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Figure 1: An example of noise removal using the new iterative method.

Abstract A new approach for removing noises from a corrupted 3D model (mesh or surface) of arbitrary topology
is presented. The basic idea is to transform a space domain model into a frequency-like domain representation
and achieve denoising by low pass filtering. The transformation from space domain to frequency domain is done
by decomposing the 3D model into an infinite series of meshes of the same topology but less magnitude so that
each mesh represents part of the information of the given model, with some meshes containing more information
on overall shape while others containing more on subtle details. The transformation process does not require
setting up any linear systems, nor any matrix computation, but is done by iteratively moving vertices of the given
mesh locally until a smooth model with noises properly removed is reached. The iterative process converges at an
exponential rate. Therefore the new iterative method is very fast and can be used for meshes with large number
of vertices. The mesh decomposition scheme is obtained using the concept of Catmull-Clark subdivision surfaces,
but the same idea can be applied to other subdivision schemes as well. Some test results obtained using this
method are included. They show that the iterative method can achieve visually pleasant resulting models with
noises properly removed.

1 Introduction

With the proliferation of 3D scanning devices, 3D shape reconstruction and visualization have become more
and more important in computer graphics, reverse engineering, CAD, medical imaging, visualization, virtual
reality, video games, and so on. However, data of those models are generally corrupted by measurement errors.
Although fidelity of the scanners has improved dramatically over the past decade, noise is ever present in any
practical system. For example, models extracted from CT or MRI scanning systems result in detailed models
with significant amount of noises. Therefore, models containing noises need to be smoothed or denoised before
any subsequent mesh processing such as surface collision or Boolean operations could be effectively applied. In
the process of removing noises of a surface mesh, the shape of the input model could be changed. Hence it is
very important to maintain the overall shape unchanged and keep the features of the surface itself as much as
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possible.
Subdivision surfaces [1, 6, 8] have become popular recently in graphics, geometric modeling and computer

animation because of their relatively high visual quality, numerical stability, simplicity in coding and, most
importantly, their capability in modeling any complex shape with only one surface [4]. They are widely used
for representing models of irregular topology. With multiresolution analyses [15, 16] for subdivision surfaces
becoming available, subdivision surfaces are also used for dealing with corrupted sampled meshes [13, 14].

In this paper we describe a new iterative approach for removing noises from a noisy 3D model of arbitrary
topology. The new method is easy to understand, easy to implement, and can achieve relatively good denoising
results. The basic idea is to transform a space domain model into a frequency-like domain representation and
achieve denoising by low pass filtering. The transformation from space domain to frequency domain is done by
decomposing the 3D model into an infinite series of meshes such that each mesh represents low frequency or high
frequency information of the shape of the given model. The transformation process does not require setting up
any linear systems, nor any matrix computation, but is done simply by iteratively moving vertices of the given
mesh locally until a smooth model with the noises properly removed is reached. The iterative process converges
at an exponential rate. Therefore the new iterative method is very fast and can be used for meshes with large
number of vertices. The mesh decomposition scheme is obtained using the concept of Catmull-Clark subdivision
surfaces, but the same idea can be applied to other subdivision schemes as well. The capability of the new
approach is demonstrated with test examples shown in the paper.

The remaining part of the paper is arranged as follows. A brief review of previous techniques on noise removal,
multiresolution analysis and subdivision surfaces is given in Section 2. The mesh and surface decomposition
approach is presented in Section 3. The fast iterative noise removal technique based on the mesh decomposition
scheme is discussed in Section 4. Iteration convergence and exponential convergence rate are proved in Section
5. In Section 6, some test cases are shown and discussed. Concluding remarks and future work are presented in
the Section 7.

2 Previous Work

2.1 Related Work on Smoothing/Denoising

With the recent advances in scanning and acquisition technologies, fairing, smoothing and denoising of noisy
meshes have become more and more important. A wide variety of mesh smoothing algorithms have been proposed
in recent years [9, 10, 11, 12, 14, 18]. In general, denoising algorithms can be roughly classified into two categories:
linear and nonlinear smoothing. Linear smoothing treats features (large variations) and noises (small variations)
indiscriminately, so it is not feature preserving and achieves smoothness at the expense of sharp features being
blurred. Nonlinear smoothing updates each mesh point through local weighted averaging of its neighbors. A large
weight usually need to be assigned to a point that involves low discontinuities, and vice versa. Because nonlinear
smoothing treats features and noises differently, it can remove noises and meantime preserve features of a given
model.

