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ABSTRACT

An algorithm for the construction of a non-uniform cubic B-spline inter-
proximating curve is presented. The curve has minimum energy on each of its
components. It interpolates the exact data points and approximates the uncer-
tain ones by passing through the regions that specify the range of the uncertain
data points. The new algorithm improves our previous work in several
aspects, including parametrization technique, end conditions, numerical stabil-
ity and shape editing capability.
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1. Introduction

A typical interpolation-based curve/surface design system has a rigid template for its
input, i.e., all the input data must be 2D/3D points. For applications such as reconstruction of
natural phenomena or digitized images, motion detection, and 2D/3D shape design, this is
simply not flexible enough since in these applications the data sometimes are uncertain (i.e.,
one only has a range of a point but not the exact location). Data fitting methods such as
least-squares approximation may be used to approximate uncertain data points (or, interpolate
perturbed data points, by backward error analysis). However, these methods do not guarantee
that the resulting curve or surface would pass through specific data points, nor would the
curve or surface pass through specific regions. What one needs in these applications is a
method that can interpolate exact data points and approximate the uncertain ones by passing
through the regions that specify the range of the uncertain data points. We call such a process
���������������
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"interproximation" in our previous work [3] due to the fact that it is a cross between interpo-
lation and approximation. Basically, interproximation is a process to choose a curve/surface,
among the many curves/surfaces that satisfy the requirement, that meets some constraint so
the resulting curve/surface is relatively smooth.

A solution to a more general problem in this direction, the generalized Hermite-Birkhoff
interpolation, has been given by Ritter [16]. His solution allows both the function and its
derivatives to interproximate the given data. For most of the applications in computer-aided
geometric design and related areas, however, fitting derivatives to given data usually is not
required.

A more specific algorithm for the construction of an interproximating cubic spline curve
was presented in our previous work [3]. The curve is generated based on minimizing the
energy on both the x - and y -components of the possible interproximating curves. Geometric
smoothness of the curve is achieved through this energy-minimizing process. This technique
allows a user to design a curve with more flexibility and less efforts (trial-and-error itera-
tions). It can also be used to remove undesired oscillations generated on an ordinary interpo-
lating curve.

This work, however, has several disadvantages. First, the geometric meaning is not
clear by using the classical concept of reproducing kernel in the construction of function
spaces. Second, the user has to specify the tangent at the start point of the curve and, due to
the way the function space is constructed, it is not even possible to consider any other alterna-
tives. Further, since uniform spaced knots are used in our previous approach, one needs to
choose data points in a way so that oscillations of the resulting curve would to accommo-
dated, a burden that only experienced user can handle properly.

In this paper, we improve these problems by presenting an algorithm for the construction
of a non-uniform cubic B-spline curve that interproximates a given data set. The new tech-
nique improves our previous work in several aspects: (1) better parameter spacing technique,
(2) more efficient and numerically stable computation process, (3) requiring no input on
boundary conditions, and (4) requiring less efforts in selecting the input data and allowing
more flexibility in shape modification. The new technique is also easier to be integrated with
other modeling systems. A paper with some similarity but using probabilistic point constraint
has also been presented recently [15].

Details of the new work will be given in the subsequent sections. We will start our work
with a formal definition of the problem in Section 2. The solution and the algorithm will be
presented in Section 3. Implementation issues and concluding remarks are given in Section 4.
Possible extensions of this work will be discussed in Section 5.

2. Background

We describe the background and formulate the problem in this section. The approach is
different from the previous work. The differences include using non-uniformly spaced knots
in the parameter space, different end-point conditions, and different formulation of the func-
tion spaces.
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Let { Di

�
1≤i ≤n +m } be a set of 2D data where Dij

, 1≤ j ≤n , are 2D points and Dik
,

1≤k ≤m , are 2D regions with Dij
= P j = (x j , y j ) and Dik

= Ak ×Bk = [ak , bk ]×[ck , dk ]. The

objective of this work is to construct a cubic B-spline curve that interpolates Dij
and passes

through Dik
with the smoothest shape. This is accomplished in part by minimizing the energy

of the x - and y - components of an interproximating B-spline curve. The representation of
such a curve will follow the traditional approach, i.e., a piecewise curve of n +m −1 cubic B-
spline segments with the endpoints of the segments interproximating the given data.

