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Figure 1. Full evaluation (depttb) of a toy model§6 patches) ab6fps on NVIDIA GeForce 8800 GT

Abstract

A novel patch-based tessellation method for a dual subdivis
scheme, the Doo-Sabin subdivision, is presented. Patbdbe-
finement for face-split subdivision schemes such as Cat@ialk
subdivision or Loop subdivision has been widely studied.t Bu
there is no patch-based tessellation algorithm for duadlisigion
scheme [Shiue et al. 2005] yet. The method presented in&ipisrp

of the better known stationary subdivision schemes can d&sil
fied into two categories [Zorin and Schroder 200f2{ce-splitand
vertex-split The first category contains Loop [Loop 1987], modi-
fied butterfly [Zorin et al. 1996] for triangular meshes, aradr@ull-
Clark [Catmull and Clark 1978] and Kobbelt [Kobbelt 1996} fo
quadrilateral meshes. Doo-Sabin [Doo and Sabin 1978], daiele
and biquartic subdivision schemes are in the vertex-sategory.
There are several other subdivision schemes not in thesedteo

is the first attempt to fill up that gap. The new method uses an 1D dories such as the/3 subdivision [Kobbelt 2000]. Implementation

array to hold vertices; it creates a patch correspondingviertex
in the original mesh and does not have any numerical rournqfé
on patch boundaries. These characteristics are differemt those
of patch-based refinements for face-split subdivision s Ex-
perimental results show that our algorithm achieves rea¢ ties-
sellation performance for moderate meshes.

CR Categories: 1.3.5 [Computing Methodologies]: Computer
Graphics—Curve, Surface, Solid, and Object Representgti3.8
[Computing Methodologies]: Computer Graphics—GraphiegeD
Structures and Data Type

Keywords: subdivision surfaces, programmable graphics hard-
ware, patch-based refinement

1 Introduction

Subdivision surfaces are gaining popularity in severaagreuch

as geometric modeling and computer animation. One of the rea

sons is its capability in representing objects of arbitramyology
with only one surface. A subdivision surface is generatedaesy
cursively refining a given mesh (called control mesh) untihat
surface is reached. Hence a subdivision surface is detednbinthe
control mesh and the refining rule (or, subdivision schenv)st
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of this subdivision is very simple due to its repetitive sture.

With the recent dramatic advancement of their computatawep,
Graphics Processing Unit6GPUs) are no longer limited to ren-
dering purpose only, they have been used for other purpases a
well. Actually there is an effort to develop GPUs ir@neral Pur-
pose GPULGPGPU) [Luebke et al. 2004]. CUDACompute Uni-
fied Device Architectujedeveloped by NVIDIA is a very typical
platform for general purpose computation of GPUs. To wilize
computation power of GPUs, several algorithms have beefreimp
mented on GPU to achieve higher performance, such as mgrchin
cubes, particle systems [Kipfer et al. 2004; Kolb et al. 3004d
collision detection [Govindaraju et al. 2003]. More exaagptan
be found in the CUDA Zone of NVIDIAs website or in [Nguyen
2007]. In particular, there is a big collection of literagwabout effi-
cient tessellation of subdivision surfaces on GPU. A fastlezing
of Loop subdivision surface by dividing the control mestoinif-
ferent patches with triangle pairs and their intermediatigimbor-
ing vertices is proposed in [Pulli and Segal 1996]. Emplgytine
forward differencing technique for hardware supportedlenmen-
tation of Loop subdivision surface is explored in [Bischeffal.
2000]. A general meshing scheme method for adaptive sidiotivi
surface rendering which sends groups of vertices to thehgrsp
pipeline is presented in [B6o et al. 2001]. A parallel eatilon of
subdivision surfaces on graphics hardware is presentedadrpn
et al. 2002]. Patch-based adaptive tessellation for C&i@latk
surfaces with displacement mapping is shown in [Bunnell5200
[Shiue et al. 2003] proposes a generic framework for testied
subdivision surfaces on GPU. All these algorithms fall ithte cat-
egory of patch-based method. Patch-based refinement haslthe
vantages of locality, efficiency for recursive refinemenmiti adap-
tivity et al. Another type of tessellation and rendering obdi-
vision surfaces is to use lookup tables for pre-computed, dixe
the table driven tessellation algorithm in [Bolz and Scla®] and

a general subdivision kernel based on spiral-enumerasepnient
meshes in [Shiue et al. 2005]. There are other applicatieatird



with subdivision surface on GPU, e.g. deformation of suisiiw
surfaces on GPU [Zhou et al. 2007].

