
Visual Comput (2005) 21: 242–251
DOI 10.1007/s00371-005-0285-3 O R I G I N A L A R T I C L E

Jianmin Zheng
Yiyu Cai

Making Doo-Sabin surface interpolation
always work over irregular meshes

Published online: 12 May 2005
 Springer-Verlag 2005

Jianmin Zheng
School of Computer Engineering,
Nanyang Technological University,
50 Nanyang Avenue, Singapore 639798
E-mail: asjmzheng@ntu.edu.sg
Tel.: +65-67906257

Yiyu Cai
School of Mechanical and Aerospace
Engineering, Nanyang Technological
University, 50 Nanyang Avenue,
Singapore 639798

Abstract This paper presents
a reliable method for constructing
a control mesh whose Doo-Sabin
subdivision surface interpolates
the vertices of a given mesh with
arbitrary topology. The method
improves on existing techniques in
two respects: (1) it is guaranteed to
always work for meshes of arbitrary
topological type; (2) there is no
need to solve a system of linear
equations to obtain the control points.
Extensions to include normal vector
interpolation and/or shape adjustment
are also discussed.

Keywords arbitrary topology ·
subdivision surfaces · interpolation ·
normal condition · shape control

1 Introduction

Constructing smooth surfaces of arbitrary topology is
an important but difficult task in computer graphics and
geometric modeling [13]. As an industry standard, non-
uniform rational B-spline surfaces (NURBS) suffer from
the regularity requirement of the control meshes. Recur-
sive subdivision was introduced as an efficient technique
to overcome this limitation. Starting from an initial poly-
hedral mesh, subdivision recursively refines the mesh by
adding new vertices, edges, and faces. As the number of
this processing step goes to infinity, the refined meshes
finally converge to a smooth surface.

Among various subdivision schemes, the Catmull-
Clark algorithm [2] and the Doo-Sabin algorithm [4] are
of particular interest. This is because they are generaliza-
tions of cubic and quadratic B-splines, respectively. When
an initial mesh is a regular mesh, i.e., each face in the
mesh is four-sided and each vertex has valence four, the
Catmull-Clark algorithm and Doo-Sabin algorithm pro-

duce a tensor-product bicubic and biquadratic B-spline
surface; otherwise, when the initial mesh happens to be
an irregular one, then the limit surface generated by these
two subdivision schemes comprises a sequence of Bézier
patches, which meet with at least tangent plane continu-
ity. Analogous to B-spline surfaces, Catmull-Clark and
Doo-Sabin surfaces generally do not pass through the ver-
tices of the initial mesh. Instead, they just approximate the
mesh.

In an interactive free-form surface design environ-
ment, control points are often used to define and mod-
ify the shape. Although the control points in approxi-
mate schemes give some guidance to the change in the
surface shape, the designer is required to invoke his or
her experience to achieve the desired shape. An inexpe-
rienced user would prefer to specify points on the sur-
face directly. Therefore, it is more desirable to be able
to interpolate points lying on the final surface. To force
the limit surface to go through a particular set of con-
trol points, modifications of the Catmull-Clark and Doo-
Sabin schemes are needed. Nasri [8] presents such a mod-



Making Doo-Sabin surface interpolation always work over irregular meshes 243

ification for the Doo-Sabin algorithm. Specifying normal
vectors at those interpolation points is also possible [9].
Halstead et al. [7] propose an interpolation scheme using
Catmull-Clark surfaces that minimizes a certain fairness
measure. Both methods require the construction of a lin-
ear constraint on the control points for each interpolation
point and thus the establishment of a system of linear
equations. The initial mesh for the subdivision surface can
be obtained by solving the equations. However, as pointed
out in both Halstead et al. [7] and Zorin et al. [14], it is
possible for the coefficient matrix in the linear system to
be singular, and it is unclear under what conditions the
linear system is soluble.

This paper proposes a reliable method for computing
the control mesh for the Doo-Sabin subdivision surface
that interpolates the specified points on a given mesh. Nas-
ri’s approach is modified so that the linear system to be
solved for the interpolation constraints is always solu-
ble. Moreover, instead of constructing a linear system and
solving the equations, our method performs an updat-
ing iteration directly applied to each control vertex. This
has the advantage that the programming task becomes
very simple, and more importantly, when the number of
points of the input mesh is large, the memory storage
will not become a problem. Therefore, the importance of
the new method is twofold: first, the method provably al-
ways works in all situations. This is of theoretical interest.
Second, the computation is simple and significantly faster
compared to previous methods. This therefore makes the
method suitable for interactive shape modification in prac-
tical applications.

