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ABSTRACT

Conventional polynomial interpolation methods produce in-
terpolated images with blurred edges, while edge-directed in-
terpolation methods make enlarged images with good quality
edges but with detail distortion in the non-edge portion for
some cases. A new method for constructing a fitting surface
to image data is presented. Unlike existing methods which
produce enlarged images using image data as interpolation
data, the new method constructs the fitting surface using the
image data as constraints to reverse the sampling process for
improving the fitting precision. To remove the zigzagging ar-
tifact, for each pixel and its nearby region, the edge infor-
mation is used to determine the quadratic polynomial which
approximates the original scene with a quadratic polynomial
precision. Comparison results of the new method with other
methods are included.

Index Terms— Surface fitting, quadratic polynomial, im-
age resizing, reversing

1. INTRODUCTION

Resizing an image is of fundamental importance in fields such
as CG and image processing[1]. This paper addresses the
problem of constructing a surface to fit the image data so that
the resized image has better precision and quality.

The simplest interpolation method for resizing image is
pixel replication, but usually results in the undesirable block-
ing effect. Bi-cubic interpolations[2, 3] use cubic polynomial
to make the resized image more visually pleasing. Paper[4]
uses non-separable cubic-convolution kernels for image inter-
polation , the test results show, however, that it has no obvi-
ous advantage over the traditional separable cubic convolu-
tion methods. Using both oblique and orthogonal projections,
an optimal spline-based method for resizing digital images is
discussed in paper[5]. The experiments show that this method
outperforms the standard interpolation techniques. An edge-
directed interpolation method[6][7] is proposed to provide a
solution to enlarged image based on their geometric duality.

Recently, Zhang and Wu[8] developed a soft-decision inter-
polation method which is able to estimate missing pixels by
groups instead of by pixels.

Edges are crucial to image perception, blurred edges and
annoying artifacts are the most annoying visual artifacts[6]-
[8]. Conventional polynomial interpolation methods fail to
capture the fast evolving statistics around edges and conse-
quently produce enlarged images with blurred edges and an-
noying artifacts. Edge-directed methods make enlarged im-
age with good quality around edges while with the detail dis-
tortion of the portion surrounded by edges for some cases.
Moreover, the methods[1]-[8] are based on the sampling data
points, each of which is taken from a region of the original
scene, so, some details of the image will be lost.

Our study shows that it is not polynomial interpolation
that produces the blurred edges, but the interpolation condi-
tions used in the interpolation procedure. Based on the fact
that image data are sampled from an original scene that can
be approximated by piecewise polynomials, a new method for
constructing surface to fit image data is proposed. The fitting
surface is constructed by reversing the process of image sam-
pling. The edge information is used as constraints to construct
the fitting surface, which makes the surface have good shape
and approximate the original scene with a quadratic polyno-
mial precision. The fitting surface is formed by the combina-
tion of the quadratic polynomial patches.

2. DESCRIPTION OF NEW METHOD

Suppose that P is an image composed of n × n image ele-
ments, Pi,j (the position marked by ‘•’ in Figure 1), i, j =
1, 2, ..., n. These elements are generally sampled from an o-
riginal scene F (x, y) on the region [1/2, n+1/2]× [1/2, n+1/2].
For brevity, suppose that each element Pi,j is sampled from a
unit square, i.e,

Pi,j =

∫ j+
1
2

j− 1
2

∫ i+
1
2

i− 1
2

w(x, y)F (x, y)dxdy (1)

where w(x, y) is a weight function with w(x, y) = 1, the case
of w(x, y) being a function will be studied in the future.



Note: Pi,j , i, j = 1, 2, ..., n are integers, hence (1) does
not hold in general, but it holds approximately.