Taubin pioneered a signal processing approach [17] to mesh smoothing based on a basic and uniform approxi-
mation of the Laplacian. For meshes with irregular connectivity, Taubin’s method leads to a variety of artifacts
such as geometric distortion during smoothing and numerical instability. Desbrun et al. extended this approach
to irregular meshes [10] using a geometric flow analogy, and introduced the use of a conjugate gradient solver
that safely removes the stability condition, allowing for significant smoothing in reasonable time even on large
meshes. These algorithms are isotropic in nature, i.e., they treat noise and salient features such as edges and cor-
ners identically. To address this shortcoming, anisotropic diffusion schemes have been recently proposed [11, 18].
The idea behind these approaches is to modify the diffusion equation to make it non-linear or anisotropic. The
curvature tensor determines the local diffusion, thus preserving sharp features.

Multiresolution analyses [16] based on wavelet theory have started a new research direction on hierarchical
methods for computer graphics. Lounsbery et al [15] made the connection between wavelets and subdivision
surfaces to define different levels of resolution. Multiresolution analysis has recently proved its efficiency on
dealing with irregularly sampled meshes by decomposing a mesh into coarser meshes which represent the initial
model at different scales [15]. A set of detail coefficients are computed for each scale, defining the frequency
content of the model, which can be used to build a denoising filter suitable for irregular meshes. Zorin et al
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proposed a combination of subdivision and smoothing algorithms to construct a set of algorithms for interactive
multiresolution editing of complex meshes with arbitrary topology [13].

2.2 Subdivision Surfaces

Given a control mesh, a subdivision surface is generated by iteratively refining (subdividing) the control mesh to
form new and finer control meshes. The refined control meshes converge to a limit surface called a subdivision
surface. So a subdivision surface is determined by the given control mesh and the mesh refining (subdivision)
process. The control mesh of a subdivision surface can contain vertices whose valences (numbers of adjacent
edges) are different from four. Those vertices are called extra-ordinary vertices. Popular subdivision surfaces
include Catmull-Clark subdivision surfaces (CCSSs) [1], Doo-Sabin subdivision surfaces [2] and Loop subdivision
surfaces [3].

Subdivision surfaces can model/represent complex shape of arbitrary topology because there is no limit on the
shape and topology of the control mesh of a subdivision surface. Subdivision surfaces are intrinsically discrete.
Recently it was proved that subdivision surfaces can also be parametrized [7]. Therefore, subdivision surfaces
cover both parametric forms and discrete forms. Parametric forms are good for design and representation, discrete
forms are good for machining and tessellation (including FE mesh generation). Hence, we have a representation
scheme that is good for all graphics and CAD/CAM applications. Subdivision surfaces by far are the most general
surface representation scheme. They include non-uniform B-spline and NURBS surfaces as special cases [6]. In
this paper we only consider objects represented by CCSSs. But our approach works for other subdivision schemes
as well.

3 Mesh & Surface Decomposition

Given a mesh M with noises corrupted at its vertices, our task is to find another mesh T which eliminates most
of the noises in M . This can be achieved by decomposing the given mesh into an infinite series of meshes of the
same topology but smaller magnitude so that each mesh represents part of the information of the given model,
with some meshes containing more information on overall shape while others containing more on subtle details.

