
Robust and Error Controllable Boolean Operations onFree-Form Solids Represented by Catmull-Clark Subdivision SurfaesShuhua Lai and Fuhua (Frank) ChengGraphis & Geometri Modeling Lab, Department of Computer SieneUniversity of Kentuky, Lexington, Kentuky 40506-0046Abstrat. A method for performing robust anderror ontrollable Boolean operations on free-formsolids represented by Catmull-Clark subdivision sur-faes (CCSSs) is presented. The given objets arevoxelized to make Boolean operations more eÆient.However, di�erent from previous voxelization basedapproahes, the �nal result of the Boolean operationsin our method is represented with a ontinuous geo-metri representation. This is ahieved by doing theBoolean operations in the parameter spaes of thesolids, instead of the objet spae. The 2D parameterspae is reursively subdivided until a keep-or-disarddeision an be made for eah resulting subpath us-ing results of the voxelization proess. This approahallows us to easily ompute a parametri approxima-tion of the intersetion urve and, onsequently, builda ontinuous geometri representation for the Booleanoperation result. To make the Boolean operation re-sult more aurate, a seondary loal voxelization anbe performed for interseting subpathes. Beause thevoxelization proess itself is very fast and robust, theoverall proess is fast and robust too. Most impor-tantly, error of Boolean operation result an be pre-isely estimated, hene error ontrol is possible. Inaddition, our method an handle any ases of Booleanoperations as long as the given solids are representedby CCSSs. Therefore there are no speial or degener-ated ases to take are of. Although the new methodis presented for CCSSs, the onept atually works forany subdivision sheme whose limit surfaes an beparametrized.CR Categories: I.3.5 [Computer Graphis℄: Compu-tational Geometry and Objet Modeling - urve, sur-fae, solid and objet representations;Keywords: subdivision surfaes, Catmull-Clark sub-division surfaes, voxelization, Boolean operations

1 IntrodutionBoolean operations are a nature way of onstrutingomplex solid objets from simpler primitives. For ex-ample, the Construtive Solid Geometry (CSG) rep-resentation sheme allows users to de�ne omplex 3Dsolid objets by hierarhially ombining simple geo-metri primitives using Boolean operations and aÆnetransformations. However, for many appliations CSGis not the most eÆient approah. Another major rep-resentation sheme used in solid modeling is boundaryrepresentation (B-rep). But for ompliated objets,beause higher order B-reps are needed, it is usuallyvery diÆult to �nd the interseting urve analytially.In addition, ares always to be taken to handle spe-ial ases and degenerated ases [16℄. Hene, aurateBoolean operations are usually not fast, nor robust,although exellent results have been ahieved by someommerial solid modeling engines.Voxelization of 3D objets has been studied andused for 3D objet modeling and rendering for a while.With voxelization, it is atually very simple to get allthe resulting voxels after Boolean operations beausenow Boolean operations beome simple set operations.The diÆult part is how to represent the resulting ob-jet properly and aurately when voxelization is usedin the Boolean operation proess. Traditionally resultsof Boolean operations are represented as sets of vox-els [24, 25℄ and speial volumetri rendering algorithmsare developed for visualizing Boolean operation results[14, 27℄. The main disadvantage of this approah isthat there is no ontinuous geometri representationfor the resulting objets. Consequently, the resultsof Boolean operations annot be saled seamlessly orsmoothly beause of the nature of disretization.In this paper a method for performing robust anderror ontrollable Boolean operations on free-formsolids represented by Catmull-Clark subdivision sur-faes (CCSSs) is presented. The given objets arevoxelized to Boolean operations more eÆient. How-ever, the �nal results of Boolean operations in our1