Fig. 1. Image region Fig. 2. Four directions

2.1. Basic idea

If F (x, y) is known, we can resize the image by (1) easi-
ly. Hence, resizing P becomes a problem of reconstruct-
ing F (x, y). The goal here is to construct a fitting surface
f(x, y) which approximates F (x, y) with a quadratic poly-
nomial precision. The construction of f(x, y) is described
as below. On each sub-region [i-1.5, i+1.5] × [j-1.5, j+1.5]
(the square bounded by solid line), i, j = 2, 3, · · · , n − 1,
as shown in Figure 1, a quadratic polynomial patch fi,j(x, y)
is constructed, which satisfies the condition that if F (x, y)
in (1) is a quadratic polynomial, fi,j(x, y) should reproduce
F (x, y) exactly. In this case, fi,j(x, y) is known as having a
quadratic polynomial precision. f(x, y) is constructed by the
weighted combination of fi,j(x, y), i, j = 2, 3, · · · , n− 1.

Let u = x− i, v = y−j, then on [−1.5, 1.5]× [−1.5, 1.5]
in uv plane, fi,j(x, y) can be represented as

fi,j(x, y) = au2 + buv + cv2 + du+ ev + f (2)

where a, b, c, d, e, f are unknowns to be determined.

2.2. Constructing patch fi,j(x, y)

Following, the determination of the unknowns in (2) is dis-
cussed. Since the quality around the edges plays an important
role in the visual effect of an image, fi,j(x, y) should reflec-
t the characteristics around the edges as well as possible. In
Figure 2, the center pixel is supposed to be Pi,j , there are four
directions formed by Pi,j and its neighbor pixels, denoted as
y, x+ y, x and x− y, respectively. Similarly, for the 8 neigh-
bor pixels of Pi,j , there are also 4 directions for each one. If
the image varies linearly along a direction d⃗, then the images
along d⃗ form an edge of the image, fi,j(x, y) should be a lin-
ear function along d⃗. The unknowns in (2) should reflect the
variations along the edges at the nine pixels. We group the
unknowns in (2) into 3 sets: f , {d, e} and {a, b, c}, where f
is used to make fi,j(x, y) satisfy (1), the second set is used

to reflect the variation along four directions of Pi,j , while the
last set reflects the variation at 9 pixels of Pi,j in Figure 2. We
first discuss how to determine the unknowns d and e.

Theorem 1 If F (x, y) is defined by (2), Pi,j satisfies (1),
then, the following conditions hold

e = e1 d+ e = e2,
d = e3 d− e = e4

(3)

where
e1 = (Pi,j+1 − Pi,j−1)/2,
e2 = (Pi+1,j+1 − Pi−1,j−1)/2,
e3 = (Pi+1,j − Pi−1,j)/2,
e4 = (Pi+1,j−1 − Pi−1,j+1)/2

Prof: Substituting (2) into (1) and integrating gets

Pi−1,j =
13

12
a+

1

12
c− d+ f

Pi+1,j =
13

12
a+

1

12
c+ d+ f

Thus, d = e3 in (3) holds. Similarly, the rest of the cases can
be proved.

In (3), there are 4 equations with unknowns d and e. To
make fi,j(x, y) reflect the characteristics of the image edge
passing Pi,j , d and e will be determined by constrained least
squares, i.e, by minimizing the following function

G(d, e) = w1(e− e1)
2 + w2(d+ e−

√
2
2 e2)

2

+w3(d− e3)
2 + w4(d− e−

√
2
2 e4)

2
(4)

where wi, i = 1, 2, 3, 4 are weight functions.
We discuss how to determine wi, i = 1, 2, 3, 4 in (4). Sub-

stituting (2) into (1) and integrating gets

∆1 = (Pi,j+1 + Pi,j−1)/2− Pi,j = c
∆2 = (Pi+1,j+1 + Pi−1,j−1)/2− Pi,j = a+ b+ c
∆3 = (Pi+1,j + Pi−1,j)/2− Pi,j = a
∆4 = (Pi−1,j+1 + Pi+1,j−1)/2− Pi,j = a− b+ c

(5)

