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Abstract

In this paper, a new subdivision scheme with Polar embedded Catmull-Clark mesh structure is presented. In this new
subdivision scheme, the control mesh divides into two parts, quadrilateral part (CCS) and triangular part (Polar), and
one can generate limit surfaces which are exactly the same as those of CCS on quad part and G? on triangular part. The
common ripple effect surrounding high-valence extraordinary points in CCS surface is improved by replacing high-
valence CCS extraordinary faces with triangular Polar faces. The new scheme is valence independent and stationary.
By using the same subdivision masks on both CCS part and Polar part, the artifact of earlier researches (mismatch
of subdivision masks, exponential subfaces at n™ subdivision level) is resolved. Test results show that, with the new
scheme, one can generate very high quality, curvature continuous subdivision surfaces on the Polar part. Together
with current available CCS G? schemes, one can generate high quality subdivision surfaces appropriate for most

engineering applications.
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1 1. Introduction

2 Subdivision surfaces have been widely used in CAD,
s gaming and computer graphics. Catmull-Clark subdi-
4 vision (CCS) [1], based on tensor product bi-cubic
s B-Splines, is one of the most important subdivision
s schemes. The surfaces generated by the scheme are C?
7 continuous everywhere except at extraordinary points,
s where they are C! continuous.

s The works of Doo and Sabin [2] , and Stam [3] il-
10 lustrate the behavior of a CCS surface at extraordi-
11 nary points. Much research has been performed to im-
12 prove the curvature surrounding extraordinary points.
13 Prautzsch [4] modifies the scheme to generate zero cur-
14 vature at extraordinary points. Levin [5] gives a scheme
15 to generate a C? continuous surface at extraordinary
16 points by blending the surface with a low degree poly-
17 nomial. Karciauskas, K. and Peters [6] present a guided
1 scheme, which fills a series of subsequently A-scaled
19 surface rings to an N-sided hole. Loop and Schaefer [7]
20 present a second order smooth filling of an N-valence
21 Catmull-Clark spline ring with N bi-septic patches.

22 A shortcoming inherent in CCS surfaces is the rip-
23 ple problem, that is, ripples tend to appear around ex-
24 traordinary points with high valence. In the past, re-
25 search focused on improving the curvature at extraor-
2 dinary points. However, with quad mesh structure of
27 CCS surfaces, the ripples could not be avoided in high
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Figure 1: Left: original CCS mesh for an airplane. Right: the top
shows the limit surface and the original CCS mesh for the head of
plane, with zero curvature on the tip, the bottom shows the limit sur-
face and the new mesh with a high valence Polar extraordinary point
on the plane head, with non-zero curvature and G2 on the tip of the
plane head.

2s valence cases. The technique of fairing [8] is used to
20 address the smoothness issue on the limit surface, but
2 the computation is quite expensive and it changed the
a1 limit surface to the extent that it does not generate the
32 desired shape.

s To handle this artifact, Polar surface has been stud-
a ied by a number of researchers. Polar surface has a
s quad/triangular mixed mesh structure. [9] shows a
36 guided subdivision scheme that uses a Bezier surface as
+ a guide for each subdivision step, and a C? accelerated
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as bi-cubic guided subdivision that uses 2™ subfaces in the
s m" level for surface patches surrounding extraordinary
40 points. In the second case, they show that although this
a1 scheme is not practical for CCS surfaces, it can be ap-
«2 plied in a Polar configuration. A bi-cubic Polar subdivi-
43 sion scheme is presented in [10] that sets up the control
4« mesh refinement rules for Polar configuration so that the
s limit surface is C! continuous and curvature bounded.
s As a further step, Myles and Peters [11] presented a bi-
« cubic C? Polar subdivision scheme that gets a C? Polar
s surface by modifying the weights of Polar subdivision
s scheme for different valences.

so  Although a Polar surface handles high valence cases
st well, there are issues preventing its application in sub-
s2 division surfaces. Mismatch of subdivision masks be-
ss tween Polar and CCS makes it difficult to connect Polar
s« to CCS meshes . Although in [12], the effort is made to
ss connect Polar to CCS meshes. The scheme suffers the
s6 problem of inconsistent limit surfaces with refined con-
s7 trol mesh at different subdivision levels, and it generates
ss 2" CCS subfaces in the m™ level.

