
Constrained Saling of Trimmed NURBS SurfaesPifu Zhang, Caiming Zhang and Fuhua (Frank) ChengGraphis & Geometri Modeling Lab, Department of Computer SieneUniversity of Kentuky, Lexington, Kentuky 40506-0046Abstrat. A method to sale and deform a trimmedNURBS surfae while holding the shape and size of spei�features (trimming urves) unhanged is presented. The newsurfae is formed by saling the given surfae aording tothe saling requirement �rst, and then attahing the (orig-inal) features to the saled NURBS surfae at appropriateloations. The attahing proess requires several geometrioperations and onstrained free-form surfae deformation.The resulting surfae has the same features as the originalsurfae and same boundary urves as the saled surfae whilereeting the shape and urvature distribution of the saledsurfae. This is ahieved by minimizing a shape-preservingobjetive funtion whih overs all the fators in the de-formation proess suh as bending, strething and springe�ets. The resulting surfae maintains a NURBS represen-tation and, hene, is ompatible with most of the urrentdata-exhange standards. Test results on several ar partswith trimming urves are inluded. The quality of the re-sulting surfaes is examined using the highlight line model.Keywords: onstrained saling, onstrained deformation,trimming urves, NURBS surfaes, strain energy1 IntrodutionA surfae design problem of espeial urgeny to the designommunity is the lak of onstrained shape modi�ation a-pabilities, i.e., lak of tools/tehniques that are apable ofholding signi�ant features of a model unhanged while glob-ally or loally altering it. The altering proess may involvesaling and/or deformation. Addressing and solving thisproblem would provide the design industry with the apa-bility of globally or loally modifying an existing model inlength, height, or width without a�eting ertain signi�antfeatures and, onsequently, avoiding expansive redesign pro-ess.Using saling as an altering tehnique is ommon in de-sign. The problem of onstrained saling (i.e., saling amodel with some features �xed), however, has not been se-

riously addressed in the literature yet. Deformation as analtering tehnique, on the other hand, is not as ommonlyused in design. The free-form deformation (FFD) methodfor surfae design has been studied in several approahes.The spatial deformation approah operates on the spaeinside whih the deformed objets are embedded. Thisapproah is independent of the representation of thesurfae. Most works in this approah use trivariateparametri volume. Deformation is performed by ma-nipulating the ontrol points of the trivariate volumes[4℄[5℄[10℄[12℄[13℄[14℄[15℄[16℄[19℄.The physis-based deformation approah uses physialsimulation to obtain realisti shapes and motions. Thisapproah introdues a time variable into the surfae rep-resentation to form a dynami model. The behavior of themodel is ontrolled by the physial laws, suh as the physi-al properties of mass distribution, tension, rigidity, damp-ing and the ation of applied fores. The resulting surfae isdetermined by the equilibrium state of the dynami model[6℄[18℄[22℄[23℄[24℄. This method is mainly used in omputeranimation and fouses on the proess of transforming phys-ial fores into hanges of the dynami model.Constrained deformation (i.e., deforming a model whileholding ertain features of the model unhanged) was �rststudied by Celniker and Welh [7℄. The purpose was to pro-vide a modeling tehnique that separates the surfae rep-resentation from the surfae modeling operators. The userontrols the surfae by requiring the surfae to preserve a setof geometri onstraints while sulpturing it. The shape ofthe surfae is faired by minimizing a global energy funtion.This tehnique has also been used in diret surfae shapemanipulation [27℄. However, most of the time, it is used insurfae interpolation and lofting, where a surfae is designedto interpolate a urve net or sattered disrete points.In this paper, we will present a method that is apable ofholding ertain features (trimming urves) of a surfae un-hanged while saling it. The new surfae is formed by sal-ing the given surfae aording to the saling requirement�rst; and then attahing the original features to the saledNURBS surfae at appropriate loations. The attahing pro-1