Most of existing tessellation methods for subdivision acels can
not be directly applied to dual subdivision schemes, sucbas
Sabin subdivision or mid-edge subdivision except the geriar-
nel [Shiue et al. 2005]. Especially, to the best of our knalgk
there is no patch-based tessellation algorithm for vest#it-sub-
division surfaces [Shiue and Peters 2005] [Shiue et al. RaB5
though patch-based tessellation techniques for face-sydtidivi-
sion surfaces have been widely studied. In this paper, Weéotry
fill up this gap by introducing a patch-based tessellatigo@hm

for Doo-Sabin subdivision surface. Our patch-based tiedied for
Doo-Sabin subdivision surface differs from those for fapét sub-
division surfaces in several aspects. First, a patch in lgarithm
corresponds to a vertex of the initial control mesh. In gahe¢he
number of vertices of a mesh is smaller than the number okface
Hence, there are less patches in our method. Second, ouoaneth
uses a 1D array to store patch vertices while those for fplie-s
subdivision employ a 2D array. Third, there is no numerioahd-

off gaps between patch boundaries in our method, while sapb g
exist in those patch-based methods for face-split methddchaed

to be taken care of. The reason that the third aspect is troe-is
cause in our method, two adjacent Doo-Sabin vertex patdiee s
a common strip of faces. A new common strip of faces is formed
by new vertices generated for faces of the current commap str
during the subdivision process. Since these new verticpsrdk
on faces of the current strip only, therefore, even though bdja-
cent patches need to compute these new vertices themsttlegs,
would get exactly the same points and, consequently, the sam
common strip of faces. Hence, there is no roundoff gaps in our
case at all. Further more, note that the general subdivigamel in
[Shiue et al. 2005] is also suitable for Doo-Sabin subdivissur-
faces. But this approach needs to subdivide the initial nhegte

on CPU while ours needs only one subdivision as pre-praogssi
Several experimental results show that our patch-basedllzson

for Doo-Sabin subdivision achieves realtime performarncerfod-
erate meshes. For instance, our algorithm hasfps rate for full
evaluation of a toy model to depth(Figure 1).

The remaining part of the paper is arranged as follows. Betdi
the new method are presented in SecfioRerformance of the new
method and test results are shown in Sec3ioBoncluding remarks
and future work are given in Sectidn

2 Patch-based tessellation and implementa-
tion

Figure 2: Upper left: stencil for Doo-Sabin subdivisiony = (n +
5)/4n anda; = (3 + 2 cos((2im)/n))/4n (0 < @ < n); Upper right:
f-face for a face; Lower left: v-face for a vertex; Lower rigte-face
for an edge.

A dual subdivision scheme refines the current mesh by (cencep
tually) splitting its vertices according to their valendesgenerate
new vertices, and then connecting the new vertices to fonm ne
edges and new faces. The refined mesh contains three types of
faces: v-facese-facesandf-faces as they correspond to vertices,
edges, and faces in the current mesh, respectively. By texiga
performing this refinement process on a given control mesh, o
gets a limit surface in the end. Such a limit surface is ca#led
subdivision surface of the dual subdivision scheme. DdoifSa
subdivision scheme is a typical dual scheme. The refinentent s

cil for Doo-Sabin subdivision and the correspondinéacee-face
andf-faceare shown in Figure2. Note that if one can generate each
patch of the limit surface independently by refining an appede
subset of the control mesh (callgghtch-based tessellatipn
then one can parallelize the limit surface generation E®dey
generating all the patches of the limit surface simultasgoan a
GPU or some special hardware. Our intention here is to dpvelo
patch-based tessellation techniques for Doo-Sabin sisibmtiv
surfaces.

Developingpatch-based tessellatiptrechniques foface-splitsub-
division schemes is relatively easy. This is because fon &ace-
split subdivision scheme, such as Catmull-Clark or Loohea
patch of the limit surface corresponds to a face in the comash.
Therefore, it is straightforward to identify the subset loé tcon-
trol mesh that has to be tessellated to generate a specific phat
the limit surface. This is not true for a dual subdivision etie.
Patches of the limit surface of a dual subdivision schemeato n
correspond to faces of the initial control mesh. Insteaely torre-
spond to vertices of the initial control mesh (see Figure/@.call
such a patchvertex patch