ss A free-form quad/triangular scheme was presented in
e [13], [14] and [15]. However, the scheme was not de-
et signed to handle high-valence ripples as Polar surface.
62 In this paper, we redefined a quad/tri mesh struc-
63 ture, named the Polar Catmull-Clark mesh (PCC mesh),
e which embeds Polar configuration into the Catmull-
es Clark mesh structure to solve the high valence issue. A
es new subdivision scheme is developed on PCC mesh.

ez In contrast to the work in [12], our new scheme has
es the equivalent subdivision masks on both Polar and CCS
eo parts, such that there are no mismatches of subdivision
70 rules on the boundaries between Polar and CCS parts
7+ and avoid the artifact of inconsistent limit surface at dif-
72 ferent subdivision levels. The scheme will generate 2m
73 CCS subfaces at m”* subdivision level which makes pa-
7« rameterization possible. We also show that the gener-
75 ated limit surface on triangular part is G? at extraordi-
76 nary points and the artifact of high valence ripples is re-
77 solved effectively. Fig 1 shows a CCS control mesh of
78 an airplane, at the plane head, although one has tried to
7 avoid ripples by adding a flat area on the tip, ripples still
g0 appear at the surrounding area. With the mesh modi-
st fied to embed a Polar configuration at plane head, by
s2 our new G2 scheme on Polar part, ripples are eliminated
es and generates non-zero curvature on the tip of the plane
84 head.

ss  The rest of the paper is organized as follows. Section
s 2 discusses the earlier works, Section 3 covers prepro-
a7 cessing of PCC mesh, Section 4 introduces Guided U-
s Subdivision and its construction, Section 5 applies the
s scheme to Polar parts of the new control mesh, Section 6

o0 evaluates behavior of the limit surfaces around extraor-
ot dinary points of the Polar parts, Section 7 concludes.

%2 2. Earlier works of Polar Catmull-Clark Mesh

93 In this section, we introduce the earlier works on Po-
94 lar Catmull-Clark (PCC) mesh.

s  CCS works on arbitrary topology. The subdivision re-
9 quires all quad faces with no extraordinary points neigh-
o7 bor to each other, which is obtained by twice subdivi-
98 sion on original mesh [1]. Polar surfaces have the fol-
9 lowing properties on mesh structure: faces adjacent to
100 the extraordinary points are triangular, all other faces
101 are regular [9] [10] [16]. Fig 2 left and middle show
102 typical meshes of Polar and Catmull-Clark respectively.
w3 Since Polar mesh has a special mesh structure, all
104 faces are arranged radially, so it will not work on arbi-
105 trary topology. Efforts are made to combine Polar with
16 Catmull-Clark mesh [12]. Fig 1 right shows a typical
107 Polar embedded Catmull-Clark mesh, which allows ex-
108 traordinary points also in quad mesh part. In this paper,
109 we develop our new subdivision scheme on this mesh
1o structure named Polar Catmull-Clark (PCC) mesh.

-

Figure 2: From left to right, Polar mesh, CCS mesh, and PCC mesh.

11 A PCC mesh is flexible to design, and works on arbi-
112 trary topology. Given an arbitrary control mesh, one just
113 subdivides it twice to generate a control mesh suitable
14 for further CCS [1] [17], then analyze the mesh and
115 find out where one wants to put Polar structure, typi-
116 cally for high valence extraordinary faces. By taking out
117 these extraordinary faces and replacing them with trian-
18 gular/quad meshes (inside the bold edges on the right of
119 Fig 2), one obtain a PCC mesh.

20 In an earlier effort to handle PCC mesh by Myles’
121 work [12], to connect Polar and CCS, it has 4 steps to
122 process the Polar part. 1) separate subdivision into two
123 parts, 2) performing k times subdivision radially and
12¢ then k times circularly, 3) performing k times subdivi-
125 sion on remaining CCS mesh, 4) merge boundaries set
126 by 2) and 3). This algorithm suffers the problem that the
127 limit surface of the merged control mesh will be differ-
12 ent with different subdivision levels. By analyzing its
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120 algorithm, one can find this artifact is caused by mis-
130 match between subdivision masks for Polar parts and
131 CCS parts. This artifact needs to be resolved, since in
122 CAGD and other high precision graphics applications,
133 limit surface is generally required to be unchanged with
13 refined control meshes. Also at k”* subdivision level,
15 one has to handle undesired 2% CCS subfaces.