Let H be the set of all cubic B-spline curves defined as follows:

S(t ) =
i =−2
Σ

n +m −1

Ci +2 Bi ,3(t )

where Bi ,3(t ) are B-spline basis functions of degree 3 defined by the knot vector
{τi | −2≤i ≤n +m +3 } and Ci are 2D control points. The knot vector implies a parameter
space defined by a range of τ1 to τn +m for t . We shall assume that the knots satisfy the fol-
lowing conditions: τ−2 = τ−1 = τ0 = τ1 = 0, τn +m = τn +m +1 = τn +m +2 = τn +m +3 = 1 and for
2 ≤ i ≤ n +m −1

τi − τi −1 =
�
Qi − Qi −1

�1/2 /
j =2
Σ

n +m�
Q j − Q j −1

�1/2 (2.1)

where Qi equals P j if i = i j and Qi equals the center of Ak ×Bk if i = ik . Equation (2.1) is
based on the centripetal model developed by E.T.Y. Lee [12]. An interpolating curve with
such a knot parametrization usually is "fairer" (closer to the data polygon) than those obtained
with the uniform or chord length parametrization, see Figure 1.

Figure 1. Cubic B-spline interpolation curves obtained with (a) uniform,
(b) chord length, and (c) centripetal parametrization.

For each B-spline curve S(t ) contained in H , we define the (bending) energy of S(t ) to
be

��
S
��
≡

0
∫
1

[(
dt 2

d 2 Sx (u )
��������)2+(

dt 2

d 2 Sy (u )
��������)2] du (2.2)
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where Sx and Sy are the x - and y -components of S. Definition (2.2) follows that of Kjel-
lander [10]. More discussions on the definition of energy can be found in E.T.Y. Lee [11].
The value,��S��, represents the (overall) smoothness of the curve; the smaller the energy, the
smoother the curve. Hence, our problem is to find Ŝ∈ H such that

Ŝ(τik
) ∈ Ak ×Bk , 1≤k ≤m

Ŝ(τij
) = P j , 1≤ j ≤n

(2.3)

and

��Ŝ��= min

�
�
���S����S ∈ H , S satisfies (2.3)

�
�
�.

Since our work will be performed on the basis of individual components and the tech-
nique involved for each component is the same, it is sufficient to consider this problem for the
first component only, i.e., cubic spline functions. Let F be the set of all cubic B-spline func-
tions defined on [0,1] with respect to the knot vector { τi | −2≤i ≤n +m +3 }

f (t ) =
i =−2
Σ

n +m −1

ei +2 Bi ,3(t )

where ei are real number coefficients. For each f ∈ F , we define the energy of f to be

��f��≡ ∫0
1
[ f (2)(t )]2dt

where f (2) is the second derivative of f with respect to t . Then our problem is to find f̂ ∈ F
such that

f̂ (τik
) ∈ Ak , 1≤k ≤m

f̂ (τij
) = x j , 1≤ j ≤n

(2.4)

and

��f̂ ��= min

�
�
���f����f ∈ F , f satisfies (2.4)

�
�
�

We need two extra conditions to solve this problem since the dimension of F is n +m +2
and there are only n +m fitting conditions. We adopt the "natural" conditions, i.e., the second
derivatives of f at the endpoints of the parameter range, τ1 and τn +m , are set to zero.

f (2)(τ1) = 0, f (2)(τn +m ) = 0 (2.5)

Through simple algebra, it is easy to check that



- 5 -

f (2)(τ1) = e 0 B −2,3
(2) (τ1) + e 1 B −1,3

(2) (τ1) + e 2 B 0,3
(2) (τ1)

=
(τ2−τ1)2

6
��������(e 0 −

τ3−τ1

τ3+τ2−2τ1
���������e 1 +

τ3−τ1

τ2−τ1
�����e 2)