ess requires several geometri operations and onstrainedfree-form surfae deformation. The deformation proess issimilar to Celniker and Welh's approah [7℄ but in a di�er-ent setting. The resulting surfae has the same features asthe original surfae and same boundary urves as the saledsurfae while reeting the shape and urvature distributionof the saled surfae. The resulting surfae also maintains aNURBS representation.The remaining part of the paper is arranged as follows.A formal desription of the problem is given in Setion 2.The basi idea of the proposed method is presented in Se-tion 3. Tehniques needed in onstruting the new surfaeare desribed in Setions 4-8. Implementation issues andtest results of the proposed method are shown in Setion 9.Conluding remarks are given in Setion 10.2 Problem FormulationThe problem of onstrained surfae saling an be de-sribed as follows: Given a NURBS surfae S(u; v) and a setof features Ci in the domain of the surfae, onstrut a newsurfae �S(u; v) whose representation is a saled version ofthe given surfae S(u; v) but arries all the original featuresS Æ Ci.More spei�ally, let S(u; v) be a NURBS surfae of de-gree p in u diretion and degree q in v diretionS(u; v) = Pmi=0Pnj=0 wi;jQi;jNi;p(u)Nj;q(v)Pmi=0Pnj=0 wi;jNi;p(u)Nj;q(v) ; (1)(u; v) 2 [0; 1℄� [0; 1℄where Qi;j are 3D ontrol points, Ni;p(u) and Nj;q(v) areB-spline basis funtions of degree p and q, respetively, andwi;j are weight funtions. Ni;p(u) and Nj;q(v) are de�nedwith respet to the knot vetors � = f�0; �1; ::: ; �m+p+1g,and � = f�0; �1; ::: ; �n+q+1g, respetively, with �0 = ::: =�p = �0 = ::: = �q = 0 and �m+1 = ::: = �m+p+1 =�n+1 = ::: = �n+q+1 = 1. The features to be held un-hanged are losed trimming urves S Æ Ci(t), i = 1; 2; :::; r,where Ci(t) = (ui(t); vi(t)) are losed parametri urves de-�ned in the domain of S with S Æ Ci \ S Æ Cj = ; if i 6= j.All the trimming urves are inside the NURBS surfae, theydo not interset the boundary of the surfae. If the salingfators in x, y and z diretions are Sx, Sy and Sz, respe-tively, then the new surfae �S(u; v) is supposed to be equalto Ts Æ S, the saled NURBS surfae, where Ts is a salingmatrix de�ned as follows:

Ts = 24 Sx 0 00 Sy 00 0 Sz 35 : (2)The requirement that the new surfae arries all the originalfeatures S Æ Ci means that S Æ Ci are also trimming urvesof the new surfae subjet to some translation and rotation.In industrial appliations, a trimming urve of a free-formsurfae is usually represented as a linear polygon in the do-main of the surfae with verties of the polygon being pointsof the urve. We follow the same approah in this work.3 Basi IdeaIf the new surfae is not required to be preisely the sameas Ts Æ S(u; v), but only lose enough to and reeting theshape and urvature distribution of the saled surfae, thenan approah based on the onept of attah-and-deform anbe used to onstrut the new surfae. The main idea ofthis approah is to attah the original trimming urves tothe saled NURBS surfae at appropriate loations. The at-tahing proess requires several geometri operations, suhas translation and rotation, and a deformation of the saledsurfae. The deformation is performed with onstraints toensure that the trimming urves are attahed to the surfaeompletely and the boundary ontinuity ondition with ad-jaent surfaes of the saled surfae are unhanged. The de-formed surfae is again a NURBS surfae. The deformationproess will also ensure that the resulting surfae reets theshape and urvature distribution of the saled surfae.An algorithm is presented below. The last step is for theuser to visually examine the quality of the resulting surfaeusing a highlight line model.1. Subdividing surfae S(u; v)2. Saling S(u; v) with Ts3. Reloating trimming urves S Æ Ci(t)4. Setting up shape-preserving objetive funtion5. Setting up onstraints6. Performing onstrained surfae deformation.7. RenderingThe third step is the most ritial step beause it also de-termines the outome of the deformation proess. Details ofthe above steps, exept Step 2, are given in the subsequentsetions.2



