Polar Embedded Catmull-Clark Subdivision Surface

Anonymous submission

Abstract

In this paper, a new subdivision scheme with Polar embedded Catmull-Clark mesh structure is presented. In this new subdivision scheme, the control mesh divides into two parts, quadrilateral part (CCS) and triangular part (Polar), and one can generate limit surfaces which are exactly the same as those of CCS on quad part and G^2 on triangular part. The common ripple effect surrounding high-valence extraordinary points in CCS surface is improved by replacing high-valence CCS extraordinary faces with triangular Polar faces. The new scheme is valence independent and stationary. By using the same subdivision masks on both CCS part and Polar part, the artifact of earlier researches (mismatch of subdivision masks, exponential subfaces at n^{th} subdivision level) is resolved. Test results show that, with the new scheme, one can generate very high quality, curvature continuous subdivision surfaces on the Polar part. Together with current available CCS G^2 schemes, one can generate high quality subdivision surfaces appropriate for most engineering applications.

Keywords:

11. Introduction

² Subdivision surfaces have been widely used in CAD, ³ gaming and computer graphics. Catmull-Clark subdi-⁴ vision (CCS) [1], based on tensor product bi-cubic ⁵ B-Splines, is one of the most important subdivision ⁶ schemes. The surfaces generated by the scheme are C^2 ⁷ continuous everywhere except at extraordinary points, ⁸ where they are C^1 continuous.

⁹ The works of Doo and Sabin [2], and Stam [3] il-¹⁰ lustrate the behavior of a CCS surface at extraordi-¹¹ nary points. Much research has been performed to im-¹² prove the curvature surrounding extraordinary points. ¹³ Prautzsch [4] modifies the scheme to generate zero cur-¹⁴ vature at extraordinary points. Levin [5] gives a scheme ¹⁵ to generate a C^2 continuous surface at extraordinary ¹⁶ points by blending the surface with a low degree poly-¹⁷ nomial. Karčiauskas, K. and Peters [6] present a guided ¹⁸ scheme, which fills a series of subsequently λ -scaled ¹⁹ surface rings to an N-sided hole. Loop and Schaefer [7] ²⁰ present a second order smooth filling of an N-valence ²¹ Catmull-Clark spline ring with N bi-septic patches.

A shortcoming inherent in CCS surfaces is the ripple problem, that is, ripples tend to appear around extraordinary points with high valence. In the past, research focused on improving the curvature at extraordinary points. However, with quad mesh structure of CCS surfaces, the ripples could not be avoided in high

Figure 1: Left: original CCS mesh for an airplane. Right: the top shows the limit surface and the original CCS mesh for the head of plane, with zero curvature on the tip, the bottom shows the limit surface and the new mesh with a high valence Polar extraordinary point on the plane head, with non-zero curvature and G^2 on the tip of the plane head.

²⁸ valence cases. The technique of fairing [8] is used to
²⁹ address the smoothness issue on the limit surface, but
³⁰ the computation is quite expensive and it changed the
³¹ limit surface to the extent that it does not generate the
³² desired shape.

To handle this artifact, Polar surface has been stud-³⁴ ied by a number of researchers. Polar surface has a ³⁵ quad/triangular mixed mesh structure. [9] shows a ³⁶ guided subdivision scheme that uses a Bezier surface as ³⁷ a guide for each subdivision step, and a C^2 accelerated

Preprint submitted to Computers & Graphics

³⁸ bi-cubic guided subdivision that uses 2^m subfaces in the ³⁹ m^{th} level for surface patches surrounding extraordinary ⁴⁰ points. In the second case, they show that although this ⁴¹ scheme is not practical for CCS surfaces, it can be ap-⁴² plied in a Polar configuration. A bi-cubic Polar subdivi-⁴³ sion scheme is presented in [10] that sets up the control ⁴⁴ mesh refinement rules for Polar configuration so that the ⁴⁵ limit surface is C^1 continuous and curvature bounded. ⁴⁶ As a further step, Myles and Peters [11] presented a bi-⁴⁷ cubic C^2 Polar subdivision scheme that gets a C^2 Polar ⁴⁸ surface by modifying the weights of Polar subdivision ⁴⁹ scheme for different valences.

Although a Polar surface handles high valence cases well, there are issues preventing its application in subdivision surfaces. Mismatch of subdivision masks between Polar and CCS makes it difficult to connect Polar to CCS meshes. Although in [12], the effort is made to connect Polar to CCS meshes. The scheme suffers the problem of inconsistent limit surfaces with refined control mesh at different subdivision levels, and it generates 2 2^m CCS subfaces in the *m*th level.

⁵⁹ A free-form quad/triangular scheme was presented in ⁶⁰ [13], [14] and [15]. However, the scheme was not de-⁶¹ signed to handle high-valence ripples as Polar surface.

⁶² In this paper, we redefined a quad/tri mesh struc-⁶³ ture, named the Polar Catmull-Clark mesh (PCC mesh), ⁶⁴ which embeds Polar configuration into the Catmull-⁶⁵ Clark mesh structure to solve the high valence issue. A ⁶⁶ new subdivision scheme is developed on PCC mesh.

In contrast to the work in [12], our new scheme has 67 68 the equivalent subdivision masks on both Polar and CCS 69 parts, such that there are no mismatches of subdivision 70 rules on the boundaries between Polar and CCS parts 71 and avoid the artifact of inconsistent limit surface at dif- $_{72}$ ferent subdivision levels. The scheme will generate 2m⁷³ CCS subfaces at m^{th} subdivision level which makes pa-74 rameterization possible. We also show that the gener-⁷⁵ ated limit surface on triangular part is G^2 at extraordi-76 nary points and the artifact of high valence ripples is re-77 solved effectively. Fig 1 shows a CCS control mesh of 78 an airplane, at the plane head, although one has tried to 79 avoid ripples by adding a flat area on the tip, ripples still ⁸⁰ appear at the surrounding area. With the mesh modi-⁸¹ fied to embed a Polar configuration at plane head, by $_{82}$ our new G^2 scheme on Polar part, ripples are eliminated 83 and generates non-zero curvature on the tip of the plane ⁸⁴ head.

