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A new approach for constructing a smooth subdivision surface to interpolate the vertices

of an arbitrary mesh is presented. The construction process does not require setting
up any linear systems, nor any matrix computation, but is simply done by iteratively
moving vertices of the given mesh locally until control mesh of the required interpolating
surface is reached. The new interpolation method has the simplicity of a local method in

effectively dealing with meshes of large number of vertices. It also has the capability of a
global method in faithfully resembling the shape of a given mesh. Furthermore, the new
method is fast and does not require a fairing step in the construction process because

the iterative process converges to a unique solution at an exponential rate. Another
important result of this work is, with the new iterative process, each mesh (surface)
can be decomposed into a sum of simpler meshes (surfaces) which carry high and low
frequency information of the given model. This mesh decomposition scheme provides us

with new approaches to some classic applications in computer graphics such as texture
mapping, de-noising/smoothing/sharpening, and morphing. These new approaches are
demonstrated in this paper and test results are included.
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1. Introduction

Constructing a smooth surface from a set of sampled or scanned data points is

an important problem in many areas such as computer graphics, reverse engineer-

ing, geometric modeling, computer vision and animation. Interpolation is the most

widely used technique in this smooth surface construction process. However, power-

ful interpolation techniques that have the advantages of both a global method and

a local method and, consequently, can handle meshes of any size and any topology

while capable of faithfully reproducing the shape of any given mesh, are not avail-
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able yet. In this paper, we try to fill the gap with an iterative interpolation method.

The new method has the advantages mentioned above. Besides, it is very fast and

very easy to implement. Subdivision surfaces are the representation scheme used in

this interpolation technique.

Subdivision surfaces 1,13,16 have become popular recently because of their ca-

pability in modeling/representing any complex shape with only one surface 2. Sub-

division surfaces cover both parametric forms 7,14,15 and discrete forms. Paramet-

ric forms are good for design and representation and discrete forms are good for

machining and tessellation (including FE mesh generation). Therefore we have a

representation scheme that is good for almost all applications. Powerful interpola-

tion techniques using subdivision surfaces as a representation scheme certainly are

needed for subdivision surface based applications.

Traditional interpolation techniques 3,4,5,6,8,10,11,12,17,28,29,30 are mainly aimed

at one purpose: shape reconstruction. The iterative interpolation technique proposed

in this paper also provides us with a means to look at several classic applications

from a different angle and, consequently, allows us to solve these applications with

different approaches. This is because with the new technique each mesh (surface)

can be decomposed into a sum of simpler meshes (surfaces). By manipulating the

decomposed items we can control low-frequency and high-frequency information of

the given mesh (surface) and, consequently, the overall shape or local details of the

mesh (surface).

Overall, the main contributions of this paper can be summarized as follows:

• presenting an iterative interpolation technique that can effectively deal with

meshes of any size and topology; the iterative process converges at an ex-

ponential rate; no linear system is used, no matrix computation is required

and no fairing process is needed in the construction of the interpolation

surface.

• showing that each mesh (or surface) can be decomposed into a sum of

simpler meshes (surfaces) which provides alternative approaches to several

classic applications in computer graphics.

2. Previous Work

There are two major methods for interpolating a given mesh with a subdivision sur-

face: local method 3,5,6,11,12,17 or global method 4,10. In a local method, vertices are

moved to new positions defined as affine combinations of nearby vertices iteratively.

Interpolating subdivision is the most well-known local interpolation method. In this

case, a subdivision scheme such as the Butterfly scheme3, Zorin et al’s improved

version 17 or Kobbelt’s scheme 6, is used to generate the interpolating surface. This

approach is simple and easy to implement. It can handle meshes with large number

of vertices. However, since no vertex is ever moved once it is computed, any dis-

tortion in the early stage of the subdivision will persist. This makes interpolating

subdivision very sensitive to the irregularity in the given mesh. When the mesh
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(a) Given Mesh (b) Butterfly (c) Modified Butterfly (d) Our Method

Fig. 1. Comparison of different interpolation methods: Butterfly (b), modified Butterfly (c), and
our methods (d).

vertices are dense enough, the undesired artifacts would not be so clear to see.

But when the mesh vertices are not so dense, the effect of undesired artifacts be-

comes obvious on the resulting interpolating surfaces (see Figure 1 for an example

where the Butterfly scheme 3, the improved Butterfly scheme 17 and the technique

proposed in this paper are compared on a given mesh with five vertices).