4 Subdivision of S(u; v)This step reursively subdivides the surfae S(u; v) until thefollowing three onditions are satis�ed:1. Eah subpath intersets at most one trimming urve.2. The trimming urves do not interset any of the bound-ary subpathes (subpathes adjaent to the boundary ofS(u; v)).3. The number of trimming urve verties ontained ineah subpath is at most (p+ 1)(q + 1).The �rst two onditions are to provide enough exibility forsetting up the trimming urve onstraint and the boundaryonstraint (to be disussed in detail in Setion 7). The thirdondition is to avoid over-determined systems in the defor-mation proess.The �rst two onditions are satis�ed if the dimension ofeah subpath is smaller than or equal to one half of theminimimum of 
1 and 
2: 
1 is the smallest distane be-tween the verties of the trimming urves S Æ Ci(t) and theboundary of the NURBS surfae S(u; v), 
2 is the small-est distane between verties of di�erent trimming urvesS Æ Ci(t). The third ondition has to be tested after eahlevel of reursive subdivision one the �rst two onditionsare satis�ed.The omputation of 
2 is straightforward while 
1 an beomputed using the Newton-Raphson method on the diriva-tive of a distane funtion.It is possible to perform subdivision on boundary spansand spans that interset the trimming urves only. Thiswould redue the subdivision time to ertain extent. How-ever, the highlight line model of the deformation results showthat the urvature distribution in this ase is not as good asthe results of uniform subdivision on all the spans (This isreasonable beause a movement of a ontrol point in a largepath auses shape hange in a larger area).Without loss of generality, we shall use the same notationsfor the ontrol points and parameter knots even though bothof them might have been hanged after the subdivision pro-ess.5 Reloating Trimming CurvesThis step is to move eah original trimming urves S ÆCi(t)to an appropriate loation that is not only as lose to thesaled surfae TsÆS(u; v) as possible but also with an appro-priate orientation. The �rst requirement is to ensure thatonly a small deformation is required to inlude the trimming

urve as a feature. The seond requirement is to ensure thatdeformation would not ause muh distortion of the urva-ture of the saled surfae. The loseness will be measuredin Eulidean distane.We use three steps, two translations and one rotation,to determine the new loation for eah 3D trimming urveS Æ Ci(t). First, the trimming urve S Æ Ci(t) is translatedfrom Pi, its entroid, to TsPi, the entroid of the saledtrimming urve Ts Æ S Æ Ci(t). The mean normal vetor Niof the trimming urve S Æ Ci(t),Ni = 1ni niXj=1Ni;j ; (3)whereNi;j are normal vetors of the trimming urve SÆCi(t)at its verties Pi;j , is then rotated about the vetor Ui =Ni� �TsNi until it is in the same diretion as �TsNi, the meannormal vetor of the saled trimming urve where�Ts = 24 SySz 0 00 SxSz 00 0 SxSy 35 : (4)These two steps align an original trimming urve with theorresponding trimming urve on the saled surfae in bothentroid and diretion. We will use the same notations forthe translated and rotated original trimming urves, inlud-ing their verties.After the translation and rotation, if one projets the ver-ties Pi;j of the trimming urve S Æ Ci(t) onto the saledsurfae Ts Æ S(u; v) in the diretion of �TsNi, one gets a setof points �Pi;j on Ts Æ S(u; v). The distane between thetranslated and rotated trimming urve and the saled sur-fae TsÆS(u; v) is de�ned as the sum of the distanes betweenthe verties of the translated and rotated trimming urve totheir projetions �Pi;j on the saled surfae.The third step is to move the translated and rotated trim-ming urve S ÆCi(t) along the vetor �TsNi to be as lose tothe saled surfae as possible, i.e, the distane de�ned aboveis a minimum. This problem is equivalent to �nding a planewhose distane to a set of �nite points is a minimum. Suha problem an be solved using the least squares method.The problem of �nding �Pi;j for the translated and rotatedtrimming urve is equivalent to �nding the �rst intersetionpoint of an arrow and a parametri surfae. This probleman be solved using the adaptive subdivision method.We use Ri to represent the reloating transformation forthe trimming urve S Æ Ci(t) and �Ci to represent the trim-ming urve on the saled surfae Ts ÆS(u; v) de�ned by �Pi;j .3