method are still represented with a ontinuous geo-metri representation. This is ahieve by performingBoolean operations subpath by subpath in 2D pa-rameter spae. Eah subpath is small enough to en-sure the resulting voxels are either adjaent or over-lapping. Consequently, onnetivity of adjaent voxelsan be easily onstruted and the intersetion urvean be easily identi�ed. Beause Boolean operationsare performed subpath by subpath in 2D parame-ter spae, our method an handle Boolean operationsof any type. There are no speial ases or degener-ated ases to take are of. Therefore our method isrobust. Most importantly, error ontrol is possible inour method. To make the Boolean results more a-urate, aording to our error estimation formula, aseondary loal voxelization an be performed for eahpair of interseting subpathes.The remaining part of the paper is arranged as fol-lows. A brief review of bakground and previous worksrelated to this one are given in Setion 2. A desrip-tion of our voxelization tehniqu is given in Setion3. The proess of performing Boolean operations onsolids represented by CCSSs is disussed in Setion 4.Loal voxelization tehnique is presented in Setion 5.Error ontrol is given in Setion 6. Implementation is-sues and test ases are shown in Setion 7. Conludingremarks are given in Setion 8.2 Bakground & Related Work2.1 Subdivision SurfaesGiven a ontrol mesh, a subdivision surfae is gener-ated by iteratively re�ning (subdividing) the ontrolmesh to form new and �ner ontrol meshes. The re-�ned ontrol meshes onverge to a limit surfae alleda subdivision surfae. So a subdivision surfae is deter-mined by the given ontrol mesh and the mesh re�ning(subdivision) proess. Popular subdivision surfaes in-lude Catmull-Clark subdivision surfaes (CCSSs) [1℄,Doo-Sabin subdivision surfaes [2℄ and Loop subdivi-sion surfaes [3℄.Subdivision surfaes an model/represent omplexshape of arbitrary topology beause there is no limiton the shape and topology of the ontrol mesh of a sub-division surfae. Subdivision surfaes are intrinsiallydisrete. Reently it was also proved that subdivisionsurfaes an be prammetrized [4, 5, 6, 7℄. Therefore,subdivision surfaes over both parametri forms anddisrete forms. Parametri forms are good for designand representation, disrete forms are good for ma-hining and tessellation (inluding FE mesh genera-tion). Hene, we have a representation sheme that

is good for all graphis and CAD/CAM appliations.Subdivision surfaes by far are the more general sur-fae representation sheme. They inlude non-uniformB-spline and NURBS surfaes are speial ases [9℄. Inthis paper we only onsider solids represented by CC-SSs. However, our approah an be used for any sub-division sheme whose parametrization is available.2.2 VoxelizationLike 2D pixelization, voxelization of surfaes [10, 11℄is a powerful tehnique for representing and modelingomplex 3D objets. This is proved by many suessfulappliations of volume graphis tehniques in researhwork reported reently. For example, voxelization anbe used for visualization of omplex objets or senes[12, 14, 27℄. It an also be used for measuring integralproperties of solids, suh as mass, volume and surfaearea. Most importantly, it an be used for intersetionurve alulation and, onsequently, Boolean opera-tions [12, 25℄. For example, in [25℄, a series of Booleanoperations are performed on objets represented by aCSG tree.A good voxelization should meet three requirementsin the voxelization proess: separability, auray, andminimality [10, 11℄. The �rst requirement demandsanalogy between the ontinuous spae and the disretespae to be preserved and the resulting voxelizationto be not penetratable sine the given solid is losedand ontinuous. The seond requirement ensures thatthe resulting voxelization is the most aurate disreterepresentation of the given solid aording to someappropriate error metri. The third requirement re-quires the voxelization does not ontain voxels that, ifremoved, make no di�erene in terms of separabilityand auray. The mathematial de�nitions of theserequirements an be found in [10, 11℄.Note that a voxelization proess does not render thevoxels but merely generates a database of the disretedigitization of the ontinuous objet [10℄. Some previ-ous voxelization methods use quad-trees to store thevoxelization result [26℄. This approah an save mem-ory spae but might sari�e in time when used for ap-pliations suh as Boolean operations or intersetionurves determination. Nevertheless, with heap andgiga-byte memory hips beoming available, storagerequirement is no longer a major issue in the design ofa voxelization algorithm. People are more about theeÆieny of the algorithm. Our new method stores thevoxelization result diretly in a Cubi Frame Bu�er[10℄ for fast operation purpose.2



