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Abstract 

The process of constructing a parametric quadratic polynomial with four data points is discussed 
and a new method for determining knots in parametric curve interpolation is presented. The method 
has a parametric polynomial reproduction degree of two, i.e., an interpolation scheme which repro- 
duces quadratic polynomials would reproduce parametric quadratic polynomials if the new method 
is used to construct knots in the interpolation process. Testing results on the efficiency of the new 
method are also included. © 1998 Elsevier Science B.V. 
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1. In t roduc t ion  

In the construction of a parametric curve P(t) to interpolate a set of 2D or 3D data 
points t2, 1 ~ i ~< 'r~, with Pi ¢ Pi+l ,  determining the parametric knots t,, 1 ~< i <~ , .  
where the interpolation takes place, i.e., [ ) ( t i )  = P , ,  is very important as the shape of 
the constructed curve has much to do with the knots. Using uniform parametrization to 
determine knots generally leads to unsatisfactory result if the physical spacing of the 
data points are very uneven. In parametric curve construction, the accumulated chord 
length parametrization (or, simply chord length method) is a widely accepted and used 
method to determine knots (Ahlberg et al., 1967; de Boor, 1978; Brodlie, 1980; Sp~ith, 
1974; Faux and Pratt, 1979). The accumulated chord length can be considered as an 
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approximation of the accumulated arc length. It has been suggested that by iteration, the 
chord length parametrization may essentially become the arc" length parametrization (see 
(Ahlberg et al. 1967, p. 51; de Boor, 1978, p. 318; Brodlie, 1980, p. 19; Sp~th, 1974, 
p. 65)). However, Su and Liu (1982) have proved that if a parametric cubic curve takes 
its arc length as its parameter, then the curve is a straight line. 

Several attempts have been made over the years to improve the knot parametrization 
process. One direction was to determine the knots using optimization based techniques 
(Topfer, 1981; Marin, 1984; Hartley and Judd, 1980). The reported results seem to be 
fair. The optimization process involved in these methods, however, is expensive. Lee 
(1989) proposed a centripetal model method to assign knots. The knots are taken as 
the accumulated square root of chord length. This method has been used in several 
applications (Cheng and Barsky, 1991, 1993; Wang et al., 1997) and the results seem to 
be satisfactory. Another method to determine knots was proposed by Foley (referred as 
Foley's method in (Farin, 1988)). In this method the interval of each pair of successive 
knots is determined not only by the chord length of the corresponding data points, but 
also by the two adjacent chord lengths, and the two angles between the chord and its 
two adjacent chords. These methods, according to our experiment results, however, do 
not seem to generate better approximation than the chord length method (see Section 7). 

In this paper we present a new method to determine knots in the construction of planar 
parametric interpolating curves such as spline curves and parametric polynomial curves. 
While we are not sure if we have the characteristics of an optimal parametrization of 
a parametric interpolating curve, it seems to us that the new parametrization technique 
we are going to present has some interesting features and advantages over the previous 
approaches. The basic idea of the new method is described in Section 2. The construction 
of a parametric quadratic polynomial interpolating four data points which is the building 
block of the new method is discussed in Section 3. Based on the results in Sections 2 and 
3, a method for determining the knots is derived in Sections 4, 5 and 6. The comparison 
of the new method with the chord length, centripetal model and Foley's methods is 
performed in Section 7. 

2. Basic idea 

Let Pi = (xi,  9i), i <<. i <<. n, be a given set of data points with Pi ¢= Pi+l. The goal 
is to construct a knot ti for each Pz, 1 ~< i ~< n, so that if the set of data points are taken 
from a parametric quadratic polynomial, i.e., 

P~= A ~  + B~,i + C, 1 <~ i <~ r~, (1) 

where A = (al, a2), B = (hi, b2) and C = (Cl, c2) are 2D points then 

t i - t . i _ l  = o ~ ( ~ - ~ i _ l ) ,  l <<. i <~ n, (2) 

for some constant ct. 
Such a set of knots ti, 1 ~< i ~ r~, is known to have a parametric polynomial reproduc- 

tion degree of two, i.e., an interpolation scheme which reproduces quadratic polynomials 
will reproduce parametric quadratic polynomials if the knots satisfying Eq. (2) are used 
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in the parametrization process. On the other hand, if the knots determined by the chord 
length, centripetal model or Foley's methods are used to construct polynomial inter- 
polants, the constructed interpolant can only reproduce straight lines. Hence the knots 
determined by these three methods have a parametric polynomial reproduction degree of 
one only. 