6 Setting Up Shape-Preserving Ob-jetive FuntionThe deformation proess requires the onstrution of ashape-preserving objetive funtion. This funtion is used todetermine the shape of the deformed surfae in an optimiza-tion proess. The deformed surfae must reet the shapeand urvature distribution of the saled surfae. Hene, theobjetive funtion should be onstruted based on the di�er-ene of these two surfaes. In our problem, the displaementfuntion is V (u; v) = ( �S � Ts Æ S)(u; v): (5)where �S(u; v) represents the new surfae.Several approximated energy funtions have beenused as the objetive futions in geometri deformation[6℄[20℄[24℄[27℄. The goal is to minimize the energy of thedisplaement funtion so as to minimize the shape hange ofthe deformed surfae. We will use a physis-based approahin our work.The deformation of a surfae is like the deformation of athin plate. Aording to Courant [11℄, the energy of a de-formed thin plate is omposed of �ve parts: bending strainenergy, spring potential energy, gravity energy, moment en-ergy and edge fore energy, as follows:E(V ) = Ebending�Egravity+Espring�Emoment�Eedgefore(6)In a typial geometri modeling problem, the external foressuh as moment, edge fore and gravity are set to zero. Thisleads to a free plate [21℄. So the potential energy of a freeplate an be expressed as follows:E(V ) = Ebending +Espring (7)Here we keep the spring potential energy beause of therequirment that the new surfae should have the smallesthange in shape in order to keep harateristis of the origi-nal surfae suh as smoothness and urvature. On the otherhand, deformation of a thin plate would also involve streth-ing if some features are required to be �xed, suh as in sheetmetal stamping. So the strething strain energy should beinluded in eq. (7) as well, as follows:E(V ) = �Ebending + �Estrething + Espring : (8)where �, � and  are weights. Aording to the theory ofmehanis [17℄[25℄, the strain energy for a thin plate bendingproess is de�ned as follows:Ebenbing = Z ZD �[ 12(Vuu+Vvv)2�(1��)(VuuVvv�V 2uv)℄dudv(9)

where � is the Poisson onstant (set to 0 here) and � is aonstant depending on the thikness and material propertyparameters of the plate.The strain energy for the thin plate strething proess, byignoring the inuene of the shearing strain, isEstrething = 12 Z ZD [(2G+ �)(V 2u + V 2v ) + 2�(VuVv)℄dudv(10)where G and � are onstants depending on the materialproperty parameters of the plate.By introduing springs at the knots (�i; �j) to pull thenew surfae toward the saled surfae, we an de�ne theorresponding potential spring energy as follows:Espring = 12 Z ZDK(�i; �j)[V (�i; �j)℄2 (11)where K(�i; �j) is the sti�ness of the spring at (�i; �j).For NURBS surfaes, eqs. (9), (10) and (11) lead to aquadrati equation with respet to the ontrol points if ho-mogeneous representation is used. The homogeneous repre-sentations of Ts Æ S(u; v) and �S(u; v) (see Setion 2 for thede�nition of S(u,v)) aremXi=0 nXj=0(wi;jQ̂ij ; wi;j)Ni;p(u)Nj;q(v)and mXi=0 nXj=0(wi;j �Qij ; wi;j)Ni;p(u)Nj;q(v);respetively. For simpliity of notations, we shall useTs ÆS(u; v) and �S(u; v) to represent their own homogeneousforms, i.e., Q̂i;j and �Qi;j are homogeneous ontrol points ofthe following forms:Q̂i;j = (wi;jQ̂ij ; wi;j); �Qi;j = (wi;j �Qij ; wi;j):Ts Æ S(u; v) and �S(u; v) an be written as linear equationswith respet to their ontrol points as follows:Ts Æ S(u; v) = �Xi=0 Q̂kNk(u; v); (12)�S(u; v) = �Xi=0 �QkNk(u; v); (13)where � � (m+ 1)� (n+ 1)� 1; (14)Q̂k = Q̂i;j ; �Qk = �Qi;j ; (15)Nk(u; v) = Ni;p(u)Nj;q(v); (16)4



with i = k � bk=(m+ 1) � (m+ 1);j = bk=(m+ 1):By substituting eqs. (12) and (13) into eq. (5) and eqs.(9), (10) and (11) and then subtituting eqs. (9), (10) and(11) into eq. (8), one gets the following expression throughsimple algebra:E( �Q� Q̂) = [ �Q� Q̂℄>A[ �Q� Q̂℄ (17)where Q̂ = [Q̂0; Q̂1; :::; Q̂�℄ (18)�Q = [ �Q0; �Q1; :::; �Q�℄ (19)and A is a (�+1)�(�+1) matrix whose entries are de�nedas follows:ai;j = Z 10 Z 10 [�1Nuui (u; v)Nuuj (u; v)+�2Nuvi (u; v)Nuvj (u; v)+�3Nuui (u; v)Nvvj (u; v) + �4Nvvi (u; v)Nvvj (u; v)+�1Nui (u; v)Nuj (u; v) + �2Nui (u; v)Nvj (u; v)+�3Nvi (u; v)Nvj (u; v)℄dudv + 1Ni(u; v)Nj(u; v) (20)where Nuuk (u; v) is the seond derivative of Nk(u; v) with re-spet to u, ... et., and i; j = 0; 1; :::;�. �1,�2, �3 and �4 areonstants related to bending; �1, �2 and �3 are onstants re-lated to strething; and 1 is a onstant for the spring e�et.Sine the bending energy a�ets surfae urvature, while thestrething energy a�ets surfae area and the spring energya�ets the amount of surfae displaement, we should ad-just the weight onstants aording to pratial requirementduring deformation.The quadrati equation E( �Q� Q̂) has a minimum at thepoint where A( �Q� Q̂) = 0. Hene, if the optimization pro-ess is performed with no onstraints, the resulting surfaewill be exatly the same as the saled surfae.7 Setting Up ConstraintsTwo types of onstraints, boundary onstraint and trimmingurve onstraint, are used to ontrol the deformation pro-ess.7.1 Boundary ConstraintThe boundary onstraint is to prevent the boundary urvesof the saled surfae from being hanged during the defor-mation proess. Otherwise, the deformed surfae might not�t adjaent surfaes (parts) well. For simpliity, we shall