The rest of the paper is organized as follows. Section 2 discusses the earlier works, Section 3 covers prepro-7 cessing of PCC mesh, Section 4 introduces Guided U-88 Subdivision and its construction, Section 5 applies the 99 scheme to Polar parts of the new control mesh, Section 6 ⁹⁰ evaluates behavior of the limit surfaces around extraor-⁹¹ dinary points of the Polar parts, Section 7 concludes.

92 2. Earlier works of Polar Catmull-Clark Mesh

⁹³ In this section, we introduce the earlier works on Po-⁹⁴ lar Catmull-Clark (PCC) mesh.

CCS works on arbitrary topology. The subdivision re-96 quires all quad faces with no extraordinary points neigh-97 bor to each other, which is obtained by twice subdivi-98 sion on original mesh [1]. Polar surfaces have the fol-99 lowing properties on mesh structure: faces adjacent to 100 the extraordinary points are triangular, all other faces 101 are regular [9] [10] [16]. Fig 2 left and middle show 102 typical meshes of Polar and Catmull-Clark respectively. Since Polar mesh has a special mesh structure, all 104 faces are arranged radially, so it will not work on arbi-¹⁰⁵ trary topology. Efforts are made to combine Polar with 106 Catmull-Clark mesh [12]. Fig 1 right shows a typical 107 Polar embedded Catmull-Clark mesh, which allows ex-¹⁰⁸ traordinary points also in quad mesh part. In this paper, 109 we develop our new subdivision scheme on this mesh 110 structure named Polar Catmull-Clark (PCC) mesh.

Figure 2: From left to right, Polar mesh, CCS mesh, and PCC mesh.

A PCC mesh is flexible to design, and works on arbitrary topology. Given an arbitrary control mesh, one just subdivides it twice to generate a control mesh suitable for further CCS [1] [17], then analyze the mesh and find out where one wants to put Polar structure, typitie cally for high valence extraordinary faces. By taking out the extraordinary faces and replacing them with triantie gular/quad meshes (inside the bold edges on the right of fing Fig 2), one obtain a PCC mesh.

In an earlier effort to handle PCC mesh by Myles' 121 work [12], to connect Polar and CCS, it has 4 steps to 122 process the Polar part. 1) separate subdivision into two 123 parts, 2) performing k times subdivision radially and 124 then k times circularly, 3) performing k times subdivi-125 sion on remaining CCS mesh, 4) merge boundaries set 126 by 2) and 3). This algorithm suffers the problem that the 127 limit surface of the merged control mesh will be differ-128 ent with different subdivision levels. By analyzing its ¹²⁹ algorithm, one can find this artifact is caused by mis-¹³⁰ match between subdivision masks for Polar parts and ¹³¹ CCS parts. This artifact needs to be resolved, since in ¹³² CAGD and other high precision graphics applications, ¹³³ limit surface is generally required to be unchanged with ¹³⁴ refined control meshes. Also at k^{th} subdivision level, ¹³⁵ one has to handle undesired 2^k CCS subfaces.

¹³⁶ We have the following research question naturally ¹³⁷ arise: *Can we develop a subdivision scheme to process* ¹³⁸ *the Polar part of PCC mesh, such that subdivision mask* ¹³⁹ *is the same as the CCS part to form a natural* C^2 *join be*-¹⁴⁰ *tween Polar part and CCS part, and only O(n) subfaces* ¹⁴¹ generated at the nth subdivision level?

To achieve this goal, we need to develop a new subt43 division scheme for Polar part.

144 3. Preprocessing of PCC mesh

The valence of a Polar extraordinary point in a PCC mesh can be even or odd.

Figure 3: convert Polar odd valence to even by one subdivision

Since for odd valence, the curvature continuity is 148 more difficult to achieve than even cases, before we 149 work on Polar part, we need to convert odd valence to 150 even. Performing one CCS so that the new extraordi-151 nary point will have an even valence (as shown on right 152 side of Fig. 3). In this subdivision, each triangular 153 face will be treated as a quad face by vertex splitting 154 of Polar extraordinary point *V* (see Fig 4). The new 155 edge and face points of triangular faces are defined by 156 CCS rules, but for a new vertex point, we use the origi-157 nal CCS vertex point rule on arbitrary topology [1] by 158 $V' = \frac{N-2}{N}V + \frac{1}{N^2}\sum_{i=1}^{N}E_i + \frac{1}{N^2}\sum_{i=1}^{N}F'_i.$ 159 Above we introduced the preprocessing of a PCC

Above we introduced the preprocessing of a PCC mesh structure to convert all Polar extraordinary points to even valence. The next section will focus on our new scheme to handle Polar part.

163 4. Guided U-Subdivision

¹⁶⁴ In preprocessing of PCC mesh, triangular face is ¹⁶⁵ treated as a quad face with two control points coincides.

Figure 4: Control mesh conversion for triangular faces adjacent to an extraordinary point.

¹⁶⁶ If we can find a CCS equivalent radially recursive sub-¹⁶⁷ division scheme to work on triangular faces after vertex ¹⁶⁸ splitting, then it is possible to avoid mismatch between ¹⁶⁹ Polar and CCS. The limit surface generated will be C^2 ¹⁷⁰ between Polar and CCS parts without exponential num-¹⁷¹ ber of subfaces at n^{th} level.

In this section, we first introduce a CCS equiva-173 lent subdivision scheme, the U-Subdivision. Then we 174 present a Guided U-Subdivision (GUS). With GUS, we 175 will be able to generate a G^2 limit surface on Polar 176 part of a PCC mesh. Our new subdivision scheme has 177 the equivalent subdivision mask with neighboring CCS, 178 such that one can generate a C^2 natural join between 179 Polar part and CCS part.