Let Q({) be a parametric Lagrange polynomial (of degree two) which interpolates 
Pi i, Pi and /r~-} 1 a t  & - I ,  {i, and { i + 1 ,  respectively. Q({) can be converted to a para- 
metric Lagrange polynomial (of degree two) defined on the unit interval [0, l] as l\}llows: 

Q )( ' ; )  ~ - - - # ' I ( 3 ) ( P /  I - Pi) ~-~'2(s)(I)/+l -- P,)  @ P,, {31 

where 

<(.~)  _ , 

,S i 

.~(8 -- < )  
~/,2(s) - {4) 

1 - s ~  

s~ - -  { 5 )  
{ i ÷ l  - -  { i - - 1 '  

Obviously, if P,_ 1, Pi and Pi+L are taken from a parametric quadratic polynomial Q(.s'), 
and the parameter interval corresponding to Pi-1 and P,+I is taken to be [0, 1], then 
there is a unique si to make the Q ( s )  be represented by (3) and (4). 

The basic idea in determining the knots t i ,  1 <~ i <~ yt, may be described as follows: 
the knots t,, 1 ~< i ~< n, will be constructed in a way so that for each data point P,, 
2 <~ i ~< n - 1, if a parametric quadratic polynomial Qi(,s) which interpolates the data 
points P , - t ,  l'~ and P~*l at 0, s~ and 1, respectively, is constructed, then we have 

1 - ,si ti+l - ti 

si ti - t i - I  " 

where 0 < si < 1. This equation is equivalent to (5), namely, 

t ,  - -  t i _  1 
'qi 

t,+l - - t , - i "  

The motivation is clear-- to guarantee a second degree parametric polynomial reproduc- 
tion rate on each triplet of data points. Let Ai = ti - t i - i ,  then 

( 1 - s i ) A ~ - s , A / + l  = 0 ,  2 < ~ i ~ < ' n -  1. { 6 )  

There are (t~ - 2) equations with ('n - 1) unknowns A2, A3 . . . . .  A,,, If the values of A,, 
2 ~< i ~< n, are known, the value of the knot ti can be defined by 

[I = 0 .  

t i = l i  i + A i ,  i = 2 , 3 , . . . , n .  (7) 

Hence, the key in determining the knots &, 1 ~< i <~ r~, is to determine s~ for each @(s ) .  
i : - 2 , 3  . . . . .  n -  1. 
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3. Parametric quadratic polynomial  

In parametric interpolation, three data points usually can not determine a parametric 
quadratic polynomial uniquely. For each i between 2 and n - 1, the parametric quadratic 
polynomial Q~(s) defined by (3) will be constructed using 5 data points p),  i - 2 ~< j <~ 
i + 2; Pi-2 and Pi+2 are used to determine the parameter si. 

3.1. Constructing a quadratic polynomial with four  points 

Let Pj = (xj ,y . j ) ,  i - 2 ~< j ~< i + 1, be four points which are not on the same 
straight line. The following discussion shows that four points may uniquely determine a 
quadratic polynomial if they satisfy certain conditions. 

For simplicity, a transformation defined by 

Yi-i -- Yi xi -- x i - I  
~ " -  d (x-~.~)+ -d (y-w), 

--  iI;i+ I - -  25"~ 
Y~ Y~+~ ( x  - ~ )  + - - y  (:y - y~) (8 )  /L'- T 

with 

will be applied to P~-2, Pi-J,  Pi and Pi+l first. This transformation changes the coor- 
dinates of these points to (v.i_2, wi-2),  (0, 1), (0,0) and (1,0), respectively. In the vw 
coordinate system, Qi(s)  defined by (3) becomes 

1 - ,~ 

(3  - ,~)( ,~  - 1) 
w = (9) 

8i 

By simple algebra, one gets the following equation: 

where 

2v 
A6' ,  w) - 

b'+W' 

B ( , ,  w )  = (1 - ~,)v 
(1 - ~, - ~ , ) ( ,  + , w )  

The roots of  (10) are 

s,; = gi -- v -4- . ( 1 1 ) 
v + w v + u, - 1 

Hence, for any (v, w), there are two possible values for ai. We now discuss when 
(v, w) = (vi-2, wi 2), which one of the two roots is s~. 
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Let r, 2 denote the knot corresponding to (v,_2, ¢c~-2). Since the knots correspond- 
ing to the data points (0, 1), (0 ,0)  and (1.0)  are 0, .~'i and I respectively, r, : < 0. 
Fol lowing (9) and (11) we have 

7-i 2 = t'i 2 - (ui-2 q- I-ui-2).'.;i q- .~i 
r , 

/ ~'i 2 ~/~i-2 
=TV, , i  7 7 - ~ -  1 +si  <0. (12) 

1 

This shows that if (t,, u:) = ( ' u i_2 ,  tt ' i  2) ,  then 

s s = .~, - c,i - 2 + ( 13 ) 
~ ' , - .2+~ ' i  2 vi 2 + w i  2 - 1  

From (3)-(5)  we know that if the given data points are taken from a parametric quadratic 
polynomial  Q(t) ,  then there is a unique s~ satisfying 0 < .si < 1 to make the curve Q , ( s )  
(3) pass through the given data points. Since si is determined uniquely by (13), Q,(.s) 
is equivalent to Q(t ) .  Therefore Theorem 1 follows. 