Given an input mesiM with N, vertices, we first subdivide it
once to generate a-facefor each vertex. The refined mesh is
then broken intoN, submeshes. Each submesh, consisting of
a v-face and its adjacent faces, corresponds to a vertex patch.
With the establishment of an initial submesh for each vertex
patch, Doo-Sabin subdivision is then applied to each submes
independently. The final refined mesh Mf is the union of the
final refined meshes of all these submeshes. Note that twoeadja
vertex patches share a strip of quadrilateral faces in tfineck
mesh of every level. In the initial submesh of a vertex pathh,
v-faceand adjacent-faces(generated for faces dfl adjacent to



ide=1+47

idv=A!
fdx = A
i *_I._A’__-‘!'—_-'
’ ide | i i+l
—_—=a
g+
s
E!’dx

©

Figure 4: (a) face layouts and vertex layouts; (b) indices of a corngadjand its subdivided new corner quad; (c) indices of a regguad

and its subdivided new regular quad.

this vertex) could be arbitrary polygons; but the adjacefices
are all quadrilateral faces. If the input mesh is a quadniitmesh,
all faces adjacent to efaceare quadrilaterals (see the Upper left
case of Figure 3). A submesh of this type is callesemi-quad
submesh. In the following, we first show how to subdivide éhes

general, quadrilaterals adjacentitth layer faces are assigned to
the (¢ + 1)-st layer. Similarly, we can classify vertices into dif-
ferentvertex layers Vertices of the inner most-faceare in the
0-th vertex layer. Vertices shared by quadrilaterals in:ttie and

(i + 1)-st layers are assigned into th#h vertex layer, as in Figure

semi-quad submeshes using Doo-Sabin subdivision scheme.4(a). In each face layer except theh layer, there are quadrilat-

We then extend our patch-based tessellation algorithm ¢ ar
trary meshes by introducing a special operation for anyifréaces

Figure 3: Upper left: an initial submesh of a vertex patch in a cube 3.

mesh. Upper right: the refined submesh of this patch &ftewvels of
subdivision; blue quadrilaterals are shared with other gegs; Lower
left: strips of blue quadrilaterals are shared between pat; Lower
right: a none semi-quad vertex patch at subdivision depthhose

erals corresponding to thidacesof the initial semi-quad submesh,
calledcorner quads Other quadrilaterals are consideredegular
guads We also divide the vertices in each vertex layer into twe cat
egories:corner vertexandregular vertex Vertices of the single face
in the 0-th face layer are altorner vertices The two vertices on
the diagonal of @orner quad which are from two consecutive face
layers, are tw@orner verticeon their own layers, respectively. An
illustration is given in Figure 4(a). Thus there are exaetlgorner
vertices in each vertex layer. It is natural to divide thetiges in
each layer intm sides. The-th side contains the vertices from the
i-th corner vertex to th& +1)-st corner vertex (excluding+1)-st
corner vertex itself).

There are several useful observations on the number oteerin
the layout of a vertex patch. At subdivision level 1,

1. there ar@?~! + 1 vertex layers. The layer indéis assumed
tobe0 <1 <2471,

2. In vertex layer, there are2l + 1 vertices on each side, thus
(2 + 1)n vertices in all.

The total vertices in the refined submesh of a vertex pdtch a
leveldis (2771 + 1)%n.

We simply assign all vertices of a vertex patch into an arrage-
quential order by assigning the inner layers first as shoviigare

generator vertex has a valence ifnote that the layout is similar to 6. The vertex indices for theth vertex layer is from®n + 1 to

that of the patch in upper right.

2.1 Subdivision of Semi-quad Vertex Patches

The layout of a semi-quad vertex patch is completely deteeohi
by the valence: of the corresponding vertex in the original mesh,
called agenerator vertexA valence ofn indicates that thg-facein
the initial submesh has vertices. In this subsection, tigenerator

(14 1)%*n. Thej-th (0 < j < n — 1) corner vertex in thé-th layer

is in the position ofC} = I°n + 1 + j(21 + 1). A vertex on the
j-th side of the-th vertex layer is connected to a regular vertex on
the same side of th@ + 1)-st vertex layer to form a bounding edge
of a regular quad. The index difference between this pairoof c
nected vertices in consecutive layers\§ = (20 + 1)n + 25 + 1.
Then vertex indices of a corner quad @¢, C;™' + 1,C;*' and
C’Jl.+1 — 1 as shown in Figure 4(b). A regular quad contains vertices

with indicesidz, idz + 1, idz + 1 + A} andidz + A} as shown

vertexof a semi-quad vertex patch is assumed to has a valence ofin Figure 4(c), wherédz is a vertex on thg-th side of the-th ver-

n.

