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Abstract

The purpose of this paper is to provide yet another solution to a fundamental problem in compute
geometric design, i.e., constructing a smooth curve satisfying given endpoint (position and tangent) con
A new class of curves, calledoptimized geometric Hermite(OGH) curves, is introduced. An OGH curve is define
by optimizing the magnitudes of the endpoint tangent vectors in the Hermite interpolation process so
strain energy of the curve is a minimum. An OGH curve is not only mathematically smooth, i.e., with min
strain energy, but also geometrically smooth, i.e., loop-, cusp- and fold-free if the geometric smoothness co
and the tangent direction preserving conditions on the tangent angles are satisfied. If the given tangent v
not satisfy the tangent angle constraints, one can use a 2-segment or a 3-segmentcomposite optimized geometr
Hermite(COH) curveto meet the requirements. Two techniques for constructing 2-segment COH curves a
techniques for constructing 3-segment COH curves are presented. These techniques ensure automatic s
of the tangent angle constraints for each OGH segment and, consequently, mathematical and geometric sm
of each segment of the curve. The presented OGH and COH curves, combined with symmetry-based e
schemes, cover tangent angles of all possible cases. The new method has been compared with the high
Hermite interpolation method by de Boor et al. and the Pythagorean-hodograph(PH) curves by Farouki et a
the other two methods both would generate unpleasant shapes in some cases, the new method generates
shapes in all the cases.
 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Constructing a smooth curve with given endpoint conditions is a fundamental problem in com
aided geometric design (CAGD). The Hermite interpolation process is frequently used in the cons
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Fig. 1. Examples of a Hermite curve with (a) a loop, (b) a cusp, and (c) a fold.

of such a curve and the resulting cubic polynomial curve is called a Hermite curve. As pointed
(Zhang et al., 2001), a cubic Hermite curve is mathematically smooth because it has the minimum
energy among allC1 cubic polynomial spline curves satisfying the same endpoint conditions. H
fairing aC1 cubic spline curve with endpoint (position and tangent) constraints will eventually lea
cubic Hermite curve. Unfortunately, a mathematically smooth Hermite curve might not be geome
smooth. As shown in Fig. 1, cubic Hermite curves may have loops, cusps, or folds.

The standard Hermite technique has been extended in several directions. A recent focus is the
geometric Hermite curves(de Boor et al., 1987; Höllig and Koch, 1995, 1996; Reif, 1999; Schab
1998; Wang and Cheng, 1997). A curve of this type allows flexibility on the magnitudes of the two
tangent vectors and, consequently, can satisfy additional requirements. Current research on g
Hermite curves can be classified into two categories. In the first category, the research focuses on
a low degree geometric Hermite curve with high order geometric continuity and approximation ac
The first work in this category is presented by de Boor et al. (1987) in which an interpolation s
using a cubic spline curve with G2 continuity and sixth order approximation accuracy under a prov
condition is introduced. Several results in this direction have been presented after that (Degen
Höllig and Koch, 1995, 1996). Höllig and Koch (1995) present a method for interpolating space
by interpolating a third point in the parameter interval. The new interpolation scheme introduc
them produces a quadratic geometric Hermite interpolant with curvature continuity and fourth
approximation accuracy (Höllig and Koch, 1996). An analysis on the local existence of the qu
geometric Hermite interpolant of the Höllig and Koch type is provided by Reif (1999). Schab
work (1998) focuses on determining the minimal degree under a specific situation.

Research work in the second category focuses on producing a G1 geometric Hermite curve with
pleasing shape (Meek and Walton, 1997a, 1997b). A curve with a pleasing shape should not
undesired features such as loops, cusps or folds. The work of this paper falls into this category. A
for one to get undesired shapes is unsuitable magnitudes of the given tangent vectors. Usually, t
the magnitudes of the tangent vectors, the more likely the occurrence of a loop in the resulting cu
the other hand, the smaller the magnitudes of the tangent vectors, the closer the resulting curv
base line segment. Therefore, the problem is how to choose suitable magnitudes for the endpoin
vectors.