A global method, on the other hand, usually needs to build a global linear sys-

tem with some constraints 4. The solution to the global linear system is a control

mesh whose limit surface interpolates the vertices of the given mesh. This approach

usually requires some fairness constraints 4 in the interpolation process to avoid un-

desired undulations. Although this approach seems more complicated, it results in

a traditional subdivision surface which resembles the shape of the given mesh more

faithfully. The problem with this approach is that it is difficult to handle meshes

with large number of vertices because it needs to set up a global linear system.

There are also techniques that produce subdivision surfaces to interpolate given

curves or surfaces that near- (or quasi-)interpolate given meshes 9. In addition,

approaches with implicit shape representations are used for shape reconstruction

from scattered data such as MPU 28, Dual RBF 29 and Fast RBF methods 30.

However, all those techniques are either of different natures or of different concerns,

hence will not be discussed here.

As far as we know, none of the existing methods has the advantages of both a

local method and a global method. Hence we do not have a subdivision surface based

interpolation approach that can handle meshes of any size and any topology while

capable of faithfully reproducing the shape of any given mesh. Besides, none of the

previous techniques were designed for other applications but mesh interpolation.

3. Mathematical Setup

Given a mesh M and a subdivision scheme, our task is to find a smooth subdivision

surface to interpolateM . We use the following notations in the paper: A refers to the
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matrix that calculates all the limit points ofM with respect to the given subdivision

scheme; S(M) refers to the limit surface ofM ; I(M) refers to the subdivision surface

that interpolates M and limit points of I(M)’s control points equal M , i.e., if P

is the control mesh of I(M) then we must have M = A ∗ P . We also assume the

subdivision scheme considered here is the Catmull-Clark scheme. Hence, I(M) and

S(M) are Catmull-Clark subdivision surfaces. However, the techniques presented

here work for other subdivision schemes as well.

Let M = M0 be the given mesh. Then the task is to find I(M0). If we can find

a smooth offset surface L that moves S(M0) to I(M0) everywhere, i.e.,

L+ S(M0) = I(M0) (1)

then the interpolation problem is solved. The question is: how should L be con-

structed?

Note that the above definitions and the fact that A is invertible (see Appendix

B), and I(·) is a linear operator imply that S(M0) = I(A ∗ M0). Hence L can be

regarded as an interpolating surface I(M1) where

M1 = M0 −A ∗M0

is the difference between M0 and its limit points A∗M0. M1 has the same topology

as M0. Hence I(M1) and I(M0) can be constructed exactly the same way.

By iteratively repeating the above process we get a sequence of meshes Mi such

that 
Mi+1 = Mi −A ∗Mi

I(Mi+1) + S(Mi) = I(Mi)

(0 ≤ i ≤ ∞) (2)

From the above equation we have

I(M) =
n∑

i=0

S(Mi) + I(Mn+1). (3)

We can also easily get Mi as follows

Mi = (E−A)iM, (4)

where E is an identity matrix. It can be proven (see Appendix C) that limi→∞ Mi =

0. As a result, I(Mi) approaches 0 when i tends to ∞. In addition, because sub-

division is a linear process, we have
∑

S(Mi) = S(
∑

Mi). Therefore, the control

mesh P , whose limit surface interpolates the given mesh M , can be calculated as

follows.

P =
∞∑
i=0

(E−A)iM. (5)

On the other hand, because A is invertible (see Appendix B), there can be only

one mesh (having the same topology as M) whose limit surface interpolates the

given M . Consequently a fairing process is not needed in the construction of the
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(a) Given Triangular Mesh: 2443
vertices, 4884 faces

(b) Interpolation Surface

(c) Given Quadrilateral Mesh:
2138 vertices, 2136 faces

(d) Interpolation Surface

Fig. 2. Examples of mesh interpolation.

interpolating surface because there exists only one such surface that interpolates

the given mesh. Traditionally, people tried to directly find A−1M by solving a linear

system 4,10. For meshes with large number of vertices, it is difficult to set up and

solve the huge corresponding global linear systems even with a fast solver such

as the Gauss-Seidel method. With the new technique, no matrix is required to be

calculated, no linear system is needed to be set up and solved. The work is done

simply by iteratively moving mesh vertices around locally (see eq. (7)) until some

given error tolerance is reached (see Section 4). Hence there is no problem to deal

with meshes with large number of vertices.