2.3 Boolean Operations on SolidsPerforming Boolean operations is a lassi problem ingeometri modeling. Many approahes have been re-ported in the literature, suh as [13, 19, 22, 24, 25,26, 28℄, to name a few. Currently most solid mod-elers an support Boolean operations on solids om-posed of polyhedral models or quadri surfaes (likespheres, ylinders et.). Over the last few years, mod-eling using free-form surfaes has beome indispens-able throughout the ommerial CAD/CAM industry.However, the major bottlenek is in performing robust,eÆient and aurate Boolean operations on free-formobjets. The topology of a surfae path beome quiteompliated when a number of Boolean operations areperformed and �nding a onvenient representation forthese topologies has been a major hallenge. As a re-sult, some solid modelers [13℄ use polyhedral approxi-mation to these surfaes and apply Boolean operationson these approximate polyhedral objets. Althoughthis approahes seem simple, there are always somespeial ases or degenerated ases [16℄ that are diÆultto take are of. Some modelers use point (or surfel)based approahes [26℄ to perform Boolean operationsand quite good results are obtained. However, errorontrol is diÆult in suh approahes. Zorin et. pro-posed a method [28℄ to perform approximate Booleanoperations on free-form solids represented by subdivi-sion surfaes. The main ontribution of their methodis the algorithms that are able to generate a ontrolmesh for a multiresolution surfae approximating theBoolean results.Most of the reent work in the literature on Booleanoperations of urved models are foused on omputingthe surfae intersetion [15, 17, 18, 20, 21, 23℄. How-ever, the algebrai degree of the resulting urve antypially be very high (up to 324 for a pair of biu-bi B�ezier surfaes) [13℄ and the genus is also non-zero. Hene it is very diÆult to represent the in-tersetion urve analytially and the urrent methodsare aimed at omputing approximations to the inter-setion urve.3 Voxelization based on Reur-sive Parameter Spae Subdi-visionGiven a free-form objet represented by a CCSS and aubi frame bu�er of resolutionM1�M2�M3, the goalis to onvert the CCSS represented free-form objet(i.e. ontinuous geometri representation) into a setof voxels that best approximates the geometry of the