T h e o r e m  1. / f /7i ,  i - 2  ~< j ~< i + 1, art, taken from a parametric quadratic polynomial 
Q( t )  that is not a straight line, and the knots corresponding to Pi J, P; and Pi+l are 

~,-I ,  ~i and c~,+l respectively, then the Qi(.s) defined by (3), (4) and (13) reproduces 
Q( t )  exactly, and s, (13) satisfies 

,si - (14) 

Substituting 7-i_ 2 < 0 into (9) one obtains 

~'i 2 > 0 and a~i-2 > 1 (15) 

It is easy to prove that if conditions (15) hold, then ,sj defined by (13) satisfies 0 < 
.~, < 1. Therefore Theorem 2 follows (see Fig. 1). 

T h e o r e m  2, Let P) = (:~:j, 9j), i - 2 <~ j <~ i + l, be four  given dam points, and f]~ the 
intersection o f  the line passing through Pi 2 and Pi I and the line passing through [7 
and [~+~. I f[]~ and P~-2 are not on the same side but Pi+] and Pi 2 are on the same 
side o f  the line passing through P i -  l and Pi, then t~, i 2 <~ j ~ i + 1, determine a 
parametric quadratic polynomial Qi(.s) defined by (3) uniquely. 
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3.2. Determining si 

In this subsection and the following sections we shall use Di to denote the distance 
from point Pi to point Pz+l, and Oi to denote the angle between the line segment from 
P,: to Pi_ r and the line segment from P/ to P,+l .  

Let Pj = (x j ,y j ) ,  i - 2 <~ j ~< i + 1, be four points satisfying the conditions 
described in Theorem 2. The above discussion shows that they may be used to construct 
two parametric quadratic polynomials Q~_ t(s) and Qi(s)  both defined by (3). The si_i 
corresponding to Qi_ l (s) is 

-- 7-i 2 
.s~-i = s~-i -- (16) 

gi - -  Ti--2 ' 

where Ti-z and g{ are defined by (12) and (13), respectively. Therefore the si corre- 
sponding to Qz(s) may be taken as g,; determined by/='/-2,  k - l ,  Pi and Pi+l and (13), 
or as L determined by Pi- l, Pi, Pi+l and Pi+2 and (16). The arithmetic mean of g{ and 

is taken as si, 

si + <  
& = (17) 

2 

If  the data points are not on a straight line and their convexity does not change sign, 
then s,z, i = 3 , 4 , , . . ,  r~ - 2, can be determined by (17) uniquely. If  their convexity 
changes sign, ,si in Q.i (s) is determined as follows. The parametric quadratic Qi(s) is 
viewed as the trajectory of a moving particle which is required to pass through P i - ] ,  P,: 
and Pi+] with speed dQ~(s) /ds .  Let G(s~) denote the speed of the particle at the point 
Pi or the time s.i. We have 

s~- DT-J + (1 E l i ) 2  i + 2Di_  ~ D{ cos O{. 

To make the particle turn at Pi easily, one needs to make G(s i )  as small as possible. 
This is achieved by setting 

dG(si) --__ O. 
dsi 

The solution is 

Note that this is the so-called centripetal model (Lee, 1989). However, our derivation 
seems to be simpler and more reasonable. 

The algorithm for determining s,i, i = 3, 4 , . . . .  n - 2, is described as follows: 

if/9/,.-2, P#-J ,  Pa: and P~:+j,/v = i, i + 1, satisfy the conditions of  Theorem 2, 
then si = (si + ~ ) / 2 ;  where si and si are defined by (13) and (16), respectively. 
else begin 

if Pi 2, Pi- i ,  Pi and Pi+l satisfy the conditions of Theorem 2, 
t h e n  8i : Bi; 
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end 

else begin 

end 

if P i - I ,  [},  D,_I and /~+2 satisfy the condi t ions  of  Theorem ' 

then .s~ = .~:i: 

else .si = x j D , _ l  : (V"[) ,  i - \ . ' ~ ) :  

For the end data points, s2 cor responding  to Qe(s )  is determined by (16) using four 

points l~j, .j = 1 . 2 . 3 . 4 ,  and .%_ i cor responding  to Q . i{.~) is de termined by' < 131 using 

points P~, .j = /~ - 3./~ - 2 . ~  - 1./~. 