The paper is organized as follows: in Sect. 2, we review
Doo-Sabin subdivision surfaces and a related interpola-
tion algorithm. Section 3 then describes the construction
of our new method. The incorporation of normal vector in-
terpolation and shape adjustment into the new method is
discussed in Sect. 4. Section 5 gives the conclusion.

2 Doo-Sabin subdivision surfaces

The Doo-Sabin subdivision algorithm generalizes the sub-
division rules for biquadratic B-splines to an arbitrary
closed mesh. That is, in a configuration of faces, edges,
and vertices [10], each vertex is called the control point,
which has a position in space; each edge is a line segment
bounded by two vertices; each face is a loop of edges,
each of which shares a vertex with the next around the
loop; and each edge is shared by exactly two faces. Denser
meshes are generated repeatedly from the previous ones.
In each subdivision step, for every face with m vertices
V1, · · · , Vm , the new corresponding vertices V ′

1, · · · , V ′
m

are computed by V ′
i = ∑m

j=1 αij Vj , where

αij =






m +5

4m
, i = j

3+2 cos(2(i − j)π/m)

4m
, i �= j

(1)

Then a new face of type F is created by connecting
V ′

1, · · · , V ′
m to replace the old one. In addition to the type-

F face, a new four-sided face of type E is formed for every
edge of the old mesh by connecting the images of the
edge endpoints on each of the faces sharing the edge; also,
a new face of type V is formed for every vertex of the old
mesh by connecting the images of the vertex on each of
the faces surrounding the vertex. Figure 1 illustrates these
types of new faces. The Doo-Sabin surface is the limit
of the sequence of such refined meshes. An example of
a Doo-Sabin surface is shown in Fig. 3, where (a) is the
initial mesh, (b) is the mesh after one Doo-Sabin subdivi-
sion, and (c) is the limit surface.

The Doo-Sabin algorithm has the following properties:

– The surfaces can be of arbitrary genus, since the re-
finement rules can be applied to a mesh of arbitrary
topological type.

– After the first subdivision step, every vertex of the
new mesh will have valence four, and thus, the num-
ber of non-four-sided faces will remain constant and
equal to the number of non-four-sided faces and non-
four-valent vertices in the initial configuration. Beyond
these faces, the remaining faces present a rectangu-
lar topology with four-sided faces and four-valent
vertices; thus, they will converge to a biquadratic
B-spline.

– The technique using the discrete Fourier transform and
eigenanalysis [4] shows that the Doo-Sabin surface is
tangent-plane continuous everywhere and interpolates
the centroids of all faces at any step of subdivision.

– Note that faces in Doo-Sabin meshes are not neces-
sarily planar. However, if a face is planar, its corres-

Fig. 1. Three types of faces in the Doo-Sabin scheme



244 J. Zheng, Y. Cai

ponding new type-F face lies on this plane. As a con-
sequence, a planar face and the tangent plane of the
Doo-Sabin surface at the centroid of the face coincide.

The interpolation problem is stated as follows: given
a polyhedron Î with a set of vertices I= {Ii : i =1, · · · , N}
and a subset SI of I, we want to construct a smooth surface
interpolating the vertices in the subset SI.

Based on the properties of the Doo-Sabin subdivision
algorithm, Nasri [8] developed an interpolation approach
using Doo-Sabin subdivision. The basic idea is to con-
struct an auxiliary polyhedron M̂0 with a set of vertices
M = {Vi : i = 1, · · · , N} having the same topology as Î,
where the vertices Vi are to be determined. The sets I and
M have a one-to-one correspondence. Every interpolation
vertex Ii in the subset SI maps to a vertex Vi in M such
that Ii is the centroid of the type-V face corresponding to
Vi after the first subdivision of M̂0. This ensures that the
limit surface interpolates Ii . Obviously, the above require-
ment introduces a linear constraint between Ii and the
elements of the setM. For each non-interpolation vertex Ij
in I\SI – the complement set of SI – it also corresponds to
a certain Vj inM. Geometrically, Vj can simply be set to
be Ij . In this way, a system of simultaneous vector-valued
linear equations is derived: I = [C]M, where [C] is the
coefficient matrix. Solving this linear system gives the de-
sired vertex set M, thus accomplishing the interpolation
goal.