objet. We assume eah fae of the ontrol mesh isa quadrilateral and eah fae has at most one extra-ordinary vertex (a vertex with a valene di�erent from4). If this is not the ase, simply perform Catmull-Clark subdivision on the ontrol mesh of the CCSStwie.With parametrization tehniques for subdivisionsurfaes beoming available, it is possible now tomodel and represent any ontinuous but topologi-ally omplex objet with an analytial representa-tion [4, 5, 6, 7℄. Given any given parameter spaepoint (u; v), a surfae point S(u; v) orresponding tothis parameter spae point an be exatly omputed.Therefore, voxelization does not have to be performedin 3D objet spae, as the previous reursive voxeliza-tion methods did, one an do voxelization in 2D spaeby performing reursive subdivision and testing on the2D parameter spae.We �rst onsider the voxelization proess of a sub-path, whih is a small portion of a path. Given asubpath of S(u; v) de�ned on [u1; u2℄ � [v1; v2℄, wevoxelize it by assuming this given subpath is smallenough (hene, at enough) so that the voxels gener-ated from it are the same as the voxels generated usingits four orners:V1 = S(u1; v1); V2 = S(u2; v1);V3 = S(u2; v2); V4 = S(u1; v2): (1)In general this assumption does not hold. Henea test must be performed before the path or sub-path is voxelized. It is easy to see that if the voxelsgenerated using its four orners are not N -adjaent(N 2 f6; 18; 26g) to eah other [10, 11, 12℄, then thereexist holes between them. In this ase, the path orsubpath is still not small enough. So we perform amidpoint subdivision on the orresponding parameterspae by settingu12 = u1 + u22 and v12 = v1 + v22to get four smaller subpathes:S([u1; u12℄� [v1; v12℄); S([u12; u2℄� [v1; v12℄);S([u12; u2℄� [v12; v2℄); S([u1; u12℄� [v12; v2℄);and repeat the testing proess on eah of the sub-pathes. The proess is reursively repeated until allthe subpathes are small enough and an be voxelizedusing only their four orners.The verties of the resulting subpathes after the re-ursive parameter spae subdivision are then used toform voxels in the voxelization proess to approximatethe limit surfae. For example, if the four retangles inFigure 1(a) are the parameter spaes of four adjaent3
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(b)(a)Figure 1: Basi idea of parameter spae based reur-sive voxelization.subpathes of S(u; v), and if the retangles shown inFigure 1(b) are the parameter spaes of the resultingsubpathes when the above reursive testing proessstops, then 3D points will be evaluated at the 2D pa-rameter spae points marked with small solid irlesto form voxels that approximate the limit surfae.To make things simple, we �rst normalize the inputmesh to be of dimension [0;M1 � 1℄ � [0;M2 � 1℄ �[0;M3 � 1℄. Then for any 2D parameter spae point(u; v) generated from the reursive testing proess (seeFig. 1), diret and exat evaluation is performed to getits 3D surfae position and normal vetor at S(u; v).To get the voxelized oordinates (i; j; k) from S(u; v),simply set i = bS(u; v):x+ 0:5;j = bS(u; v):y + 0:5;k = bS(u; v):z + 0:5: (2)One eah single point marked in the reursive test-ing proess is voxelized, the proess of voxelizing thegiven path is �nished. The voxelization result ofthis method is guaranteed to satisfy the propertiesof separability, auray and minimality with respetto the given N -adjaeny onnetivity requirement(N 2 f6; 18; 26g) [10, 11, 12℄.Sine the above proess guarantees that a sharedboundary or vertex of pathes or subpathes will bevoxelized to the same voxel, we an perform voxeliza-tion of free-form objets represented by a CCSS ona path based approah. One thing that should bepointed out is, to avoid stak overow, only small sub-pathes should be fed to the reursive subdivision andtesting proess. This is espeially true when a high res-olution ubi frame bu�er is given or some polygonsin the given ontrol mesh are very big. Generatingsmall subpathes is not a problem for a CCSS oneparametrization tehniques are available. For exam-ple, in our implementation, the size of subpathes (inthe parameter spae) fed to the reursive testing pro-ess is 18 � 18 , i.e. eah path is divided into 8� 8 sub-pathes before the voxelization proess. In addition,feeding small size subpathes to the reursive testing
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(b)Figure 2: Performing Boolean operations on 2D pa-rameter spae.proess ensures the assumption of our voxelization pro-ess is satis�ed, beause the smaller the parameterspae of a subpath, the atter the subpath.4 Boolean Operations on SolidsHere we only onsider Boolean operations performedon two free-form solids A and B. Boolean operationsperformed on more objets an be regarded as a seriesof Boolean operations eah performed on two objets.Hene, only two ubi frame bu�ers are needed, onefor eah objet. One voxelization is done, a volumeooding must be performed to mark the voxels loatedinside a given solid. Now there are three types of vox-els in eah ubi frame bu�er: (1) inside voxels, (2)boundary voxels and (3) outside voxels.Several possible Boolean operations may be spe-i�ed by the users. However, the essential proess isis almost the same. Here we illustrate the proess byassuming the given Boolean operation is to �nd theintersetion of two solid objets.With voxelization, it is atually quite simple to getthe resulting voxels for a Boolean operation. For ex-ample, the voxels left after an intersetion operationare those those loated inside or on the boundary ofboth objets. The diÆult part is how to represent theresulting part properly and aurately. Traditionallythe results of Boolean operations are represented justwith voxels. The main disadvantage of this method isthe results annot be saled seemlessly beause of thenature of disretization. In the following, we presentan approah that represents the �nal result with a on-tinuous geometri representation.4.1 Boolean Operations based on Re-ursive Parameter Spae Subdivi-sion and VoxelizationFor a subpath of S(u; v) of solidA de�ned on [u1; u2℄�[v1; v2℄, we voxelize it one more time using the method4