4. Determining knots 

Assume a parametr ic  quadratic polynomia l  q,.(.s) has been constructed for each f '  :: 

(.ri. !;i), 2 ~< i <~ /~ - 1. F rom (6), we have 

( l - . s , ) A ,  .siAi+l = 0  

which is l inear in two unknowns  Ai and Ai~-i, i = 2 .3  . . . . .  /~ - 1. There  are (/~ 2) 

equat ions  in (/~ - 1) unknowns  A2.zX 3 . . . . .  A,,. We need one additional condit ion t{} 

solve the system of  equat ions  for the unknowns.  Once  one of  A2. A3 . . . . .  A,, is given.  

the rests are de termined  uniquely. But this somet imes  could results in a bad set of  knots. 

To o v e r c o m e  this shortage, we assign two additional condi t ions  A. and A,, t{} solve the 

system. Then we have (l~ 2) equat ions in (~ - 3) unknowns  A~.A4 . . . . .  A,, i. These  

(t~ - 3) unknowns  are de termined  by the least square method.  Let G(A~. A4 . . . . .  A,, i', 

(18) denotes the sum of  the squared deviat ions be tween  ( I .s, )Ai and .s;A,~ i. 

tl--] 

( ; (A~ .  & . . . . .  A , , _  ~) = ~ [(I - .~ )A, - .%~x~ + , 2 

i=2  

( S )  

The ( i ~ -  3) unknowns  A3.A 4 . . . . .  A,,_ i are de termined by min imiz ing  the function 

G(A3. Aa . . . . .  A,,_ I). By setting the first partial der ivat ive  of  G' A~. A4 . . . . .  A,, i ) with 

respect to Ai to zero: 

aG(A~. & . . . . .  A,,_ j) 
= 0 .  / = 3 . 4  . . . . .  ~ , -  1. 

we obtain 

- h ,  iA, t + J'~A, hiA,+l = 0 .  i = 3 . 4  . . . . .  n - -  1. 

where 

(19) 

,fi = '~; i -- I '% I ~- (1 -- .~i)(1 --"~i). 
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Equations (19) may be written in the following matrix form: 

- h 3  
h 3 0  

f4  - - h 4  " ' "  

. . . .  

• • • 0 - h , , - 2  - L A . - I  h , , _  I An J 

(20) 

When A2 and A,~ are given, the solutions of  (20) are uniquely determined. If the set 
of data points Pi = (z~, y,z) with the knots {~, 1 <~ i ~< rz, are taken from a parametric 
quadratic polynomial, as shown in (1), and A2, A,, are taken as 

a2  : o ( &  - ~ , ) ,  

A,, -- c,((,, - ~ .... ,), (21) 

where c~ is a constant, then 

A i = c t ( ~ i - ~ - j ) ,  i = 3 , 4 ,  . . , n -  1, (22) 

are the solutions of (20). 
The A2 and A~ which satisfy (21) are called compatible end conditions. Since the 

solutions of  (20) are unique, we have the following theorem. 

T h e o r e m  3. If the system of(20)  with two compatible end conditions A2 and A~ is used 
to determine Ai, 3 <~ i <~ ~ - 1, then, the knots defined by 

~1 ~ O~ 

ti = ~ - j  + Ai, i = 2 , 3 , . . . , n ,  

have a parametric polynomial reproduction degree of two. 

(23) 

P r o o f .  Follow from (22) and (23), we have 

ti - t~_ j = A~ = c~(~ - ~i-J). [] 

5.  D e t e r m i n i n g  e n d  c o n d i t i o n s  

When the given data points are closed, i.e., (xl, Yl) = (x,~, y,,), we take A2 = A n + l  = 

1. These are compatible end conditions. In the following we consider the end conditions 
A2 and A,  when the data set is not closed• 

In parametric case, two seemingly different functions P(t)  and Q(t) may represent 
the same curve. When the given data points Pi = (xi, y,;), 1 ~< i ~< n, are taken from 
a parametric quadratic polynomial, the Q2 (s) and Q~,_ i(s) may look different although 
they represent the same curve. This is because their parameters being different. If there 
are parameter transformations to transform the parameters of  Q2(s) and Q,~ l(s) to the 
same one, determining the values of  A2 and &, becomes easy• When Q2(s) and @~(s) 
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represent  the same curve,  we may  t ransform them by rotat ing them to the same parabola  
of  the fo l lowing  form: 

:0 = (1'I 3`2 -L hi;/: 4. (:1. (24) 

Then A2 and A,, may  be taken as A2 = 22 - . r L  and A,, = 2,, .r,,-1 respect ively,  where 
(2~, .qi) are coordina tes  of  data  point  (z i .  9i) in the 2!1 coordinate  system. 

Assume  that the t ransformat ion 

:r = :r cos 3, + .q sin 3i ,  

51 - a t  sin 3s + .~ cos  :3i 

t ransforms Q;(.s) to a parabola .  In the z!/  coordina te  system, we have,  f rom (3), 

;/:' = [~')1 ( 'q)( 'Ti I - -5" i )  A-~,2(,.;)(;~i÷1 __ 3? i )4 .  0':i] COS ~i 

4. [~71 (s)(itJi 1 - -~Ji )  4. '~: '2(s)(]Ji+l - . I l l ) - -~] , ]  sin ~;¢,. 
(25) 

]j = -['~:,1 (s)(2:i_l -37 i )  4. L:)2(s)(J:,+I -- J:i) 4. .1:i] sin 3, 

+ [,:', ( ,~)(>-,  - > )  + ~',2(.~)(>+, - > )  + 9,] cos ~,. 