3 New interpolation method

There are limitations to Nasri’s approach [8]; for example,
it involves solving a system of linear equations, and it is
unclear under what conditions the coefficient matrix in the
linear system is nonsingular [7] and [14]. Even if the ma-
trix is well-conditioned, the complexity of solving a huge
system of linear equations prevents the use of the method
for interactive modeling. In this section, we present a mod-
ification to overcome these deficiencies.

3.1 Build the interpolation constraints

We first rewrite the Doo-Sabin refinement formula:

V ′
i = Vi + A

2
+∆i (2)

where A = 1
m

∑m
j=1 Vj is the centroid of the face with ver-

tices {V1, · · · , Vm}, and

∆i =
m∑

j=1

1+2 cos
(

2(i− j)π
m

)

4m
(Vj − Vi) (3)

is a perturbation term which is introduced to make the
shape smoother [3]. Nasri [8] applied this refinement rule
to an auxiliary mesh M̂0 to generate a refined mesh M̂1,
and made the interpolation points coincide with the cen-
troids of some faces of M̂1. Note that it is the latter that
guarantees the interpolation property no matter how M̂1

is created. Instead of using the Doo-Sabin refinement rule
(Eq. 2) in the first subdivision step, we use a modified rule
for the first subdivision:

V ′
i = Vi + A

2
. (4)

Now let’s use this rule to establish the constraints
for the auxiliary mesh M̂0. Without loss of general-
ity, consider one vertex V in M̂0 and its neighbor-
hood, corresponding to an interpolation point I . As-
sume there are m faces meeting at V . Refer to Fig. 2
for the notation being used. We relabel the vertices
in the neighborhood of V by E1, V 1

1 , V 1
2 , · · ·, V 1

m1−3,
E2, V 2

1 , · · ·, V 2
m2−3,E3, · · ·, Em ,V m

1 , · · · , V m
mm−3, where

Ei is the point that shares an edge with V , and mi is
the number of vertices of the ith face around V , whose
vertices are V, Ei, V i

1, · · · , V i
mi−3, Ei+1. After one subdi-

vision step using the modified formula (Eq. 4), we obtain
a new mesh M̂1, which we call the first refined mesh. If we
denote by Wi the image of V on the ith face surrounding
V , then

Wi =
(

1

2
+ 1

2mi

)

V + Ei + Ei+1

2mi
+ 1

2mi

mi−3∑

j=1

V i
j . (5)

From M̂1, the Doo-Sabin subdivision rule is then used
for the subsequent refinements to make the limit shape
smooth. The type-V face, with vertices W1, · · · , Wm in
M̂1, will shrink and eventually converge to its centroid. So

Fig. 2. The neighborhood around a vertex V



Making Doo-Sabin surface interpolation always work over irregular meshes 245

the requirement of interpolating vertex I imposes a simple
linear constraint: I = 1

m

∑m
i=1 Wi . Substituting Eq. 5 into

this equation leads to
(

m +
m∑

i=1

1

mi

)

V +
m∑

i=1

(
1

mi
+ 1

mi−1

)

Ei

+
m∑

i=1

1

mi

mi−3∑

j=1

V i
j = 2mI. (6)

Grouping the equations for all interpolation vertices and
using the simple setting mentioned in Sect. 2 for the re-
maining non-interpolation vertices, we arrive at a system
of linear equations with N equations and N unknowns.
These are constraints on the auxiliary mesh M̂0.

3.2 Solve for the auxiliary mesh

Unlike Nasri’s approach, the linear system we obtain
is always nonsingular. In fact, examine Eq. 6, where
the interpolation vertex I corresponds to the control
point V . The sum of the coefficients of all Ei and V i

j is
∑m

i=1

(
1− 1

mi

)
< m and thus is less than the coefficient of

V . Thus, the linear system is diagonally dominant. It can
be easily and robustly solved by a direct method such as
Gaussian elimination.