Let A be the matrix that calculates all the limit points of M when viewed as the control mesh of a subdivision
surface (we assume the subdivision scheme considered here is the Catmull-Clark scheme. However, the techniques
presented here work for other subdivision schemes as well), then A∗M is a new mesh that has the same topology
as M and whose vertices are the corresponding limit points of M . As we know, subdivision process satisfies the
convex hull property and is a smoothing process. Hence A ∗M is a smoother version of M . Consequently A ∗M
can be regarded as a model with some noises removed from M . If we repeat the process by applying A to the
new meshes we get a sequence of meshes:

{Ai ∗M, 0 ≤ i < ∞, } (1)

with each of them smoother than the ones ahead of it. However, this sequence cannot be used directly for noise
removal because subdivision process is a shrinking process, i.e., it makes the resulting model thinner and smaller
than the original mesh (this is the so called volume lose or feature blurring of the denoising process). As a result,
at the end, the sequence would lose all the shape features of the given mesh and converges to a single point.
Therefore, in addition to smoothing, feature preserving is also an important requirement of mesh denoising.
There is a way, fortunately, for us to compensate the volume lose in the above smoothing and denoising process.

Note that the matrix A is invertible (see proof in the next section), Hence we have

A−1 =
∞∑

i=0

(E−A)i,

where matrix E is the identity matrix. With this expansion, a given mesh M can now be represented as

M =
∞∑

i=0

(E−A)i ∗A ∗M. (2)
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The above formula provides a way to expand a given mesh into a series of meshes. Just like Fourier series and
multi-resolution representation [13, 15], any mesh (or surface) now can be decomposed into a series of meshes
(or subdivision surfaces) of the same topology but smaller magnitude. For example, if S(M) refers to the limit
surface of mesh M , then subdivision surface S(M) can be represented as an infinite series of subdivision surfaces
as follows.

S(M) =
∞∑

i=0

S((E−A)i ∗A ∗M)

In the infinite series of eq. (2), each term (E − A)iAM contains part of the information on M . Terms with
smaller indices contain more information on overall shape of M while terms with bigger indices contain more subtle
details on the shape of M . They can be regarded as low and high frequency information on mesh M . Hence the
above two equations transform a space domain model into a frequency-like domain representation. Because each
term itself is a mesh (or surface), it can be further decomposed using the above two equations to obtain more
subtle details of the original model. Like Fourier series, this representation can be used for applications in other
areas of graphics and modeling, such as fairing, smoothing, sharpening, low pass or high pass filtering etc. For
example, for any n < ∞,

Mn =
n∑

i=0

(E−A)iAM (3)

gives us a model smoother than M , and the smaller of n, the smoother of the resulting model. However, the
smoothest model that can be achieved by Eq. (3) is when n is equal to 0, which is AM . This is far from good
enough. In the next section we show how to modify the above formula so that it can be used for model smoothing
and denoising.

Note that Mn in the above formula should not be calculated directly because it requires costly matrix multi-
plications. Actually matrix A is not needed at all in the process of computing Mn. Note that

Mn+1 =
∑n+1

i=0 (E−A)iAM
= Mn + (E−A)n+1AM
= Mn + (E−A

∑n
i=0(E−A)i)AM

= Mn + AM −AMn.

(4)

Hence Mn can be calculated iteratively. The geometric meaning of the above formula is: in the iterative process,
the new location of each mesh vertex can be obtained by moving that vertex by an offset, and the offset is the
difference between the limit location of that vertex in the original mesh M and the limit point of that vertex in
the current mesh Mn. Note that in eq. (4), A ∗M and A ∗Mn represent limit points of vertices in M and Mn,
respectively. As we know, all limit points can be directly calculated according to Catmull-Clark subdivision rules
[5], without the involvement of the matrix A at all. Therefore the computation from Mn to Mn+1 in eq. (4) does
not require any costly matrix computation, but only a linear combination of vertices locally. Hence this is a linear
local method which is very easy to implement and can deal with meshes of large number of vertices effectively.

4 Fast Iterative Noise Removal

As mentioned above, each term of the series in Eq. (2) contains some low or high frequency-like information of
mesh M . Similar to a Fourier transform, Eq. (2) can be used for mesh fairing, smoothing, sharpening, low pass
or high pass filtering etc. However, to obtain good denoising results, Eq. (2) has to be modified into an iterative
form so that noises at all frequency levels can be removed and meanwhile, the overall shape of the given model
still can be maintained.