When sin 3~ and cos/3i are taken as 

/ ~ /  ~ sin/~, = - X i  X ]  + } ? .  

c o s 3 i = ~ / ~ i  2 + ~ 2  (26) 

where  

X i  =;z:i  1 --;I?i 4- (X>+ 1 --  2F/__1)8i. 

g = .~J, --I - iq; + (.q~+l - ~.;-1 )si  

the first express ion  of  (25) becomes  

:r ~ L i s  4- ~: i - I  c o s f l i  4- ? ] i - I  sin 3;. (27/ 

where 

L, = (:r,+~ - : r i - i ) c o s  + (9i+l  - 9; l) sin,:4i. 

Subst i tut ing (27) into the second express ion  of  (25) to e l iminate  .s and rearranging,  a 
pa rabo la  as shown in (24) is obta ined.  A2 and A,, are taken as 

A2 = Iz2 - :~:, I = 152s2[, 

zx,, - - I , : , ,  - - ~ ' , , - ,  I --  IL .... , ( l  - ,~ ,  ..... l)l.  ~2s) 

T h e o r e m  4. A2 and &; defined by (28) are, compat ib le  end condit ions.  

P roof .  Suppose  that the set of  data points  (xi,iqi) with knots  ( i ,  1 ~< i ~< n, is taken 
f rom a paramet r ic  quadrat ic  po lynomia l ,  as shown in (1). F rom (1) and Theorem 1, we 
have 
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x i  - -  x i - I  = (a ,  (~i  4- ~ i - , )  -I- b l ) ( ~ i  - ~ i - , ) ,  

9i -- ~/.i-I = (a2(~i + ~i- l )  + b2) (~i -- { i - l )  

Si = (~i -- ~ i - I ) / ( ~ i - - I  -- ~ i - I )  

thus it follows from (26) that 

x ~  = o,, ( ~  - ~ _ ,  ) (~+~  - ~ ) ,  

Yi  =(12(~i  -- ~i--l ) (~i+l  - -  ~ i )"  

Hence 

L2s2 = [(373 - .Z'l ) cos/~2 4- (~3 - ~/i ) sin ~q21 (~2 - ~, )/(~3 - ~1 ) 

= (g2 - ~,)(b,a2 - b2al)/~21 + a~, 

L,,_, (1 - .%_,) = (g,, - ~,~-l)(bla2 - b2(L,)/~.~ + a.~. 

This completes the proof of  the theorem. [] 

6. Algorithm summary 

The discussion in Section 3.1 shows that if Pi-2, P i - l ,  r i  and Pi+1 satisfy the con- 
ditions described in Theorem 2, then si is defined by (13) uniquely. However, this 
approach produces bad results sometimes, for example, when Pi-2,  P i - i  and P~ are 
obviously not on a straight line but Pi-I, Pi and Pi+l are nearly on a straight line, 
then si defined by (13) is not good. To overcome this shortage, when cos 6)i-i ~ - 0 . 9 9  
or cosOi  ~< -0 .99 ,  we consider Pi-2, Pi ~, l~z and Pi+J not satisfying the conditions 
described in Theorem 2. 

In Section 5, the formulas of  computing A2 and A,, are given. However, our exper- 
iment (see Section 7) shows that by taking A2 = A,, = 1, one also gets good results 
when constructing an interpolant to approximate a curve and gets better results when 
constructing shape preserving interpolants. 

The algorithm for assigning knots to data points Pz, i = 1,2 . . . .  , rz, is summarized as 
follows: 
Step 1: computing ~i and gi. 

f o r i = 3 t o T ) -  1 step 1 do 
if Pi-2, Pi-J, Pi and Pi+l satisfy the conditions described in Theorem 2, 

cos O i -  l > - 0 . 9 9  and cos Oi > -0 .99 ,  
then begin 

d = (:c~+~ - z ~ ) ( > _ j  - y ~ )  - ( z i - ,  - z ~ ) ( > + l  - > ) ;  

'~ : -  [ ( . v , - ,  - > ) ( ~ , - 2  - * , )  + ( x ~  - ~ : , _ ,  ) ( > - 2  - > ) I / d ;  

,w = [ ( >  - > + , ) ( ~ . , _ ~  - ~ )  + ( ~ + ,  - x ~ ) ( > _ 2  - > ) I / d ;  
,~, = [~, + v/~,~, , / (v  + ~L, - l)]/(,~,, + ,,,): 

r = v -  (~' + w)si + si; 