1s ~ We have the following research question naturally
17 arise: Can we develop a subdivision scheme to process
18 the Polar part of PCC mesh, such that subdivision mask
120 is the same as the CCS part to form a natural C? join be-
10 tween Polar part and CCS part, and only O(n) subfaces
w1 generated at the n'" subdivision level?

12 To achieve this goal, we need to develop a new sub-
143 division scheme for Polar part.

144 3. Preprocessing of PCC mesh

s The valence of a Polar extraordinary point in a PCC
1.6 mesh can be even or odd.

Figure 3: convert Polar odd valence to even by one subdivision

17 Since for odd valence, the curvature continuity is
s more difficult to achieve than even cases, before we
129 work on Polar part, we need to convert odd valence to
150 even. Performing one CCS so that the new extraordi-
151 nary point will have an even valence (as shown on right
152 side of Fig. 3). In this subdivision, each triangular
153 face will be treated as a quad face by vertex splitting
15« of Polar extraordinary point V (see Fig 4). The new
15 edge and face points of triangular faces are defined by
15s CCS rules, but for a new vertex point, we use the origi-
157 nal CCS vertex point rule on arbitrary topology [1] by
158 V' = %V%— #ZﬁlEi—i_ #ZZI l/

159 Above we introduced the preprocessing of a PCC
10 mesh structure to convert all Polar extraordinary points
161 to even valence. The next section will focus on our new
162 sScheme to handle Polar part.

16s 4. Guided U-Subdivision

1wa  In preprocessing of PCC mesh, triangular face is
1es treated as a quad face with two control points coincides.

Figure 4: Control mesh conversion for triangular faces adjacent to an
extraordinary point.

166 If we can find a CCS equivalent radially recursive sub-
167 division scheme to work on triangular faces after vertex
1es splitting, then it is possible to avoid mismatch between
169 Polar and CCS. The limit surface generated will be C?
170 between Polar and CCS parts without exponential num-
171 ber of subfaces at n”* level.

172 In this section, we first introduce a CCS equiva-
173 lent subdivision scheme, the U-Subdivision. Then we
174 present a Guided U-Subdivision (GUS). With GUS, we
i7s will be able to generate a G limit surface on Polar
176 part of a PCC mesh. Our new subdivision scheme has
177 the equivalent subdivision mask with neighboring CCS,
i7s such that one can generate a C2 natural join between
179 Polar part and CCS part.

180 4.1. U-Subdivision

Recall that the CCS scheme divides the control ver-
tices into three categories: vertex points, edge points,
and face points. A popular way to index the control ver-
tices is shown in Fig 5, where V is a vertex point, E;’s
are edge points, F;’s are face points and I; ;’s are inner
ring control vertices. New vertices within each subdivi-
sion step are generated as follows:

N N
V'=anV+By ) EiIN+yy Y FilN

i=1 i=1

3 1
E/ = §(V+Ei)+ E(EM +E 1 +F;+Fi_y)

1
F = Z(V+Ei+Ei+1 + F;)

l

ey

181 where N is the valence of vertex V, with ay = 1 —
7 3 1

182 785 BN = 3N andyN = IN:

183 A regular bi-cubic B-spline patch with parameters u

18« and v can be expressed as

Su,v)=[1uu®u®] MPMT [1 vv? VT (2)

1ss where P is a 4 X4 matrix of control points P;;, 1 <, j <
16 4, M is the coefficient matrix and M7 is its transpose.
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Figure 5: Control meshes of Catmull- Clark subdivision. Left side: a
regular face; right side: an extraordinary face

\' Vv

Figure 6: Left is a CCS, right is a U-Subdivision

157 The subdivision process of control points are obtained
188 by subdivision rules shown in (1).

We notice that CCS on a regular face can be ex-
pressed as first to subdivide in u direction then in v
direction. If the subdivision in v direction is dropped,
we obtain a CCS equivalent subdivision surface involv-
ing parameter # only, named unilateral subdivision (U-
Subdivision), with subdivision rules as follows:

31
V=2V -E +-E
g7 tgritghs
11
E = -V+-E 3

189 A U-Subdivision splits a regular CCS patch into two
190 regular CCS sub-patches.
191
192 PROPERTY 1 : The limit surfaces of the two CCS
193 sub-patches generated by a U-Subdivision are the same
194 as the limit surface of that regular patch.
s Proof : The two sub-patches generated by a U-
196 Subdivision can be expressed as follows:

Sy, v) =[laa®a’] MALPMT [1v7* 717 (4)
17 Where b = 1,2, (1, v) takes value from [0, 1] x [0, 1],
18 A} and A, are U-Subdivision matrices for the Ist and
19e the 2nd sub-patches, respectively. For the 1st sub-patch,

200 because

[1aa* @] MA; =1
201 We can express the sub-patch as

Si(@,v) =[1 %u (%a)2 (%uﬁ] MPMT [1vv* )T

202 Which is exactly the first half of the original (u,v)
200 regular patch. Similarly, we can see that the 2nd
204 sub-patch represents the 2nd half of the original patch.
20 QED

206

207 Consequently, we can prove that after n times U-
208 Subdivision, the limit surfaces of 2" U-subdivided sub-
200 patches are the same as the original CCS limit surface.

210 4.2. Guided U-Subdivision

E

1
1\2 2

1
1 2

2

Figure 7: Q-Partitions, left for Catmull-Clark, right for GUS

211 In this section, we show how to perform a guided U-
212 Subdivision (GUS) and how to obtain a GUS surface.

L1
L2
L1
L1
Lo L2
L3 - L3
La La
Ls
Ls

Figure 8: Left side shows 5 layers in a U-Subdivision, right shows L;
and L, will not change boundary (red) continuity.

213

214 For a regular patch, if we do a U-Subdivision, we get
215 2 sub-patches with 20 control points. These points are
216 distributed in 5 layers, with four points each. We denote
217 them Ly, Ly, L3, Ly and Ls, respectively (as shown in
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218 Fig 5).
219
20 PROPERTY 2: Only L3 ,L4, and Ls obtained after
221 2 U-Subdivision on a regular patch are needed to en-
222 sure C? continuity of the limit surface on the common
223 boundary with an adjacent patch underneath it.
22 Proof : This property is trivial in CCS and can be
225 derived from analysis of equation (2). QED
226
227 This gives us an opportunity to set up a recursive sub-
28 division scheme that takes L;, L4, and Ls from a U-
220 Subdivision on previous control mesh, but leaves L; and
230 Ly at the user’s choice, so that the shape of the limit sur-
231 face can be guided by the selected L; and L,.
Given an arbitrary regular patch with a 4 X 4 con-
trol point mesh P, we define the limit surface S (u, v) of
a GUS surface as the union of recursively generated U-
Subdivision surfaces S, (i1, ) (limit surface of n" GUS
and b sub-patch), with an Q-partition (see Fig. 7) de-
fined as follows:

3 3 1

1
Qn,l = [ ] X [09 1]’ Qn,Z = [W, F

0 ouil 1x10,1]
222 Hence, each GUS will generate 2 regular sub-patches
23 which require 5 layers of 20 control points. The GUS
24 process is shown below.

For this given regular patch, we need to define a 5 x4
basis control mesh P° for the GUS first. The first three
layers of P are obtained by performing a U-Subdivision
on the last three layers of P and the last two layers of P°
are zero, i.e.,

1 1
L 1oo
A3P, P
PO:[ Yo } with Az = | 1 % il ®
o 1 1
4 4

25 and P} , is a 3x4 picking matrix with /3 (identity matrix
236 Of size 3) on the right side of the matrix.

For each n > 1, let P" be the 5x4 control point matrix
of the n* GUS with layers L?, 1 <i < 5. The last three
layers L3, Ly and L7 of P" are obtained by performing
a U-subdivision on the first three layers L7, L3~ and
L of P e,

Pg,SPn = A3P3’5Pn71, n>1 (6)

27 where P35 and Pg,s are 3 x 5 picking matrices with I3
2 on the left and right side of the matrix, respectively.
23 The first two layers L} and L% of P" are at the choice of
210 the user (the selection criteria of these two layers will
21 be discussed in Section 4 for a Polar configuration).
22 Once these two layers have been selected, the control

243 point computation process for the n'"

244

25 THEOREM 1: Control points in L} and L of the
2s control point matrix P" of an n GUS surface can be
247 changed without affecting C? continuity of the limit sur-
25 face inside the parameter space and on the boundary
29 (1 = 1) with its adjacent regular patch.