Hence, the first condition in (2.5) implies that

e 0 = (
τ3 − τ1

τ3 + τ2 − 2τ1
�����������) e 1 − (

τ3 − τ1

τ2 − τ1
������) e 2

Similarly, the second condition in (2.5) implies that

en +m +1 = (
τn +m −2−τn +m

τn +m −2+τn +m −1−2τn +m
��������������������) en +m − (

τn +m −2−τn +m

τn +m −1−τn +m
������������) en +m −1

Consequently, cubic B-spline functions contained in F which satisfy the natural conditions
can be expressed as

f (t ) =
i =1
Σ

n +m

ei wi (t ) (2.6)

where

w 1(t ) =
τ3−τ1

τ3+τ2−2τ1
���������B −2,3(t ) + B −1,3(t ) (2.7)

w 2(t ) = −
τ3−τ1

τ2−τ1
�����B −2,3(t ) + B 0,3(t ) (2.8)

wi (t ) = Bi −2,3(u ), 3 ≤ i ≤ n +m −2 (2.9)

wn +m −1(t ) = −
τn +m −2−τn +m

τn +m −1−τn +m
������������Bn +m −1,3(t ) + Bn +m −3,3(t ) (2.10)

wn +m (t ) =
τn +m −2−τn +m

τn +m −2+τn +m −1−2τn +m
��������������������Bn +m −1,3(t ) + Bn +m −2,3(t ) (2.11)

By defining F̂as the set of all cubic B-spline functions defined by (2.6) then the problem
that we are in a position to solve is to find f̂ ∈ F̂such that (2.4) is satisfied and
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��
f̂
��
= min

�
�
�
��
f
��
�
�f ∈ F̂, f satisfies (2.4)

�
�
�

The indexing of the fitting conditions (2.4) would lead to sparse matrices which are not
numerically stable and efficient when performing Gaussian elimination in the computation
process. Fortunately, this problem can be resolved by changing indices of the knots and the
associated B-spline basis functions. We will rename τ to be
{u 1, u 2, . . . , un , v 1, v 2, . . . , vm } where uj = τij

, 1≤ j ≤n , and vk = τik
, 1≤k ≤m . We also

rename {wi (t )} defined in (2.7) - (2.11) to be {g 1(t ), . . . , gn (t ), h 1(t ), . . . , hm (t )} with
gj (t ) = wij

(t ), 1≤ j ≤n , and hk (t ) = wik
(t ), 1≤k ≤m . If we rewrite (2.6) as

f (t ) =
j =1
Σ
n

α j gj (t ) +
k =1
Σ
m

βk hk (t ) (2.12)

and let F̂ be the set of cubic B-spline functions defined by (2.12) then our work is to find α j
and βk for f̂ ∈ F̂such that

f̂ (uj ) = x j , 1≤ j ≤n (2.13)

f̂ (vk ) ∈ Ak , 1≤k ≤m (2.14)

and

��
f̂
��
= min

�
�
�
��
f
��
�
�f ∈ F̂, f satisfies (2.13) and (2.14)

�
�
�. (2.15)

In our previous approach, one needs to construct gj (t ) and hk (t ) as the reproducing ker-
nel of F̃ (Lemma 3.1 [3]) and then express f̂ as a linear combination of gj and hk . using the
above approach, this step is not necessary since the optimal solution, as a B-spline function, is
automatically a linear combination of the B-spline basis functions at the knots.

3. Solution and Algorithm

The construction of f̂ which satisfies (2.13), (2.14) and (2.15) is based on a two-stage
process: first compute the coefficients βk , then compute the coefficients α j . The process of
computing βk is a quadratic programming problem. We first convert the fitting conditions in
(2.13) and (2.14) into matrix form.

Define

N 1 ≡
�
�ai ,j

	



n ×n
, ai ,j = gj (ui ) 1 ≤ i , j ≤ n (3.1)

M 1 ≡
�
�bi ,j

	



n ×m
, bi ,j = hj (ui ) 1 ≤ i ≤ n , 1 ≤ j ≤ m (3.2)
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M 2 ≡
�
�ci ,j

�
�

m ×n
, ci ,j = gj (vi ) 1 ≤ i ≤ m , 1 ≤ j ≤ n (3.3)

N 2 ≡
�
�di ,j

�
�

m ×m
, di ,j = hj (vi ) 1 ≤ i , j ≤ m (3.4)

The fitting conditions in (2.13) imply that

N 1αα + M 1ββ = x

or

αα = N 1
−1 x − N 1

−1M 1ββ (3.5)

where αα ≡ (α1, α2, .. , αn )T , ββ ≡ (β1, β2, .. , βm )T and x ≡ (x 1, x 2, .. , xn )T . Similarly, the
fitting conditions in (2.14) imply that

M 2αα + N 2ββ ∈ A (3.6)

where A ≡
k =1
Π
m

Ak . By substituting (3.5) into (3.6) we have

(N 2 − M 2N 1
−1M 1)ββ ∈ A − M 2N 1

−1 x (3.7)

Therefore, the essential work is to find ββ such that��f̂ ��is minimum subject to constraint
(3.7).

