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Abstract

Constrained interpolation with constraint on shape and second derivative is studied for ratio-
nal cubic spline curves with linear denominators. Necessary and sufficient conditions for a C*
interpolant to satisfy the constraint have been developed for both cases. The testing conditions
are computationally efficient and easy to apply.
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1 Introduction

Design of high quality, manufacturable surfaces is an important yet challenging task in today’s man-
ufacturing industries. Although significant progress has been made in the last decade in developing
and commercializing production quality CAD tools, demand for more effective tools is still high due
to the ever increase in model complexity and the needs to address and incorporate manufacturing
requirements in the early stage of surface design. Within this content, constrained design has been
identified as one of the surface design problems that need to be solved (Y. Chen [1]). This problem
deals with control of the bound of curve/surface shape and curvature in the design process. A surface
with regions of large curvature may be difficult to produce because the sheet metal may not be able
to sustain the stamping tension. Hence, the capability to directly control the bound of curve/surface
shape and curvature in the process of design is of significant importance. Having this ability would
help reduce both the cost and cycle time of the product development process.

Research results in constrained design are scarce. The only work that seems to be available is a
recent manuscript by S. Butt, M. S. Hussain and M. Sarfraz on constrained interpolation (S. Butt
[4]). In this work, given a set of data points on the same side (above or below) of a linear function,
necessary and sufficient conditions are determined for a rational C'! cubic spline interpolant to be
on the same side of the linear function. The main idea is to consider a rational cubic spline whose



denominator for each segment is of degree two so that when the denominator is positive, one can
multiply the equation of the straight line by the denominator of the rational cubic spline to convert
the interpolant-above-straight-line problem to a positivity problem of cubic polynomials. In this
case, the results of Schmidt and Hess (J.W. Schmidt [5]) can be applied directly. As far as constraint
on curvature is concerned, nothing seems to be available in the literature yet.

In this paper we consider the constrained curve interpolation problem in a more general sense. We
will consider constraint both on the shape and the second derivative of the interpolant. In the first
case, we will study necessary and sufficient conditions for a C'! continuous interpolant to be above (or
below) a straight line and/or a quadratic curve in an individual knot interval. In the second case, we
will study necessary and sufficient conditions for the second derivative of a C! continuous interpolant
to be bounded above (or below) in an individual knot interval. The curve representation considered
here is similar to the one considered by Sarfraz et al (M. Sarfraz [2,3]), i.e., rational cubic spline
curves, with the exception that the denominator is of degree one instead of degree two. Efficient
testing conditions will be developed for each case.

The rest of the paper is arranged as follows. In Section 2, we give the general form of the ra-
tional cubic spline curves considered in this paper and show some of its properties, including the
tri-diagonal system of equations for the construction of such a C! rational cubic curve. In Section 3,
we discuss the shape constraint problem. In Section 4, we consider the problem of controlling second
derivative. In section 5, we give the existence conditions of the interpolation. Concluding remarks
are given in Section 6.

2 Rational Cubic Interpolation

Let f; € R,i =0,1,...n, be a given set of data points, where ty < t; < --- < t,, is the knot spacing.
Also, let d; € R,i = 0,1,...n, denote the first derivatives defined at the knots. We consider the
Cl-continuous, piecewise rational cubic function defined by

t =7 1
POl = ey .
where
pi(t) = (1 —0)30;fi +0(1 — 0)2Vi +60%(1 — O)W; + 0°Bi fis1,
Qi(t) = (1 - 9)&1 + 08i,
0 = (t—t;)/h
hi = tiy1— ti,
and

Vi = (205 + Bi)fi + aihid;,
Wi = (o +26i)fix1 — Bihidis,

with o, B; > 0.