180 4.1. U-Subdivision

Recall that the CCS scheme divides the control vertices into three categories: *vertex points*, *edge points*, and *face points*. A popular way to index the control vertices is shown in Fig 5, where V is a vertex point, E_i 's are edge points, F_i 's are face points and $I_{i,j}$'s are inner ring control vertices. New vertices within each subdivision step are generated as follows:

$$V' = \alpha_N V + \beta_N \sum_{i=1}^N E_i / N + \gamma_N \sum_{i=1}^N F_i / N$$
$$E'_i = \frac{3}{8} (V + E_i) + \frac{1}{16} (E_{i+1} + E_{i-1} + F_i + F_{i-1})$$
$$F'_i = \frac{1}{4} (V + E_i + E_{i+1} + F_i)$$
(1)

¹⁸¹ where N is the valence of vertex V, with $\alpha_N = 1 - \frac{1}{4N}$, $\beta_N = \frac{3}{2N}$, and $\gamma_N = \frac{1}{4N}$. ¹⁸³ A regular bi-cubic B-spline patch with parameters u

¹⁸³ A regular bi-cubic B-spline patch with parameters u¹⁸⁴ and v can be expressed as

$$S(u, v) = [1 \ u \ u^2 \ u^3] \ M\mathbf{P}M^T \ [1 \ v \ v^2 \ v^3]^T$$
(2)

¹⁸⁵ where **P** is a 4×4 matrix of control points P_{ij} , $1 \le i, j \le$ ¹⁸⁶ 4, *M* is the coefficient matrix and M^T is its transpose.

Figure 5: Control meshes of Catmull- Clark subdivision. Left side: a regular face; right side: an extraordinary face

Figure 6: Left is a CCS, right is a U-Subdivision

¹⁸⁷ The subdivision process of control points are obtained¹⁸⁸ by subdivision rules shown in (1).

We notice that CCS on a regular face can be expressed as first to subdivide in u direction then in v direction. If the subdivision in v direction is dropped, we obtain a CCS equivalent subdivision surface involving parameter u only, named unilateral subdivision (U-Subdivision), with subdivision rules as follows:

$$V' = \frac{3}{4}V + \frac{1}{8}E_1 + \frac{1}{8}E_3$$
$$E'_i = \frac{1}{2}V + \frac{1}{2}E_i$$
(3)

¹⁸⁹ A U-Subdivision splits a regular CCS patch into two¹⁹⁰ regular CCS sub-patches.

191

PROPERTY 1: The limit surfaces of the two CCS ¹⁹³ sub-patches generated by a U-Subdivision are the same ¹⁹⁴ as the limit surface of that regular patch.

Proof: The two sub-patches generated by a USubdivision can be expressed as follows:

$$S_{b}(\bar{u},\bar{v}) = [1 \ \bar{u} \ \bar{u}^{2} \ \bar{u}^{3}] \ MA_{b} \mathbf{P} M^{T} \ [1 \ \bar{v} \ \bar{v}^{2} \ \bar{v}^{3}]^{T}$$
(4)

¹⁹⁷ where $b = 1, 2, (\bar{u}, \bar{v})$ takes value from $[0, 1] \times [0, 1]$, ¹⁹⁸ A_1 and A_2 are U-Subdivision matrices for the 1st and ¹⁹⁹ the 2nd sub-patches, respectively. For the 1st sub-patch, 200 because

206

$$[1 \ \bar{u} \ \bar{u}^2 \ \bar{u}^3] \ MA_1 = [1 \ \frac{1}{2} \bar{u} \ \frac{1}{4} \bar{u}^2 \ \frac{1}{8} \bar{u}^3] \ M$$

201 we can express the sub-patch as

$$S_{1}(\bar{u},\bar{v}) = \left[1 \ \frac{1}{2}\bar{u} \ (\frac{1}{2}\bar{u})^{2} \ (\frac{1}{2}\bar{u})^{3}\right] M\mathbf{P}M^{T} \ \left[1 \ \bar{v} \ \bar{v}^{2} \ \bar{v}^{3}\right]^{T}$$

²⁰² which is exactly the first half of the original (u, v)²⁰³ regular patch. Similarly, we can see that the 2nd ²⁰⁴ sub-patch represents the 2nd half of the original patch. ²⁰⁵ QED

²⁰⁷ Consequently, we can prove that after n times U-²⁰⁸ Subdivision, the limit surfaces of 2^n U-subdivided sub-²⁰⁹ patches are the same as the original CCS limit surface.

210 4.2. Guided U-Subdivision

Figure 7: Ω-Partitions, left for Catmull-Clark, right for GUS

In this section, we show how to perform a guided U-212 Subdivision (GUS) and how to obtain a GUS surface.

Figure 8: Left side shows 5 layers in a U-Subdivision, right shows L_1 and L_2 will not change boundary (red) continuity.

213

For a regular patch, if we do a U-Subdivision, we get 215 2 sub-patches with 20 control points. These points are 216 distributed in 5 layers, with four points each. We denote 217 them L_1 , L_2 , L_3 , L_4 and L_5 , respectively (as shown in

218 Fig 5).

219

PROPERTY 2: Only L_3 , L_4 , and L_5 obtained after 220 U-Subdivision on a regular patch are needed to en-221 a ²²² sure C^2 continuity of the limit surface on the common 223 boundary with an adjacent patch underneath it.

Proof : This property is trivial in CCS and can be 224 225 derived from analysis of equation (2). QED

226

This gives us an opportunity to set up a recursive sub-227 228 division scheme that takes L_3 , L_4 , and L_5 from a U-229 Subdivision on previous control mesh, but leaves L_1 and $_{230}$ L₂ at the user's choice, so that the shape of the limit sur-²³¹ face can be guided by the selected L_1 and L_2 .

Given an arbitrary regular patch with a 4×4 control point mesh **P**, we define the limit surface S(u, v) of a GUS surface as the union of recursively generated U-Subdivision surfaces $S_{n,b}(\bar{u}, \bar{v})$ (limit surface of n^{th} GUS and b^{th} sub-patch), with an Ω -partition (see Fig. 7) defined as follows:

$$\Omega_{n,1} = \begin{bmatrix} \frac{1}{2^n}, \frac{3}{2^{n+1}} \end{bmatrix} \times \begin{bmatrix} 0, 1 \end{bmatrix}, \quad \Omega_{n,2} = \begin{bmatrix} \frac{3}{2^{n+1}}, \frac{1}{2^{n-1}} \end{bmatrix} \times \begin{bmatrix} 0, 1 \end{bmatrix}$$

²³² Hence, each GUS will generate 2 regular sub-patches 233 which require 5 layers of 20 control points. The GUS 234 process is shown below.