Define

G =
�
�gi ,j

�
�

n ×n
, gi ,j =

0
∫
1

gi
(2)(u ) gj

(2)(u )du , 1 ≤ i , j ≤ n (3.8)

H =
�
�hi ,j

�
�

m ×m
, hi ,j =

0
∫
1

hi
(2)(u ) hj

(2)(u )du , 1 ≤ i , j ≤ m (3.9)

Q =
�
�qi ,j

�
�

n ×m
, qi ,j =

0
∫
1

gi
(2)(u ) hj

(2)(u )du , 1 ≤ i ≤ n , 1 ≤ j ≤ m (3.10)

G and H are symmetric matrices. From (2.12) we have

��f̂��=
0
∫
1

(
i =1
Σ
n

αi gi
(2)(u ) +

i =1
Σ
m

βi hi
(2)(u ))2du

=
i =1
Σ
n

j =1
Σ
n

αi α j gi ,j +
i =1
Σ
m

j =1
Σ
m

βi βj hi ,j + 2
i =1
Σ
n

j =1
Σ
m

αi βj qi ,j
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= ααT G αα + ββT H ββ + 2ααT Q ββ

Therefore, from (3.5), we have

��
f̂
��
= (N 1

−1 x−D ββ)T G (N 1
−1 x−D ββ) + ββT H ββ + 2(N 1

−1 x−D ββ)T Q ββ

where D = N 1
−1M 1. Through simple algebra it is easy to check that

��
f̂
��
= C + ββT (H −2Q T D + D T GD )ββ + 2(N 1

−1 x)T (Q − GD )ββ

where C = (N 1
−1 x)T G (N 1

−1 x) is a constant. The fact that G being symmetric has been used
in the above derivation. Therefore, to minimize

��
f̂
��

it is sufficient to minimize

Γ(ββ) = ββT W ββ + 2(N 1
−1 x)T Z ββ (3.11)

where

W = H − 2Q T D + D T GD (3.12)

Z = Q − GD (3.13)

with constraint (3.7). This is a well-known quadratic programming problem in nonlinear pro-
gramming [1]. Standard optimization routine such as NAG [13] can be used to solve this
problem.

The matrix D = N 1
−1M 1 can be computed as follows. Let

N ≡

�
�
�
M 2

N 1

N 2

M 1

�
�
�

(n +m )×(n +m )
.

Perform block Gaussian elimination on

N T =

�
�
�
�M 1

T

N 1
T

N 2
T

M 2
T
�
�
�
�

to get
�
�
�

0

N 1
T

U T

M 2
T
�
�
�.

This corresponds to

�
�
�

L

I

I

0
�
�
�N T =

�
�
�

0

N 1
T

U T

M 2
T
�
�
� (3.14)
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with L containing the multipliers. Since LN 1
T + M 1

T = 0, it follows that

N 1
−1M 1 = −L T .

The block Gaussian elimination process also gives us the value of N 2−M 2N 1
−1M 1 in

(3.7) as it is easy to see now that its value is equal to the submatrix U contained in (3.14).

Consequently, the coefficients α j and βk of the optimal solution f̂ which satisfies
(2.13), (2.14) and (2.15) can be computed as follows.

1. Compute N 1, M 1, M 2, N 2, G , H and Q defined by (3.1), (3.2), (3.3), (3.4), (3.8),
(3.9) and (3.10), respectively.

2. Solve N 1γγ =x to get γγ =N 1
−1 x.

3. Perform block Gaussian elimination on

N T =

�
�
�
�M 1

T

N 1
T

N 2
T

M 2
T��
�
�

to determine D = N 1
−1M 1 and U = N 2−M 2N 1

−1M 1.

