
A Generative Human-Robot Motion Retargeting Approach
using a Single Depth Sensor

Sen Wang1,2 Xinxin Zuo1,2 Runxiao Wang1 Fuhua Cheng2 Ruigang Yang2

Abstract— The goal of human-robot motion retargeting is to
let a robot follow the movements performed by a human subject.
This is traditionally achieved by applying the estimated poses
from a human pose tracking system to a robot via explicit
joint mapping strategies. In this paper, we present a novel
approach that combine the human pose estimation and the
motion retarget procedure in a unified generative framework.

A 3D parametric human-robot model is proposed that has
the specific joint and stability configurations as a robot while
its shape resembles a human subject. Using a single depth
camera to monitor human pose, we use its raw depth map
as input and drive the human-robot model to fit the input 3D
point cloud. The calculated joint angles of the fitted model
can be applied onto the robots for retargeting. The robot’s
joint angles, instead of fitted individually, are fitted globally so
that the transformed surface shape is as consistent as possible
to the input point cloud. The robot configurations including
its skeleton proportion, joint limitation, and DoF are enforced
implicitly in the formulation. No explicit and pre-defined joints
mapping strategies are needed.

This framework is tested with both simulations and real
robots that have different skeleton proportion and DoFs
compared with human to show its effectiveness for motion
retargeting.

I. INTRODUCTION

Nowadays social robots have become more intelligent
along with the progress in object recognition and speech
recognition. However the limited motion generating strategy
is one bottleneck that prevents them from more widespread
use. It is still an active research topic for which many ap-
proaches have been proposed. One effective way to generate
motion for robots is to let a robot mimic the movement of a
human, i.e., human-robot motion retargeting. The goal is to
drive a humanoid robot to move in a natural way provided
with the joint movements or positions captured from human.
This is a hot topic in both robotics and other areas, as motion
retargeting can be widely used in robot simulation [1] and
also in virtual characters animation [2]. In this paper, we
pay our attention on how to make robots imitate the human
motion.

Previously, the joints position obtained from a motion
capture (Mocap) system [3] or Kinect skeleton tracking
algorithm [4] is typically considered as the input of a motion
retargeting procedure. After that the joint movements or the
end-effector positions are applied onto robots via some pre-
defined mapping strategies between human and robots. One

1Northwestern Polytechnical University, Xi’an 710072, P.R.China
{wangsen1312, xinxinzuo2353}@gmail.com,
wangrx@nwpu.edu.cn

2Univeristy of Kentucky, Lexington, KY 40506, USA
{cheng,ryang}@cs.uky.edu

(a)

(b) (c)

Fig. 1: Motion retargeting results of three different poses.
The mesh and color image are captured by Kinect V2. These
poses retargted to NAO robot using our proposed approach.

straightforward way for motion retargeting is to apply inverse
kinematics (IK) to end-effector positions given the tracked
human joint positions. Another kind of solution is to preserve
the joint angles, which places a major role for defining
mapping criteria.

These kinds of methods are not always sufficient since
the skeleton of a robot usually differs from the skeleton of
a human, such as the proportion of their limbs. Therefore
we need to define the mapping between the target and the
source model and this mapping can not be reused in robot
models with different configurations. Another drawback for
these methods is that we cannot enforce joint angles and
end positions constraints simultaneously. This will cause
the dissimilarity of robot movements and human movement.
Moreover, they have quite different joint limitations and
robots usually have less degree of freedoms (DoFs) than
human beings. Stability is another essential problem that
needs to be dealt with while imitating human motion. These
requirements pose more challenges for human-robot motion
retargeting.

In this paper, rather than dealing with motion tracking
and retargeting separately, we present a novel method that
combines these two procedures in a united framework. We
use the captured 3D point cloud from a single consumer
depth sensor such as Kinect as our input instead of the
computed skeleton, and the human subject does not wear
any markers.

For the robot model representation, it is usually modeled

as joint or skeleton; in contrast we choose to use a parametric
human-robot template to represent the joints together with
3D surface shape. More specifically, we propose a HUMROB
model that has the joint configurations of the target robot and
the 3D shape same as the source human subject. The robot
is modeled as 3D mesh with bones and joints embedded
inside the surface. Our goal is to compute the joint angles of
the robot by driving the template model so that the surface
shape fits as much as possible the point cloud acquired from
depth sensor. In this way, we can get the joint angles for the
robot that maintain the pose similarity. Besides, the stability
and joint limitations are enforced in the objective function
naturally. Since we do not need an explicit joint or position
mapping strategies, our method can be applied to robots
with different configurations quite conveniently. We classify
our method as a generative motion retargeting approach as
compared with previous methods that focus on developing
various skeleton mapping strategies.