C. Zhang el al. / Compuler Aided Geometric Design 15 (1998) 399-416 

74i i = - r / ( . q i  - r}; 

end 
else begin 

w i = ~ : _ l  - - 0 ;  
,gi I : Dx/-D-~: 2/( ~ D :  2 +  D x / ~ i  i): 

,< : ¢ D , _ ,  + ¢-£,.): 
end 

Step 2: computing .si; 

.'~2 = .~'2~ 

S u - - I  : . 5 n - - l ;  

f o r i = 3  to n - 2 s t e p  1 do 
begin 

if w, + ~>i > 0 then .s, = (w~si + g i s ; ) / ( w ,  + g , ) ;  
else ~i = si; 

end 
Step 3: computing end conditions A2 and A, ;  

X = 371 - - 3 : 2  -l- (3)3 __ d : l ) , . ;2  ; 

Y - :,~] - .q2 + (Y3 - yl)s2; 
g = (0:3 a : l ) Y -  (93 - v l ) X ) / ( X  2 + y2) ;  
& = I.s2L[; 
X = .r, ,-2 - : , ' , ,  , + 0",, - a: , , -2) .s ,- i ;  

Y = !I,, 2 - .9,,-~ + (.q,, - !,',, 2).% I; 
L = ((.,:,, a ' , - e ) Y  - (V,, - 9,, -2 )X) / (  X2 + y2) ;  

a , , -  I(l 
or simply taking A2 : A,, -:  l 

Step 4: computing Ai, i = 3.4 . . . . .  n -  1. using Eqs. (20): 
Step 5: computing ti .  i = 1,2 . . . . .  'n; 

t l  = ();  

f o r i = 2 t o  n step 1 d o t :  = t i _ l  + A ,  

4 0 9  

7. E x p e r i m e n t s  

The new method has been compared with the chord length, centripetal and Foley's 
methods. The comparison is performed by using the knots computed using these methods 
in the construction of a parametric cubic spline interpolant. If the reproduction degree 
of the constructed spline is better, then the corresponding knot computation method is 
considered to be better. For brevity, the cubic splines produced using these methods are 
called chord spline, centripetal spline, Foley's spline and new spline, respectively. In the 
new method, two different end conditions are used, 1) A2 and A, is defined by (28), the 
corresponding spline is called new-1 spline; 2) taking A2 = &, = 1, the corresponding 
spline is called new-2 spline; The data points used in the comparison are taken from a 
primitive cubic curve F ( r )  = (z ( r ) ,  y(r ) ) ,  



410 C. Zhang et al. / Computer Aided Geometric Design 15 (1998) 399~t16 

x = 2.(7-) = ,vo(7-) + K <  (7-) + (7-), 

y = y ( 7 - )  =K~ ' )o (7 - ) -K~ ' , (7 - ) ,  K =  1 , 2 , . . . , 1 2 ,  

where 

~0(7-) = (7- -- 1 )2 (27-+  1), W0(7-) = (7--- I)2% 

¢l(r)=7-e(-27-+3), ~,(7-) = 7-2(r- 1) 

are cubic Hermite basis functions on 0 ~< 7- ~< 1. 
The cubic curve F(r) has the following properties: it is convex for K = 1,2, 3, 4, it 

has two inflection points for K = 5, 6, 7, 8, it has one cusp for K = 9, and it has one 
loop for K = 10.11.12. For K = 3 ,6 ,9 ,  12, the figures of  F(r) on the interval [0, 1] 
are shown in Fig. 2. For K = 2,4, 6, 8, i0, 12, the curvature curves of F(7-) are given 
in Fig. 3. In Fig. 3, the curvature curves of  F@) is multiplied by 40 f o r / ¢  = 2, by 20 
for K = 4, by 10 for K = 6, by 5 for K = 12. 

First, the comparison is performed on uniform data points in the interval [0, 1] defined 
as follows: 

i 
r i= ~ ,  i = 0 , 1 , 2  . . . . .  20. 

To avoid the maximum error occurred near the end points (x0, Y0) and (x20, Y20), the 
tangent vectors of  F(7-) at r = 0 and 7- = 1 are used as the end conditions to construct 
the cubic splines. These four methods are compared in terms of  absolute error curve 
E(t) defined by 

E(t) = min{[P( t )  - F ( r ) [ }  

= m i n { I P i ( t ) - F ( r )  1, 7-,: <<.7-<<.7-i+,}, i = 0 , 1 , 2  . . . .  ,19, 

where P ( t )  denotes one of  the chord spline, centripetal spline, Foley's spline or new 
spline, Pi(t) is the corresponding part of P(t) on the subinterval [ti, t i+l], and F(7-) is 
the primitive cubic curve constructed above. 