As an alternative to direct methods, the Gauss-Seidel
iterative method is also often used, especially when the
coefficient matrix is sparse, large, and diagonally dom-
inant [6]. The convergence is guaranteed by the diagonal
dominance. Therefore, the Gauss-Seidel method is quite
preferable in our case. In particular, the iteration can be
written as

V = 2mC I −C
m∑

i=1

(
1

mi
+ 1

mi−1

)

Ei −C
m∑

i=1

1

mi

mi−3∑

j=1

V i
j

(7)

where C = 1
/(

m +∑m
i=1

1
mi

)
. This iteration is conver-

gent because the linear system (Eq. 6) is diagonally dom-
inant. The initial setting for the iteration is naturally cho-
sen to be the given polyhedron Î. Once all updates for
vertices are within a prescribed range or the iterative num-
ber exceeds a predetermined one, the iteration stops, and
the current vertices define the auxiliary mesh.

One important fact of the Gauss-Seidel method is that
during each iteration, it uses updated values as soon as
they are available. Therefore, in Eq. 7, the most recent
vertices are used. This implies that one does not need to
keep the old values in the course of programming. On the
other hand, this inherently sequential characteristic of the
Gauss-Seidel method makes the iteration depend on the

order in which the equations are updated. In our current
implementation, we examine for simplicity the equations
according to the order in which the vertices are stored.
However, if one wants an order-independent iteration or
wants the updates to be done in parallel, the Gauss-Seidel
method can be replaced by the Jacobi method, which has
a similar iterative formula (Eq. 7) but uses all values from
the previous iteration.

No matter whether the Gauss-Seidel or the Jacobi
method is adopted, the iterative approach (Eq. 7) is attrac-
tive. It makes the programming task simple. The user can
ignore the underlying mathematics. The right side of the
Eq. 7 is just a linear combination of the vertices in the
local neighborhood of V , which is similar to the way of
computing new vertices in subdivision algorithms.

3.3 Adjust the first refined mesh

From the initial input polyhedron, the preceding section
creates an auxiliary polyhedron. Performing the modified
subdivision (Eq. 4) on it yields the first refined mesh M̂1.
The interpolation points are assumed to lie on the cen-
troids of corresponding type-V faces of M̂1. However,
this assumption does not always hold due to the fact that
the iterative method just gives approximate solutions. It is
therefore necessary to adjust the vertices of M̂1 so that the
centroids match the interpolation points.

Observe that all faces in M̂1 corresponding to the inter-
polation points are separated. Thus, we only need to study
one interpolation point and its corresponding type-V face.
Assume the interpolation point is I and the type-V face
consists of vertices W1, · · · , Wm . Now we give each ver-
tex Wi a perturbation εi such that the perturbed face has I
as its centroid, i.e.,

I = 1

m

m∑

i=1

(Wi +εi) . (8)

Meanwhile, we hope the amount of perturbation is as
small as possible. We minimize the following objective
function:

m∑

i=1

εi ·εi → min. (9)

This gives a solution εi = 1

m

m∑

i=1

(I − Wi) = I − 1

m

m∑

i=1

Wi .

Note that vertices W1, · · · , Wm may be nonplanar. To
control the tangent plane easily, we can further force the
perturbed vertices to lie on a plane. To do so, we choose
a plane that comes close to all the vertices. The unit nor-
mal vector n can be computed [5]:

n =
m∑

i=1

Wi × Wi+1

/

‖
m∑

i=1

Wi × Wi+1‖. (10)



246 J. Zheng, Y. Cai

Thus, we need to add the following constraints:

(Wi +εi − I) ·n = 0, i = 1, · · · , m. (11)

To solve the constrained minimization problem (Eq. 9)
with Eqs. 8 and 11, we introduce Lagrange’s multipliers
λ and µi (i = 1, · · · , m), where λ is a vector, and all µi
are scalar numbers. Including the constraints in the objec-
tive function, we obtain a single unconstrained objective
function:

f =
m∑

i=1

εi ·εi +λ ·
m∑

i=1

(εi + Wi − I)

+
m∑

i=1

µi(Wi +εi − I) ·n. (12)

Taking the partial derivatives of f with respect to εk and
setting the derivatives to zero yield

∂ f

∂εk
= 2εk +λ+µkn = 0, k = 1, · · · , m, (13)

which gives

εk = −1

2
(λ+µkn). (14)

Substituting Eq. 14 into Eq. 11 yields

µk = 2(Wk − I) ·n−λ ·n. (15)

Further substituting Eqs. 14 and 15 into Eq. 8 leads to

λ− (λ ·n)n = 2

m

[
m∑

i=1

(Wi − I)−
(

m∑

i=1

(Wi − I) ·n

)

n

]

.