As far as we know, our technique is the first one that uses
a generative unified framework to achieve motion retargeting
with one single depth sensor. Our algorithm is validated
with both simulation and real robots with different skeleton
proportions from human. Satisfactory and stable motions
have been generated even under some extreme poses. Some
examples are shown in Fig. 1.

II. RELATED WORK

Motion retargeting is a hot topic in robotics that has been
used in gaming and motion generation. For previous motion
retargeting methods, two separate procedures are included:
motion capture of source and then motion retargeting for
target. For a detailed review of various algorithms, especially
for human-robot motion retargeting, we refer the reader to
the survey [5]. Some other methods have demonstrated high
accuracy performance while considering kinematic and dy-
namic constraints such as joint limits, self collisions, torque
limits, balance and so on [6], [7], [8]. In this section, we
review only the most related work focusing on human-robot
motion retargeting including pose estimation and motion
retargeting.

A. Human Pose Estimation

Human pose estimation is mainly categorized into marker
based method, inertial based system, and markerless method
regarding to the device that has been used.

Marker based system. Marker based systems require the
user to wear a special suit with markers attached to fixed
body position, such as Vicon™ systems [3] and Optitrack™
system.

Inertial based system. Xsens MVN™ motion capture
system [9], which consisting of inertial sensors attached to
the individual body segments to get the precise position.

Although these two kinds of systems can offer high
accuracy and a rate of frames, precise marker position and
huge cost is an obstacle for widespread use.

Markerless system. Motion capture with only color
cameras is still an unsolved problem for computer vision

community considering the ill-posed condition [10]. With
the availability of consumer depth sensors such as Kinect,
it is easy to get the human skeleton using its SDK [11],
[12] which shows more accuracy than color only methods.
Apart from the default use with original SDK, researchers
focus on how to get the human pose more precise. The
papers mainly include discriminative or generative approach
for model based pose estimation. Existing discriminative
approaches either performed body part detection by iden-
tifying salient points of the human body [13], or relied on
classifiers or regression machines trained offline to infer the
joint locations [14]. The generative approaches fit a template
to the observed data. Ye et al. [15] relates the observed data
with model template using Gaussian Mixture Model, without
explicitly building point correspondences.

B. Motion Retargeting

The challenge for motion retargeting can be summa-
rized into two aspects: 1) Source and target has similar
or same topology but with different geometry, that means
the source/target is expressed as similar or even the same
hierarchy link of joints, but the ratio length of bones is
different from each other. 2) Source and target has different
topology, that is a more complex situation and also different
geometry.

Different geometry. For the different geometry but same
topology, it is common to employ IK solvers integrated with
soft constraints enforced in an object function. Also, some
hard constraints are employed to define specific rules for the
motion that must be maintained [4], [9], [16].

Different topology. Source and target are identified as
topologically different if they do not have the similar skeleton
structure, some methods have been proposed, among which
exampled-based methods [17], [18] are commonly used. This
method based on a number of motion mappings, several key
poses and correspondences are pre-defined.

Unlike the traditional separated pose estimation and map-
ping procedure, in this paper we propose a unified framework
combines the two procedures using a single depth sensor. We
can deal with motion retargeting both the different geometry
and different topology case without special treatment.

III. BACKGROUND

We first introduce some background knowledge that is
essential for our approach.

A. Gaussian Mixture Model

We give a brief introduction to GMM and its solution using
EM algorithm, which is the fundamental techniques for our
framework. More details can be found in [19].

Assume that we have N source points, SN∗D =
(s1, . . . , sN)T and M target points, TM∗D = (t1, . . . , tM)T .
D is the dimensionality of the point set, so D = 3 in this
paper.

We assume that the source points follows the GMM whose
centroids are depend on the target points. The probability of

each source point is expressed as,

p(s) = (1− µ)

M∑
m=1

1

M
p(s|tm) + µ

1

N
(1)

where

p(s|tm) =
1

(2πσ2)
3
2

exp(−||s− tm||2

2σ2
) (2)

The outliers are considered as subjecting to the uniform
distribution with µ as the approximation for the percentage
of outliers.