In Figure 2, if fi,j(x, y) (2) is a linear function along the
direction y, the determination of w1 should make e1 (3) play
a primary role on the determination of e, so, w1 (4) should
be assigned a bigger value. When the variation of the im-
age along direction y closes a linear function, then ∆1 = 2c
closes 0. Hence, w1 should be inversely proportional to ∆1.
Similarly, we can define w2, w3 and w4. They are defined as

wi =
1

1 +∆2
i

, i = 1, 2, 3, 4 (6)

Now we discuss how to determine f in (2). Substituting (2)
into (1) and integrating gets

f = Pi,j −
1

12
a− 1

12
c



Now, fi,j(u, v) can be written as

fi,j(u, v) = au2 + buv+ cv2 + du+ ev− a+ c

12
+Pi,j (7)

Next, we will discuss how to determine a,b c. Firstly, we
determine a,b and c by making fi,j(u, v) approximate 8 pixels
around Pi,j by constrained least square method. Let

gk,l(a, b, c) =

∫ l+ 1
2

l− 1
2

∫ k+ 1
2

k− 1
2

fi,j(u, v)dudv = Pi+k,j+l

Then, a,b and c are defined by minimizing the function

G(a, b, c) =
∑

k,l=−1,0,1
k ̸=l=0

wk,l(gk,l(a, b, c)− Pi+k,j+l)
2 (8)

where wk,l, k, l = −1, 0, 1, k ̸= l = 0 are weight functions.
To make fi,j(x, y) (2) have good quality, the informa-

tion of edges are used to determine wk,l. Near Pi+1,j , if
fi,j(x, y) (2) is a linear function along the direction x, then
Pi+1,j should play a primary role on the determination of a,
b and c. In this case, ∆1,0 = (Pi+2,j + Pi,j)/2 − Pi+1,j is
close to zero, so w1,0 can be assigned a bigger value by

w1,0 =
1

1 +∆2
1,0

(9)

Similarly, w1,1, w0,1,w−1,1,w1,1,w−1,0, w−1,−1 and w0,−1

are determined.
Second, considering equation (5), the information of the

edges at Pi,j can also be used to determine a,b c by the fol-
lowing function.

E(a, b, c) = w1(c−∆1)
2 + w2(a+ b+ c−∆2)

2

+ w3(a−∆3)
2 + w4(a− b+ c−∆4)

2 (10)

where w1, w2, w3 and w4 are defined by (6).
Now, a,b c are determined by the following function

H(a, b, c) = G(a, b, c) + λE(a, b, c) (11)

with λ being a parameter.
The discussion above showed that if F (x, y) is a quadratic

polynomial, and Pi,j , i, j = 1, 2, · · · , n, are defined by (1),
then fi,j(x, y) will be determined uniquely. So, there is the
following Theorem.

Theorem 2. For image P which is composed of n × n
elements, Pi,j , i, j = 1, 2, · · · , n, if Pi,j is defined by (1),
fi,j(x, y) has a quadratic polynomial precision.

On each sub-region [i−1, j−1]×[i+1, j+1], fi,j(x, y) in
(2) should satisfy 0 ≤ fi,j(x, y) ≤ 255, so that f(x, y) which
will be constructed in Section 3 satisfies 0 ≤ f(x, y) ≤ 255.
If fi,j(x, y) in (2) does not satisfy the required condition, it
will be modified to satisfy the condition.

3. CONSTRUCTING FITTING SURFACE

On each sub-region [i, i+1]× [j, j+1], i, j = 1, 2, ..., n−1,
a bi-cubic patch Bi,j(x, y) is constructed, all Bi,j(x, y)

′
s are

put together to form the fitting surface f(x, y).
On [i, i+ 1]× [j, j + 1], i, j = 2, 3, ..., n− 2, Bi,j(x, y)

is constructed by fi,j(x, y), fi+1,j(x, y), fi,j+1(x, y) and
fi+1,j+1(x, y), i.e, Bi,j(x, y) is defined by

Bi,j(x, y) = wi,j(x, y)fi,j(x, y) + wi+1,j(x, y)fi+1,j(x, y)
+ wi,j+1(x, y)fi,j+1(x, y)
+ wi+1,j+1(x, y)fi+1,j+1(x, y)