For this given regular patch, we need to define a 5×4 basis control mesh \mathbf{P}^0 for the GUS first. The first three layers of \mathbf{P}^0 are obtained by performing a U-Subdivision on the last three layers of **P** and the last two layers of \mathbf{P}^0 are zero, i.e.,

$$\mathbf{P}^{0} = \begin{bmatrix} A_{3}P'_{3,4}\mathbf{P} \\ 0 \end{bmatrix}, \quad \text{with } A_{3} = \begin{bmatrix} \frac{1}{4} & \frac{1}{4} & 0 \\ \frac{1}{8} & \frac{3}{4} & \frac{1}{8} \\ 0 & \frac{1}{4} & \frac{1}{4} \end{bmatrix}$$
(5)

²³⁵ and $P'_{3,4}$ is a 3×4 picking matrix with I_3 (identity matrix ²³⁶ of size 3) on the right side of the matrix.

For each $n \ge 1$, let \mathbf{P}^n be the 5×4 control point matrix of the n^{th} GUS with layers L_i^n , $1 \le i \le 5$. The last three layers L_3^n , L_4^n and L_5^n of \mathbf{P}^n are obtained by performing a U-subdivision on the first three layers L_1^{n-1} , L_2^{n-1} and L_3^{n-1} of \mathbf{P}^{n-1} , i.e.,

$$P'_{3,5}\mathbf{P}^n = A_3 P_{3,5}\mathbf{P}^{n-1}, \quad n \ge 1$$
(6)

²³⁷ where $P_{3,5}$ and $P'_{3,5}$ are 3×5 picking matrices with I_3 238 on the left and right side of the matrix, respectively. ²³⁹ The first two layers L_1^n and L_2^n of \mathbf{P}^n are at the choice of 240 the user (the selection criteria of these two layers will ²⁴¹ be discussed in Section 4 for a Polar configuration). 242 Once these two layers have been selected, the control

²⁴³ point computation process for the n^{th} GUS is complete. 244

THEOREM 1: Control points in L_1^n and L_2^n of the 245 ²⁴⁶ control point matrix \mathbf{P}^n of an n^{th} GUS surface can be ²⁴⁷ changed without affecting C^2 continuity of the limit sur-248 face inside the parameter space and on the boundary $_{249}$ (u = 1) with its adjacent regular patch.

Proof : For \mathbf{P}^n of an n^{th} GUS surface, its L_3^n , L_4^n and $_{251} L_5^n$ are obtained by doing one U-Subdivision on the 1st ²⁵² three layers of \mathbf{P}^{n-1} , by Property 2, it is C^2 continuous 253 at the boundary with previous GUS patch. Within an $_{254}$ nth GUS surface, C² continuity is trivial. QED 255

With all control points in \mathbf{P}^n defined, we can now de-256 ²⁵⁷ fine the GUS surface. For any $(u, v) \in [0, 1] \times [0, 1]$, ²⁵⁸ where $(u, v) \neq (0, v)$, there is an $\Omega_{n,b}$ containing (u, v). ²⁵⁹ We can find the value of S(u, v) by mapping $\Omega_{n,b}$ to the ²⁶⁰ unit square $[0, 1] \times [0, 1]$ and finding the corresponding ²⁶¹ point of (u, v) in the unit square: $(\overline{u}, \overline{v})$, then compute ²⁶² $S_{n,b}$ (the limit surface of n^{th} GUS and b^{th} sub-patch) at ²⁶³ $(\overline{u}, \overline{v})$. The value of S(0, v) is the limit of the GUS.

In the above process, n and b can be computed by:

$$n(u, v) = \lceil \log_{\frac{1}{2}} u \rceil$$
$$b(u, v) = \begin{cases} 1, & \text{if } 2^{n}u \le 1.5\\ 2, & \text{else} \end{cases}$$

The mapping from $\Omega_{n,b}$ to the unit square is defined 267 ²⁶⁸ as $(\overline{u}, \overline{v}) = (\phi(u), v)$, with

$$\begin{array}{l} _{269}^{269} \\ _{270} \\ _{271} \end{array} \phi(u) = \begin{cases} 2^{n+1}u - 2, & \text{if } 1.5 \ge 2^n u > 1 \\ 2^{n+1}u - 3, & \text{if } 2^n u > 1.5 \end{cases}$$

The limit surface S(u, v) can be defined as follows:

$$S(u,v) = W^{T}(\bar{u})M\mathbf{P}^{n,b}M^{T}W(\bar{v})$$
(7)

where $\mathbf{P}^{n,b}$, a 4×4 matrix, contains the 16 control points of $S_{n,b}$, with $\mathbf{P}^{n,1} = S_1 \mathbf{P}^n$ and $\mathbf{P}^{n,2} = S_2 \mathbf{P}^n$, S_1 and S_2 are picking matrices of size 4×5 with I_4 (identity matrix of size 4) on the left and right side of the matrix respectively. W(x) is the 4-component power basis vector with $W^T(x) = [1, x, x^2, x^3]$, M is the B-spline curve coefficient matrix. We can express $W^T(\overline{u})$ and $W^T(\overline{v})$ as follows

$$W^{T}(\overline{u}) = W^{T}(u)K^{n+1}D_{b}, \qquad W^{T}(\overline{v}) = W^{T}(v)$$

²⁷³ where K is a diagonal matrix, with K = Diag(1, 2, 4, 8). $_{274}$ D_b is an upper triangular matrix depending on b only, it 275 maps $(\overline{u}, \overline{v})$ to (u, v). So we can rewrite the subdivision 276 surface as

$$S(u, v) = W^{T}(u)K^{n+1}D_{b}MS_{b}\mathbf{P}^{n}M^{T}W(v)$$
(8)

265

266

27 27

272

Thus we can decompose the limit surface into a respectively generated U-Subdivision surrespectively faces,

280 $S(u, v) = S_{1,2} \cup S_{1,1} \cup S_{2,2} \cup S_{2,1} \cup S_{3,2} \cup \dots$

In the above, we have shown the construction of a GUS surface and proven its C^2 continuity both inside the limit surface and on the boundary of u = 1. In the following section, we show how this subdivision scheme can be applied to the Polar configuration.