Next we reparametrize the GMM centroid locations by a
set of parameters φ and estimate them by minimizing the
negative log-likelihood function,

E(φ, σ2) = −
N∑
n=1

log
M+1∑
m=1

P (tm)p(sn|tm(φ))

= −
N∑
n=1

log(

M∑
m=1

1− µ
M

p(sn|tm(φ)) +
µ

N
)

(3)

The energy function is usually solved using the EM
algorithm in an iterative manner as described in [20]. We
summarize the E-step and M-step briefly here.

During the E-step, given the values of parameters esti-
mated from M-step of the previous iteration, we can then
use the Bayes’ rules to compute a posteriori probability
distribution for the target data points given the source data,

pold(tm(φ)|sn) =
exp(− ||sn−toldm (φ)||2

2(σold)2
)∑M

i=1 exp(− ||sn−toldi (φ)||2
2(σold)2

) + c
, (4)

where c =
(
2π(σold)2

) 3
2 1−µ

µ
M
N .

To simplify the expression, we let pold to stand for
pold(tm(φ)|sn) in the following sections.

During the M-step, the parameters are updated via mini-
mizing the following complete negative log-likelihood func-
tion.

Q(φ, σ2) =
1

2σ2

N,M∑
n,m=1

pold||sn − tm(φ)||2 +
3

2
NP logσ2,

(5)
Where NP =

∑N,M
n,m=1 p

old. The value of all the parameters
will converge after several iterations.

B. Joint and Vertex transformation

To better represent the posture of whole body, we use the
classical twists exponential map for joint transformation and
adopt skeleton-subspace deformation for vertex transforma-
tion.

1) Joint transformation: For articulated model such as
human and robot, pose can be represented by a set of twists
ξ̂φ ∈ SO(3), which is the exponential mapping that can be
generalized to the Euclidean group (SE(3)) [21]. We give
more details in the following.

In general, an articulated body transformation is repre-
sented as the exponential of the twist T ∈ SE(3) as follows,

T = exp(ξ̂φ) (6)

In homogeneous coordinates, the twist ξ̂ ∈ se(3) can be
expressed as follows,

ξ̂ =

[
ω̂ v
0 0

]
∈ R4×4, (7)

where ω̂ ∈ so(3) is 3×3 skewed-symmetric matrix converted
from a 3D vector ω ∈ R3, which is the direction of the
rotation axis. The 3D vector v determines the location of the
rotation axis and the amount of translation.

Assume that robot has P joints, including the global trans-
formation and rotation, the whole body motion namely the
pose is controlled by these parameters Φ := (φ0, φ1 . . . , φP).
With the twists exponential map, final transformation for
each joint k is represented as,

Tk =

P∏
p=0

exp(κpk ξ̂pφp), (8)

where ξ̂0φ0 is the global transformation and rotation for the
root that consists of the six parameters. κpk = 1 if p is the
hierarchical parent of the joint k, otherwise κpk = 0 .

2) Vertex transformation: When we get the joint trans-
formation under a certain pose Φ, the position of each
vertex v of template mesh is computed by skeleton-subspace
deformation (also known as ”LBS”) method [22],

vi(Φ) =

P∑
p=1

ωipTp(Φ)v0
p, (9)

where ωip is the skinning parameters attaching the ith vertex
to the underlying the joint p, and v0

i stands for the position
for each vertex in its reset pose.

IV. APPROACH

Our goal is to retarget the motion captured from human
subjects to robots in a generative way without any pre-
defined joint mapping. The overall pipeline is shown in
Fig. 2. There are mainly two steps. First, we present our

HUMROB Model

captured
data

Robot

Fig. 2: System Pipeline. We use captured depth data as
input. First, we build up the HUMROB model, which is then
deformed to fit the captured data and the joint angles are
computed. Finally, the pose is applied onto the robot.

method to create a parametric HUMROB model in section IV-
A; then the template model is deformed to fit the captured
depth map of the source human subject as described in
section IV-B. We enforced joint limitations and stability
constraints during the deformation. Finally, the joint angles
computed via the deformation can be applied directly onto
the robots for motion retargeting.

A. HUMROB Model

Considering our goal of fitting robot model to captured
point cloud from depth sensor, first we need to build a
personalized 3D Human-Robot model, which is a parametric
model that can be deformed according to joint angles and
positions. Also, the robot configurations, which are usu-
ally different from humans, need to be embedded into its
parametric model. Several steps are performed to get this
personalized parametric HUMROB model as shown in Fig. 3.