Another reason for one to get undesired shapes is unsuitable directions of the given tangent
This can be easily verified by holding the (large enough) magnitudes of the endpoint tangent vecto
while rotating the directions of the tangent vectors. Hence, another problem with Hermite interp
is how to deal with the directions of the given tangent vectors.
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Meek and Walton (1997a) use a Tschirnhausen cubic (or, simply,T-cubic (Farouki and Sakkalis
1990)) curve to avoid unpleasant shapes. T-cubic curves have several very desirable proper
can be joined with circular arcs to form nice spirals. Actually, a T-cubic would also provide f
order approximation accuracy if the curve segment is short enough (Meek and Walton, 1997a,
What we are interested here, however, are explicit ways to quantize the smoothness of a c
the geometric Hermite interpolation process both mathematically and geometrically. As a curv
minimum strain energy is often considered as the “smoothest” curve mathematically (Horn, 198
strain energy minimization has become a popular method in curve/surface fairing (Zhang et al.,
it is desired to actually construct a curve with minimum strain energy in the designing process
of obtaining it by approximate methods during the fairing process. Furthermore, it is also des
know explicitly under what circumstance (or, circumstances) would one get a curve in the geo
Hermite interpolation process without the possibility of getting a loop, a cusp, or a fold. Meek and W
achieve the goal of getting pleasing curves by implicitly putting restriction on the directions of the
tangent vectors (Meek and Walton, 1997a). In this paper, we provide a solution to these probl
presenting a new class of curves calledoptimized geometric Hermite(OGH) curves. A curve in this clas
is defined by optimizing the magnitudes of the endpoint tangent vectors in the Hermite interp
process so that the strain energy of the curve is a minimum. An explicit formula for obtaining s
curve is presented. Circumstances (tangent direction preserving conditions and geometric sm
conditions on the given tangent angles) under which an OGH curve would be geometrically smoo
loop-, cusp- and fold-free are also found. If the given tangent vectors do not satisfy these tange
constraints, one can use a 2-segment or 3-segment composite optimized geometric Hermite (CO
to meet the requirements. Two techniques for constructing 2-segment COH curves and five techni
constructing 3-segment COH curves are constructed. These techniques guarantee automatic sa
of the tangent angle constraints for each segment and, consequently, the mathematical and g
smoothness of each segment of the curve. The OGH curves and the (2-segment and 3-segme
curves, together with some symmetry-based extension schemes, can cover tangent angles of al
cases.

The methods developed in this paper find applications in several important areas, such as
fairing (Chen, 1993; Chen et al., 1997; Zhang and Cheng, 1998). Local irregularities of a NURBS s
are detected by identifying the resulting abnormal portions of the highlight lines in the correspo
regions of the surface. Each abnormal portion of the highlight lines is then replaced with a s
curve constructed using the above curve construction process. The surface is then deformed
the new surface would have the modified highlight lines as the new highlight lines. The c
points of the new surface are obtained by solving a system of linear equations. In (Chen,
Chen et al., 1997), the abnormal highlight lines are manually moved to the desired positions.
and Cheng, 1998) uses Hermite curves in their fairing process, which may have loops, cusps, or
shown in Fig. 1. The performance of these methods would be improved by our new methods si
resulting curves are guaranteed to be mathematically and geometrically smooth.

The remaining part of the paper is arranged as follows. Related preliminary results, the de
of an optimized geometric Hermite (OGH) curve and constraints on the endpoint tangents to
tangent direction preserving property and geometric smoothness of the resulting OGH curve a
in Section 2. Definition of a composite optimized geometric Hermite (COH) curve and constru
techniques of 2-segment COH curves and 3-segment COH curves are presented in Section 3. E
of the one-segment, two-segment and three-segment COH curves to cover all possible tangent a
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presented in Section 4. Concluding remarks and a comparison of the new method with the high-a
Hermite interpolation method by de Boor et al. (1987) and the Pythagorean-hodograph (PH) cu
Farouki et al. (Farouki and Sakkalis, 1990; Farouki and Neff, 1995) on some typical data sets ar
in Section 5.

2. Optimized geometric Hermite (OGH) curves

A cubic Hermite curveQ(t), t ∈ [t0, t1] (wheret0, t1 ∈ R and t0 < t1) , is a cubic polynomial curve
satisfying the following endpoint location and tangent vector conditions:

Q(t0) = P0, Q(t1) = P1, Q′(t0) = V0, and Q′(t1) = V1,

whereP0 and P1 are given 2D or 3D points, andV0 and V1 are given tangent vectors atP0 and P1

respectively.Q(t) can be expressed as follows:

Q(t) = (2s + 1)(s − 1)2P0 + (−2s + 3)s2P1 + (1− s)2s(t1 − t0)V0 + (s − 1)s2(t1 − t0)V1, (1)

wheres = t−t0
t1−t0

. The strain energy of a (piecewise)C2-continuous curvef (t) defined on[t0, t1] is defined
as follows:

t1∫
t0

[
f ′′(t)

]2
dt,

wheref ′′(t) is the second derivative off (t).
A Hermite curve is considered mathematically smooth because it has minimum strain energy

all C1 cubic polynomial spline curves satisfying the same endpoint conditions. This follows fro
following theorem in (Zhang et al., 2001).