(16)

We finally obtain the perturbation vector

εk = − 1

2
(λ+2 [(Wk − I) ·n] n− (λ ·n)n)

= ((Wk − I) ·n)n− 1

2
(λ− (λ ·n)n) (17)

=
[(

1

m

m∑

i=1

Wi − Wk

)

·n

]

n+
(

I − 1

m

m∑

i=1

Wi

)

.

In the right side of the above equation, the second term
is just the simple optimal solution without the coplanar
constraint, and the first term is used to correct the normal
vector. When all the vertices are on a plane, this correction
becomes zero.

3.4 Algorithm

Based on the analysis above, our interpolation algorithm
first constructs an auxiliary polyhedron M̂0 from the in-
put polyhedron Î by an iterative scheme. After that, the
modified subdivision is applied to M̂0, generating the first
refined mesh M̂1. Next, the vertices in M̂1 are adjusted.
Finally, the application of the Doo-Sabin subdivision algo-
rithm to the perturbed M̂1 results in a smooth surface that
interpolates the input vertices.

It should be clarified that the auxiliary polyhedron M̂0

is not the Doo-Sabin mesh in a strict sense, since our first
refinement rule is different from the Doo-Sabin rule; how-
ever, M̂1 is the Doo-Sabin mesh. This is similar to the
situation in Brunet [1] and Nasri [9].

The algorithm to generate the Doo-Sabin mesh M̂1 is
described as follows:

Input:
a polyhedron Î,
a subset SI indicating the vertices to be interpolated,
ITE_MAX – the maximum number of iterations,
E PS – prescribed tolerance

Procedure:
step 1.copy polyhedron Î to create M̂0 /* initializing */
step 2./* compute the auxiliary mesh */

for (i = 0; i < ITE_MAX; i ++) {
set PASS = TRUE
for (each vertex I in SI) {

use Eq. 7 to update the corresponding V
if (the update for V > E PS) set PASS =

FALSE
}
if (PASS == TRUE) break;

}
step 3./* perform the first subdivision */

apply Eq. 4 to M̂0 to generate M̂1.
step 4./* adjust the first refined mesh */

for (each I in SI) {
find the corresponding type-V face f in M̂1

compute an average unit normal vector n using
Eq. 10

compute Wc = 1
m

∑m
i=1 Wi

for (each vertex Wk in face f ) {
compute the perturbation εk by

εk = [(Wc − Wk) ·n]n+ (V − Wc)
Wk = Wk +εk /* update the vertex */

}
}

step 5.output M̂1.

The algorithm has been implemented using C++ on
the MS Windows platform. Since the first refined mesh
M̂1 is to be perturbed in step 4, the maximum number
ITE_MAX in step 2 can be chosen to be a fairly small
number. In our implementation, it is chosen to be 5, which
gives a pretty good approximation in most cases.



Making Doo-Sabin surface interpolation always work over irregular meshes 247

Fig. 3. Approximation versus interpolation

Fig. 4. Example 1: the new method versus Nasri’s method

The right column of Fig. 3 illustrates the process of
the interpolation algorithm. To interpolate the vertices of
the input mesh given in Fig. 3(a), an auxiliary mesh is
computed, which is shown in Fig. 3(d). The perturbed
first refined mesh M̂1 and the limit surface are shown in
Figs. 3(e) and (f), respectively.

3.5 Examples

We present two examples to demonstrate the effectiveness
of the new algorithm. Nasri’s algorithm was implemented
for comparison. In the implementation, Gaussian elim-
ination was used as the solver of linear systems. We
ran both algorithms on a 1.6 GHz Intel Pentium 4 with
512 MB of RAM.