The first step is to build a personalized 3D model for
human source subjects. Nowadays, there are several success-
ful approaches that can be used to get the 3D model. For
example, we can use multiple depth sensors and then fuse
the depth maps captured from multiple view directions [23].
Besides, a single depth sensor is also sufficient to provide
the complete 3D human model [24].

Then given the 3D model of the human subject, the next
step is to parametrize the model using the generic parametric
human model. In more details, we use the personalized 3D
model as a target, and the limb length and the geometry
of the generic template is adapted to fit the target model,
serval methods can be applied, such as [25]. As with the
adaptation, the configurations of generic parametric model
are adjusted to make the model align with the 3D person-
alized model of the human subject. After the alignment,
the skinning weight transfer procedure is followed where
k-nearest neighbor(k-NN) search is implemented between
generic template and personalized model to obtain the raw
skinning weight. Finally, we use the laplacian smooth to
smooth the transferred skinning weight. By the end of this
step we get the personalized parametric model automatically.

Finally, we apply the robot configurations including the
limb proportion and its joints limitation to the personalized
parametric model we just have obtained. In this step, the joint
positions for each limb will get adjusted and we will also
change the DoFs of particular joint according to the robot
we intend to retarget to.

B. Motion Retargeting

Now we have got the HUMROB model, then we can
perform motion retargeting under the motion tracking frame-
work by fitting this parametric model to captured depth
data. The framework consists of two fundamental techniques
namely the Gaussian Mixture Model and the joint/vertex
transformation described in Sec. III-A and Sec. III-B.

Another thing we need to point out is that we choose to do
the tracking and motion retargeting continuously along the
sequence rather than selecting key frames and performing
retargeting frame by frame as often used in previous works.

Parametric
Personalized

Model

Personalized
Model

Robot
Configuration

Parametric
Generic

Template

Geometry and
limb adaptation

HUMROB
Model

Fig. 3: Pipeline for building up personalized parmateric
HUMROB model

First, suppose that the robot has J joints and we have got
the pose (the joint angles in our case) at time t denoted as
Θt := (θt0, θ

t
1 . . . , θ

t
J), we intend to compute the changes for

the pose ∆Θ from time t to t+ 1 as follows,

Θt+1 = Θt + ∆Θ (10)

Under twist-based parametrization, the transformation for
any joint k at time t+ 1 can be expressed as,

T t+1
k =

J∏
j=0

exp(κjk ξ̂k(θtj + ∆θj)) (11)

1) Energy formulation: To compute the pose expressed
by Θ, we formulate the energy function as below,

E = E(Θ, σ2) + λ⊥E⊥(Θ, σ2) + λrEr(∆Θ) (12)

The first term is fitting cost that measures the distance
of deformed HUMROB template model from captured point
cloud, which is minimized to enforce pose similarity. To
give more mathematical details, the observed points from the
capture human pose are denoted as (SN∗3 = (s1, . . . , sN)T),
and the template points sampled from the HUMROB model
are represented as a vertex set (VM∗3 = (v1, . . . ,vM)T). If
we take VM∗3 as the centroids of GMM model, then SN∗3
can be seen as the observed data that should be generated
from the centroids via GMM model as described in Sec.III-
A.

Therefore the vertex position fitting cost can be expressed
as,

E(Θ, σ2) =
1

2σ2

N,M∑
n,m=1

pmn||sn − vm(Θ)||2 +
3

2
NP logσ2,

(13)
Similar to pold in Eq. 4, the pmn can be seen as the

probability of sn relating to vm, we give more details in
section V-B. vm(Θ) is calculated by substituting the Tj(Θ)
in Eq. 9 with Eq. 11, and then we get the position for each

vertex computed as,

vm(Θ) =

J∑
j=1

ωmj
(J∏
j=0

exp(κjk ξ̂k(θtj + ∆θj))
)
v0
m, (14)

The second term in Eq. 12 is another fitting term that
ensures the normal consistency between deformed template
model and the observed depth data. The cost function for
this term is given as,

E⊥(Θ, σ2) =
1

2σ2

N,M∑
n,m=1

pmn||s⊥n − v⊥m(Θ)||2 +
3

2
NP logσ2,

(15)
where s⊥n and v⊥m(Θ) are the normal vector for the sn and
vm(Θ) respectively.