disussed in Setion 3. However, this time we do notwrite the voxels into A's ubi frame bu�er, but lookup the voxel values in both solid A and solid B's ubiframe bu�ers. If all the voxel values of this subpathin both ubi frame bu�er are not outside, then this issubpath to keep. Subpathes of this type are alledK-subpathes (subpathes to be kept). (reall that we areperforming an intersetion operation.) If the voxel val-ues of this subpath are all outside in both A and B'subi frame bu�er, then this is a subpath to disard.Subpathes of this type are alled D-subpathes (sub-pathes to be disarded). Otherwise, i.e., if some of thevoxel values are inside, boundary and some of the voxelvalues are outside, then this is a path with some partto keep and some part to disard. Subpathes whosevoxel values ontain all of inside, boundary and out-side are alled I-subpathes (interseting subpathes).For example, the retangles shown in Fig. 2 (a) arethe parameter spaes of the resulting subpathes whenthe reursive voxelization proess stops and the dashedpolyline is part of the intersetion urve of the twogiven solids in this path's 2D parameter spae. Wean see that subpath A1A2A4A3 in Fig. 2 (a) is anI-subpath. Note here all the marked adjaent points,when evaluated and voxelized, will be mapped to ei-ther the same voxel or adjaent voxels (see Setion 3).For example, there does not exist any voxel betweenvoxels orresponding to parameter points A1 and A3.Therefore, even though the intersetion urve does notpass throughA1 orA3, the voxel orresponding to theintersetion point I1 will fall into the losest voxel or-responding to parameter point A1 or A3. In this ase,it falls into the voxel orresponding to A1.An interseting voxel is a voxel whose voxel value isboundary in both ubi frame bu�ers. Hene it is veryeasy to �nd all the interseting voxels, whih omposethe intersetion urve (but at this moment we do notknow how to onnet these interseting voxels yet).For example, in Fig. 2(a), parameter points A1 andB7 are interseting voxels. One all the intersetingvoxels are identi�ed, a ontinuous geometri represen-tation for the resulting solid an be generated. K-subpathes and D-subpathes are easy to handle. Forexample, in Fig. 2(b), A4A5A7A6 is a K-subpath,hene A4A5A7A6 will be output in the tessellation orrendering proess. For an I-subpath, one an deter-mine whih part of the subpath to keep by traversingall the marked points attahed to this subpath Forexample, for the subpath B0B1B2B3B7 in Fig. 2(a),after a traverse of the marked verties, it is easy to seethat the part to keep is B2B3B7. Hene B2B3B7 willbe used in the tessellation and rendering proess. Notehere the intersetion point I2, after voxelization, maps

to the same voxel as B7. In Fig. 2(b) the shaded partis the result after performing the Boolean operationin the 2D parameter spae. One we have the resultof the Boolean operation in 2D parameter spae, the3D result an be easily obtained by diretly evaluatingand tessellating these shaded polygons. A onnetedintersetion urve an be easily onstruted as well.For example, in Figure 2, the intersetion urve (in-side this path) is A1A4A6B2B7B8.The above voxelization proess and Boolean oper-ations guarantee that shared boundary or vertex ofpathes or subpathes will be hopped, kept or dis-arded in exatly the same way no matter on whihpath the operation is performed. Therefore, in ourapproah, Boolean operations of free-form objets rep-resented by CCSSs an be performed on the basis ofindividual pathes.4.2 Crak EliminationDue to the fat that adjaent pathes might be approx-imated by quadrilaterals orresponding to subpathesfrom di�erent levels of the midpoint subdivision pro-ess, raks ould our between adjaent pathes orsubpathes. For instane, in Figure 3, the left pathA1A2A5A6 is approximated by one quadrilateral butthe right path is approximated by 7 quadrilaterals.Consider the boundary shared by the left path andthe right path. On the left side, that boundary isa line segment de�ned by two verties : A2 and A5.But on the right side, the boundary is a polyline de-�ned by four verties : A2, C4, B4, and A5. Theywould not oinide unless C4 and B4 lie on the linesegment de�ned by A2 and A5. But that usually isnot the ase. Hene, raks would appear between theleft path and the right path.
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CFigure 3: Crak elimination.Fortunately Craks an be eliminated simply by re-plaing eah boundary of a path or subpath withthe one that ontains all the evaluated points for thatboundary. For example, in Figure 3, all the dot-ted lines should be replaed with the orrespondingpolylines. In partiular, boundary A2A5 of path5