2 Proof : For P" of an n" GUS surface, its L3, Ly and
251 L are obtained by doing one U-Subdivision on the 1*
25 three layers of P""!, by Property 2, it is C? continuous
253 at the boundary with previous GUS patch. Within an
25 1" GUS surface, C? continuity is trivial. QED

255

26 With all control points in P” defined, we can now de-
257 fine the GUS surface. For any (u,v) € [0, 1] X [0, 1],
28 where (u,v) # (0,v), there is an Q,;, containing (u, v).
2se We can find the value of S (u, v) by mapping €, to the
260 unit square [0, 1] x [0, 1] and finding the corresponding
261 point of (u,v) in the unit square: (u,V), then compute
22 S, (the limit surface of n GUS and b sub-patch) at
263 (11, v). The value of S (0, v) is the limit of the GUS.

24 In the above process, n and b can be computed by:

GUS is complete.

n(u,v) = [log% ul

1, if2"u<1.5
265 b(u, V) = { 2 else

27 The mapping from Q,, to the unit square is defined
s as (u,v) = (dp(u),v) , with

n
o

2”+lu—2,
oy -3,

if1.5>2"u>1

a0 Pu) = { if 2"u > 1.5

272 The limit surface S (1, v) can be defined as follows:
S (u,v) = W @)MP™> M W (%) @)

where P?, a 4 x4 matrix, contains the 16 control points
of §,p, with P*! = §,P" and P** = S,P", S and S,
are picking matrices of size 4 X 5 with I (identity ma-
trix of size 4) on the left and right side of the matrix
respectively. W(x) is the 4-component power basis vec-
tor with W7 (x) = [1, x, x%, x*], M is the B-spline curve
coefficient matrix. We can express W7 () and W7 (v) as
follows
W'@) = W WK™ ' Dy, W' ) =W (v)

273 where K is a diagonal matrix, with K = Diag(1,2,4,8).
274 Dy, 1s an upper triangular matrix depending on b only, it
275 maps (4, V) to (¢, v). So we can rewrite the subdivision
276 surface as

Su,v) = WK™ ' DyMS ,P"M"W(v) (8)



277 Thus we can decompose the limit surface into a
278 sequence of recursively generated U-Subdivision sur-
279 faces,

280 S(M,V)ZSLzUSI,lU52,2U52,1U53,2U...

21 In the above, we have shown the construction of a
2.2 GUS surface and proven its C? continuity both inside
2s3 the limit surface and on the boundary of u = 1. In
2« the following section, we show how this subdivision
255 scheme can be applied to the Polar configuration.

26 5. Applying GUS to Polar Parts

257 After preprocessing of PCC mesh (section 3), the va-
2s8 lence of any Polar extraordinary point is even. Given a
280 triangular face f; with valence N, we can apply GUS on
200 this face with vertex splitting on its Polar extraordinary
201 point.

In order to apply GUS to f;, first we need to identify
its control point matrix of P. We can index the control
vertices surrounding f; as shown in Fig 3 (f; is shaded
face). By Theorem 1 and (6), the 1*' layer control points
in P is irrelevant to a deformed limit surface if we freely
choose Uf and Lg in each GUS, then we have

0 0 0 0
v |4 |4 |4
P31 Py Pz Py
Py Py Pyz Py

P=

202 With (5), we can derive the 5 X 4 GUS basis control
202 mesh P° from P.

For each n > 1, like the situation discussed in the pre-
vious section, 2 regular sub-patches defined by a 5 x 4
control point matrix P" will be generated by the GUS
process. The last three layers L, Ly and L of P" are ob-
tained by performing a U-Subdivision on the first three
layers of P! (see Fig. 10). Hence, (6) works here as
well or, equivalently,

-1
L3 L
Ly |=As| Ly! ©)
L L

204 Where A3 is defined in eq. (5).

The computation of L] involves L|. We assume L is
already available to us (this is the case in the real algo-
rithm, i.e., L will be computed before the computation
of L). L} is computed as follows:

LI;II

Lrll—l

L%*l
3

[L3] = A (10)

Figure 9: P" (solid dots) generated after ' GUS, circles are the 1%
three layers of P!