To reduce the computation cost, we use same σ2 for Eq. 13
and Eq. 15.

In addition to the above two fitting terms, we also have
the third term in Eq. 12 that penalize big changes of
the poses for neighoring frames. This term is necessary to
preserve temporal consistency and smooth motion transition
in a sequence.

Er(∆Θ) =
∑
||∆Θ|| (16)

Another important constraint we have to take into con-
sideration while performing motion retargeting is the joint
limitation, as the joint limitation for robots usually differs
from the human. This constraint can be handled naturally
in our framework by specifying the lower (θmin) and upper
bound (θmax) for each joint while performing the optimiza-
tion for Eq. 12. This can be seen as the hard constraint of the
cost function. So the final energy function can be represented
as,

E = E(Θ, σ2) + λ⊥E⊥(Θ, σ2) + λrEr(∆Θ)

Θ ∈ [Θmin,Θmax]
(17)

We present two examples in Fig. 4 showing the deforma-
tion results after minimizing the energy function Eq. 17. The
left columns is the HUMROB model in initial poses overlaid
with captured 3D mesh data, and the right column is the
deformed HUMROB template achieved by our method.

Fig. 4: Deformed HUMROB model results after applying our
framework.

2) Robot stability: In this paper we assume that the robot
is motionless as it is driven at a very low motor speed.
This indicates that it only experiences gravitational forces.
Therefore instead of using the complex ZMP criteria and
we turn to use floor projection of center of mass (FCoM)

criteria to ensure the stability of the robot. Next we will show
how to integrate this stability constraint into our framework.

Suppose the robot has L links or bones and the vectors
pl are the vectors points from the CoM of each individual
bones to coordinate origin. The CoM for the whole body
denoted as pCoM is computed as,

pCoM =

∑L
l=1mlpl∑L
l=1ml

, (18)

where ml is the mass of each bone.
The floor projection of the CoM (pFCoM) is calculated

by taking x and y component of vector pCoM as its x and
y component and setting its z component to be zero.

The main criteria is: the motionless humanoid should be
able to maintain its balance if pFCoM is in the support
polygon (SP), which is formed by the convex hull about
the floor support points. In this paper, we use the inscribed
circle of SP as the more strict support polygon, denoted
as C SP . We introduce another term Eb express the robot
stability, which is computed as,

Eb =

 0 ifpFCoM inside C SP
∞ ifpFCoM outside SP

o− pFCoM otherwise
(19)

where o is center of C SP .
Therefore, for each frame we will first find the optimal

pose configuration by minimizing Eq. 17. Then we can
compute Eb which reflects the current stability status. If Eb
equals zero, it means we can safely apply the current pose
into the robot with stability already maintained. However,
if Eb equals ∞, we will give the opposite offset (0.3 rad)
to the hips’ pitch/roll angles. Otherwise, we will record the
−→opt = o − pFCoM for the current frame t. Suppose for the
the next frame t + 1, we have got the vector −→opt+1. Then
if cos(−→opt,−→opt+1) > cos(30◦) & ||−→opt+1|| > ||−→opt||, which
indicates that the stability violation will probably occur in
successive frame, in this case, we will give an opposite offset
(0.05 rad) to the hips’ pitch/roll angles.

V. IMPLEMENTATION

A. Data Preprocessing

We capture the depth data of human subject using Mi-
crosoft Kinect V2. The depth data has the resolution at 512×
424 and the depth stream is captured at 30fps. We assume
that depth sensor is calibrated and the region of interest,
namely the human subject, can been roughly segmented with
background subtraction.

The parameters (Θ) are all coded as rad in order to keep
consistent with the real robot. The algorithm is implemented
in Matlab on an ordinary PC with Intel i7 3.6GHz processor
and 16GB RAM and it takes about five seconds for each
frame. The pose transferred to real robot is coded with
Python through Choregraphe™.

B. Implementation details

Alg. 1 shows how to minimize the energy function Eq. 17
to get the pose configurations, namely the parameters Θ and
σ2. First, we adopt a linearized surface deformation strategy
to simply the constrained nonlinear cost function into a linear
one [26]. But the normal fitting term Eq. 15 cannot be
linearized, so it is neglected in this stage. The computed
linear solution can then be taken as the initialization for the
over-all nonlinear optimization, for which we choose to use
trust-region-reflective algorithm to find a optimal solution for
the nonlinear function Eq. 17.