Theorem 1. If a cubic Hermite curveQ(t) and a C1 cubic polynomial spline curveQ(t) have the same
parameter space,[t0, t1], and the same endpoint conditions, i.e.,

Q(t0) = Q(t0) = P0, Q(t1) = Q(t1) = P1, Q′(t0) = Q′(t0) = V0, Q′(t1) = Q′(t1) = V1,

then
t1∫

t0

[
Q′′(t)

]2
dt �

t1∫
t0

[
Q′′(t)

]2
dt.

The above theorem can be proved by mathematical induction. Note that, whileQ(t) in the above
theorem is uniquely determined by the endpoint constrains,Q(t) has much more degree of freedom th
the cubic Hermite curveQ(t). This can be easily seen from the construction ofQ(t). Givenn+1 (n ∈ Z)
real numbers{si}n

i=0, n + 1 points{Ri}n
i=0, andn + 1 vectors{Ti}n

i=0 with

t0 = s0 < s1 < s2 < · · · < sn−1 < sn = t1. (2)

R0 = P0, Rn = P1, T0 = V0, andTn = V1, Q(t) can be considered as a composition of cubic He
curve segmentsQi(t), t ∈ [si−1, si] (i = 1,2, . . . , n), satisfying the conditions

Qi (si−1) = Ri−1, Qi(si) = Ri , Q′
i(si−1) = Ti−1, and Q′

i(si) = Ti .
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i=0 are usually called the knots ofQ(t). Equations of the segments ofQ(t) are similar to the one

in Eq. (1). The expression ofQ(t) can be converted into a B-spline form by solving a system of lin
equations. The degree of freedom ofQ(t) is easy to identify now:n can be any positive integer; the kn
sequence{si}n

i=0 only needs to satisfy the constrain (2); the joints{Ri}n−1
i=1 and the tangent vectors{Ti}n−1

i=1

at these joints can be arbitrarily chosen. Theorem 1 shows that fairingQ(t) based on minimizing strai
energy will eventually lead to a cubic Hermite curve, i.e.,Q(t).

However, a cubic Hermite curve might not be geometrically smooth. A curve is said
geometrically smooth if it is loop-, cusp- and fold-free. As shown in Fig. 1, Hermite curves could
loops, cusps, or folds. Hence, Hermite interpolation based curve construction techniques alone
sufficient for generating curves that are both mathematically and geometrically smooth. We will p
a solution to this problem by putting more flexibility on one aspect of the interpolation proces
magnitudes of the endpoint tangent vectors. The intention is to construct a curve that is not only
cusp- and fold-free, but also has minimum strain energy among all similar Hermite curves. We
definition first.

Definition 1. Given two endpointsP0 and P1, and two endpoint tangent vectorsV0 and V1, a cubic
polynomial curveQ(t), t ∈ [t0, t1], is called anoptimized geometric Hermite(OGH) curvewith respect
to the given endpoint conditions {P0, P1, V0, V1} if the curve has the smallest strain energy among
cubic Hermite curvesQ(t), t ∈ [t0, t1], satisfying the following conditions:

Q(t0) = P0, Q(t1) = P1, Q′(t0) = a0V0, Q′(t1) = a1V1, (3)

wherea0 anda1 are arbitrary real numbers.

Such an OGH curve always exists. Actually, one can find the values ofa0 anda1 which define the
OGH curve explicitly. This follows from the following theorem.

Theorem 2. Given two endpointsP0 andP1, two endpoint tangent vectorsV0 andV1, and a parameter
space[t0, t1], an OGH curveQ(t), t ∈ [t0, t1], with respect to the endpoint conditions{P0, P1, V0, V1}
is obtained ata0 = a∗

0 anda1 = a∗
1 where


a∗

0 = 6[(P1−P0)·V0](V2
1)−3[(P1−P0)·V1](V0·V1)

[4V2
0(V

2
1)−(V0·V1)

2](t1−t0)
,

a∗
1 = 3[(P1−P0)·V0](V0·V1)−6[(P1−P0)·V1](V2

0)

[(V0·V1)
2−4V2

0(V
2
1)](t1−t0)

.