(12)
where

wi,j(x, y) = (1− v)(1− w), wi+1,j+1(x, y) = vw
wi,j+1(x, y) = (1− v)w, wi+1,j(x, y) = v(1− w)

are weight functions with v = x− i, w = y − j.
The patches on the boundary of P are B1,j(x, y) and

Bn−1,j(x, y), j = 1, 2, · · · , n−1, Bi,1(x, y) and Bi,n−1(x, y),
i = 2, 3, · · · , n − 2. As symmetry, we only discuss the con-
struction of B1,j(x, y), j = 1, 2, · · · , n − 1, the rest of the
cases can be handled similarly. B1,1(x, y) is defined by
f2,2(x, y), for j = 2, 3, · · · , n− 2, B1,j(x, y) is defined by

B1,n−1(x, y) = f2,n−1(x, y)
B1,j(x, y) = f2,j(x, y)(1− w) + f2,j+1(x, y)w

(13)

Based on the Theorem 2 and the definition of Bi,j(x, y)
(10) and (11), it is easy to know that f(x, y) has a quadratic
polynomial approximation precision.

4. EXPERIMENTS

In this section, we will compare the efficiency of the new
method(CCEM) with CCM[4], NEI method[6] and IIAS
method[8], where, λ in (11) is set to 5. The comparison
is carried out by enlarging 6 standard images (as shown in
Figure 3) with size 256× 256.

We first compare the vision quality of the enlarged images
produced by the four methods. The comparison results are
shown in Figure 4. Images (A), (B), (C) are parts of the 512×
512 images which are produced using (from top to bottom)
CCEM, CCM, NEI and IIAS, respectively, by enlarging the
256×256 images. Images (D), (E), (F) are parts of the 1024×
1024 images using the above four methods by enlarging the
256 × 256 images. Figure 4 shows that the images produced
by CCEM have better visual quality than the images produced
by CCM, NEI and IIAS. The Medical, Peppers and Lenna
images by CCM have staircases along image edges, while the
Rail, Medical, Peppers and Couple images by NEI and IIAS,
respectively have texture distortion.

Then, the images enlarged by the four methods are com-
pared in term of PSNR defined by

PSNR =
N ×N × 255× 255∑n
j=1

∑n
i=1(Ri,j − Pi,j)2

(14)



Rail Baboon Medical

Peppers Couple Lenna

Fig. 3. Four standard images

Table 1. PSRN of the four methods (size: 256× 256)
Image CCEM CCM NEI IIAS
Rail 26.67 26.49 24.51 24.19
Baboon 23.95 23.95 22.70 22.55
Medical 29.88 29.55 26.24 26.09
Peppers 34.05 33.72 29.83 29.18
Couple 29.79 29.63 27.62 27.29
Lenna 32.50 32.24 29.16 28.98

which is a normalized measure for testing the image quality,
where Pi,j is the accurate image element, and Ri,j is the en-
larged image element produced by one of the four methods.
The PSRN of the four methods applied to the 6 images (size
256× 256) are given in Table 1.

The experiments have been done on other images. The re-
sults are similar to the ones as shown in Figure 4. Moreover,
we also compared CCEM with the methods in papers[5][7][9]
and PDE-based interpolation methods, CCEM got better vi-
sion quality too.

5. CONCLUSIONS

Conventional polynomial interpolation methods generally
make the enlarged images have blurred edges and annoying
artifacts. Edge-directed methods make enlarged image with
good quality around edges while with the detail distortion of
the portion surrounded by edges. In order to get rid of these
two shortcomings, a new method is presented for image re-
sizing. The new method constructs the fitting surface locally
by the combination of the quadratic polynomial patches. The
quadratic patches are constructed by reversing the process
of sampling and with edges as constraints, which makes the
surface have the shape suggested by the image and a better
approximation precision. The new method has the advantage
in that it can easily zoom the image into multiples. The com-

A B C

D E F

Fig. 4. Parts of the enlarged images with size 256× 256.

parison results also indicate that the new method produces
resized images with better quality.
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