The maximum values of  the error curve E(t) produced by these four methods are 
given in Table 1. For K = 3, F(7-) is a quadratic polynomial, the new spline reproduces 
it exactly. The error 4.194e-15 in Table 1 is due to rounding in the finite precision 
computation process. 

Second, these four methods are compared on non-uniform data points in the interval 
[0, 1] defined as follows: 

( s i n ( i . ( 2 0 - i ) ) )  1 
7-i = i +  4 ~ ,  i = 0 , 1 , 2 , . . . , 2 0 .  

The maximum values of  the error curve E(t) generated by these four methods are shown 
in Table 2. The four methods have also been compared on data points which divide [0, 1] 
into 10, 40 . . . .  etc. subintervals. The results are basically the same as those shown in 
Tables 1-2. 

The theoretical derivation in Sections 3-5 shows that when used to assign knots in the 
construction of  polynomial interpolants to data points whose sign of  convexity does not 
change, our method will reproduce parametric quadratic polynomials, while chord length, 
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K=9 

Fig. 2. 

K = 8  

K = 4  
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Fig. 3. 

centripetal and Foley's methods can only reproduce straight lines. This shows that the 
reproduction degree of  our method is better than those of the chord length, centripetal 
and Foley's methods. Therefore, we have also used a convex curve ellipse to define data 
points to compare the reproduction degree of  these methods. The ellipse is 

3: = :r(r) = 3 cos(2rcr), 

?] = U(r) = 2 sin(2rcr). 

The interval [0, 1] is divided into 36 sub-intervals to define data points, ri as follows: 

1 
v-,= ( i + c ~ s i n ( ( 3 6 - i ) * ' i ) ) ~ ,  i = 0 , 1 , 2  . . . . .  36, 
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Table 1 
Maximum absolute errors 

Error chord centripetal Foley new- 1 new-2 

t C =  1 2.348e-4 9.983e-5 3,960e~4 1.770e-5 1.770e-5 

fC- -  2 1.982e-5 9.915e-6 1,253e-4 9.616e-6 9.616e-6 

A - -  3 2.223e-5 1.110e-5 1.967e-5 4.194e-15 4.284e-15 

N =  4 1.594e-5 8.008e-6 l . l l l e - 5  6.817e-6 6.817e-6 

t C - - 5  3.064e-5 1.434e-5 1.125e-5 1 .338e4  1.884e-4 

I C =  6 9.499e-5 4.440e-5 3.890e-5 1.046e-4 1.911e-4 

t C -  7 4.216e-4 1.368e-4 6.304e-5 5.296eM 6.394eM 

t C = 8  9.107e-4 2.882e-4 8.481e-5 1.612e-4 1.612e-4 

N = 9  9.097e-4 2.461e-4 1.475e-4 6.412e-4 6.412e-4 

t C =  10 2.048e-3 5.720e-4 1.736e-4 9.399e-5 9.399e-5 

t C - -  II 1.190e-3 3.564e-4 1.063e-4 1.427e-4 1.063e~t 

N - -  12 5.744e-4 2.231e-4 1.603e-4 1.187e-4 1.187e-4 

Table 2 
Maximum absolute errors 

Error chord centripetal Foley new- 1 new-2 

t C =  1 3.913e-4 8.065e~,4 4.968e-4 1.889e-5 1.680e-5 

I C =  2 2.234e-5 1.290e-3 2,770e-4 1.031e-5 9.236e-6 

K = 3  2.421e-5 1.870e-3 5.502e-4 2.979e-15 4.885e-6 

I C -  4 4,501e-5 2.365e-3 9,404e-4 1.423e-5 1.466e-5 

t C =  5 5.430e-5 2.701e-3 1.361e-3 2.380e-4 3.882eM- 

~ =  6 2.597e~4 2.728e-3 1.681e-3 4,015e-4 6.209e-4 

N =  7 1.444e-3 2.056e-3 1,609e-3 1.128e-3 1,645e-3 

N = 8  4.254e-3 1.372e-3 1.074e-3 3.126e-4 3 . 0 7 8 e ~  

I C - - 9  1.112e-3 1.838e-3 4.574e--4 7.548e-4 9 . 3 4 3 e ~  

I C =  10 6.315e-3 2.310e-3 1.927e-3 4.243e-4 4 . 2 5 5 e ~  

f C =  11 3.145e-3 3.703e-3 3.818e-3 3.847e-4 3.834e-4 

/ C - -  12 1.233e-3 5.550e-3 5.173e-3 3.812e-4 3.786e-4 
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Table 3 
Maximum absolute errors 

Error chord centripetal Foley new- 1 

cr -- .0 5. 104e-5 2.849e-5 2.545e-5 7.271e-6 

o- = .05 8.398e-5 1.384e-3 7.576e~4 1.842e-5 

cr = .10 1.205e-4 2.837e-3 1.558e-3 3.086e-5 

cr = . 15 1.604e-4 4.390e-3 2.424e-3 4.455e-5 

cr = .20 2.036e-4 6.040e-3 3.351 e-3 5.943e-5 

rr = .25 2.500e-4 7.788e-3 4.337e-3 7.542e-5 

413 

where 0 ~< ~7 ~< 0.25. Taking 0 ~< cr ~< 0.25 makes the data points have the property that 
the adjacent chord lengths D,_  1 and D, of the data points satisfy 

1 Di--L D~ 

5 4 4 3  

The maximum values of the error curve E(t )  generated by these methods are shown 
in Table 3. In this example, new-I and new-2 splines are the same. 