Consider a finite portion of the series defined in eq. (2) and define a new series as follows.
{

T0 = M
Tk+1 =

∑m
i=0(E−A)i ∗A ∗ Tk, k ≥ 0 (5)

where m is an integer and 0 ≤ m ≤ ∞. When m = ∞, Tk+1 equals to Tk. But when m < ∞, Tk+1 is a
smoother version of Tk because some high frequency information from Tk is not included in Tk+1. Through
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simple computation, we have
Tk+1 = (E− (E−A)m+1) ∗ Tk (6)

Furthermore, if m is set to be the same for every k, we have

Tk = (E− (E−A)m+1)k ∗ T0, (7)

When m = 0 in eq. (5), Tk = Ak ∗ T0, which is the same as the formula in eq. (1). Because all the eigenvalues
of A are between 0 and 1 (see proof in the next section), Ak ∗M converges to a point when k tends to infinity.
Hence using matrix Ak for smoothing would make the mesh shrink. Mesh shrinking leads to model details losing,
hence Ak should not be used for de-noising directly. However, by compensating Ak with some details in each
step, it would shrink much slower, consequently keep more details, and meanwhile smooth out undesired noises.
For example, when m = 1 we have,

Tk = (2E−A)k ∗Ak ∗ T0

which compensates Ak by a small scale factor of details (2E−A)k everywhere in the current mesh.
For any m, the biggest eigenvalue of matrix D = (E− (E−A)m+1) is always 1 with corresponding eigenvector

[1, 1, 1, ..., 1]T and all other eigenvalues are between 0 and 1 (see proof in the next section). Hence Dk is convergent.
Note that even though eventually Dk ∗M shrinks to a single point when k approaches infinity, it shrinks at a speed
much slower than Ak ∗M . This is because their shrink speed is determined by the second biggest eigenvalue. If
the second biggest eigenvalue of A is λ, then the second biggest eigenvalue of D is 1− (1− λ)m+1, which is much
bigger than λ and becomes even bigger when m gets bigger. Because Tk shrinks slower, it maintains more details
in the de-noising process while smoothing out undesired noises.

The number m in eq. (6) can be used as a parameter to control how much details should be kept in the
de-noising process. The smaller of m, the smoother the resulting model and the less details are kept. When m
gets bigger, more details, and possibly more noises are kept. In our test cases, setting m to 2 or 3 is good enough
for fast and good de-noising (smoothing) while maintaining enough details of the input model.

Eq. (6) and eq. (7) should not be used to remove noises or smooth surfaces directly, because they require
costly matrix multiplications. A iterative formula for eq. (6) and eq. (7) can be derived similarly to the one
given in eq. (4) for each iterative step. And again, all vertex points can be directly calculated without using the
matrix A at all. Therefore one can use eq. (6) and eq. (7) to smooth a surface or mesh without using any costly
matrix computation, but only using linear combination of vertices locally. Consequently, the new method is very
easy to implement and can deal with meshes of large number of vertices effectively.

As is proven in the next section, eq. (6) and eq. (7) converges at an exponential rate. Hence the new method
is very fast and good results of noise removal can be obtained in just a few iterations. Nevertheless, model
differences can be explicitly calculated as ||Tk+1 − D ∗ Tk|| and the iteration stop criterion can be determined
based on some given tolerance or human interaction.

5 Proof of Convergence

5.1 Construction of Matrix A

The matrix A is not needed in the implementation. We show it here only for proof purpose. The matrix shown
here is for the generalized Catmull-Clark subdivision scheme. The matrix for other schemes can be constructed
similarly.

For generalized Catmull-Clark subdivision scheme, new face points and edge points are calculated the same
way as the standard Catmull-Clark subdivision scheme, but the new vertex points are calculated differently, using
the following formula

V′ =
n− 2

n
V +

1
n2

n∑

j=1

(αV + (1− α)Ej) +
1
n2

n∑

j=1

fj

where 0 ≤ α ≤ 1 and fj are new face points after one subdivision [1]. When α = 0, we get the standard
Catmull-Clark subdivision scheme. The limit point [5] of a vertex Vi of degree ni can be calculated as:

V∞
i =

1
ni(ni + 5)

(biiVi +
∑

j

bijEj +
∑

j

bijFj)
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Figure 2: Vertex V and its neighboring vertices.