More importantly, just like Fourier series and multi-resolution representation
23,24, any mesh (or surface) now can be decomposed into a sum of simpler meshes

(or subdivision surfaces). For example, a given subdivision surface S(M) can be
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represented as an infinite series of subdivision surfaces as

S(M) = I(A ∗M) =

∞∑
i=0

S((E−A)i ∗A ∗M)

and for a given mesh M , we have

M =
∞∑
i=0

(E−A)i ∗A ∗M. (6)

In the above infinite series, each term (E−A)iAM contains part of the information

onM . As a result, the proposed method can decompose a mesh into a sum of simpler

meshes. Terms with smaller indices contain more information on the overall shape

of M while terms with bigger indices contain more subtle details on the shape of

M . They can be regarded as low and high frequency information on mesh M . Hence

the above two equations transform a space domain model into a frequency domain

representation. Because each term itself is a mesh (or surface), it can be furthermore

decomposed using the above two equations to obtain more subtle details of the

original model. Like Fourier series, this representation can be used for applications

in other areas of graphics and modeling, such as fairing, smoothing, sharpening, low

pass or high pass filtering etc. For example, for any n < ∞,
∑n

i=0(E−A)iAM gives

us a smoother model than M , and the smaller of n, the smoother of the resulting

model. On the other hand,
∑n

i=0(E− A)iM sharpens model M , and the bigger of

n, the sharper of the resulting model. In the following sections, several direct and

straightforward applications of the above representation will be discussed.

4. Fast Iterative Interpolation

Eq. (5) should not be used to construct the interpolating surface directly, be-

cause it requires costly matrix multiplications. Actually matrix A is not needed

in the construction of the interpolating surface at all. Note that if we define

Pn =
∑n

i=0(E−A)iM , 0 ≤ n < ∞, then through simple algebra we have

Pn+1 = Pn +M −A ∗ Pn. (7)

The geometric meaning of the above formula is: in the iterative process, the new

location of a mesh vertex can be obtained by moving that vertex by an offset, and

the offset is the difference between the original location of that vertex (in the given

mesh M) and the limit point of that vertex (in the current mesh Pn). Note that in

eq. (7), A∗Pn represents the limit points of vertices in Pn and as we know, all limit

points can be directly calculated according to Catmull-Clark subdivision rules 4.

Therefore one can use eq. (7) to find the control mesh P = P∞ of the interpolating

surface iteratively without using any matrices or linear systems at all.

In addition, as we mentioned above, P is the only mesh that has the same

topology as M and whose limit surface interpolates M . Therefore there is no need

for a fairing process either. Traditional interpolation techniques 4,10 need a fairing
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process because extra vertices are added in the interpolation process. These extra

vertices, with possibly improperly assigned positions, could lead to undulations in

the interpolating surface because they need to be interpolated as well.

The computation from Pn to Pn+1 in eq. (7) is a local affine combination process.

Hence this is a local method. On the other hand, Pn converges to A−1M , which

means every vertex in M contributes to all the vertices in P∞. Hence this is a global

method as well. Consequently, we have a method that not only has the simplicity

of a local method in effectively dealing with meshes of large number of vertices, but

also has the capability of a global method in faithfully resembling the shape of a

given mesh.

As is proven in the Appendix C, eq. (7) converges at an exponential rate. Hence

good interpolation results can be obtained in just a few iterations. Nevertheless,

error can be explicitly calculated as ||M−A∗Pn|| and the iteration stop criterion can

be determined based on some given error tolerance. Because it converges rapidly,

the new interpolation technique is even suitable for interactive shape design. Figure

2 shows some test results. We can see from these examples that smooth and visually

pleasant interpolation shapes can be obtained for complicated meshes with dense

or not-so-dense vertices. All the test cases are done in less than one second without

GPU support.