In the Linear solver part, we only consider position fitting
(Eq. 13), then the the posteriors pmn is computed as,

pmn =
exp(− ||sn−vold

m (Θ)||2
2(σold)2

)∑M
i=1 exp(− ||sn−vold

i (Θ)||2
2(σold)2

) + c
, (20)

In the Nonlinear solver part, the vertex and normal are
considered together (Eq. 13 and Eq. 15), so the posteriors
pmn is computed as,

pmn =
exp(− ||sn−vold

m (Θ)||2+λf ||s⊥
n−v

⊥old
m (Θ)||2

2(σold)2
)∑M

i=1 exp(− ||sn−vold
i (Θ)+λf ||s⊥

n−v⊥old
m (Θ)||2

2(σold)2
) + c

,

(21)
And c in Eq. 20 and Eq. 21 can be computed by Eq. 4.

initial pose: linear third order auto-regression
begin Step One: Linear solver for initialization

while Pose not converged do
E-step: Compute posteriors via Eq. 20.
M-Step:
• Minimize the linearized cost function of

Eq. 13 for (Θ, σ2)
• Update template vertices via Eq. 14
• parameters are adjusted by enforcing

robot stability
end

end
begin Step Two: Nonlinear solver for global solution

E-step: Compute posteriors via Eq. 21.
M-Step:
• Minimize Eq. 17 using trust-region-reflective

algorithm
• Apply stability to adjust the parameters

end
Algorithm 1: The parameters optimization procedure

Then, as shown in Alg. 1, the parameters are adjusted in
every M-step to satisfy the stability constraints as described
in section IV-B.2.

Finally, in order to speed up the convergence speed and
reduce the computation cost, two strategies are employed.
First, we perform sub-sampling for both the HUMROB tem-
plate and the captured point cloud. We have tested different
numbers of sampled points. Without losing key components
and good performance, we identified the template and point

maps sample number should be 5000 and 2500 respectively.
We found these can achieve a good balance. The other
strategy is that we adopt the poses of previous frames with
a third-order linear auto-regression model as a prediction for
the current pose.

C. Parameter settings

In Eq. 13 and Eq. 15, the initial σ2 = 0.022. In Eq. 21,
λf = 0.5. In Eq. 17, λ⊥ = 0.5 and λr = 1000. In Alg. 1,
the pose converge criteria is that iteration stops when the
maximum movement for all joints is less than 0.002rad given
that the precision for the real robot sensor is 0.1◦.

These values are tuned empirically and remained fixed for
all the experiments.

VI. EXPERIMENTS

A. Robot test

We have tested our method on NAO robot that is manufac-
tured by Softbank. The robot is 58 cm tall and weighs 5.2 kg.
The robot have 23 DoFs in total for whole body (exclude the
open/close hands DoFs), while the generic human skeleton
has 47 DoFs. The specific robot configuration has been
enforced by embedding it into the HUMROB model.

The framework is validated on human subjects both male
and female, with subjects performing various and even some
extreme motions. In Fig. 5 shows our retargeting results of
several different kinds of postures.

As shown in Fig. 5a, the robot can mimic the hands up
postures performed by the human subjects successfully. In
Fig. 5b, bow and squat postures can also be executed by
the robot resembling to the human. These postures mainly
focus on upper/lower body posture with limited stability
constraints.

We present more results in Fig. 5c and Fig. 5d with human
subjects leaning forward and kicking. The stability needs
to be taken into consideration under these circumstances,
especially in one foot support, stability has the highest
priority protecting the robot from falling down. Though some
postures are not executed exactly as the human subjects, they
still share great similarity globally.

B. Stability

The stability check described in section IV-B.2 plays an
important role in the motion retargeting. While we try to
make the robot to perform the poses as similar as possible
to the human subject, we have to take its stability into consid-
eration as the robot may fall down in some poses. We present
two cases in Fig. 6, that shows the retargeting results with
and without our stability constraints. The middle columns
are simulation results without stability requirements, which
are not subjected to gravity force, so the robot acts just like
the human subject. However, if we apply the same pose onto
the real robot, it will fall down. After enforcing the stability
constraints, we will get the results as shown in the right
columns. We try to achieve the most similar poses while
maintaining its stability.