where
bii = (ni − 1)ni + niα +

∑
4

dij

bij = (2− α + 4
dij

+ 4
dji

), if (Vi,Vj) is an edge
bij = 4/dij , if (Vi,Vj) is a diagonal line of a face
bij = 0, if Vi and Vj do not belong to the same face

Note that in the above formula the surrounding faces could be not-four-sided (see figure 2). dij is the number of
sides of the face of which (Vi,Vj) is an edge or a diagonal line. Note that dij and dji could have different values
because faces adjacent to the edge (Vi, Vj) could have different number of sides. But if (Vi,Vj) is a diagonal line
of a face, then dij = dji. According to the above definition, we have

Aij =
1

ni(ni + 5)
bij .

5.2 Matrix A’s eigen values λi ∈ (0, 1] and A is invertible

It is easy to verify that each entry of A is non-negative and the sum of each row equals one. Hence all eigen values
λi of A are all ≤ 1. Therefore, to prove λi ∈ (0, 1], we only need to show that all A’s eigen values are positive.
A common coefficient 1/ni/(ni + 5) can be factored out for each row of A. If we define matrix B as Bij = bij ,
then it is easy to verify that B is symmetric, and A = diag(1/ni/(ni + 5)) ∗ B. Hence we just need to prove all
the eigen values of B are positive, which is equivalent to prove that B is positive definite.

We need to show XT BX > 0 for any non-zero vector X. XT BX can be expanded as follows.

XT BX =
∑

all E

2bijxixj +
∑

all D

2bijxixj +
∑

i

biix
2
i

=
∑

all E

(bij − 4
dij

− 4
dji

)(xi + xj)2 +
∑

all F

4
dij

(xi + xj + · · ·+ xp)2

+
∑

i

(bii −
∑

(Vi,Vj) ∈E

(bij − 4
dij

− 4
dji

)−
∑

(Vi,Vj)∈E

4
dij

)x2
i

≥
∑

all E

(2− α)(xi + xj)2 +
∑

i

(n2
i − 3 ∗ ni + 2niα)x2

i

where E denotes all edges, D denotes all diagonal lines of all faces and F denotes all faces of the given mesh.
Let σi = n2

i − 3 ∗ ni + 2niα. Because when ni ≥ 3, σi ≥ 0 and 2 − α > 0, to prove XT BX > 0, we just need to
show σi > 0. Obviously, when ni ≥ 4, we have σi > 0. Hence B is positive definite. Also we can claim that B is
positive definite if there exists at least one vertex Vk in the given mesh such that nk ≥ 4. This can be proven
by contradiction. Suppose this is not the case, then there exists an X 6= 0 such that XT BX = 0. It is easy to
see that xk = 0 for otherwise we would have XT BX ≥ σkx2

k > 0. In addition, all xj where (Vk,Vj) is an edge
must be 0 as well because otherwise we have XT BX ≥ (2− α)(xk + xj)2 = (2− α)x2

j > 0. Similarly, all vertices
directly or indirectly connected to Vk are all equal to 0. Because M is a connected mesh, all xi are 0, which
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contradicts the assumption X 6= 0. Hence if there exists at least one vertex whose valance is bigger than 3, then
B is positive definite as well.

When all ni are 3 in a mesh and α = 0, B might not be positive definite. However, we can change the value
of α to convert the standard Catmull-Clark subdivision scheme into a general Catmull-Clark subdivision scheme,
such that B is positive definite. It is easy to verify that when α > 0 and ni ≥ 3, we have σi > 0. Therefore let
α ∈ (0, 1], say α = 0.5, then B becomes positive definite.

Because B is positive definite, all the eigenvalues of A are positive. Therefore A is invertible and all its
eigenvalues are in (0, 1].

5.3 Rate of Convergence

Because all eigenvalues of A are ∈ (0, 1], all the eigenvalues of (E − A) are ∈ [0, 1) and all the eigenvalues of
D = E − (E − A)m+1 are ∈ (0, 1]. In addition, because the sum of each row in A is 1, the eigenvector of A
corresponding to the egienvalue 1 is [1, 1, · · · , 1]T . It is also easy to verify that [1, 1, · · · , 1]T is the eigenvector of
matrix D corresponding to the eigenvalue 1. Hence DkM converges to a single point when k tends to infinity. As
a result, Tk+1 is a smoother version of Tk.