Figure 4(a) shows a model that contains 562 vertices.
This model was taken from the repository of “The Prince-
ton Shape Benchmark” [11]. We wanted to construct
a smooth surface interpolating all of the vertices of the
model. Our algorithm took about 4.9 ms to create the
auxiliary mesh in Fig. 4(b) and the perturbed first refined
mesh was created within 37 ms. The auxiliary mesh was
obtained after only three iterations with an iterative termi-
nation threshold of 0.3%. The interpolating limit surface is
shown in Fig. 4(c). Nasri’s algorithm took 1.4 s to generate
the auxiliary mesh shown in Fig. 4(d). Its corresponding
limit surface is shown in Fig. 4(e).



248 J. Zheng, Y. Cai

Fig. 5. Example 2: interpolating a model containing 11 540 vertices with the new method

Figure 5 shows another example. The input mesh in
Fig. 5(a) has 11 540 vertices. Our algorithm took only 79
ms to generate the auxiliary mesh, which is shown in
Fig. 5(b). The auxiliary mesh was obtained after two itera-
tions. In the second iteration, the maximal update for the
vertices was less than 0.3% of the model’s size. The al-
gorithm took another 491 ms to create the perturbed first
refined mesh M̂1, and the limit surface, which interpolates
the initial 11 540 vertices, is shown in Fig. 5(c). We also
ran Nasri’s method on this input mesh but failed to create
the auxiliary mesh because of the large size of the linear
system.

Remark 1 For Nasri’s method, Halstead et al. [7] indicated
that the linear system could possibly be singular. At this
moment, we do not have such examples, but at least we
can say that so far it is still unclear in which situations the
coefficient matrix in the linear system of Nasri’s method
is nonsingular [14]. By contrast, the linear system of our
method is provably well-conditioned in all situations. In
practice, the superiority of our method is even more ob-
vious. If the maximum iteration number is set to a fixed
number, the computational complexity of our algorithm is
linear in the number of vertices to be interpolated. This
may explain why our method is significantly faster than
Nasri’s method. In the case where there is a large number

of vertices to be interpolated, our method can still quickly
generate the auxiliary mesh, but Nasri’s method may fail
in practice even though its linear system is soluble theoret-
ically. The above second example is just such an example.

Remark 2 The accuracy of our approach is also worth
mentioning. In our algorithm, the vertices of the auxil-
iary mesh are obtained by the iteration formula given by
Eq. 7, which is derived from a diagonally dominant lin-
ear system. The diagonal dominance ensures convergence
and makes the computation numerically stable. The above
examples have shown that a few iterations can achieve
good approximation to the accurate solution of the lin-
ear system. Moreover, the accurate solution is actually
not required in our method because the perturbation step
will later compensate for the approximation error and any
accuracy loss in performing the iterations. Once the auxil-
iary mesh is obtained, the subdivision surface is uniquely
determined, which exactly interpolates the given interpo-
lation points. To compute the subdivision surface, we can
recursively subdivide the mesh until the refined mesh ap-
proximates the limit surface within some prescribed tol-
erance. An alternative approach is to develop a direct and
exact evaluation for Doo-Sabin subdivision surfaces as
suggested by Stam in his paper for the exact evaluation of
Catmull-Clark subdivision surfaces [12]. The evaluation is



Making Doo-Sabin surface interpolation always work over irregular meshes 249

then applied to the perturbed first refined mesh, which is
a Doo-Sabin subdivision mesh. In this way, any point on
the limit surface can be exactly computed. Therefore, this
approach could be used for high-precision interpolation.

4 Normal interpolation and shape adjustment

In free-form shape design and modeling, the ability to
specify planes tangent at the interpolated points is an at-
tractive property for local shape control. Some extensions
of Nasri’s original approach using Doo-Sabin subdivision
surfaces have been developed to offer improvement in
these contexts [1, 9]. The basic idea is to modify the mesh
obtained after the first subdivision step. In this section, we
show that these extensions can be easily included in our
new approach.

4.1 Match normal conditions

Besides interpolating part or all of the vertices of the in-
put polyhedron, the surface is now also required to have
specified normal vectors at some interpolated vertices. To
achieve this goal, Nasri modified his original approach by
rotating each type-V face in the first refined mesh such
that the normal to the rotated face is the same as the given
face. A space transformation is determined for each type-
V face. The new vertices are computed by applying the
corresponding transformation.