where A’ = 4—1‘ % é 0 (10) is the result of
a so-called virtual U-Subdivision. Note that, from U-
Subdivision rules of (3), if we define a virtual layer of

control points Lg" as follows:
Lt =2rr -t

and use L', L', L2~! and L7~! to form a 4 X 4 con-
trol mesh of a regular patch, then by performing a U-
Subdivision on this 4 X 4 control mesh, we geta 5 X 4
control mesh whose first, third, fourth and fifth layers
are exactly L7, L’3’, Ly and Lgl (see Fig. 9). We call
such a reverse U-Subdivision a virtual U-Subdivision
and use the second layer of such a subdivision as the
second layer of P". Since L) corresponds to a vertex
layer, we have
1 1

3
L= ng—' + ZL’{“ + ng—‘
1

5 1
= ZLT + gL’f_l + gLZ_l

205 Which is exactly (10).

. + 1

<

/ °

@

L ]

O
Figure 10: Virtual U-subdivision: grey circles are virtual control
points, solid dots are P".

26 THEOREM 2: By applying virtual U-Subdivision,
207 limit surfaces of the two sub-patches obtained in each
206 GUS are the same and can be considered as the limit
200 surface of a regular patch.

wo  Proof : The virtual control point layer Ly~ is
a0t obtained by reversing a U-Subdivision process for edge
a2 point, such that this can be derived from PROPERTY 1.
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a3 QED

304

We have shown the construction of control point lay-
ss ers L, L7, L and L: for P". We now discuss the choice
s07 of control point layer L.

as Due to properties of GUS, the unknown control
a0 points after n™™ GUS are those in L}, L%, ..., and L.
a0 These control points determine the shape of the limit
an surface.

305

sz Since we expect our Polar part at V is at least C!
a3 (tangent plane continuous) with common data point dy
a4 at (0,v) and common unit normal ny at dy, we have the
s1s following proposition for G> continuous at V,

316
sz PROPOSITION 1: For any f; and f, y on the
ais opposite side of Polar extraordinary point V, if each
a1 control point in L} of f; and its corresponding control
se0 point in L} of f; 4+ are on a C? curve across dy and
321 share the same unit normal ny, then if basis control
22 mesh P’ does not appear in derivatives of any Po-
a3 lar parametric subdivision surface patch at dy up to
w24 the 2" order, then it is G* at Polar extraordinary point V.
325

s  PROOF: The proof is trivial. If basis control
27 mesh P° does not appear in derivatives of any Polar
s2s parametric subdivision surface patch at dy up to the 2"
we order, it means that control points of P® do not appear
w0 in derivative polynomials at n GUS limit surface up to
w1 the 27 order, when n — co. By construction of GUS,
a2 then in the derivative polynomials only control points
w3 Oof L matters. Due to the symmetry of control points
s3 and all corresponding control points in L} of f; and
s f; +y form a C? curve across dy and share same unit
ass normal ny, an arbitrary control point in P” of f; must be
s on a C? curve across dy with its corresponding control
xs point in P" of f, y (a linear combination of a set of

s C? curves across d, and share the same unit normal ny
a0 must be a C2 curve across dy and have the unit normal
sa1 ny ). Since a data point at (u,0) of f; at the n* GUS is
a2 generated by affine combination of its control points in
ws P, with the symmetric arrangement of f; and f;, v, we
asa can show that the arbitrary corresponding data points at
w5 the limit surface of n* GUS of f; and f,, v are on a C?
a6 curve across dy and have the same unit n0r2rna1 ny. QED
347
xus  From Proposition 1, we expect for an arbitrary Polar
a1 patch fy, each control point in L] shall be on a C 2 curve
ss0 With its opposite control point in fi, x, this C? curve
ss1 shall be across dy and have a unit normal ny at dy.
From this expectation, before picking the unknown
values L}, Lf,...,L’l‘ of the GUS’s, we have to first deter-
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mine the values of dy and ny. If we reorganize the con-
trol points surrounding V as {V, E1, E», ..., Ey}, where
E,, ...Ey are edge points connected to the extraordinary
point V in a counterclockwise order, and define the tri-
angular face f; by {V, Ex, Exan+1}, k € [1,N], we can
pick the values of these terms as follows:

2 1 &
=V > E
dv 3V+3Nk:1 k
N

ny =N0rm(z ng) (11)

k=1
where Norm(x) is a function which returns unit normal
of a normal x. ny, is the face normal of f, can be ob-
tained from ng, = (Ex — V) X (Exgns+1 — V).