(4)

Proof. A cubic Hermite curveQ(t), t ∈ [t0, t1], satisfying the constraints in (3) can be expressed as

Q(t) = (2s + 1)(s − 1)2P0 + (−2s + 3)s2P1 + (1− s)2s(t1 − t0)a0V0 + (s − 1)s2(t1 − t0)a1V1,

wheres = t−t0
t1−t0

. With P0, P1, V0, V1 being known, the strain energy ofQ(t) can be represented as
function ofa0 anda1 as follows:

f (a0, a1) = A2(t1 − t0)

3
+ (A · B)(t1 − t0) + B2(t1 − t0),

where

A = 12P0

(t1 − t0)2
− 12P1

(t1 − t0)2
+ 6a0V0

t1 − t0
+ 6a1V1

t1 − t0
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B = − 6P0

(t1 − t0)2
+ 6P1

(t1 − t0)2
− 4a0V0

t1 − t0
− 2a1V1

t1 − t0
.

The optimization problem,

minf (a0, a1),

is equivalent to two equations{
∂f (a0,a1)

∂a0
= 0,

∂f (a0,a1)

∂a1
= 0.

Solving these equations, we get{
B · V0 = 0,

A · V1 + B · V1 = 0.

Substituting the values ofA andB into the above two equations, we obtain{[− 6P0
(t1−t0)

2 + 6P1
(t1−t0)

2 − 4a0V0
t1−t0

− 2a1V1
t1−t0

] · V0 = 0,[ 12P0
(t1−t0)

2 − 12P1
(t1−t0)

2 + 6a0V0
t1−t0

+ 6a1V1
t1−t0

− 6P0
(t1−t0)

2 + 6P1
(t1−t0)

2 − 4a0V0
t1−t0

− 2a1V1
t1−t0

] · V1 = 0.

Simplifying the above equations, we get{
2a0V2

0(t1 − t0) + a1(V0 · V1)(t1 − t0) = 3(P1 − P0) · V0,

a0(V0 · V1)(t1 − t0) + 2a1V2
1(t1 − t0) = 3(P1 − P0) · V1.

Theorem 2 is obtained by solving the above two linear equations.✷
a∗

0 anda∗
1 defined in Eqs. (4) are called theoptimized coefficientsof the tangent vectors ofQ(t) at

t0 and t1, respectively. Their values are not necessarily to be positive. A negativea∗
0 means the tangen

vector of the OGH curveQ(t) at t0 is in the opposite direction ofV0, and a negativea∗
1 means the tangen

vector ofQ(t) at t1 is in the opposite direction ofV1. Either of these certainly is not desired. We wou
like a∗

0 anda∗
1 both to be positive so that the tangent vectors ofQ(t) at t0 and t1 would have the sam

direction as that ofV0 and V1, respectively. The conditions fora∗
0 anda∗

1 to be positive are given in
Theorem 3. To make subsequent presentation simpler, we give a definition first.

Definition 2. An OGH curve is said to satisfy thetangent direction preserving propertyif both optimized
coefficients of the tangent vectors of the curve are positive.

Theorem 3. Q(t), t ∈ [t0, t1], is an OGH curve with respect to the endpoint conditions{P0,P1,V0,V1},
a∗

0 and a∗
1 are the optimized coefficients of the tangent vectors ofQ(t) at t0 and t1, respectively.Q(t)

satisfies the tangent direction preserving property if and only if the followingtangent direction preservin
conditionsare satisfied:

3 cosθ > cos(θ − 2ϕ) and 3cosϕ > cos(ϕ − 2θ), (5)

whereθ is the counterclockwise angle from the vector
−−−−→
P0P1 to V0, andϕ is the counterclockwise ang

from the vector
−−−−→
P0P1 to V1. θ andϕ are both2π -periodic (hence, a clockwise angle would be measu

in negative degrees).
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Proof. It is sufficient to prove thata∗
0 > 0 if and only if

3cosθ > cos(θ − 2ϕ),

anda∗
1 > 0 if and only if

3cosϕ > cos(ϕ − 2θ).

Without loss of generality, we shall assume thatP0 is at the origin andP1 is at [1,0]T (see Fig. 2).
Suppose the magnitudes ofV0 andV1 arer0 andr1, respectively, wherer0, r1 > 0. Thus, coordinates o
V0 andV1 are[r0 cosθ, r0 sinθ]T and[r1 cosϕ, r1 sinϕ]T, respectively. Substitute these coordinates
Eqs. (4), we obtain{

a∗
0 = 6 cos(θ)−3 cos(ϕ)·cos(θ−ϕ)

[4−cos2(θ−ϕ)](t1−t0)r0
,

a∗
1 = 6 cos(ϕ)−3 cos(θ)·cos(θ−ϕ)

[4−cos2(θ−ϕ)](t1−t0)r1
.