Additional comparison has also been performed and it shows that if the data points 
are taken from convex functions, the new method in general gives better approximation 
than the chord length, the centripetal model or Foley's method. 

Four sets of data points have been used to compare the shape of the curves produced by 
the four methods, with A2 and A,, both being set to 1. The four sets of data points are taken 
from (Akima, 1970; Fritsch and Carlson, 1980; Brodlie, 1980: Lee, 1989), respectively. 
The curves produced by these methods are shown in Figs. 4-7.  Although the new method 
gives at least as visually pleasing curves as the ones produced by the other methods, it 
is not suitable for constructing shape preserving interpolants. Just as general spline and 
spline with tension are used for different purposes, we think that determining knots 
for constructing interpolants with high precision and for constructing interpolants with 
visually pleasing shapes are different problems. Our method is suitable for constructing 
interpolants with high precision. A method for constructing interpolants with visually 
pleasing shapes suggested by the data points will be studied in a different paper. 

8. Conclusions and future works 

A new method for determining knots in parametric curve interpolation is presented. 
The new method can be used in polynomial curve interpolation as well as in spline curve 
interpolation. 

The knots are determined by assuming that the given data points are taken from a 
parametric quadratic polynomial. The parametric polynomial reproduction degree of the 
new method is two, i.e., if the data points are taken from a parametric polynomial Q(l) 

of degree two, then the computed knots can be used to construct interpolants which 
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Fig. 4. Data points in (Akima, 1970), {z, fl} = {(0, 10),(2, 10),(3, 10),(5, 10),(6, 10), 
(8, 10), (9, 10.5), (11, 15), (12, 50), (14, 60), (15, 85)}. (a) centripetal spline, (b) Foley's spline, 
(c) chord spline, (d) new-2 spline. 

a b 

e d 

Fig. 5. Data points in (Fritsch and Carlson, 1980), {x, y} = {(7.99, 0), (8.09, 2.76429e-5), (8.19, 
4.37498e-2), (8.7, 0.169183), (9.2, 0.469428), (10, 0.94374), (12, 0.998636), (15, 0.999919), 
(20, 0.999994)}. (a) centripetal spline, (b) Foley's spline, (c) chord spline, (d) new-2 spline. 

reproduce Q(t) exactly if the interpolation scheme reproduces quadratic polynomials. 
On the other hand, if the knots computed using the chord length, centripetal or Foley's 
method are used to construct the interpolant, Q(t) will not be reproduced even though 
the interpolation scheme reproduces quadratic polynomials. This means that from the 
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Fig. 6. Data points in (Brodlie, 1980), {x,!7} = {(0, 1),(1, 1.1),(2, 1.1),(3, 1.2),(4, 1.3). 
(5, 7.2), (6, 3.1), (7, 2.6), (8, 1.9), (9, 1.7), (10, 1.6)}. (a) centripetal spline, (b) Foley's spline, 
(c) chord spline, (d) new-2 spline. 

a b 

e d 

Fig. 7. Data points in (Lie, 1989), {:*:,9} = {(0, 0), (1.34, 5), (5, 8.66), (10, 10), (10.6. 10.4), 
(10.6, 10.4),(10.7, 12),(10.7, 28,6),(10.8, 30.2),(11.4. 30.6),(19.6. 30.6).(20.2, 30.2)}. 
(a) centripetal spline, (b) Foley's spline, (c) chord spline, (d) new-2 spline. 

approximation point of view, the new method is better than the chord length, centripetal 
and Foley's methods in terms of error evaluation in the associated Taylor series. 

Our experiment results also indicate that (1) if the convexity of the data points does 
not change sign, then the new method in general gives better approximation than the 
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other three methods; 2) for uniform data points whose convexity changes sign, the new 
method has no advantage in approximation over the other three methods; 3) for nonuni- 
form data points whose convexity changes sign, the new method in general gives better 
approximation results than the other three methods. 

It is known that in constructing a cubic spline interpolant, if the two end conditions are 
taken as the tangent vectors and the knots are compatible, then the constructed parametric 
cubic spline reproduces parametric cubic polynomials. Our next work is to investigate if 
there is a method of  determining knots whose parametric polynomial reproduction degree 
is three. Another work is to extend the idea in this paper to determine knots for 3D data 
points. 
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