5. Procedural Texture Mapping

3D Procedural texture mapping, instead of looking up an image to do the map-

ping, generates texture for a model by assigning different colors to vertices of the

model. The color of each vertex is determined only by the vertex’s location in 3D

space. Procedural texture mapping usually uses the Perlin noise 25 function to make

rendered models interesting by adding irregularity to a procedural texture. A key

component in the construction of Perlin noise is the interpolation function which

makes it possible to smoothly add discrete noises of different amplitudes and fre-

quencies together 25. Traditionally, in 3D case, Perlin noise is constructed at each

integer lattice point in a 3D array, such as the case of solid texturing 27 or hyper-

texture 26. As far as we know, procedural texture mapping has never been applied

to smooth subdivision surfaces by directly assigning colors to points of the surfaces

to generate natural-looking models. We believe the main reason of this is because

a powerful technique that can smoothly interpolate all the noises of an irregular

mesh is not available yet. With the fast iterative interpolation technique presented

in the above section, this is no longer the case. We can now do procedural texture

mapping on a given 3D model by mapping the model’s 3D locations directly into

colors. Hence a 3D array for storing noises is not needed any more.

For any given 3D meshG0, perform n times of subdivision to get n+1 meshes Gi,

(0 ≤ i ≤ n). For each Gi, a Perlin noise value 1
2i f(2

ix, 2iy, 2iz) is generated for each

vertex with position (x, y, z), where f is a random noise function. Note thatGi+1 has

many more vertices than Gi, hence the distribution of noises on Gi+1 is denser than



August 29, 2011 11:34 formatted final version, FILE #: IJIG-D-10-00043

8 Shuhua Lai and Fuhua (Frank) Cheng

(a) 66 vertices, 80 faces (b) 2904 vertices, 5804 faces

(c) 325 vertices, 318 faces (d) 354 vertices,
354 faces

Fig. 3. Examples of procedural texture mapping.

Gi. All the noises of mesh Gi form a mesh Ni. Ni has the same topology as Gi, and

the x component of each Ni’s vertex is set to the noise value at the corresponding

vertex of Gi. Ni’s y and z components are not needed, hence these values do not

have to be defined. By applying our fast iterative interpolation technique to Ni, we

get I(Ni). Because all I(Ni) are smooth subdivision surfaces, they can be added

together (through subdivision or parametrization 7,14) to form a new surface. Let

N =
∑n

i=0 I(Ni). After normalization, Nx, which is the x component of N, contains

noises for the subdivision surface S(G0) everywhere. For a given list of colors, three

B-splines B(t) = (Br(t), Bg(t), Bb(t)) are constructed to interpolate all the colors of

the given list. Now one can render S(G0) by assigning colors (procedural texture) to

all points of the surface. The color of each point P of S(G0) is obtained by finding

the spline values B(tp), where tp is the noise value Nx at point P. One can also

render mesh Gi directly by assigning generated colors to vertices of Gi only.

Different from methods that only generate Perlin noises at given vertices, our

new method can generate more noises of different amplitudes and different fre-

quencies for irregular models at more positions, and can blend them smoothly by
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interpolation. As a result, it creates procedural texture with better visual effect.

More importantly, a huge array is not needed in the procedural texture mapping

process. Figure 3 shows several examples of procedural texture mapping generated

using our method. All of them are generated with only basic Perlin noise functions.

6. De-noising

With the proliferation of 3D scanning devices, fairing, smoothing and denoising

of noisy meshes have become more and more important. Several important works

have been done in this area 18,19,20,21. In this section, we present a new denoising

technique which is a straightforward application of our interpolation formula. Our

purpose here is simply to show the versatility of our interpolation method, hence

we did not compare our results with other denoising methods. Nevertheless, our

method is easy to understand, easy to implement, and can achieve relatively good

denoising results.

Consider a finite portion of the series defined in eq. (6). Define T0 = M and Tk

recursively as follows:

Tk+1 =
m∑
i=0

(E−A)i ∗A ∗ Tk, k ≥ 0 (8)

When m < ∞, Tk+1 is a smoother version of Tk because some high frequency

information is not included. Through simple computation, we have Tk+1 = D∗A∗Tk

(hence Tk = Dk ∗ A ∗ T0), where D = E − (E − A)m+1. When m = 0 in eq. (8),

Tk = Ak ∗ A ∗ T0. Because all the eigenvalues of A are between 0 and 1 (see

Appendix B), Ak ∗A∗M converges to a point when k tends to infinity. Hence using

matrix Ak for smoothing would make the mesh shrink. Mesh shrinking leads to

model details losing, hence Ak should not be used for de-noising directly. However,

by compensating Ak with some details in each step, it would shrink much slower,

consequently keep more details, and meanwhile smooth out undesired noises. For

example, when m = 1, Tk = (Ak + (Ak − A2k)) ∗ AT0 which compensates Ak by a

small mount of details Ak −A2k.