286 5. Applying GUS to Polar Parts

After preprocessing of PCC mesh (section 3), the valence of any Polar extraordinary point is even. Given a triangular face f_i with valence N, we can apply GUS on this face with vertex splitting on its Polar extraordinary point.

In order to apply GUS to f_i , first we need to identify its control point matrix of **P**. We can index the control vertices surrounding f_i as shown in Fig 3 (f_i is shaded face). By Theorem 1 and (6), the 1st layer control points in **P** is irrelevant to a deformed limit surface if we freely choose L_1^n and L_2^n in each GUS, then we have

$$\mathbf{P} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ V & V & V & V \\ P_{31} & P_{32} & P_{33} & P_{34} \\ P_{41} & P_{42} & P_{43} & P_{44} \end{bmatrix}$$

²⁹² With (5), we can derive the 5×4 GUS basis control ²⁹³ mesh \mathbf{P}^0 from \mathbf{P} .

For each $n \ge 1$, like the situation discussed in the previous section, 2 regular sub-patches defined by a 5 × 4 control point matrix \mathbf{P}^n will be generated by the GUS process. The last three layers L_3^n , L_4^n and L_5^n of \mathbf{P}^n are obtained by performing a U-Subdivision on the first three layers of \mathbf{P}^{n-1} (see Fig. 10). Hence, (6) works here as well or, equivalently,

$$\begin{bmatrix} L_3^n \\ L_4^n \\ L_5^n \end{bmatrix} = A_3 \begin{bmatrix} L_1^{n-1} \\ L_2^{n-1} \\ L_3^{n-1} \end{bmatrix}$$
(9)

²⁹⁴ where A_3 is defined in eq. (5).

The computation of L_2^n involves L_1^n . We assume L_1^n is already available to us (this is the case in the real algorithm, i.e., L_1^n will be computed before the computation of L_2^n). L_2^n is computed as follows:

$$[L_2^n] = A' \begin{bmatrix} L_1^n \\ L_1^{n-1} \\ L_2^{n-1} \\ L_3^{n-1} \end{bmatrix}$$
(10)

Figure 9: \mathbf{P}^n (solid dots) generated after n^{th} GUS, circles are the 1st three layers of \mathbf{P}^{n-1}

where $A' = \begin{bmatrix} \frac{1}{4} & \frac{5}{8} & \frac{1}{8} & 0 \end{bmatrix}$. (10) is the result of a so-called *virtual U-Subdivision*. Note that, from U-Subdivision rules of (3), if we define a virtual layer of control points L_0^{n-1} as follows:

$$L_0^{n-1} = 2L_1^n - L_1^{n-1}$$

and use L_0^{n-1} , L_1^{n-1} , L_2^{n-1} and L_3^{n-1} to form a 4 × 4 control mesh of a regular patch, then by performing a U-Subdivision on this 4 × 4 control mesh, we get a 5 × 4 control mesh whose first, third, fourth and fifth layers are exactly L_1^n , L_3^n , L_4^n and L_5^n (see Fig. 9). We call such a reverse U-Subdivision a *virtual U-Subdivision* and use the second layer of such a subdivision as the second layer of \mathbf{P}^n . Since L_2^n corresponds to a vertex layer, we have

$$L_2^n = \frac{1}{8}L_0^{n-1} + \frac{3}{4}L_1^{n-1} + \frac{1}{8}L_2^{n-1}$$
$$= \frac{1}{4}L_1^n + \frac{5}{8}L_1^{n-1} + \frac{1}{8}L_2^{n-1}$$

²⁹⁵ which is exactly (10).

Figure 10: Virtual U-subdivision: grey circles are virtual control points, solid dots are \mathbf{P}^n .

THEOREM 2: By applying virtual U-Subdivision, limit surfaces of the two sub-patches obtained in each GUS are the same and can be considered as the limit surface of a regular patch.

³⁰⁰ *Proof* : The virtual control point layer L_0^{n-1} is ³⁰¹ obtained by reversing a U-Subdivision process for edge ³⁰² point, such that this can be derived from PROPERTY 1.

303 QED

304

316

We have shown the construction of control point lay-³⁰⁶ ers L_2^n , L_3^n , L_4^n and L_5^n for \mathbf{P}^n . We now discuss the choice ³⁰⁷ of control point layer L_1^n .

³⁰⁸ Due to properties of GUS, the unknown control ³⁰⁹ points after n^{th} GUS are those in L_1^1 , L_1^2 , ..., and L_1^n . ³¹⁰ These control points determine the shape of the limit ³¹¹ surface.

Since we expect our Polar part at V is at least C^1 (tangent plane continuous) with common data point d_V and at (0,v) and common unit normal n_V at d_V , we have the following proposition for G^2 continuous at V,

PROPOSITION 1: For any f_i and $f_{i+\frac{N}{2}}$ on the opposite side of Polar extraordinary point V, if each opposite side of Polar extraordinary point V, if each opposite side of Polar extraordinary point V, if each L_1^n of f_i and its corresponding control point in L_1^n of $f_{i+\frac{N}{2}}$ are on a C^2 curve across d_V and share the same unit normal n_V , then if basis control mesh \mathbf{P}^0 does not appear in derivatives of any Poarea lar parametric subdivision surface patch at d_V up to L^{nd} order, then it is G^2 at Polar extraordinary point V.