A1A2A5A6 should be replaed with the polylineA2C4B4A5. As a result, polygon A1A2A5A6 is re-plaed with polygon A1A2C4B4A5A6 in the tessel-lation proess. For rendering purpose this is �ne be-ause graphis systems like OpenGL an handle poly-gons with non-o-planar verties and polygons withany number of sides. However, it should be pointedout that through a simple zigzag tehnique, triangu-lation of those polygons is atually a simple and veryfast proess.Craks ould also our if solids A and B are notonneted properly in the interseting area. For exam-ple in Fig. 2 (a), intersetion point I1 after evaluationand voxelization falls to voxel orresponding to 2D pa-rameter point A1 of solid A. If I1 falls to voxel orre-sponding to 2D parameter point �A1 of solid B, thenafter evaluation, SA(A1) might not equal SB( �A1) ex-atly. Hene rak ours. To eliminate this kind ofraks, we annot use the exat 3D positions evaluatedfrom 2D parameter points for intersetion point. In-stead we use the enter of the orresponding voxel asthe intersetion point. In this way, solids A and B willhave exatly the same intersetion positions and inter-setion urve as well. As a result, solids A and B anbe onneted seamlessly. Note that for K-supathes,their verties will be evaluated diretly from parame-ter points. Only intersetion points of partially keptI-subpathes are approximated by the enters of theirorresponding voxels.5 Loal VoxelizationThe voxelization proess presented in Setion 3 isalled a global voxelization, beause it is performed forthe entire objet spae. After all the Boolean oper-ations are performed, a �ne sale voxelization, alleda loal voxelization, will also be performed. The goalof the loal voxelization is to improve the auray ofthe I-subpathes. For example, in Fig. 2(a), A1A2A4is used to approximate the area of the I-subpathA1A2A4A3 that should be kept. The auray of thisapproximation depends on the resolution of the globalubi frame bu�er, whih is always not high enoughbeause of limited memory resoure. However, we ando a seondary voxelization, whih has lower resolu-tion, but is only applied to a very small portion of theobjet spae. As a result high auray still an beahieved at interseting area.The proess and the approah used for a loal vox-elization are the same as a global voxelization. Theonly di�erene is that they are applied to di�erent sizeof the objet spae. In order to perform loal voxeliza-tion, information about whih subpathes of solid A

interseting with whih subpathes of solid B must beknown �rst. This information is very diÆult to obtainin previous voxelization based methods. Fortunately,in our method, it an be readily obtained when per-forming the Boolean operations, as mentioned in Se-tion 4.1. If we mark these interseting subpathes ofsolids A and B during the keep-or-disard test proess,we would know exatly whih subpathes of solid Ainterset whih subpathes of solid B. One all inter-seting subpathes are known, loal voxelization anbe diretly performed for eah pair of interseting sub-pathes. For example, suppose subpath p1 of objetA intersets subpathes q1 and q2 of objet B, then aloal voxelization is performed on these 3 subpathesonly. Their intersetion urve is used to replae the in-tersetion urve obtained using the global voxelizationproess. The loal voxelization proess is applied toevery pair of interseting subpathes of solids A and B.Consequently, more aurate intersetion urve ouldbe omputed. For instane, in Fig. 2(a), the interse-tion urve A4A1 will be replaed with V1V2 � � �Vk,k = 10, if Vi, i = 1 � � � 10 are the new intersetingvoxels in the orresponding loal ubi frame bu�ersand polygon A1A2A4V1V2 � � �Vk will be used in thetessellation and rendering proess. Similar to globalvoxelization, only two loal ubi frame bu�ers areneeded for loal voxelization. The loal ubi framebu�ers an be reused for eah new pair of intersetingsubpathes. Hene loal voxelization does not requirea lot of memory.6 Error ControlGiven an �, the purpose of error ontrol is to makesure the error of the resulting solid of a Boolean op-eration is less than �. Beause the resulting solid isapproximated by a polygonal mesh, to measure thedi�erene between a path (or subpath) and its or-responding quadrilateral, we need to parametrize thequadrilateral and the path (or subpath) �rst. It iswell known now that any path or subpath S(u; v),(u; v) 2 [u1; u2℄ � [v1; v2℄ of a CCSS an be expliitlyparameterized [4, 5, 6, 7℄. A quadrilateral with fourorners V1, V2, V3 and V4 (see eq. (1) for their def-initions) an be parameterized as follows:Q(u; v) = v2�vv2�v1 ( u2�uu2�u1V1 + u�u1u2�u1V2)+ v�v1v2�v1 ( u2�uu2�u1V4 + u�u1u2�u1V3)The di�erene between the path (or subpath) andits orresponding quadrilateral at (u; v) is de�ned asd(u; v) = k Q(u; v)� S(u; v) k2 (3)6