assume that the NURBS surfae has multiple knots at thebeginning and end of its knot vetors. In this ase, theboundary urves of the surfae are determined by the on-trol points on the boundary of the ontrol net only.The C0-ontinuity boundary onstraint for the deforma-tion proess is�Q0;j = Q̂0;j ; �Qm;j = Q̂m;j ; j = 0; : : : ; n; (21)�Qi;0 = Q̂i;0; �Qi;n = Q̂i;n; i = 1; : : : ;m� 1: (22)where Q̂i;j are the ontrol points of the saled surfaeTs Æ S(u; v) and �Qi;j are the ontrol points of the deformedsurfaeFor a surfae without multiple knots, one an �x theboundary of the surfae by �xing a band of ontrol pointsthat de�nes the boundary urves of the surfae. The sub-division proess performed in the �rst step guarantees thatenough unonstrained ontrol points will still be availablefor the deformation proess with the boundary onstraint.If G1 ontinuity is required, additional equations should beinluded as follows:�Q1;j = Q̂1;j ; �Qm�1;j = Q̂m�1;j ; j = 1; : : : ; n�1; (23)�Qi;1 = Q̂i;1; �Qi;n�1 = Q̂i;n�1; i = 2; : : : ;m� 2: (24)7.2 Trimming Curve ConstraintThe trimming urve onstraint is to ensure that, after defor-mation, the reloated trimming urves Ri ÆS ÆCi(t) beometrimming urves of the deformed surfae �S(u; v), i.e., ver-ties Pi;j = Ri ÆS ÆCi(ti;j) of the reloated trimming urvesRi Æ S Æ Ci(t) are points of the surfae �S(u; v). Hene, foreah 1 � i � r, there must exist (ui;j , vi;j) in the domain of�S(u; v) so that Pi;j = �Xk=0QkNk(ui;j ; vi;j); (25)j = 1; 2; :::; ni, where �, Qk and Nk(u; v) are de�ned in(14), (15), and (16). The best hoie for (ui;j , vi;j) is theparameters of the point �Pi;j onstruted in Setion 5. Theproess of omputing �Pi;j in Setion 5 would atually �ndits parameters �rst. Therefore, the values of (ui;j , vi;j) arealready available at this stage.The equations in (25) an be put into matrix form asfollows �BQ = �b (26)where Q is de�ned in (18), and �B and b are de�ned asfollows: �B = 264 b1;1 b1;2 : : : b1;�... ... ...bM;1 bM;2 : : : bM;� 375 (27)5



�b = [P1;1; : : : ; P1;n1 ; : : : ; P1;nr ; : : : ; Pr;nr ℄> (28)with M = n1 + n2 + : : :+ nrbi;j = Nj(uk;l; vk;l)where k is the smallest integer suh that i � n1+n2+: : :+nkand l = i� (n1 + n2 + : : :+ nk�1).The trimming urve onstraint and the boundary on-straint an be merged into a single linear onstraint system.8 The Deformation ProessThe optimization proess of the quadrati equation with thelinear onstraints an be solved using the Lagrange Mul-tiplier method, whih transfers the onstrained optimiza-tion problem into an unonstrained extremization problem.This follows from the observation that the solution to thequadrati optimization funtion E(�x) = f(�x) under on-straint g(�x) is a ritial point of �E(�x) = f(�x) + �g(�x). � isalled the Lagrange Multiplier.For our appliation, the optimization funtion isE( �Q�Q) = 12( �Q�Q)>A( �Q�Q) (29)and the linear onstraint is�BQ = �b (30)By adding the Lagrange multiplier we have the followinglinear system: � A �B>�B 0 � � Q� � = � a�b � (31)where a = AQ (32)Solving the linear system (31) will obtain the ontrol pointsof the desired deformed surfae.9 ImplementationAn issue about degree of freedom. should be noted whenimplementing the above approah. The linear system on-struted in Setion 8 ould be overly determined due to thefat that the number of ontrol points of a surfae path is�nite. This problem is resolve by performing subdivision inSetion 4 to ful�ll the third requirement. We �rst deter-mine the band that has inuene on the trimming urves