p(t) is the standard cubic Hermite interpolant if o; = ;. If d;,¢ = 0,1,---,n, are not fixed, we
can make p(t) a C? rational cubic spline by requiring

p(ti+) = p" (i)

fori=1,2,---,n — 1. The conditions lead to the following tri-diagonal system of linear equations:
o ;i
hi=—d; 1+ (hi(1+ ==2) + hi 1 (1 + i —))d; + h; 1&d2+1
Bi-1 Bi-1 Q
= hz 1(1+2&)A +h(1+2ﬁ )Aifl; 1::1,2,-",71*1 (2)
(&7 i—1

where

A; = (fit1 — fi)/hi

If the knots are equally spaced, equation (2) becomes

;1 Bz /Bz
dz 2 i _dz
/81'71 L ( + /Bz 1 az) * Q; i
- (1+2&)A +(1+2ﬂ DA ;3 i=1,2,n 1. (3)
i—1

Furthermore, if a; = 3;, then (3) becomes the well known tri-diagonal system for cubic spline
di1+4d; + di1 23(A5+AZ’,1); 1=1,2,---,n— 1. (4)

From (2) or (3), we can solve for d; if o, 8; and the auxiliary end-condition are given.

In the following, we will study interpolation with constraint on shape and second derivative,
respectively, for this rational cubic spline curve representation, and find the sufficient and necessary
conditions for the parameters «;, 8; to satisfy the interpolation requirement.

3 Constrained Interpolation
Given a function g(z) and a data set {(¢;, fi,d;) : 4 =0,1,---,n} with
fi>g(ti), i=0,1,---,n,
let p(¢) be a rational cubic Hermite function defined by (1) satisfying the following conditions:
p(ti) = fi, p'(ti) =d;, i=0,1,---,n

If p(t) > g(t) for all t € [ty,t,], then p(t) is called a constrained interpolant above g(t).

Within this content, we consider the following two cases.



Case 1. Let g(t) be a piecewise linear function defined on [t¢,t,] with joints at the partition
A:ity<ty <---<t,and
fi > g(t), 1=0,1,...,n.

From (1) we know that g;(t) > 0 for t € [t;,t;41], so

_ pi(t)
qi(t)

p(t) > g(t)

is equivalent to

Let

We get
Ui(t) = (1 = 0)°ifi + 0(1 — 0)*V; + 0°(1 — O)W; + 0°Bi fiy1
— (1 =0)a; +08:)((1 — 0)gi + 0gi+1) = 0 (6)
where g;, g;+1 represent g(¢;), g(ti+1) respectively. Since
(1 =)o +68:)((1 — 0)gi + gis10)

= (1-0) g +0(1 — 0)(igis1 + Bigi) + 0*Bigis1
= (1-0)>%gi +0(1 — 0)*(cigiv1 + Bigi + cigi) + 0*(1 — 0)(aigir1 + Bigi + Bigiv1) + 0°Bigi

(6) becomes

Ui(t) = (1 - 0)°ai(fi — gi) +0(1 — 0)>A; + 6*(1 — 0)B; + 6°Bi(fis1 — giv1) > 0 (7)
where
A = Vi—(aigit1 + Bigi + 0ugi)
= ai(2fi — gi+1 — 9i + hidi) + Bi(fi — gi),
B, = W;— (aigi+1 + Bigi + Bigi+1)

= Bi(2fis1 — giv1 — gi — hidit1) + i(fiz1 — giv1).
If A; >0, and B; > 0, since

Ui(t;) = ai(fi—9i)>0
Ui(tiv1) = Bi(fix1 —giv1) >0

we have U;(t) > 0 for all ¢ € [t;,t;+1]. Hence, we have the following

THEOREM 1. Given {(¢;, fi,di),i =0,1,---,n} with f; > g;, the sufficient condition for



the rational cubic Hermite spline p(¢) to be lying above the piecewise linear function g(t) is that the
parameters a; and B; satisfy the following linear inequalities :

A = o(2fi — giv1 — 9i + hidi) + Bi(fi — g9i) > 0, (8)
B; = oi(fit1 — 9iv1) + Bi(2fix1 — gi+1 — 9i — hidi11) > 0. 9)

For a given data set {(t;, fi,d;),i =0,1,---,n} the corresponding A;, B; in the above theorem
are called the criterion numbers for the rational cubic interpolant to be above the straight line in
the subinterval [t;,¢;11].