For anym, the biggest eigenvalue of D is always 1 with corresponding eigenvector

[1, 1, 1, ..., 1]T and all other eigenvalues are between 0 and 1. Hence Dk can be used

to smooth meshes. Note that even though eventually DkAM shrinks to a single

point when k approaches infinity, it shrinks at a speed much slower than AkAM .

This is because if the second biggest eigenvalue of A is λ, then the second biggest

eigenvalue of D is 1 − (1 − λ)m+1, which is much bigger that λ and becomes even

bigger when m gets bigger. Because Tk shrinks slower, it maintains more details in

the de-noising process while smoothing out undesired noises.

m can be used as a parameter to control how much details should be kept in

the de-noising process. The smaller of m, the smoother the resulting model and the

less details are kept. When m gets bigger, more details, and possibly more noises

are kept. In our test cases, setting m to 2 or 3 is good enough for fast and good
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(a) Noise added (b) 1 iteration (c) 2 iterations

(d) 3 iterations (e) 4 iterations (f) Original model

Fig. 4. Examples of mesh denoising. The given mesh has 49990 vertices and 100000 faces. Gaussian
noises were added in the test process.

de-noising (smoothing) while maintaining enough details of the input model.

Similar to interpolation, which sharpens a mesh with dramatic changes, eq. (8)

can be modified to sharpen a mesh T0 gently as follows.

Tk+1 = Tk +
n∑

i=m

(E−A)i ∗ Tk, k ≥ 0

where T0 = M and n ≥ m > 0. From the above equation, we can see that Tk+1 is
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a sharper version of Tk because it adds extra high frequency information of Tk to

Tk+1.

Figure 4 demonstrates the capability of eq. (8) in mesh smoothing. From Figure 4

we can see that with only 3 or 4 times of iteration, pretty good denoising results can

already be obtained, even for complicated models. Comparing the original model

shown in Figure 4(f) with the figure shown in Figure 4(e), we can see that many

subtle details are kept meanwhile noises are smoothed out.

(a) Given model (b) Morphing (early) (c) Morphing (middle)

(d) Morphing (late) (e) Morphing (even later) (f) Morphing (end)

Fig. 5. Examples of mesh morphing. This given mesh has 540 vertices and 538 faces.

7. Morphing

For two given meshes M and Q, the task here is to find a smooth transition from Q

to M . We assume M and Q have the same topology. If this is not the case, simply

resample them using one of the resampling techniques such as 22.

According to eq. (6), we have

Q = M +
∞∑
i=0

(E−A)iA(Q−M).
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(Q−M) can be regarded as the difference of the two models, hence our goal is to

transform this difference smoothly so that it approaches zero eventually. By taking

different finite terms in the above summation, we get a transition from M to Q.

However, this approach would not give us a smooth morphing fromM to Q because,

as we mentioned above, (E−A)i shrinks at an exponential rate.

Let Q0 = Q and for a given m > 0, define Qk recursively as follows:

Qk+1 = M + ρ
m∑
i=0

(E−A)iA(Qk −M), (9)

where 0 < ρ ≤ 1 is used to control the morphing speed. The smaller of ρ, the faster

the morphing from Q to M . When m < ∞, (Qk+1 − M) is a smoother version

of (Qk − M). Similar to the discussion in the above section, we know (Qk − M)

approaches zero when k tends to infinity. As a result, eq. (9) provides us with a

sequence of meshes Qk, k ≥ 0, transforming Q to M . For a properly selected m and

ρ in the above equation for each k, the sequence of meshes Qk provides a smooth

morphing from Q to M .

In the morphing process, Qk+1 gets its information from both M and Qk. The

bigger of k, the more information from M . Therefore, eq. (9) can be regarded as a

linear operation on meshes M and Qk.

Traditionally, given two meshes M and Q with the same topology, morphing is

done simply by performing a linear operation on M and Q: u ∗ Q + (1 − u) ∗ M .