PROOF: The proof is trivial. If basis control 326 $_{327}$ mesh \mathbf{P}^0 does not appear in derivatives of any Polar ³²⁸ parametric subdivision surface patch at d_V up to the 2nd $_{329}$ order, it means that control points of \mathbf{P}^0 do not appear ³³⁰ in derivative polynomials at n^{th} GUS limit surface up to ³³¹ the 2nd order, when $n \to \infty$. By construction of GUS, 332 then in the derivative polynomials only control points 333 of L_1^n matters. Due to the symmetry of control points ³³⁴ and all corresponding control points in L_1^n of f_i and 335 $f_{i+\frac{N}{2}}$ form a C^2 curve across d_V and share same unit ³³⁶ normal n_V , an arbitrary control point in \mathbf{P}^n of f_i must be 337 on a C^2 curve across d_V with its corresponding control 338 point in \mathbf{P}^n of $f_{i+\frac{N}{2}}$ (a linear combination of a set of $_{339}$ C² curves across d_v and share the same unit normal n_V ₃₄₀ must be a C^2 curve across d_V and have the unit normal ³⁴¹ n_V). Since a data point at (u,0) of f_i at the n^{th} GUS is 342 generated by affine combination of its control points in ³⁴³ \mathbf{P}^n , with the symmetric arrangement of f_i and $f_{i+\frac{N}{2}}$, we 344 can show that the arbitrary corresponding data points at ³⁴⁵ the limit surface of n^{th} GUS of f_i and $f_{i+\frac{N}{2}}$ are on a C^2 ³⁴⁶ curve across d_V and have the same unit normal n_V . QED 347

From Proposition 1, we expect for an arbitrary Polar patch f_k , each control point in L_1^n shall be on a C^2 curve with its opposite control point in $f_{k+\frac{N}{2}}$, this C^2 curve statistical be across d_V and have a unit normal n_V at d_V .

From this expectation, before picking the unknown values $L_1^1, L_1^2, ..., L_1^n$ of the GUS's, we have to first deter-

mine the values of d_V and n_V . If we reorganize the control points surrounding V as $\{V, E_1, E_2, ..., E_N\}$, where $E_1, ... E_N$ are edge points connected to the extraordinary point V in a counterclockwise order, and define the triangular face f_k by $\{V, E_k, E_{k\% N+1}\}$, $k \in [1, N]$, we can pick the values of these terms as follows:

$$d_{V} = \frac{2}{3}V + \frac{1}{3N}\sum_{k=1}^{N}E_{k}$$

$$n_{V} = Norm(\sum_{k=1}^{N}n_{f_{k}})$$
(11)

³⁵² where Norm(x) is a function which returns unit normal ³⁵³ of a normal x. n_{f_k} is the face normal of f_k , can be ob-³⁵⁴ tained from $n_{f_k} = (E_k - V) \times (E_{k\% N+1} - V)$.

We notice that CCS regular patch (Fig 5 left) is C^2 continuous at V, so new E_1 and E_3 at n^{th} CCS must be on a C^2 curve that across the limit point d_V of V and lies on the tangent plane of CCS limit surface at d_V . This inspires us to come up with the concept of *dominative control meshes*. A *dominative control mesh* C_m of size 9 is defined as

$$C_m = [V_m, E_{m,1}, \dots, E_{m,4}, F_{m,1}, \dots, F_{m,4}]^T$$

³⁵⁵ which is exactly the control point mesh of a regular bi-³⁵⁶ cubic patch without $[I_1, I_2, I_3, I_4, I_5, I_6, I_7]^T$.

By applying midpoint knot insertion to C_m , we get

$$C_m^{(n)} = A_9 C_m^{(n-1)} = \dots = (A_9)^n C_m, n \ge 1$$
 (12)

where A_9 is the midpoint insertion coefficient matrix, its values can be derived from eq. (1). $C_m^{(n)}$ is the control point mesh after n^{th} midpoint knot insertion on C_m , and can be expressed as

$$C_m^{(n)} = [V_m^{(n)}, E_{m,1}^{(n)}, \dots, E_{m,4}^{(n)}, F_{m,1}^{(n)}, \dots, F_{m,4}^{(n)}]^T$$

The reason I_i (i = 1, ..., 7) are ignored is: as shown in 357 The reason I_i (i = 1, ..., 7) are ignored is: as shown in 358 (1), the new vertex point, edge points and face points 359 obtained from the midpoint knot insertion are indepen-360 dent of these inner ring control vertices. Since we plan 361 to map recursively generated edge points of dominative 362 control meshes into unknown values of L_1^n in GUS's, it 363 will not be necessary to include these vertices into the 364 control mesh.

There are totally N faces surrounding V, so we need N dominative control meshes to map these values, see Fig. 11 for the mapping from the dominative control meshes to the control points of the n^{th} GUS on face f_k . The mapping is defined as follows:

$$L_1^n[1] = E_{k-1,1}^{(n+1)}; \qquad L_1^n[2] = E_{k,1}^{(n+1)}; L_1^n[3] = E_{k+1,1}^{(n+1)}; \qquad L_1^n[4] = E_{k+2,1}^{(n+1)}$$
(13)

Figure 11: Mapping the recursively generated control points in dominative control meshes to L_1^n of n^{th} GUS on k^{th} face f_k .

³⁶⁵ Due to the ring structure of control points in GUS, ³⁶⁶ for the n^{th} GUS, the last three points in L_1^n of f_{k-1} are ³⁶⁷ exactly the first three points in L_1^n of f_k . Hence, for each ³⁶⁸ f_k , we only need to consider the mapping from $E_{k,1}^{(n+1)}$ to ³⁶⁹ $L_1^n[2]$ and, yet, we get all the control points for each L_1^n ³⁷⁰ once this mapping is considered for all k.