Therefore,a∗
0 > 0 if and only if

6cos(θ) − 3cos(ϕ) · cos(θ − ϕ) > 0,

anda∗
1 > 0 if and only if

6cos(ϕ) − 3cos(θ) · cos(θ − ϕ) > 0.

Simplify the above two inequalities, we get the conclusion of Theorem 3.✷
The regions of theθϕ-plane where the tangent direction preserving conditions (5) are satisfied

where the correspondinga∗
0 anda∗

1 would be positive, are shown in Fig. 3.
In some cases, one might want to hold the ratio of the tangent vector magnitudes unchang

settinga0 = a1 in Definition 1, so that a fixed shape style can be maintained on the resulting cur
such a case,Q(t) obtains the minimum energy when

a∗
0 = a∗

1 = a∗ = 3[(P1 − P0) · (V0 + V1)]
2(V2

0 + V0 · V1 + V2
1)(t1 − t0)

.

In such a case,a∗ is positive if and only if

r0 cosθ + r1 cosϕ > 0,

where θ ∈ [0,2π) is the counterclockwise angle from the vector
−−−−→
P0P1 to V0, ϕ ∈ [0,2π) is the

counterclockwise angle from the vector
−−−−→
P0P1 to V1, and r0(> 0) and r1(> 0) are the lengths ofV0

andV1, respectively. The regions of theθϕ-plane wherea∗ is positive whenr0 = r1 are shown in Fig. 4.
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curve
Fig. 3. Partition of theθϕ-plane based on the sign ofa∗
i , i = 0,1.

Fig. 4. Regions wherea∗ > 0 whenr0 = r1.

Fig. 5. Comparison of an OGH curve (solid) with a cubic Hermite curve (dashed).

Fig. 5 shows the comparison of an OGH curve (solid line) with an ordinary cubic Hermite
(dashed line). In this example, the input parameters are:

t0 = 0, t1 = 2; P0 =
[−1

1

]
, P1 =

[
1
1

]
; V0 =

[
3

−2

]
, V1 =

[
3
2

]
.
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As show in this figure, the cubic Hermite curve in this case has a cusp, while the OGH curve
quite good shape. The following theorem gives the conditions for an OGH curve to be loop-, cus
fold-free.

Theorem 4. Let Q(t) = [x(t), y(t)]T be an OGH curve with respect to the endpoint conditions{P0, P1,
V0, V1}, with P0 being the origin of the coordinate system and the vector

−−−−→
P0P1 coinciding with thex-axis.

Thenx′(t) > 0, ∀t ∈ [t0, t1], if

cosθ >
1

3
and cosϕ >

1

3
, (6)

whereθ andϕ are defined in Theorem3.

Proof. Without loss of generality, we shall again assume thatP1’s coordinates are[1,0]T (see Fig. 2).
Besides, we shall also assume thatt0 andt1 are 0 and 1, respectively, andV0 andV1 are both unit vectors
These assumptions simplify the proof of the theorem but do not change the sign ofx′(t), i.e., do not
change the conditions forx′(t) to be positive. Thus, coordinates ofP0, P1, V0 andV1 are[0,0]T, [1,0]T,
[cosθ,sinθ]T and [cosϕ,sinϕ]T, respectively. These coordinates and the OGH curve are illustrat
Fig. 2 as well. Substitute the above values into Eq. (1), we have

x(t) = [−2+ a∗
0 cos(θ) + a∗

1 cos(ϕ)
]
t3 + [

3− 2a∗
0 cos(θ) − a∗

1 cos(ϕ)
]
t2 + a∗

0 cos(θ)t,

where{
a∗

0 = 6 cos(θ)−3 cos(ϕ)·cos(θ−ϕ)

4−cos2(θ−ϕ)
,

a∗
1 = 6 cos(ϕ)−3 cos(θ)·cos(θ−ϕ)

4−cos2(θ−ϕ)
.

Therefore,

x′(t) = [−6+ 3a∗
0 cos(θ) + 3a∗

1 cos(ϕ)
]
t2 + [

6− 4a∗
0 cos(θ) − 2a∗

1 cos(ϕ)
]
t + a∗

0 cos(θ).