This single-vertex-based linear combination method sometimes does not produce

meaningful and desired morphing results if features of the meshes are not aligned

properly. For example, if M and Q are symmetric about the x-axis, then the mor-

phing process will produce a flat shape when u = 0.5 that certainly is not desired.

Eq. (9) provides an alternative approach for morphing, which can be regarded as a

multiple-vertex-based linear combination process. The bigger of k, the more vertices

of Q0 are involved in determining vertex positions of Qk. Therefore, the morphing

process is not so heavily affected by features of the meshes. Consequently, eq. (9)

produces better morphing results than simple linear morphing methods, especially

when mesh features are not very well aligned.

Again, eq. (9) should not be used to do the morphing directly because of costly

matrix multiplications. A formula similar to eq. (7) should be derived for local and

iterative computation of the morphing. Figure 5 shows a morphing example of a

bunny to a 3D sphere using the technique presented above. As can be seen from this

example, the morphing process is very smooth, un-natural looking artifacts usually

found in a simple-vertex-based morphing process are nowhere around.

8. Summary and Future Work

An iterative mesh interpolation method and an accompanying mesh decomposition

technique with its applications in several classic areas of computer graphics are

presented. The iterative mesh interpolation method generates a subdivision surface
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to interpolate a given mesh by iteratively modifying vertices of the given mesh

locally until control mesh of the required interpolating surface is reached. The new

method is fast and does not require any matrix computation, or linear systems or

a fairing step in the construction process of the interpolating surface. Hence, an

iterative method seems to be the ultimate solution for mesh interpolation because

it has all the advantages one would like to see for a mesh interpolation process.

The mesh decomposition technique decomposes a given mesh (surface) into an

infinite series of simpler meshes (surfaces) which can be regarded as high or low

frequency information of the given mesh. Hence we can use decomposed items to

control high-frequency and low-frequency information of the mesh (surface) and,

consequently, overall shape or local details of the mesh (surface). Manipulating or

balancing such pieces of information is a core work in many classic areas of computer

graphics. Hence, a mesh decomposition provides a new solution or an alternative

solution to some of the classic areas of computer graphics. As far as we know this

is the first ever attempt to use a mesh decomposition to solve problems in texture

mapping, denoising and morphing.

One of our future research subjects is to investigate other possible applications

of the mesh decomposition. Areas that will be considered include mesh compres-

sion, feature identification and mesh simplification. Another subject of our future

research is to compare the performance of the approaches provided by a mesh de-

composition with other methods in the literature to study their effectiveness and

possible improvements. In addition, the matrix A in eq. (6), instead of being a sub-

division matrix, could be set to other matrices, as long as their eigen values are in

(0, 1]. Hence it is possible to design a particular matrix A and use eq. (6) to solve

problems in computer graphics with specified requirements.
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Appendix

A Construction of Matrix A

The matrix A is not needed in the implementation. We show it here only for proof

purpose. The matrix shown here is for the generalized Catmull-Clark subdivision

scheme. The matrix for other schemes can be constructed similarly.

For generalized Catmull-Clark subdivision scheme, new face points and edge
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Fig. 6. Labeling for vertex V and its neighboring vertices.

points are calculated the same way as the standard Catmull-Clark subdivision

scheme, but the new vertex points are calculated differently, using the following

formula

V′ =
n− 2

n
V +

1

n2

n∑
j=1

(αV + (1− α)Ej) +
1

n2

n∑
j=1

fj

where 0 ≤ α ≤ 1 and fj are new face points after one subdivision. When α = 0, we

get the standard Catmull-Clark subdivision scheme. The limit point 4 of a vertex

Vi of degree ni can be calculated as:

V∞
i =

1

ni(ni + 5)
(biiVi +

∑
j

bijEj +
∑
j

bijFj)

where

bii = (ni − 1)ni + niα+
∑

4
dij

bij = (2− α+ 4
dij

+ 4
dji

), if (Vi,Vj) is an edge

bij = 4/dij , if (Vi,Vj) is a diagonal line of a face

bij = 0, if Vi and Vj do not belong to the same face

Note that in the above formula the surrounding faces could be not-four-sided (see

figure 6). dij is the number of sides of the face of which (Vi,Vj) is an edge or

a diagonal line. Note that dij and dji could have different values because faces

adjacent to the edge (Vi, Vj) could have different number of sides. But if (Vi,Vj)

is a diagonal line of a face, then dij = dji. According to the above definition, we

have

Aij =
1

ni(ni + 5)
bij .