It can also be proven that eq. (7) converges at an exponential rate. To prove this it is sufficient to show that
||Tk+1 − Tk|| converges to 0 at an exponential rate.

||Tk+1 − Tk||
= ||Dk+1T0 −DkT0||
= ||XΛk+1X−1T0 −XΛkX−1T0||
= ||X(Λk(Λ− E))X−1T0||
≤ ||Λk|| ∗ ||X|| ∗ ||Λ− E|| ∗ ||X−1|| ∗ ||T0||
= ||Λk|| ∗ c

where c = ||X|| ∗ ||Λ − E|| ∗ ||X−1|| ∗ ||T0||, which is a constant and Λ is the diagonalized matrix of D. Suppose
the biggest eigenvalue of matrix D is λ, then ||Λn+1|| ≤ λn+1. As we know, 0 ≤ λ < 1. Hence we have

||Tk+1 − Tk|| ≤ c ∗ λn+1,

which means (Tk+1 − Tk) converges to 0 at an exponential rate.

6 Test Results

The proposed approach has been implemented in C++ using OpenGL as the supporting graphics system on the
Windows platform. Quite a few examples have been tested with the method described here. All the examples
have extra-ordinary vertices. Some of the tested results are shown in Figures 1 and 3. For all the test cases shown
in this paper, the original model, the corrupted model and resulting models by several iterations of the new
noise removal method are displayed. The number of iterations is also listed for each denoised model. The stop
criterion of iteration used in our implementation is simply done by user interaction. Figures 1 and 3 demonstrate
the capability of the new iterative method in mesh smoothing. From Figure 1 and 3 we can see that with very
limited number of iterations, smooth and visually pleasant denoising results can be obtained, even for complicated
models. Comparing the original model shown in Figure 1(e) with the figure shown in Figure 1(a), we can see that
many subtle details are kept meanwhile noises are smoothed out.

The new denoising method can handle meshes with large number of vertices in a matter of seconds on an
ordinary PC (3.2GHz CPU, 512MB of RAM). For example, the model shown in figures 3(a-e), has 23202 vertices
and 46400 faces. It takes 6 seconds to obtain the model shown in figure 3(e). For simpler meshes, like models
shown in figures 1(e), 3(j) and 3(o), the denoising process is done in about one second. Hence the new denoising
method is suitable for interactive shape design, where simple shapes with small or medium-sized control vertex
sets are used.
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(a) Original Model (b) Corrupted Model (c) 3 Iterations (d) 6 Iterations

(e) 12 Iterations (f) Original Model (g) Corrupted Model

(h) 4 Iterations (i) 6 Iterations (j) 10 Iterations

(k) Original Model (l) Corrupted Model (m) 2 Iterations (n) 4 Iterations (o) 7 Iterations

Figure 3: Some test example obtained using the iterative method.
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7 Summary and Future Work

A fast iterative mesh denoising method using mesh decomposition technique is presented. The mesh decomposition
technique decomposes a given mesh (surface) into an infinite series of meshes (surfaces) of the same topology but
different magnitudes such that each mesh (surface) represents high or low frequency information of the given mesh
(surface). Hence we can use decomposed items to control high-frequency and low-frequency information of the
mesh (surface) and, consequently, overall shape or local details of the mesh (surface). Manipulating or balancing
such pieces of information can basically achieve the same effects of low and high pass filtering. The new method
is fast and does not require any matrix computation, or linear system solving in the process of denoising, hence
it is very easy to implement.

One of our future research objectives is to investigate other possible applications of the mesh decomposition
technique. Areas that will be considered include mesh compression, feature identification and mesh simplification.
Another subject of our future research is to compare the performance of the new approach with other noise removal
methods in the literature to study its effectiveness and possible improvements. In addition, the matrix A in eq.
(2), instead of being a subdivision matrix, could be set to other matrices, as long as their eigen values are in
(0, 1]. Hence it is possible to design an A and use eq. (2) to solve problems in computer graphics with specified
requirements.
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