Using the method of [5], we can get the sufficient and necessary condition for this interpolation
process. Let 6 = s/(s + 1), it is easy to see that (7) is equivalent to

Ui(s) = as® + Bs* + ys + 6; s>0

where
a = Bi(fit1 — git1)
B = B
Y = A4
& = ai(fi—gi)

Obviously, @ > 0,0 > 0. So, using the result of [5], we have

THEOREM 2. Given {(¢;, fi,d;),i = 0,1,---,n} and f; > g;, the rational cubic spline (1)
lies above the straight line in [t;,¢;11] if and only if the positive parameters «;, 3; satisfy either

(a) A’L > OaB’L > Oa or

(0)4Bi(fir1 — giv1) A2 + dai(fi — i) B} + 270282 (fiv1 — 9i+1)*(fi — 9i)*
— 180;Bi(fit1 — gi1)(fi — 9i)AiBi — A7 B} > 0.

Case 2 Let g(t) be a quadratic function, and f; > g¢(¢;). In the same way as in case 1, when
t € [ti, ti+1], since
gi(t) = (1 — 0)%g; + 0(1 — 0)(2g; + gihi) + 0%gir1
where
gi = g(ti), giv1 = g(tiv1), g; = g'(t:),
it follows that

is equivalent to

Ui(t) = (1= 0)ai(fi — gi) + 0(1 — 0)°Ci + 6*(1 — 0)D; + 0°Bi(fi11 — gir1) > 0 (10)



where
Ci = (2a; +Bi)(fi — gi) + aihi(di — g;)
= @i(2f; — 2gi + hid; — hig;) + Bi(fi — 9i) (11)
D; = (26i + i) fir1 — aigiv1) — 2Bigi — Bihi(diy1 + g;)
= ai(fit1 = giv1) + Bi(2fix1 — 29i — hidit1 — hig;) (12)
For a given data set {(¢;, fi,d;),i = 0,1,---,n}, and a given quadratic (maybe piecewise) function

g(t), we call the corresponding C;andD; as defined in (11) and (12) the criterion numbers for the
rational cubic interpolant to be above the quadratic curve in the subinterval [t;, ;1]
In the same way as in case 1, we can get

THEOREM 3. Let {(t;, fi,d;),i = 0,1,---,n} be a given data set, and g(¢) be a given
quadratic function satisfying f; > ¢;. The sufficient condition for the rational cubic Hermite spline
p(t) to be lying above the quadratic curve g(t) is that the parameters «; and j; satisfy the conditions
C; >0 and D; > 0.

Furthermore, by setting 6 = s/(1 + s), (10) may be write as

U*(s) = as® + Bs> +ys + 6

where
a = 5z‘(fz‘+1 - gi+1)
B = D
vy = G
d = ai(fi—gi)

THEOREM 4. Let {(;, fi,di),i =0,1,---,n} be a given data set, and g(t) be a given quadratic
function satisfying f; > g;. The necessary and sufficient condition for the rational cubic Hermite
spline p(t) to be lying above the quadratic curve g(t) in [t;,¢;+1] are that the parameters «; and ;
satisfy either

(a) OZ > OaDz > Oa or

(b) 4Bi(fit1 — 9i+1)C; + 4ai(fi — gi) D} + 270282 (fiv1 — 9i+1)*(fi — 9i)?
— 1804 Bi(fit+1 — 9i+1)(fi — 9;)CiD; — C2D? > 0.

4 Constraint on the Second Derivative of the Interpolant

The second derivative of an interpolant has been used in estimating the strain energy and, conse-
quently, smoothness of the interpolant. Smaller energy generally implies smoother shape. However,



it is possible that the overall energy of an interpolant is small while great enough to generate abnor-
mal shape at some points or even some small intervals. A better way would be to control the second
derivative directly. An effective method can be developed for rational cubic interpolant with linear
denominator to restrict its second derivative in a desired interval [N,M].