In our approach, matching the normal conditions is
very simple. Just replace the average normal in Eq. 17 by
the required normal vector. This, in fact, even simplifies
the computation because we do not need to compute the
average normal (Eq. 10) in this situation. The modification
of the vertices is automatically completed.

Figure 6 demonstrates the interpolation both with and
without normal constraints. In Fig. 6, (a) and (d) show the
same input mesh. We let the leftmost vertex and the right-
most vertex of the mesh be the tagged vertices to be inter-
polated. In (d), we further specify two vectors, which are
labeled by the short green lines, to be the normal vectors of
the tangent planes at those two interpolation vertices. By
applying the algorithm to both of these input meshes, an
exactly identical auxiliary mesh is created. However, the
perturbed first refined meshes are different, which are dis-
played in (b) and (e). This is because the input mesh in (d)
has normal constraints. Note that in (a), (b), (d) and (e),
black lines have been added to highlight the edges of the
meshes. Finally, the respective interpolating surfaces are
shown in (c) and (f).

Compared to Nasri’s approach, our method is more
straightforward. Moreover, the constraints given by Eq. 11
in our approach actually specify the tangent plane. In other
words, the normal vector n and the negative vector −n de-
note the same thing. However, in Nasri’s approach, one

Fig. 6. Interpolation with and without normal control

needs to explicitly specify the normal direction that de-
termines the transformation. The choice of positive or
negative direction results in a different transformation. As
pointed out in Nasri’s paper [9], care must be taken when
computing the cross-product vectors, as any change in di-
rection will lead to an unexpected rotation.

4.2 Including shape handles

To increase the capability of adjusting the shape of sub-
division surfaces, Brunet associated each vertex with
a scalar number S called the shape handle [1]. Brunet used
Nasri’s approach to construct the auxiliary polyhedron,
and then subdivided the polyhedron once to get the first
refined mesh M̂1. Thus, each type-V face in M̂1 corres-
ponds to one shape handle. Assume the kth type-V face
consists of vertices Wkl, l = 1, 2, · · · . Then, for these Wkl,
a hometetic transformation can be carried out: W ′

kl = Dk +
Sk(Wkl − Dk), where Dk is the centroid of the face (see
Fig. 7) and Sk is the shape handle corresponding to the



250 J. Zheng, Y. Cai

Fig. 7. A hometetic transformation

kth face. The shape handles are used to locally control the
shape of the subdivision surface. For example, large values
(> 1) of Sk produce a flat spot in the area near Dk.

Incorporating this scheme into our approach is straight-
forward. After we obtain the perturbed first refined mesh
M̂1, what we need to do is just to apply Brunet’s method
to further adjust the vertices of M̂1. Figures 8(a) and 8(b)
show the results of applying Brunet’s scheme to Figs. 6(b)
and 6(e) with the shape handles Sk = 0.4 at the interpo-
lation vertices. The shapes look slim compared to those
in Figs. 6(c) and 6(f). If the value of the shape handles is
changed to 2.5, the respective shapes become Figs. 8(c)
and 8(d), which look round or fat.

Finally, it should be emphasized that in the above
two procedures, and in our previous perturbing step in
Sect. 3.3, the topological information regarding the faces
of the first refined mesh M̂1 is not altered. What changes
is only the spatial position of the vertices.

5 Conclusions

We have described a simple method for automatic sur-
face fitting through the vertices of an arbitrary topo-
logical mesh using Doo-Sabin subdivision surfaces. The
method makes the coefficient matrix of the interpola-
tion equations diagonally dominant. This ensures that
the method always works and that the computation is
numerically stable. Moreover, our approach of using it-
erative schemes instead of matrix inversion makes com-
putation easy and programming simple. The experimental
results show that the new method is significantly faster
that the previous method in Nasri [8]. Our method is

Fig. 8. Shape adjustment near the interpolation vertices

also capable of constraining the surface to have a spec-
ified tangent plane at the interpolation point, and it can
provide the user shape parameters to locally adjust the
shape. All of these features make it feasible for our
method to be used to design and model complicated
shapes.