At each refinement level of theemi-quadvertex patch, all faces
can be assigned into differeface layersnaturally by their posi-
tions. The inner most-faceis considered in th@-th layer. In

tex layer. Therefore, at subdivision levglwe can extract all faces
from the sequence of vertices by constructing quadrilsterthe
above forms. More precisely,

1. Theinner most face is obtained by connecting verticesn;



2. For a vertexidz betweenl and (2¢71)?n, first determine its
vertex layer! and its sidej in this layer. Extract a regular
quad with verticesdz, idz + 1, idz + 1+ A} andidz + A};
if vertex idz is a corner vertex, extract a corner quad with
verticesCy, Cit! + 1,05 andCi — 1.

Here all the additions and subtractions are considerecimitdulo
sense, i.eQ} —1 = C%_, + 2l and so on.

For Doo-Sabin subdivision, new vertices are generated dche
face. So far, we can extract all faces from a sequential dmay
subdivision. The question then is, how to store the new cesti
back into the sequential array. At subdivision lede} 1, there are
2¢ 4+ 1 face layers. Note that the quadrilaterals in the 1)-st face
layer of leveld creates the quadrilaterals in th@ + 1)-st face layer
in the refined submesh. Consequently, vertices on the nedrigua
laterals are in th¢2: + 1)-st and(2i + 2)-nd vertex layers of the
refined submesh. Precisely, each corner quad ifithé ) — st face
layer with verticesC;, Ci*' + 1,0 andCi™! — 1 is mapped
to the corresponding corner quad in tf#& + 2)-nd layer which
has verticeC?"*!, C2'+2 41, C7'** andC7"** — 1, as shown
in Figure 4(b§. For each regular quad on éam side, we need a
new parameteF; . to determine the indices of the new vertices.
Let E;q4. is just the number of edges betwegtr + 1 and C’;“.

We haveFE,q, = idz + 1 — C’;“. Then the new regular quad has

the vertices ofidz’ = C’f"“ + 2F;de, idz’ + 1, idx’ + A?i“
andidz’ + A%"*!, as in Figure 4(c). The above analysis shows the
process of subdividing a semi-quad vertex patch. We nextneixt
this tessellation method to arbitrary meshes.

2.2 Generalization

For an arbitrary meshf-facesin the initial submesh of a vertex
patch no longer have to be quadrilaterals. If they have nae4
vertices, they can not fit into the sequential array disaisdmve
any more. The layout of the refined submesh of a vertex patch de
pends on the valence of its generator vertexand how many ver-
tices on eaclfi-face In this subsection, we use the assumption that,
for the given vertex patch, the valence of the generatoexestn

and the numbers of vertices of thef-facesaremi, mo, ..., mny,
respectively. Note that, although the initial submesh ofdbitrary
vertex patch looks quite different from that of a semi-quadex
patch, their refined submeshes after a few times of subdivisiok
very much alike. In fact, the only difference between thase s
meshes are just the corner quads in the outer most face layer if
the valences of their generator vertices are botfhis observation
leads us to a minor modification of the tessellation algarifior
semi-quad vertex patch to handle arbitrary vertex patches.

Let M, be the maximum of vertex valences of the original mesh
and letMy be the maximum of mesh faces’ vertex numbers of the
original mesh. We appendif, x M; spaces to th€2¢=! + 1)?n
sequential spaces for a vertex patch at subdivision lévelich
that them; vertices of thej-th f-faceare stored in the slots from

j x My to (j + 1) x M. Note that the corner quads and corner
vertices in the outer most face layer and vertex layer ar@nger
valid now. But we still keep the spaces for them. These corner
quads and corner vertices now actflagis To differentiate them
from others, they are calledrtual corner quadsandvirtual corner
vertices respectively (see Figure 6).

19

18 v
17

P O
st
i

5
10

e
e
ol

15 14

1&

1l
-

13 12

Figure6: Left: a semi-quad vertex patch at subdivision deptivhere
solid black circles represent corner vertices and blue qgilattrals
are corner quads; Right: black circles represent virtuatmer vertices
and slashed quadrilaterals are virtual corner quads.