We notice that CCS regular patch (Fig 5 left) is C?
continuous at V, so new E; and E3 at n™ CCS must be
on a C? curve that across the limit point dy of V and lies
on the tangent plane of CCS limit surface at dy. This
inspires us to come up with the concept of dominative

control meshes. A dominative control mesh C,, of size
9 is defined as

— T
Cﬂ’l - [Vm7 Em,la s 5Em,4’ Fm,h s ,Fm,4] £

which is exactly the control point mesh of a regular bi-
cubic patch without [y, I7, I3, 14, I5, Ig, I7]T.
By applying midpoint knot insertion to C,,, we get

CW = AgCT D = | = (A)'Cpon>1  (12)

where Ag is the midpoint insertion coefficient matrix, its
values can be derived from eq. (1). C,(,’,’) is the control
point mesh after n# midpoint knot insertion on C,,, and
can be expressed as
C’(nn) — [Vr(:)’ E®™

m,1° °°

E®™ g

i Euls o BT

The reason [;(i = 1,...,7) are ignored is: as shown in
(1), the new vertex point, edge points and face points
obtained from the midpoint knot insertion are indepen-
dent of these inner ring control vertices. Since we plan
to map recursively generated edge points of dominative
control meshes into unknown values of L} in GUS’s, it
will not be necessary to include these vertices into the
control mesh.

There are totally N faces surrounding V, so we need
N dominative control meshes to map these values, see
Fig. 11 for the mapping from the dominative control
meshes to the control points of the n* GUS on face f;.
The mapping is defined as follows:

L =E5 LRl =EY
LBl= BN LM=EDYa3)
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Figure 11: Mapping the recursively generated control points in domi-
native control meshes to L of n GUS on k™ face f;.

ss  Due to the ring structure of control points in GUS,
s for the n GUS, the last three points in LY of fi are

se7 exactly the first three points in L] of f;. Hence, for each

s f, we only need to consider the mapping from E,(C"l+ Yto

ses L}[2] and, yet, we get all the control points for each Lf
aro once this mapping is considered for all &.
To get the values of L}[2] (n > 1) for f;, we initialize
the dominative control mesh Cy, as follows:

E1 = E;
Fr1 = Exs

Eis = Epn;
Fio = Ek+§—1§

Frs=Epygs Fra= B

As mentioned before, we treat a triangular face as
a special case of a quad face by vertex splitting. Let
Ei2=E4=V). Then we have:

4
3 1 1
Vi=Ewx=Egs = E(dv - §(Ek,l + Ep3) — 36 Z Fri)
=1

s This initialization guarantees that the limit point of
a2 the dominative control mesh equals dy . In order to
a7s make the GUS surface is tangent plane continuous at the
a7« extraordinary point, we will further process the domi-
a7s native control meshes such that they have the same unit
a7s normal 7y at the limit data point. The algorithm is as
a7 follows:

as (1) get the first order derivatives Dy, D, at dy,. Since
a79 Cy is a part of a regular patch, it can be easily cal-
380 culated.

a1 (2) gett = D, - ny, the projection of D, on ny

a2 (3) let Fri—= 3t, Fra— = 3t, Fior+ = 3t, Fiz+ = 3t,
383 which ensure D, - ny = 0

ass (4) gett = D, - ny, the projection of D, on ny

"

@«
;-

«
&

Figure 12: left: original CCS mesh and its limit surface, right: revised
PCC mesh and its limit surface. The bottom left photo shows irregu-

larity at boundaries of high-valence CCS extraordinary faces, and the
bottom right is smooth.

ass (5) let Fr1— = 3t, Fro— = 3t, Fy3+ = 3t, Fra+ = 3t,
386 which ensure D, - ny = 0

a7 From above algorithm and initialization, since N is
ass even, the opposite dominative control meshes C; and
w9 Cpp v will share the same set of control points, differing
a0 only in the ordering.

st With all control points in L} defined in (13), we are
a2 now complete with the selection process for control
ass points in P". Let us reinstate (8) of parameterization
ass surface at f; as follows:

Sk, u,v) = WK "DyMS ,P"MTW(v) (14)