Although this paper only discusses interpolation for
closed meshes, extension to open meshes is straightfor-
ward. The future work includes the following considera-
tions:

– The ordering in Gauss-Seidel iteration affects the con-
vergence speed. How to choose an appropriate order
for iteration is worthy of investigation.

– Our work provides one way to generate the first refined
mesh that plays a key role in maintaining the position
and normal interpolation. The aim of our approach is to
ensure that the interpolation always works. However,
we should point out that there exist other possibilities
(and thus a lot of degrees of freedom) in the creation
of the first refined mesh from the auxiliary mesh. How
to make use of these degrees of freedom and also the
shape handles to create visually pleasing shapes is an
interesting problem.

Acknowledgement The authors thank the reviewers for their help-
ful suggestions. This work was funded by a research grant (SUG
8/04) at Nanyang Technological University. The authors would also
like to thank Singapore’s Agency for Science, Technology and Re-
search for their support for this project.



Making Doo-Sabin surface interpolation always work over irregular meshes 251

References

1. Brunet P (1988) Including shape handles in
recursive subdivisionsurfaces. Comput
Aided Geom Des 5(1):41–50

2. Catmull E, Clark J (1978) Recursively
generated B-spline surfaces on arbitrary
topological meshes. Comput Aided Des
10:350–355

3. Doo D (1978) A subdivision algorithm for
smoothing down irregularly shaped
polyhedrons. In: Proceedings of the
Interactive Techniques in Computer Aided
Design, Bologna, IEEE Computer Society,
pp 157–165

4. Doo D, Sabin M (1978) Behaviour of
recursive division surfaces near
extraordinary points. Comput Aided Des
10:356–360

5. Foley J, Dam, A, Feiner S, Hughes J
(1997) Computer graphics: principles and
practice, 2nd edn. Addison-Wesley, Boston

6. Golub G, van Loan C (1989) Matrix
computations, 2nd edn. John Hopkins
University Press, Baltimore

7. Halstead M, Kass M, DeRose T (1993)
Efficient, fair interpolation using
Catmull-Clark surfaces. In: Computer
Graphics, Proceedings of SIGGRAPH 93
27:35–44

8. Nasri A (1987) Polyhedral subdivision
methods for free-form surfaces. ACM
Trans Graph 6(1):29–73

9. Nasri A (1991) Surface interpolation on
irregular networks with normal conditions.
Comput Aided Geom Des 8(1):89–96

10. Sabin M (1991) Cubic recursive division
with bounded curvature. In: Laurent PJ, Le
Méhauté A, Schumaker LL (eds) Curves
and surfaces. Academic Press, Boston, pp
411–414

11. Shilane P, Min P, Kazhdan M, Funkhouser
T (2004) The Princeton shape benchmark.
In: Proceedings of Shape Modeling
International, Genove, Italy, pp 167–178

12. Stam, J (1998) Exact evaluation of
Catmull-Clark subdivision surfaces at
arbitrary parameter values. In: Computer
Graphics Proceedings, SIGGRAPH 98, pp
395–404

13. Zorin D, Schröder P (2000) Subdivision for
modeling and animation. In: Course Notes
of SIGGRAPH 2000. ACM, Boston

14. Zorin D, Schröder P, Sweldens W (1996)
Interpolating subdivision for meshes with
arbitrary topology. In: Computer Graphics,
SIGGRAPH 96 Proceedings 30:189–192

JIANMIN ZHENG is an assistant professor in the
School of Computer Engineering at Nanyang
Technological University. Before joining NTU,
he was a research faculty in Computer Science
Department at Brigham Young University, USA.
He was also a faculty at Zhejiang University,
China, where he received his BS and PhD. He
is a member of ACM SIGGRAPH. His research
interest includes computer aided geometric de-
sign, CAD/CAM, computer graphics, animation,
digital imaging and visualization.

DR YI-YU CAI is an Associate Professor with
the College of Enginering, Nanyang Techno-
logical University (NTU), Singapore. He leads
a strategic research program on Virtual Reality
and Softcomputing in School of Mechanical &
Aerospace Engineering. He is also deputy direc-
tor of Bioinformatics Research Center in NTU.
His research interests include CAD/CAM, geo-
metric modeling, virtual reality, bioinformatics,
and medical imaging.