If the following equation is satis�ed, then the error be-tween the path (or subpath) and the orrespondingquadrilateral is said to be less than �.pd ( �u; �v) +pd ( û; v̂) � � (4)where (û; v̂) and (�u; �v) are 2D parameter spae pointssuh that� d(�u; �v) = maxfd(u; v) j (u; v) 2 [u1; u2℄� [v1; v2℄g(Q(�u; �v � S(�u; �v)) � ((V1 �V3)� (V2 �V4)) � 0and� d(û; v̂) = maxfd(u; v) j (u; v) 2 [u1; u2℄� [v1; v2℄g(Q(�u; �v � S(�u; �v)) � ((V1 �V3)� (V2 �V4)) > 0From the de�nitions of (û; v̂) and (�u; �v), we an seethat satisfying Eq. (4) means that the subpath beingtested is loated between two quadrilaterals that are �away from eah other.If eq. (4) is satis�ed for every orresponding quadri-lateral, then the error of the approximation for the en-tire CCSS surfae is said to be smaller than �. It isknown that (û; v̂) and (�u; �v) an be expliitly alu-lated no matter S is a regular or extraordinary path[8℄. Hene after the global voxelization proess, wean estimate the error between eah resulting subpathand the orresponding quadrilateral. For example, ifthe retangles shown in Figure 2(a) are the parameterspaes of the resulting subpathes when the reursiveglobal voxelization proess stops, then error will bealulated for eah quadrilateral, say A1A2A4A3. Ifeq. (4) is not satis�ed, a midpoint subdivision will beperformed on the 2D parameter subspae orrespond-ing to this subpath until all the subpathes satisfy eq.(4).A potential problem for a subpath that satis�eseq. (4) is the new polygon generated by the rakelimination proess disussed above might not sat-isfy the given auray requirement any more. Fortu-nately, even a subpath with the polyline replaementin the rak elimination proess, we guarantee thatthe newly generated polygon is still satis�es eq. (4).Note that all the evaluated points lie on the limit sur-fae. Hene, for instane, in Fig. 3, points A2;C4;B4and A5 of path A2A3A4A5 are also points of pathA1A2A5A6. With the test ondition in Eq. (4), weknow that a path or subpath is at enough if it isloated between two quadrilaterals that are � away.Beause boundary points A2;C4;B4 and A5 are onthe limit surfae, they must be loated between twoquadrilaterals that are � away. So is the polygonA1A2C4B4A5A6. Now the path (or subpath) andits approximating polygon are both loated inside two