To get the values of $L_1^n[2]$ $(n \ge 1)$ for f_k , we initialize the dominative control mesh C_k as follows:

$$E_{k,1} = E_k; \qquad E_{k,3} = E_{k+\frac{N}{2}};$$

$$F_{k,1} = E_{k+1}; \qquad F_{k,2} = E_{k+\frac{N}{2}-1};$$

$$F_{k,3} = E_{k+\frac{N}{2}+1}; \qquad F_{k,4} = E_{k-1};$$

As mentioned before, we treat a triangular face as a special case of a quad face by vertex splitting. Let $E_{k,2}=E_{k,4}=V_k$. Then we have:

$$V_k = E_{k,2} = E_{k,4} = \frac{3}{2}(d_V - \frac{1}{9}(E_{k,1} + E_{k,3}) - \frac{1}{36}\sum_{i=1}^4 F_{k,i})$$

This initialization guarantees that the limit point of 372 the dominative control mesh equals d_V . In order to 373 make the GUS surface is tangent plane continuous at the 374 extraordinary point, we will further process the domi-375 native control meshes such that they have the same unit 376 normal n_V at the limit data point. The algorithm is as 377 follows:

³⁷⁸ (1) get the first order derivatives D_u , D_v at d_{V_k} . Since ³⁷⁹ C_k is a part of a regular patch, it can be easily cal-³⁸⁰ culated.

381 (2) get $t = D_u \cdot n_V$, the projection of D_u on n_V

³⁸² (3) let
$$F_{k,1} = 3t$$
, $F_{k,4} = 3t$, $F_{k,2} = 3t$, $F_{k,3} = 3t$,
³⁸³ which ensure $D_{ii} \cdot n_{ij} = 0$

384 (4) get
$$t = D_v \cdot n_V$$
, the projection of D_v on n_V

Figure 12: left: original CCS mesh and its limit surface, right: revised PCC mesh and its limit surface. The bottom left photo shows irregularity at boundaries of high-valence CCS extraordinary faces, and the bottom right is smooth.

³⁸⁵ (5) let $F_{k,1} - = 3t$, $F_{k,2} - = 3t$, $F_{k,3} + = 3t$, $F_{k,4} + = 3t$, ³⁸⁶ which ensure $D_v \cdot n_V = 0$

From above algorithm and initialization, since *N* is we even, the opposite dominative control meshes C_k and $C_{k+\frac{N}{2}}$ will share the same set of control points, differing only in the ordering.

With all control points in L_1^n defined in (13), we are now complete with the selection process for control points in \mathbf{P}^n . Let us reinstate (8) of parameterization sufficient to f_k as follows:

$$S(k, u, v) = W^{T}(u)K^{n}D_{b}MS_{b}\mathbf{P}^{n}M^{T}W(v)$$
(14)

³⁹⁵ $T_k = [C_{k-1} C_k C_{k+1} C_{k+2}]$, is a matrix of size 9 × 4, with ³⁹⁶ each column representing one of the four dominative ³⁹⁷ control meshes related to f_k . A_9 is defined in eq. (12). ³⁹⁸ In this section, we have shown how to construct a ³⁹⁹ GUS surface on Polar triangular faces in a PCC mesh. ⁴⁰⁰ In next section, we will show the behavior of the PCC

402 6. Evaluating the PCC surface

401 surfaces.

⁴⁰³ A PCC surface composes of two parts, CCS part and ⁴⁰⁴ Polar part. For the CCS part, the behavior of the limit ⁴⁰⁵ surface was already covered in [2]. In this section, we ⁴⁰⁶ focus on the behavior of the limit surface on Polar part. ⁴⁰⁷ As shown in the previous sections, a GUS surface of ⁴⁰⁸ a triangular face is C^2 on the limit surface and also C^2 ⁴⁰⁹ continuous with its adjacent quad faces. We will now ⁴¹⁰ evaluate the surface at Polar extraordinary points.

(15) is a recursive formula, the evaluation of the GUS surface at Polar extraordinary point needs an explicit expression for \mathbf{P}^n . We can expand (15) as follows:

$$\mathbf{P}^{n} = A_{5}^{n} \mathbf{P}^{0} + A_{5}^{n-1} S_{5} A_{9}^{2} T_{k} + A_{5}^{n-2} S_{5} A_{9}^{3} T_{k} + \dots + A_{5} S_{5} A_{9}^{n} T_{k} + S_{5} A_{9}^{n+1} T_{k} = A_{5}^{n} \mathbf{P}^{0} + \sum_{i=1}^{n} A_{5}^{n-i} S_{5} A_{9}^{i+1} T_{k} \quad n \ge 1$$
(16)

⁴¹⁴ A_5 has a single eigenvalue of $\frac{1}{8}$, and has the following ⁴¹⁵ properties:

$$A_{5} = \frac{1}{8} \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 5 & 1 & 0 & 0 & 0 \\ 4 & 4 & 0 & 0 & 0 \\ 1 & 6 & 1 & 0 & 0 \\ 0 & 4 & 4 & 0 & 0 \end{bmatrix}, \quad A_{5}^{2} = \frac{1}{8}^{2} \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 5 & 1 & 0 & 0 & 0 \\ 20 & 4 & 0 & 0 & 0 \\ 34 & 10 & 0 & 0 & 0 \\ 36 & 20 & 0 & 0 & 0 \end{bmatrix}$$
$$A_{5}^{n} = \frac{1}{8}^{n} \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 5 & 1 & 0 & 0 & 0 \\ 20 & 4 & 0 & 0 & 0 \\ 50 & 10 & 0 & 0 & 0 \\ 100 & 20 & 0 & 0 & 0 \end{bmatrix} = \frac{1}{8}^{n} \Theta, \quad n \ge 3$$

 A_9 is a 9 × 9 regular midpoint insertion coefficient matrix, its eigenstructure is studied in an earlier work on CCS surfaces [3] [18]. The eigenvalues of A_9 are 1, $\frac{1}{2}$, $\frac{1}{4}$, $\frac{1}{8}$ and $\frac{1}{16}$, and we define their corresponding eigenbases as Θ_1 , Θ_2 , Θ_3 , Θ_4 and Θ_5 , with

$$A_9^n = \Theta_1 + \frac{1}{2}^n \Theta_2 + \frac{1}{4}^n \Theta_3 + \frac{1}{8}^n \Theta_4 + \frac{1}{16}^n \Theta_5$$

Thus, when $n \ge 3$, (16) can be rewritten as:

$$\mathbf{P}^{n} = \frac{1}{8}^{n} \Theta \mathbf{P}^{0} + S_{5} A_{9}^{n+1} T_{k} + A_{5} S_{5} A_{9}^{n} T_{k} + A_{5}^{2} S_{5} A_{9}^{n-1} T_{k} + \sum_{i=1}^{n-3} \frac{1}{8}^{n-i} \Theta S_{5} (\Theta_{1} + \frac{1}{2}^{i+1} \Theta_{2} + \frac{1}{4}^{i+1} \Theta_{3} + \frac{1}{8}^{i+1} \Theta_{4} + \frac{1}{16}^{i+1} \Theta_{5}) T_{k},$$
(17)

⁴¹⁶ Take (17) into Polar parametric surface of (14), because ⁴¹⁷ its coefficient is $\frac{1}{8}^n$, such that it will be zero in deriva-⁴¹⁸ tives up to the 2nd order when $n \to \infty$.