4. Compute W and Z defined by (3.12) and (3.13), respectively.

5. Minimize

Γ(ββ) = ββT W ββ + 2γγT Z ββ

subject to

U ββ ∈ A − M 2γγ

6. Compute αα defined by (3.5).

The construction of the matrices N 1, M 1, N 2 and M 2 may be performed by using the
corresponding expressions of wi in (2.7) - (2.11) to find the values of gj or hj at the given
knots. These matrices are all banded matrices with a band width of at most 3. The construc-
tion of the matrices G , H and Q may be performed by first applying the technique of integra-
tion by parts to the expressions in (3.8) - (3.10) to find the following expressions:

gi ,j = gi
(2)(1)gj

(1)(1) − gi
(3)(1)gj (1) − gi

(2)(0)gj
(1)(0) − gi

(3)(0)gj (0)

hi ,j = hi
(2)(1)hj

(1)(1) − hi
(3)(1)hj (1) − hi

(2)(0)hj
(1)(0) − hi

(3)(0)hj (0)

qi ,j = gi
(2)(1)hj

(1)(1) − gi
(3)(1)hj (1) − gi

(2)(0)hj
(1)(0) − gi

(3)(0)hj (0)

and then computing their values at the given knots. G and H are also banded matrices.
Since the values of gi , hj and their first, second and third derivatives at the knots will be used
several times in the construction of these matrices, one should build a look-up table for these
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values and reference appropriate entries of the table to construct these matrices.

The block Gaussian elimination process can be performed in a very efficient and stable
manner since N 1 and N 2 are both banded square matrices and M 1 and M 2 are sparse matrices
with the non-zero entries concentrated on a banded neighborhood of the diagonal line; the
number of non-zero entries within each row of these matrices is at most 3.

The Gaussian elimination process required in Steps 2 and 3 should be performed by
exploiting the fact that N 1, M 1, N 2 and M 2 are banded matrices. This fact allows the Gaus-
sian elimination process to be carried out in linear time.

The minimization problem of the quadratic form (3.11) with constraint (3.7) can be car-
ried out by calling the NAG FORTRAN Library Routine, E04NAF [13]. This routine
requires 29 parameters as input. In the above case, however, only 8 of them are variables; the
remaining ones are constants.

4. Conclusions

This paper presents an algorithm for the construction of a non-uniform interproximating
cubic B-spline curve with minimum energy on each of its components. The curve interpo-
lates the exact data points and approximates the uncertain ones by passing through the rec-
tangular regions that specify the range of the uncertain data points. This approach allows a
user to construct a desired curve with more flexibility and fewer trial-and-error iterations than
conventional approach. Two examples of non-uniform cubic interproximating B-spline
curves constructed with the algorithm presented here are shown in Figures 2, and 3.

The new algorithm improves our previous work [3] in several aspects, including (1) The
parametric knots are parametrized using the centripetal model [12] instead of uniform
parametrization. This approach gives fairer interproximating curve than those obtained with
the uniform or the chord length parametrization. (2) B-splines, instead of reproducing ker-
nels, are used in the computation process. The construction of the matrices and the Gaussian
elimination process, hence, can be performed more efficiently and numerically stably, since
all the involved matrices are banded. (3) The new approach does not require user input of
boundary conditions. (4) The new approach allows the user to make local modification by
adjusting the control points of the curve and can easily be integrated with any B-spline or
NURB based modeling systems.

The algorithm has been implemented on a Sequent Balance 20000 multiprocessing
machine using X Window System environment.

5. Future Work

Future work in this direction includes surface interproximation and interproximation for
other curve representations. The curve and surface representations to be considered include
B-spline surfaces, Beta-spline curves/surfaces [2], and NURB curves/surfaces.

Although E.T.Y. Lee’s centripetal model [12] can also be used for other curve represen-
tations, we need to study appropriate parametrization scheme for surface interproximation
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since the centripetal model can not be used for the surface interproximation problem directly.

We will also study different approaches in defining the "fairness" of a curve, such as
using curvature and other means [7-9,14]. It looks like that the "fairness" of an interproxi-
mating surface for gridded data can be achieved through a two-stage process: first, minimize
the energy of the "interproximating curves" that interproximate the given data in u direction,
then minimize the energy of the "interpolating curves" that interpolate the control vertices of
the interproximating curves constructed in the first stage in the v direction. This is motivated
by the observation that a tensor product spline surface fitting problem can be separated into a
two-stage fitting problem [4-5]. However, further study is required for "fairing" surface which
interproximates scattered data. Related work in this area can be found in [6,14].
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