quadrilaterals that are � away. Hene the overall errorbetween the path (or subpath) and its approximat-ing polygon is guaranteed to be smaller than �. Henewe an aurately estimate the error aused by thesurfae approximation of polygonalization.Another soure that ould introdue error in the re-sult of the Boolean operations is the voxelization pro-ess. Both the global and the loal voxelization anause inauray. The kind of error aused by vox-elization is easy to estimate if the resolutions of ubiframe bu�ers are known. For example, if the ubiframe bu�er resolution is R1 � R2 � R3 and the ob-jet spae is of size X1 � X2 � X3, then we an seethat eah voxel is of size X1R1 � X2R2 � X2R3 . It is easy tosee the maximal error of voxelization is half the sizeof a voxel. If we perform loal voxelization for everypair of interseting subpathes, then global voxeliza-tion will not ause any error. Here we an also seewhy loal voxelization an improve the auray dra-matially. In loal voxelization, beause the size of thesubpathes being voxelized are very small, even witha low resolution, the voxel size is still very small.Therefore the overall error aused by polygonaliza-tion and voxelization is the sum of the errors ausedby eah of them. To make error of the �nal Booleanoperation results less than the given � everywhere, thetest ondition in eq. (4) has to be hanged to thefollowing form:� pd ( �u; �v) +pd ( û; v̂) � �=2size of eah voxel � � (5)where (û; v̂) and (�u; �v) is de�ned the same way as ineq. (4). The �rst equation in eq. (5) ensures thepath (or subpath) and its approximating polygonare both loated inside two quadrilaterals that are �=2away. The seond equation in eq. (5) ensures the erroraused by voxelization is not bigger than �=2. Henethe total error in the whole proess is guaranteed tobe less than �.7 Test ResultsThe proposed approah has been implemented in C++using OpenGL as the supporting graphis system onthe Windows platform. Quite a few examples havebeen tested with the method desribed here. All theexamples have extra-ordinary verties. Some of thetested results are shown in Figures 4. The resolu-tion of global voxelization is 512 � 512 � 512 for allthe test examples, and the error for all of them is setto 10�3. The size of eah example is normalized to[0; 1℄ before voxelization and Boolean operations are7



(a) Union (b) Di�erene () Union (d) Di�erene

(e) Union (f) Di�erene (g) Union

(h) Union (i) Intersetion (j) Di�erene

(k) Union (l) Di�ereneFigure 4: Boolean Operations Performed on Solids Represented by CCSSes.8



performed. Resolutions of the loal voxelization pro-ess depend on error tolerane and the given meshes.Hene resolution of loal voxelization is di�erent foreah of the examples shown in Figures 4. For exam-ple, resolution of loal voxelization used for Figures4(k) and 4(l) is 8� 8� 8, while for Figures 4(g), 4(h),4(i) and 4(j) the resolution used for loal voxelizationis 32 � 32 � 32. Although resolutions used for loalvoxelization are di�erent, the overall error is the samein the �nal results. From eq. (5) we an see this di�er-ene is smaller than the error tolerane beause thaterror is aused by voxelization and polygonalization aswell.In Figure 4, all the Di�erene and Intersetion oper-ations are performed on solids positioned exatly thesame as in the Union operation so that we an eas-ily tell if results of the Boolean operations are orretwithin the given error tolerane. For example, Fig-ures 4(j) and 4(g) are results of Di�erene operationand Union operation, respetively, on solids plaed inthe same positions. Similarly, Figures 4(i) orrespondsto 4(h), 4(b) orresponds to 4(a), 4(d) orresponds to4(), 4(f) orresponds to 4(e) and 4(l) orresponds to4(k).8 SummaryA new method for performing robust and error on-trollable Boolean operations on free-form solids rep-resented with CCSSs is presented. Test results showthat this approah leads to good results even for om-pliated solids with arbitrary topology.The new method has several speial properties:First, Boolean operations an be performed on 2Dparameter spaes on the basis of individual pathes.There is no need to take are of speial ases or degen-erated ases. Hene the method is robust. Seond, al-though voxelization is performed to failitate Booleanoperations, the result of a Boolean operation in ourmethod are still represented with a ontinuous geo-metri representation. Hene our Boolean operationresults an be saled seamlessly and smoothly. Third,error of Boolean operation results an be preisely es-timated. Aording to the error estimation formula,a seondary loal voxelization an be performed forinterseting subpathes only. Hene higher aurayan be ahieved. Finally, although the new method ispresented for CCSSs, the onept atually works forany subdivision sheme whose limit surfaes an beparametrized.Aknowledgement. Data sets of Figures4(a), 4(b), 4(e) and 4(f) are downloaded from
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