⁴¹⁹ From Proposition 1, we now can conclude that the ⁴²⁰ limit surface generated by our new scheme on Polar part ⁴²¹ will be curvature continuous at the Polar extraordinary ⁴²² points.

423 7. Discussion and Conclusion

In this paper, a new subdivision scheme with Polar
embedded Catmull-Clark mesh structure is introduced.
By introducing Polar configuration on high valence vertex, the ripple problem inherent in a CCS surface is
solved.

⁴²⁹ The subdivision scheme developed has the properties ⁴³⁰ that the limit surface on the CCS part is exactly the same ⁴³¹ as a CCS limit surface and the limit surface on the Polar ⁴³² part is G^2 continuous everywhere.

Since it is inevitable to have high valence extraordinary points in some cases, e.g. airplanes, rockets and
engineering parts, the currently available CCS meshes
can be easily converted to PCC meshes, such that one
can avoid redesigning the complete mesh.

In contrast to commonly used Polar subdivision rules,
the subdivision masks of proposed GUS subdivision
scheme on Polar part is equivalent to those of CCS. The
properties of GUS surfaces are studied and proven. The
GUS scheme is a stationary scheme.

The curvature at a Polar extraordinary point is inde-444 pendent of nearby control points, but relies on some se-445 lected dominative control meshes. Implementation re-446 sults (Fig 12) show that very high quality, curvature con-447 tinuous subdivision surfaces can be generated with this

Figure 13: Various primitives of GUS surfaces on Polar parts

448 new scheme on the Polar part. Furthermore, the scheme 449 is WYSIWYG (what you see is what you get): as far 450 as the ring of control points connected around the Polar 451 extraordinary point is smooth, there will be no ripples. Our next step is to develop a general geometric 452 453 framework to incorporate some G^2 schemes for CCS ⁴⁵⁴ meshes into the PCC subdivision scheme, so that a G^2 455 everywhere PCC surface can be generated.

456 References

459

- 457 [1] E. Catmull, J. Clark, Recursively generated B-spline surfaces on arbitrary topological meshes, Computer-Aided Design 10 (6) 458 (1978) 350-355
- D. Doo, M. Sabin, Behaviour of recursive division surfaces near 460 [2]
- extraordinary points, Computer-Aided Design 10 (6) (1978) 461
- 356-360. 462

- [3] J. Stam, Exact evaluation of Catmull-Clark subdivision surfaces 463 464 at arbitrary parameter values, in: Proceedings of the 25th annual 465 conference on Computer graphics and interactive techniques, ACM, 1998, p. 404. 466
- 467 [4] H. Prautzsch, Smoothness of subdivision surfaces at extraordinary points, Advances in Computational Mathematics 9 (3) 468 (1998) 377-389. 469
- A. Levin, Modified subdivision surfaces with continuous curva-470 [5] ture, ACM Transactions on Graphics (TOG) 25 (3) (2006) 1040. 471
- [6] 472 K. Karciauskas, J. Peters, Concentric tessellation maps and curvature continuous guided surfaces, Computer Aided Geometric 473 Design 24 (2) (2007) 99-111. 474
- C. Loop, S. Schaefer, G2 tensor product splines over extraor-475 [7] dinary vertices, in: Computer Graphics Forum, Vol. 27, John 476 Wiley & Sons, 2008, pp. 1373-1382. 477
- [8] M. Halstead, M. Kass, T. DeRose, Efficient, fair interpolation 478 using catmull-clark surfaces, in: Proceedings of the 20th annual 479 480 conference on Computer graphics and interactive techniques, ACM, 1993, pp. 35-44. 481
- [91 J. Peters, K. Karčiauskas, An introduction to guided and po-482 lar surfacing, Mathematical Methods for Curves and Surfaces 483 (2010) 299-315. 484
- 485 [10] K. Karčiauskas, J. Peters, Bicubic polar subdivision, ACM 486 Transactions on Graphics (TOG) 26 (4) (2007) 14.
- P. J. Myles A., Bi-3 c2 polar subdivision, ACM Trans. Graph 487 [11] 488 28 (3) (2009) 1-12.
- 489 12] A. Myles, K. Karčiauskas, J. Peters, Pairs of bi-cubic surface 490 constructions supporting polar connectivity, Computer Aided Geometric Design 25 (8) (2008) 621-630. 491
- 492 [13] J. Peters, L. Shiue, Combining 4-and 3-direction subdivision, ACM Transactions on Graphics (TOG) 23 (4) (2004) 980-1003. 493
- J. Stam, C. Loop, Quad/triangle subdivision, in: Computer 494 41 Graphics Forum, Vol. 22, Wiley Online Library, 2003, pp. 79-495 496 85
- S. Schaefer, J. Warren, On c 2 triangle/quad subdivision, ACM 497 [15] Transactions on Graphics (TOG) 24 (1) (2005) 28-36. 498
- 499 161 A. Myles, curvature-continuous bicubic subdivision surfaces for polar configurations (2008). 500
- A. Ball, D. Storry, Conditions for tangent plane continuity over 501 [17] recursively generated B-spline surfaces, ACM Transactions on 502 Graphics (TOG) 7 (2) (1988) 102. 503
- 504 [18] S. Lai, F. Cheng, Similarity based interpolation using Catmull-Clark subdivision surfaces, The Visual Computer 22 (9) (2006) 505 865-873. 506