According to Theorem 3, we have{
a∗

0 > 0, when cos(θ) > 1/3,

a∗
1 > 0, when cos(ϕ) > 1/3.

Hence, we obtain{
x′(0) = a∗

0 cos(θ) > 0, when cos(θ) > 1/3,

x′(1) = a∗
1 cos(ϕ) > 0, when cos(ϕ) > 1/3.

For simplicity, we shall useC to notate the coefficient of the second-degree item inx′(t)

C = −6+ 3a∗
0 cos(θ) + 3a∗

1 cos(ϕ).

Substitute the values ofa∗
0 anda∗

1 into C, we have

C = −24+ 6cos2(θ − ϕ) + 18cos2(θ) − 18cos(θ)cos(ϕ)cos(θ − ϕ) + 18cos2(ϕ)

4− cos2(θ − ϕ)
.

Through straightforward algebra, one can show that

C = −12− 9[cos(θ + ϕ) − cos(θ − ϕ)]2 + 3cos2(θ − ϕ) + 9cos2(θ + ϕ)

2[4− cos2(θ − ϕ)] .
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Fig. 6.x′(t) is a concave down parabola whenθ or ϕ /∈ S, and cos(θ) and cos(ϕ) are both> 1/3 .

Thus, we have

C � 0.

And the equality holds only when


cos(θ + ϕ) = cos(θ − ϕ),

cos2(θ − ϕ) = 1,

cos2(θ + ϕ) = 1,

which is equivalent to

θ,ϕ ∈ S, whereS = {kπ | k ∈ Z}.
Whenθ,ϕ ∈ S, we have

x′(t) = 1, ∀t ∈ [0,1].
If cos(θ) > 1

3, cos(ϕ) > 1
3 and(θ /∈ S or ϕ /∈ S), as shown in Fig. 6,x′(t) is a concave down parabol

Therefore, in this case, we have

x′(t) > 0, ∀t ∈ [0,1],
because its leading coefficientC < 0, x′(0) > 0, andx′(1) > 0. Summarizing the above two cases in
proof, we obtain the conclusion of Theorem 4.✷

Sincex′(t) > 0,∀t ∈ [t0, t1], Q(t) does not have any degenerate points. Thus,Q(t) does not have an
cusps. The reason thatQ(t) is loop- and fold-free follows from the fact thatx(t) is an increasing function
in this case. The conditions in (6) will be called thegeometric smoothness conditionssince they guarante
the geometric smoothness of the resulting curve. Note that the tangent direction preserving cond
Theorem 3 are satisfied if the geometric smoothness conditions of Theorem 4 are satisfied.

It should be pointed out that an OGH curve is in general different from a circular arc in that a c
arc cannot be represented in parametric polynomial form. Furthermore, a circular arc (Yong et al
requires thatϕ = 2kπ − θ , wherek ∈ Z. This is not required for an OGH curve.
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3. Composite optimized geometric Hermite (COH) curves

As shown in Theorem 3, an OGH curve satisfies the tangent direction preserving property if an
if the tangent direction preserving conditions in (5) are satisfied. If the given tangent vectors do not
the conditions in (5), one needs to use a composite OGH curve, instead of a single OGH curve, to
the satisfaction of the tangent direction preserving property and the fairness of the resulting cur
definition of a composite OGH curve is given below.

Definition 3. A piecewise cubic polynomial curve is called acomposite optimized geometric Herm
(COH) curveif the curve is G1 continuous and each segment of the curve is an OGH curve.

The reason to study and use COH curves is obvious. Consider the example given in Fig.
angles of the given tangent vectors in this case areθ = π/6 andϕ = 2π/3, respectively (Fig. 7(a))
So 3cosϕ = −3/2 < cos(ϕ − 2θ) = 1/2. Hence, the tangent direction preserving condition fort = t1
in Theorem 3 is not satisfied and, consequently, the direction of the tangent vectorV1 at t = t1 is not
preserved by the OGH curve (Fig. 7(b)). This is certainly not desired. A standard cubic Hermite
(defined by Eq. (1)), on the other hand, would always retain the directions of the given tangent v
However, as shown in Fig. 8, the shape of a standard cubic Hermite curve (solid line) is not goo
given tangent angles or magnitudes of the given tangent vectors are not in suitable conditions. The
here is to use COH curves. As shown in Fig. 8, a COH curve (dashed line) would not only sati
tangent direction preserving property, but also carry a shape much better than that of the corres
standard Hermite curve (solid line). The COH curves in Fig. 8 are the same as the ones in Figs. 9(
and 10(d), respectively. In general, the number of OGH segments in a COH curve should be as
possible, so long as all possible endpoint tangent vectors can be covered. Each COH curve shou
the conditions of Theorems 3 and 4 so the directions of the endpoint tangent vectors would be
and each segment of the COH curve would be loop-, cusp- and fold-free. Our investigation show

(a) (b)

Fig. 7. Direction of a tangent vector is reversed when conditions in Theorem 2 are not satisfied. (a) Given endpoint co
(b) OGH curve.