(a) Hands up
(b) Bow and Squat

(c) Rotation and Lean forward (d) Kick

Fig. 5: Results in different kinds of postures. For each case, the first row shows the original mesh and image, and the second
row shows the robot executing the pose computed with our proposed approach.

Fig. 6: The effect of robot stability. The left column is
original mesh, the middle column is simulation result without
gravity and stability constraints, the right column is the
retargeting on real robot with stability applied.

In the real humanoid test, we also restrict that at least one
foot fully touches the ground. Besides, the support leg of the
robot needs to bend a little if it almost reaches the maximum
motor torque, as shown in the third pose in Fig. 5d.

(a) Lean forward

(b) Rotation

Fig. 7: Visual comparisons of our results with SDK on two
cases. In each case, the left one is the captured image, the
middle left is the result from the SDK while the middle
right one is result using our framework, the right one is the
simulation result for motion retargeting.

C. Comparison

We have done some qualitative comparisons between our
methods and Kinect SDK as shown in Fig. 7.

The skeletons are colored with green and magenta rep-
resenting the left and right part of the body, respectively.
In Fig. 7a, the human subject leans forwards with one of
her legs severely occluded. The skeleton we get from Kinect
SDK is clearly wrong for the leg, while we can still get more
reasonable result. Fig. 7b shows that when the subject turns
round, the SDK cannot differentiate the front and the back
of the human body which cause the flipping of left and right
sides of the body. However, since we take the depth sequence
into consideration and penalize abrupt changes in successive
frames rather than tracking frame by frame, we are able to
handle these cases.

VII. CONCLUSION

In this paper, we propose a novel generative framework
for human-robot motion retargeting with motion tracking
and retargeting computed in a single formulation. A para-
metric HUMROB template model is built with the robot
configurations embedded, from which we can formulate the
cost function to maintain the similarity between deformed
template model and captured data from depth sensor. The
joint limitation of the robots and stability constraints are
enforced in the framework. No pre-defined joints mapping
between robot and human subject is needed, instead we can
take the similarity for both joint angles and the end position
simultaneously into consideration. We have validated our
method on both simulated and real robots to verify its ability
of motion retargeting for various poses.

Limitations: 1) For some self-interactive motions like
his/her hand touching the head, the interaction may not be
maintained by the robot since we haven’t enforced inter-
action constraints explicitly in our formulation. 2) Due to
non-optimized Matlab code and motionless assumption, the
whole process is not real-time. These are two of our major
works to be improved in the future.

ACKNOWLEDGMENT
This work is partially supported by the National Natural

Science Foundation of China (No. 61603302, 51375390,
61332017, 61170324, 61572020), US National Science
Foundation grants (IIS-1231545, IIP-1543172), Key Indus-
trial Innovation Chain of Shaanxi Province Industrial Area
(2016KTZDGY06-01, 2015KTZDGY04-01), and the ”111
project” of China (No. B13044). Xinxin Zuo and Ruigang
Yang are the co-corresponding authors for this paper.

REFERENCES

[1] M. J. Gielniak, C. K. Liu, and A. L. Thomaz, “Generating human-like
motion for robots,” Int. J. Robot. Res., vol. 32, no. 11, pp. 1275–1301,
2013.

[2] S. Guo, R. Southern, J. Chang, D. Greer, and J. Zhang, “Adaptive mo-
tion synthesis for virtual characters: a survey,” The Visual Computer,
vol. 31, no. 5, pp. 497–512, 2015.

[3] O. E. Ramos, N. Mansard, O. Stasse, C. Benazeth, S. Hak, and L. Saab,
“Dancing humanoid robots: Systematic use of osid to compute dynam-
ically consistent movements following a motion capture pattern,” IEEE
Robot. Autom. Mag., vol. 22, no. 4, pp. 16–26, 2015.

[4] L. P. Poubel, S. Sakka, D. Cehajic, and D. Creusot, “Support changes
during online human motion imitation by a humanoid robot using
task specification,” in Proc. IEEE Int. Conf. Robot. Autom., 2014, pp.
1782–1787.

[5] J. P. BANDERA, J. A. RODRÍGUEZ, L. MOLINA-TANCO, and
A. BANDERA, “A survey of vision-based architectures for robot
learning by imitation,” Int. J. of Hum. Robot., vol. 9, no. 1, pp. 1–40,
2012.

[6] B. Dariush, Y. Zhu, A. Arumbakkam, and K. Fujimura, “Constrained
closed loop inverse kinematics,” in Proc. IEEE Int. Conf. Robot.
Autom., 2010, pp. 2499–2506.