Now we can extract faces for an arbitrary vertex patch as we di
for a semi-quad vertex patch except for those virtual coguads.
When the considered face is tljeth virtual corner quad, we
retrieve them; vertices of thef-face from the appended spaces.
Once new vertices have been generated for a virtual corraet iqu
the new subdivision process, new vertices are stored backhe
identical positions in the appended spaces. Note that eatfalv
corner quad has three vertices shared with adjacent reguéals.
Using the above approach, these three vertices will becstariee,
once for the adjacent regular quads and once for the virtralec
quad. This additional storage is necessary to maintainrigvitg
mechanism that works for both semi-quad vertex patches and
arbitrary vertex patches.

In summary, we have the following algorithm for subdividiag
mesh from deptll to d + 1.

For a vertex with indexdz € [1, (2%71)?n] do

e |dentify the layer and the sidg it belongs to;

e |f the vertexidx is a corner vertex, extract vertices of the cor-
ner quad.: Cj, C:*' +1,C5 ! andCi — 1.
— If Q. is avirtual corner quad,

o Extract vertices of thej-th f-face from the ap-
pended)M, x My spaces;

o Subdivide this face by Doo-Sabin subdivision
scheme;

o Write new vertices to identical positions of a new
array; at the same time, write the three none vir-
tual corner vertices to their corresponding new po-
sitions;

— Otherwise,

o Subdivide this corner quad by Doo-Sabin subdivi-
sion scheme;

o Write vertices of the new corner quad to a new
array;

e Extract vertices of the regular quad with indicé€s. of
ide,ide + 1,ide + 1+ Al andidz + AY;
o Compute the step size for the new indiceB;.. =
ide +1—C};

o Subdivide this regular quad by Doo-Sabin subdivision
scheme;
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Figure5: (a)-(c):full evaluation of a chessman modgl 4 patches) to depth at 14fps; (d)-(f):full evaluation of the rocker arm model54
patches) to depth at 19fps; (a) and (d) are the original subdivision surfaces; ((@), (e) and (f) are deformed surfaces.

o Write vertices of the new regular quad to a new array;

3 Performance and results

After breaking a given mesh into vertex patches, the patchas
be evaluated independently. This intrinsic parallel cbi@mstic
makes it highly suitable for running on GPU. Our patch-bassd
sellation algorithm uses¥D array to represent a vertex patch. The
input mesh is first subdivided once on CPU to initialize tBearray
representations for the resulting vertex patches. Aftéelization,
the evaluation is confined to eatb array itself. At the expected
subdivision depth, the connectivity information neededrémder-
ing can easily be retrieved from these sequences of vertices

Our implementation is performed on a desktop with a 3.0GHe Pe
tium 4 CPU,512M RAM and a GeForc&800 GT GPU 612M).

We use the CUDA platform for GPU programming. To avoid ren-
dering via the CPU, we use vertex buffers for vertices of tipaut
meshes and their normals. By using the OpenGL Interopésabil
of CUDA, we can process these vertex buffers in GPU computa-
tion. After processing, it is directly rendered on GPU. Taeder-

ing process is highly accelerated by using vertex buffensortier

to measure the performance of our program, we wobble the ver-
tices of the input mesh along their normals and reevaluatengsh

to the prescribed depth, i.e5 in our examples. Figure 1 shows
reevaluating a toy model with6 patches to depth at 56fps. The

ant model in Figure 7 witR98 patches is reevaluated to deptht
14fps. More examples are shown in Figure 8 on a helix model with
505 patches, Figure 5(a) - Figure 5(c) on a chessman model with
314 patches and Figure 5(d)-Figure 5(f) on a rocker arm modél wit
354 patches. All these examples show that our patch-based-tesse
lation algorithm achieves near realtime performance. Goegbto

our implementation on CPU, the GPU implementation runs sbou
20 times faster. For instance, the performance for the rocker a
model on CPU is less tharips.

4 Conclusion and Future Work

In this paper, a patch-based tessellation algorithm for-Babin
subdivision scheme is developed. Our patch-based tetiseltae-
ates a vertex patch for every vertex in the input mesh. Thiexe
patch is represented by1d® array. All connectivity information
can be easily retrieved from th® sequence. All vertex patches are
evaluated independently. There is no numerical roundgf§ gssue
because the shared parts between patches are strips oilajeadr

als. With the intrinsic parallelism of our patch-based ¢diasion, it

is easily adapted on GPU. Our GPU implementation achievas ne
realtime performance for moderate meshes. In generah4atsed
refinements possess the flexibility of adaptive refinementnfil|
2005]. One of our future works is to investigate adaptivee#a-
tion of our patch-based method.
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