(a) (b) (c)

Fig. 8. Standard cubic Hermite curves (solid) compared with COH curves (dashed). (a) Example 1. (b) Exa
(c) Example 3.
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Fig. 9. Two methods,M1 andM2, for generating two-segment COH curves. (a) MethodM1. (b) MethodM2.

is sufficient to study two-segment and three-segment COH curves only because these curves ar
to cover all possible cases of the tangent vectors (see Section 4). It is necessary to consider three
COH curves because two-segment COH curves alone can not cover all the cases. For example
no two-segment COH curve that can satisfy the tangent vectors given in Fig. 10(e) and the condi
Theorem 3 at the same time.

Several techniques can be used to construct two-segment and three-segment COH curve
following, two methods for generating two-segment COH curves are presented. These meth
illustrated in Fig. 9. As will be proved in Theorem 5, these methods guarantee that each segm
the constructed COH curve satisfies the conditions of Theorems 3 and 4 and, therefore, is not on
cusp- and fold-free, but also retains the directions of the given tangent vectors. In these meth
two OGH segments, their joint and the tangent vector at the joint are denotedQ0(t), Q1(t), T andVt ,
respectively.

Method M1. If the tangent anglesθ andϕ satisfy the condition

(θ, ϕ) ∈ [0, π/6] × [π/3,2π/3]
(see Fig. 9(a)) whereθ andϕ are defined in Theorem 3, then the joint of the two OGH segments,T, is
determined by setting the counterclockwise angle from the vector

−−−→
TP1 to V1, φ, to be 1

2ϕ and the length
of TP1 to be 1

3 of that ofP0P1, andVt is a vector bisecting the counterclockwise angle from the ve−−−→
P0T to the vector

−−−→
TP1.

Method M2. If the tangent anglesθ andϕ satisfy the condition

(θ, ϕ) ∈ [0, π/3] × [π,5π/3] or [π/3,2π/3] × [4π/3,5π/3]
(see Fig. 9(b)), then the joint of the OGH segments,T, is determined by setting the counterclockw
angle from the vector

−−−→
P0T to V0 as follows:

φ1 =
{

θ − π
18, if θ < π

9 ,

1
2θ, otherwise,

and the counterclockwise angle fromV1 to the vector
−−−→
TP1 as

φ = 2π − ϕ + φ1

3
.
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And Vt is determined by setting the counterclockwise angles from the vectorTP1 to Vt , and fromVt to
the vector

−−−→
P0T both equal toφ.

Theorem 5. Given two endpointsP0 and P1 and two endpoint tangent vectorsV0 and V1, if Q0(t) is
constructed with respect to the endpoint conditions{P0, T, V0, Vt} andQ1(t) is constructed with respec
to the endpoint conditions{T, P1, Vt , V1} whereT and Vt are determined by methodM1 or M2 then
Q0(t) andQ1(t) both satisfy the conditions of Theorems3 and4.

Proof. We prove the case forM1 only. The proof of the case forM2 is similar.
Becauseφ = ϕ/2 andϕ ∈ [π/3,2π/3], we haveφ ∈ [π/6, π/3]. So, obviously,

cosφ >
1

3
.

In Fig. 9(a), letθ1 be the counterclockwise angle from the vector
−−−→
P0T to the vector

−−−−→
P0P1, θ2 be the

counterclockwise angle from the vector
−−−−→
P1P0 to the vector

−−−→
P1T, φ1 be the counterclockwise angle fro

the vector
−−−→
P0T to the vectorV0, φ2 be the counterclockwise angle from the vector

−−−→
P0T to Vt , andφ3 be

the counterclockwise angle fromVt to the vector
−−−→
TP1. We have

φ2 + φ3 = θ1 + θ2

and

θ2 = ϕ

2
∈ [π/6, π/3].

Since the length of the line segmentTP1 is 1
3 of P0P1, it follows that

sinθ1 <
1

3
.