[7] G. B. Hammam, P. M. Wensing, B. Dariush, and D. Orin, “Kinody-
namically consistent motion retargeting for humanoids,” International
Journal of Humanoid Robotics, vol. 12, no. 04, p. 1550017, 2015.

[8] Y. Zhu, B. Dariush, and K. Fujimura, “Kinematic self retargeting: A
framework for human pose estimation,” Computer vision and image
understanding, vol. 114, no. 12, pp. 1362–1375, 2010.

[9] J. Koenemann, F. Burget, and M. Bennewitz, “Real-time imitation of
human whole-body motions by humanoids,” in Proc. IEEE Int. Conf.
Robot. Autom., 2014, pp. 2806–2812.

[10] M. Lee and I. Cohen, “Proposal maps driven mcmc for estimating
human body pose in static images,” in Proc. IEEE CVPR, 2004, pp.
II–334.

[11] T. Tosun, R. Mead, and R. Stengel, “A general method for kinematic
retargeting: Adapting poses between humans and robots,” in Proc.
ASME 2014 Int. Mech. Eng. Congress Expo., 2014.

[12] Y. Ou, J. Hu, Z. Wang, Y. Fu, X. Wu, and X. Li, “A real-time
human imitation system using kinect,” International Journal of Social
Robotics, vol. 7, no. 5, pp. 587–600, 2015.

[13] C. Plagemann, V. Ganapathi, D. Koller, and S. Thrun, “Real-time
identification and localization of body parts from depth images,” in
Proc. IEEE Int. Conf. Robot. Autom., 2010, pp. 3108–3113.

[14] J. Shotton, A. Fitzgibbon, M. Cook, T. Sharp, M. Finocchio, R. Moore,
A. Kipman, and A. Blake, “Real-time human pose recognition in parts
from single depth images,” in Proc. IEEE CVPR, 2011, pp. 1297–1304.

[15] M. Ye and R. Yang, “Real-time simultaneous pose and shape esti-
mation for articulated objects using a single depth camera,” in Proc.
IEEE CVPR, 2014, pp. 2353–2360.

[16] Y. Yang, V. Ivan, and S. Vijayakumar, “Real-time motion adaptation
using relative distance space representation,” in Proc. IEEE ICAR,
2015, pp. 21–27.

[17] Y. Seol, C. O’Sullivan, and J. Lee, “Creature features: online motion
puppetry for non-human characters,” in Proc. ACM SCA, 2013, pp.
213–221.

[18] K. Yamane, Y. Ariki, and J. Hodgins, “Animating non-humanoid
characters with human motion data,” in Proc. ACM SCA, 2010, pp.
169–178.

[19] A. Myronenko and X. Song, “Point set registration: Coherent point
drift,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 32, no. 12, pp.
2262–2275, 2010.

[20] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood
from incomplete data via the em algorithm,” Journal of the royal
statistical society, pp. 1–38, 1977.

[21] R. M. Murray, Z. Li, and S. S. Sastry, A Mathematical Introduction
to Robotic Manipulation. Boca Raton, FL, USA: CRC Press, Inc.,
1994.

[22] J. P. Lewis, M. Cordner, and N. Fong, “Pose space deformation: a uni-
fied approach to shape interpolation and skeleton-driven deformation,”
in Proc. ACM SIGGRAPH, 2000, pp. 165–172.

[23] J. Tong, J. Zhou, L. Liu, Z. Pan, and H. Yan, “Scanning 3d full human
bodies using kinects,” IEEE Trans. Vis. Comput. Graph, vol. 18, no. 4,
pp. 643–650, 2012.

[24] Q. Zhang, B. Fu, M. Ye, and R. Yang, “Quality dynamic human body
modeling using a single low-cost depth camera,” in Proc. IEEE CVPR,
2014, pp. 676–683.

[25] T. Helten, A. Baak, G. Bharaj, M. Muller, H. Seidel, and C. Theobalt,
“Personalization and evaluation of a real-time depth-based full body
tracker,” in Proc. IEEE 3DV, 2013, pp. 279–286.

[26] M. Ye, Y. Shen, C. Du, Z. Pan, and R. Yang, “Real-time simultaneous
pose and shape estimation for articulated objects using a single depth
camera,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 38, no. 8, pp.
1517–1532, 2016.