and then insert some new knots and, onsequently, somenew ontrol points into this band. Thus we an avoid theoverly-determining problem.The implementation of the above method is arried outusing B-spline representation. For NURBS representation,one simply repeats this method �rst in the 4D spae andthen projet the result bak into the 3D spae. Sine theabove method uses the ontrol points as the variables, thisan be easily ahieved.

Figure 1: Trimmed door panel before saling.Test results on two data sets are presented here. Thesedata sets inlude a trimmed door panel (Figures 1-2), anda trimmed front hood (Figures 3-4). The front hood is adegree 3�5 NURBS surfae with 8 pathes. The door panelare biubi NURBS surfaes with 36 pathes eah. Thesethree surfaes are also B-spline surfaes beause the weightsin the NURBS representations of these surfaes are all equalto one.Two images are shown for eah ase: the �rst one showsthe trimmed surfae before the saling proess and the se-ond one shows the result of the onstrained saling pro-ess. The saling fators for the two ases are: Sx = 1:15,Sy = 1:2, Sz = 1:3. The shaded trimmed surfaes beforesaling and after saling are displayed with a set of highlightlines [8℄[1℄[2℄. Highlight lines are sensitive to the hange ofnormal diretions, hene, an be used to detet surfae nor-mal (urvature) irregularities. This sometimes is not possi-ble with wireframe drawings or shaded pitures [9℄[28℄.From the images, one an see in eah ase that the re-sult of the onstrained saling has the same features as the6



Figure 2: Trimmed door panel after saling.original surfae, while having the same shape as the saledsurfae. The urvature distribution of the result is also thesame as the saled surfae. This an be veri�ed by ompar-ing the highlight lines on the surfae before and after thedeformation proess.10 ConlusionThis paper presents a deformation based approah for on-strained surfae saling of trimmed NURBS surfaes. Thenew surfae is formed by saling the given surfae �rst, andthen attahing the (original) features to the saled NURBSsurfae at appropriate loations. The attahing proess re-quires several geometri operations and onstrained free-form surfae deformation. The resulting surfae has thesame features as the original surfae and same boundaryurves as the saled surfae while reeting the shape andurvature distribution of the saled surfae. The resultingsurfae also maintains a NURBS representation and, hene,is ompatible with most of the urrent data-exhange stan-dards.The features onsidered in the examples are all within onesingle NURBS surfae. A future work is to onsider the asewhen a feature intersets the boundary of the given surfae.Another researh diretion is to sale di�erent omponentsof an objet with di�erent saling fators while maintainingoverall smoothness of the objet and keeping ertain features�xed.

Figure 3: Trimmed front hood before saling.Aknowledgements. Finanial support of our researhwork by the Honda Initiative Grant is deeply appreiated.Referenes[1℄ Beier, K-P, and Chen, Y., The highlight-line algorithmfor real-time surfae-quality assessment, Computer-Aided Design 26, 1994, 268-278.[2℄ Beier, K-P, and Chen, Y., The highlight band, a simpli-�ed reetion model for interative smoothness evalua-tion, in: Spapidis, N., ed., Designing Fair Curves andSurfaes, SIAM, 1994.[3℄ Borrel, P. and Rappoport, A., Simple Constrained De-formations for Geometri Modeling and Interative De-sign, ACM Tansations on Graphis, 13(2), 1994, 137-155.[4℄ Cavendish, J. C. and Marin, S. P., A proeduralFeature-Based Approah for Designing Funtional Sur-faes, In Topis in Surfae Modeling, Hans Hagen, edi-tor, SIAM 1992, 145-168.[5℄ Celniker, G. and Gossard, D., Deformable urve andsurfae �nite elements for free form shape design, Com-puter Graphis, 25(4), 1991, 257-266.[6℄ Celniker, G. and Welh, W., Linear onstraints for de-formable B-spline surfaes, In Proeedings of the Sym-7
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