and Θ5, with

An
9 = Θ1 +

1
2

n

Θ2 +
1
4

n

Θ3 +
1
8

n

Θ4 +
1
16

n

Θ5

Thus, when n ≥ 3, (16) can be rewritten as:

Pn =
1
8

n

ΘP0 + S 5An+1
9 Tk + A5S 5An

9Tk + A2
5S 5An−1

9 Tk

+

n−3∑
i=1

1
8

n−i

ΘS 5(Θ1 +
1
2

i+1

Θ2 +
1
4

i+1

Θ3

+
1
8

i+1

Θ4 +
1
16

i+1

Θ5)Tk, (17)

Take (17) into Polar parametric surface of (14), because416

its coefficient is 1
8

n, such that it will be zero in deriva-417

tives up to the 2nd order when n→ ∞.418

From Proposition 1, we now can conclude that the419

limit surface generated by our new scheme on Polar part420

will be curvature continuous at the Polar extraordinary421

points.422

7. Discussion and Conclusion423

In this paper, a new subdivision scheme with Polar424

embedded Catmull-Clark mesh structure is introduced.425

By introducing Polar configuration on high valence ver-426

tex, the ripple problem inherent in a CCS surface is427

solved.428

The subdivision scheme developed has the properties429

that the limit surface on the CCS part is exactly the same430

as a CCS limit surface and the limit surface on the Polar431

part is G2 continuous everywhere.432

Since it is inevitable to have high valence extraordi-433

nary points in some cases, e.g. airplanes, rockets and434

engineering parts, the currently available CCS meshes435

can be easily converted to PCC meshes, such that one436

can avoid redesigning the complete mesh.437

In contrast to commonly used Polar subdivision rules,438

the subdivision masks of proposed GUS subdivision439

scheme on Polar part is equivalent to those of CCS. The440

properties of GUS surfaces are studied and proven. The441

GUS scheme is a stationary scheme.442

The curvature at a Polar extraordinary point is inde-443

pendent of nearby control points, but relies on some se-444

lected dominative control meshes. Implementation re-445

sults (Fig 12) show that very high quality, curvature con-446

tinuous subdivision surfaces can be generated with this447
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Figure 13: Various primitives of GUS surfaces on Polar parts

new scheme on the Polar part. Furthermore, the scheme448

is WYSIWYG (what you see is what you get): as far449

as the ring of control points connected around the Polar450

extraordinary point is smooth, there will be no ripples.451

Our next step is to develop a general geometric452

framework to incorporate some G2 schemes for CCS453

meshes into the PCC subdivision scheme, so that a G2
454

everywhere PCC surface can be generated.455
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