B Matrix A’s eigen values λi ∈ (0, 1]

It is easy to verify that each entry of A is non-negative and the sum of each row

equals one. Hence all eigen values λi of A are all ≤ 1. Therefore, to prove λi ∈ (0, 1],
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we only need to show that all A’s eigen values are positive. A common coefficient

1/ni/(ni +5) can be factored out for each row of A. If we define matrix B as Bij =

bij , then it is easy to verify that B is symmetric, and A = diag(1/ni/(ni + 5)) ∗ B.
Hence we just need to prove all the eigen values of B are positive, which is equivalent

to prove that B is positive definite.

We need to showXTBX > 0 for any non-zero vectorX.XTBX can be expanded

as follows.

XTBX =
∑
all E

2bijxixj +
∑
all D

2bijxixj +
∑
i

biix
2
i

=
∑
all E

(bij −
4

dij
− 4

dji
)(xi + xj)

2 +
∑
all F

4

dij
(xi + xj + · · ·+ xp)

2

+
∑
i

(bii −
∑

(Vi,Vj) ∈E

(bij −
4

dij
− 4

dji
)−

∑
(Vi,Vj)∈E

4

dij
)x2

i

≥
∑
all E

(2− α)(xi + xj)
2 +

∑
i

(n2
i − 3 ∗ ni + 2niα)x

2
i

where E denotes all edges, D denotes all diagonal lines of all faces and F denotes

all faces of the given mesh. Let σi = n2
i −3∗ni+2niα. Because when ni ≥ 3, σi ≥ 0

and 2− α > 0, to prove XTBX > 0, we just need to show σi > 0. Obviously, when

ni ≥ 4, we have σi > 0. Hence B is positive definite. Also we can claim that B is

positive definite if there exists at least one vertex Vk in the given mesh such that

nk ≥ 4. This can be proven by contradiction. Suppose this is not the case, then there

exists an X ̸= 0 such that XTBX = 0. It is easy to see that xk = 0 for otherwise we

would have XTBX ≥ σkx
2
k > 0. In addition, all xj where (Vk,Vj) is an edge must

be 0 as well because otherwise we have XTBX ≥ (2−α)(xk+xj)
2 = (2−α)x2

j > 0.

Similarly, all vertices directly or indirectly connected to Vk are all equal to 0.

Because M is a connected mesh, all xi are 0, which contradicts the assumption

X ̸= 0. Hence if there exists at least one vertex whose valance is bigger than 3,

then B is positive definite as well.

When all ni are 3 in a mesh and α = 0, B might not be positive definite.

However, we can change the value of α to convert the standard Catmull-Clark

subdivision scheme into a general Catmull-Clark subdivision scheme, such that B

is positive definite. It is easy to verify that when α > 0 and ni ≥ 3, we have σi > 0.

Therefore let α ∈ (0, 1], say α = 0.5, then B becomes positive definite.

Because B is positive definite, all the eigenvalues of A are positive. Therefore A

is invertible and all its eigenvalues are in (0, 1].

C Proof of Convergence

Because all eigenvalues of A are ∈ (0, 1], all the eigenvalues of (E−A) are ∈ [0, 1).

Hence (E−A)i converges to 0 when i tends to infinity. As a result,
∑n

i=0(E−A)i

converges to A−1 when n tends to infinity.
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It can also be proven that eq. (7) or eq. (5) converges at an exponential rate. To

prove this it is sufficient to show that ||P∞ −Pn|| converges to 0 at an exponential

rate.

||P∞ − Pn||
= ||

∑∞
i=n+1(E−A)iM ||

= ||(E−A)n+1 ∗A−1 ∗M ||
= ||XΛn+1X−1 ∗A−1 ∗M ||
≤ ||Λn+1|| ∗ ||X|| ∗ ||X−1|| ∗ ||A−1|| ∗ ||M ||
= ||Λn+1|| ∗ c

where c is a constant and Λ is the diagonalized matrix of (E − A). Suppose the

biggest eigenvalue of matrix (E − A) is λ, then ||Λn+1|| ≤ λn+1. As we know,

0 ≤ λ < 1. Hence we have

||P∞ − Pn|| ≤ c ∗ λn+1,

which means Pn converges to P∞ at an exponential rate.
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