When t € [t;,ti41], from (1) it is easy to get

p'(t) = {h[(1 - 0)a; + 08,7} -
{[(1 — 0)ai + 08:1°[6(1 — O) i fi + (60 — 4)V; + (2 — 60) Wi + 60: fi11]
—2(B; — o) [(1 — )y + 0B:][—3(1 — )% fi + (1 — 40 + 30*)V; + 2(0 — 36%)W; + 3628, fiz1]
+2(8; — i)?[(1 — 03 fi + 0(1 — 0)?V; + 62(1 — O)W; + 0B; fi1]}

Let p”(t) < M. We have

Q) = MA[(1~0)a; + 0B +
{~1(1 = 0)a; + 0B:)°[6(1 — )i fi + (60 — 4)V; + (2 — 60) W + 600; fi1]
+2(8; — i)[(1 — O)a; + 0] -
[—3(1 — 0% fi + (1 — 460 + 30*)V; + (20 — 30*)W; + 36°B; fi11]
—2(8;i — )*[(1 = 0)°ai fi + (1 — 0)*V; + 6°(1 — O)W; + 0°B; fi1]} > 0.

Q(0) is a cubic polynomial of 6

Q(0) = ab® + b* +c +d (13)
with
a = Mh(Bi— i)’ —2(8; — )*[(e + Bi) fi + (20 + 5B;) fiz1 + hicid; — 2Bihid; 1],
b = 3MhIa;(Bi — i)?® — 60i(Bi — ci)(ifi + Bifi + Bifiv1 + dihicy),
c 3MhZaf(Bi — i) — 607 [(ci + Bi) fi — (e + Bi) fir1 + dicihi + Bihidisa],

d = Mhie] +20[(a; +26) fi — (@ +26:) fir + (@i + Bi)hidi + Bihidita).
Let 6 = s/(1 + s). It is easy to see that (13) is equivalent to

Q*(s)=as® +Ps* +ys+5>0; 5>0

where
a = BIHMh? —2f; — 10fis1 + 4hidi1) + 20:87 (5fiv1 — 2fi — dhidit1 — hid;) + 603 B; fir1{14)
B = 3B (Mh —2fi — 2fis1) + 607 Bi(fiz1 — hidiy1) + 605 fii1, (15)
v = 302B;(Mh? +2f; — 2fii1 + 2hid;), (16)
§ = 2a2Bi(2fi — 2fix1 + hidi + hidit1) + o (MhF +2f; — 2fi1 + 2hid;). (17)

One may then construct the corresponding sufficient and necessary condition for the second derivative



of the rational cubic Hermite interpolation function p;(t) defined by (1) to be less than or equal to
M as above. It is possible, however, to find the sufficient and necessary condition in a different and
yet easier way. Note that

Q'(0) =3[(1 — )i + 0B:)°[(Bi — i) MhZ + 2(aifi — Vi + Wi — Bifiz1)]-

Hence, Q(#) is monotone in [0, 1]. On the other hand, we have Q(0) = § and Q(1) = o where ¢ and
« are defined in (17) and (14), respectively. Therefore, we have

THEOREM 5. For the rational cubic Hermite interpolation function p;(¢) defined by (1), the
second derivative p”(t) is less than or equal to M in [t;,%;11] if and only if the positive parameters o;
and G; satisfy the conditions § > 0 and @ > 0 where § and « are defined in (17) and (14), respectively.

As is known that when «; = B;, p(t) is the standard cubic Hermite interpolation function H(z),
and in this case «, 3,7, defined by (14) — (17) become

= Mh? +6f; 1 — 6fi — dhid;y1 — 2hid;
= 3MhZ +6fii1 — 6fi — 6hid;i

= 3Mh} —6fii1 +6f; + 6h;d;

= Mh? — 6fi1 + 6f; +4hid; + 2h;d;

o, R » R

From the standard cubic Hemite interpolation we know that when ¢ € [t;,t;11]
H"(t) = h; *(fighg (0) + fir161(0) + hidiyg (0) + hidiy 197 (0)) (22)
where
= (- 1)%20+1),
62(30 — 2),
0(6 - 1)2a
= 6% —1).