P" = AsP"' + SsAS Ty, n> 1 (15)
00000 010000000
%%000 050000000

withAs=|2 7 00 0],55=1000000000],
33 % 00 000000000
05500 000000000

AsP; P
0 _ 3034
S

305 Ty = [Cr_1 Ck Cis1 Crsn], is a matrix of size 9 X 4, with
as each column representing one of the four dominative
a7 control meshes related to f. Ag is defined in eq. (12).
ses  In this section, we have shown how to construct a
ass GUS surface on Polar triangular faces in a PCC mesh.
400 In next section, we will show the behavior of the PCC
401 surfaces.

w2 6. Evaluating the PCC surface

ws A PCC surface composes of two parts, CCS part and
a04 Polar part. For the CCS part, the behavior of the limit
a0s surface was already covered in [2]. In this section, we
a0s focus on the behavior of the limit surface on Polar part.
w7 As shown in the previous sections, a GUS surface of
«e a triangular face is C? on the limit surface and also C?
400 continuous with its adjacent quad faces. We will now
410 evaluate the surface at Polar extraordinary points.

a1 (15)is arecursive formula, the evaluation of the GUS
a1z surface at Polar extraordinary point needs an explicit ex-
a13 pression for P”. We can expand (15) as follows:

P =AIPY + ATISSAST) + ATESSAST + ..
+ AsSsALTy + SsAST' Ty

=ATP° + ZAQ”S SAMIT > 1
i=1

(16)

sa As has a single eigenvalue of 1, and has the following
415 properties:

00000 00000
(|5t000 2[5 1000
As :§44000,A§=§ 204 000/,
16100 3410000
04400 3620000
0 0000
n| 5 1000 "
Al =3 20 4000(==-0©, n>3
50 10000
1002000 0

Ag is a 9 X 9 regular midpoint insertion coefficient ma-
trix, its eigenstructure is studied in an earlier work on
CCS surfaces [3] [18]. The eigenvalues of Ag are 1, %,
1. § and ¢, and we define their corresponding eigen-
bases as ©1, ©,, O3, ®4 and Os, with

n n

1" 1 1" 1
Ag=®]+—®2+—®3+—®4+—®5

2 4 8 16

Thus, when n > 3, (16) can be rewritten as:

1n
P! =g P+ S5AL T+ AsSSAYT + A3S 54y T,

n-3 1n-i 1+ 1+
+;§ OS5@1+5 O+ O
i+1 i+1
+ g @4 + 1_6 @5)Tk, (17)

416 Take (17) into Polar parametric surface of (14), because
w7 its coefficient is 1", such that it will be zero in deriva-
418 tives up to the 2”5 order when n — oo.

a9 From Proposition 1, we now can conclude that the
420 limit surface generated by our new scheme on Polar part
21 Will be curvature continuous at the Polar extraordinary
422 points.

423 7. Discussion and Conclusion

a2« In this paper, a new subdivision scheme with Polar
s embedded Catmull-Clark mesh structure is introduced.
42s By introducing Polar configuration on high valence ver-
427 tex, the ripple problem inherent in a CCS surface is
428 solved.

429 The subdivision scheme developed has the properties
a3 that the limit surface on the CCS part is exactly the same
aa1 as a CCS limit surface and the limit surface on the Polar
s part is G> continuous everywhere.

s Since it is inevitable to have high valence extraordi-
4 NAry points in some cases, e.g. airplanes, rockets and
a5 engineering parts, the currently available CCS meshes
a3 can be easily converted to PCC meshes, such that one
437 can avoid redesigning the complete mesh.

«s  In contrast to commonly used Polar subdivision rules,
439 the subdivision masks of proposed GUS subdivision
40 scheme on Polar part is equivalent to those of CCS. The
a1 properties of GUS surfaces are studied and proven. The
a2 GUS scheme is a stationary scheme.

ws  The curvature at a Polar extraordinary point is inde-
s pendent of nearby control points, but relies on some se-
us lected dominative control meshes. Implementation re-
s sults (Fig 12) show that very high quality, curvature con-
447 tinuous subdivision surfaces can be generated with this

9



Figure 13: Various primitives of GUS surfaces on Polar parts

s new scheme on the Polar part. Furthermore, the scheme
a9 1S WYSIWYG (what you see is what you get): as far
ss0 as the ring of control points connected around the Polar
ss1 extraordinary point is smooth, there will be no ripples.
2 Our next step is to develop a general geometric
s framework to incorporate some G> schemes for CCS
ss¢ meshes into the PCC subdivision scheme, so that a G>
sss everywhere PCC surface can be generated.
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