Let

We have

= 5,
a’
v/3,

= B/3

where a, 3,7, d are defined in (18) — (21). Because U(f) is a linear function of 6, from the analysis



above and Theorem 5 we have

THEOREM 6. For a standard cubic Hermite interpolation function H(t), the sufficient and
necessary condition for the second derivative H"(¢) to be less than or equal to M in [¢;,¢;+1] is that
the given data {f;, fi11,d;,d;+1} satisfy the following conditions:

M +6f;1 — 6f; — 4hidiy1 — 2hid; > 0;
Mh? — 6fi 1+ 6f; + 4h;d; + 2h;d; 1 > 0.

5 Existence conditions of the interpolation

In this section, we first discuss the existence conditions for the interpolants in Sections 3. The
existence of a constrained rational cubic interpolant p;(¢) satisfying the constraints in [¢;, ¢;11] depends
on the existence of the solution parameters «;, §; of the inequality system (8)&(9) or (11)&(12) for
case 1 or case 2, respectively. For simplicity of notations, we shall write the system as follows:

aio; +b18; >0 (23)
aza; + ba8; > 0 (24)

with a1, b1, as, and by defined as follows for (8)&(9)

a1 = 2fi — git1 — gi + hid; (25)
b = fi—gi

az = fit1 — Ggi+1

be = 2fit1— giv1 — gi — hidiga (26)

and defined as follows for (11)&(12).

a1 = 2fi — 29i + hidi — hig; (27)
b = fi—gi

az = fit1 — git1

ba = 2fi1—2gi — hidip1 — hig; (28)

By elementary analytic geometry, it is easy to get the following existence conditions for the interpo-
lation.

THEOREM 7. For the constrained rational cubic interpolation discussed in section 3

1) if f; > g; for alli = 0,1,...n (i.e. by > 0,a3 > 0), then the set of positive solution parameters
a;, B; of the inequality system (23)&(24) is nonempty except when a; < 0,b3 < 0 and a1by > agb;.

2) if f; = g; and fi11 > gi+1 (i.e. by =0 and ag > 0) for interval [t;,¢;11], then the set of positive
solution parameters «;, 3; of the inequality system (19)&(20) is nonempty except when a; < 0.

3) if f; > g; and fit1 = gi+1 (i.e. by > 0 and ag = 0) for interval [t;, ¢;41], then the set of positive
solution parameters «;, 3; of the inequality system (19)&(20) is nonempty except when by < 0.

4) if f; = g; for all i = 0,1,...n (i.e. by = az = 0) then the set of positive solution parameters
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a;, B; of the inequality system (19)&(20) is nonempty if and only if a; > 0 and by > 0.

As far as the existence condition of the interpolant discussed in section 4 is concerned, we want
the positive parameters «;, 8; for each interpolating interval [¢;,t;11] to satisfy p”(t) < M. From
Theorem 5, by setting A\; = «;/f;, the conditions @ > 0 and § > 0 become

6fi A2+ N(10f;01 — 4f; — 8hidi 1 — 2hid;) + (MA? — 2f; — 10,1 + 4hidi41) > 0
Xi(MBF + 2f; = 2fip1 + 2hidi) + (4fi — 4fi1 + 2hid; + 2hidigr) > 0
Hence we have

THEOREM 8. For the constrained rational cubic interpolation function discussed in sec-
tion 4, the sufficient condition for p(¢)"” < M in [t;,¢;4+1] is the inequality system (29) and (30) has
positive solution A;.

6 Concluding Remarks

The techniques used in Sections 3 for constrained interpolation above a straight line or a quadratic
curve can be used for the "below” case as well. Therefore, one may actually consider constrained
interpolation between two curves. Similarly, the techniques used in Section 4 can be used for the case
that the second derivative is greater than or equal to a given number. Thus one may also consider
constrained interpolation in which the second derivative of the interpolating function is bounded
both above and below.

The techniques used in Section 3 for C! constrained interpolation may be extended to cover C?
constrained interpolation if condition (2) is used as the smoothness requirement. By combining the
techniques used in Sections 3 and 4 one may even consider the construction of constrained convex
rational cubic splines. These topics will be discussed in a different paper.
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