Therefore,

θ1 ∈ [0, π/6).

Consequently,

φ1 = θ + θ1 ∈ [0, π/3)

and

φ2 = φ3 = θ1 + θ2

2
∈ [π/12, π/4).

And then we have

cosφ1 >
1

3
, cosφ2 >

1

3
, and cosφ3 >

1

3
.

Hence, both OGH segments satisfy the conditions of Theorem 4. Theorem 3 now follows
Theorem 4. ✷

Five methods for generating three-segment COH curves are presented below. These met
illustrated in Fig. 10. These methods also guarantee that each segment of the constructed CO
satisfies the conditions of Theorems 3 and 4 and, therefore, is not only loop-, cusp- and fold-fr
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Fig. 10. Methods for generating three-segment COH curves. (a) MethodM3. (b) MethodM4. (c) MethodM5. (d) MethodM6.
(e) MethodM7.

also retains the directions of the given tangent vectors (see Theorem 6 below). In these meth
joints of the three OGH segmentsQ0(t), Q1(t) andQ2(t) are denotedT0 andT1, and the tangent vecto
at these points are denotedVt0 andVt1, respectively. The signed (slope) angles of vectors

−−−−→
P0T0, Vt0,

−−−−→
T0T1,

Vt1 and
−−−−→
T1P1 with respect to

−−−−→
P0P1 are denotedα1, α2, α3, α4, andα5, respectively. The counterclockwis

angles at the endpoints of these three OGH segments with respect to their base lines are denoteφ1, φ2,
φ3, φ4, φ5 andφ6, respectively (see Fig. 10).

Method M3. If the tangent anglesθ andϕ satisfy the condition

(θ, ϕ) ∈ [0, π/3] × [π/3, π ]
(see Fig. 10(a)), thenT0, T1, Vt0, andVt1, are determined by requiring
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g

φ6 = φ =
3

,

α1 =
{

θ−φ

2 − π
18, if θ−φ

2 − π
18 � 0,

θ−φ

2 + 35π
18 , otherwise,

α3 = 17π

9
,

α4 = α3 + α5

2
− π,

α2 = α1 − 2t,

with

t =




|α3 − α1|, if π
18 < |α3 − α1| < π,

2π − |α3 − α1|, if π < |α3 − α1| < 35π
18 ,

π
18, otherwise,

andT0 is on the perpendicular bisector of the line segmentP0P1.

Method M4. If the tangent anglesθ andϕ satisfy the condition

(θ, ϕ) ∈ [π/3,2π/3] × [0,2π/3]
(see Fig. 10(b)), then the joints,T0 andT1, are determined by requiring

α1 = θ

2
, α5 = ϕ

2
,

‖P0T0‖
‖P0P1‖

= 1

3
,

‖T1P1‖
‖P0P1‖

= 1

6
,

the tangent vectorVt0 bisects the angle from the vector
−−−−→
T0T1 to the vector

−−−−→
P0T0, and the tangent vecto

Vt1 bisects the angle from the vector
−−−−→
T0T1 to the vector

−−−−→
T1P1.

Method M5. If the tangent anglesθ andϕ satisfy the condition

(θ, ϕ) ∈ [π/3,2π/3] × [π,4π/3] or [2π/3, π ] × [π,5π/3]
(see Fig. 10(c)), then the joints and their tangent vectors,{T0, T1, Vt0, Vt1}, are determined by requirin

φ1 = φ2 = φ3 = φ4 = φ5 = φ6,

and the lineT0T1 tangent to the circle whose center is atM (midpoint of the line segmentP0P1) and
radius is1

2‖P0P1‖ at T.

Method M6. If the tangent anglesθ andϕ satisfy the condition

(θ, ϕ) ∈ [2π/3, π ] × [π/6,2π/3]
(see Fig. 10(d)), then the joints and their tangent vectors,{T0, T1, Vt0, Vt1}, are determined by requirin

α5 = ϕ

2
, φ1 = φ2 = φ3 = φ4 = φ5 = 2π + α5 − θ

5
and

‖P0T0‖ = 1

2
‖P0P1‖.



296 J.-H. Yong, F.F. Cheng / Computer Aided Geometric Design 21 (2004) 281–301

g

le
Method M7. If the tangent anglesθ andϕ satisfy the condition

(θ, ϕ) ∈ [2π/3, π ] × [2π/3, π ]
(see Fig. 10(e)), then the joints and their tangent vectors,{T0, T1, Vt0, Vt1}, are determined by requirin

φ1 = φ2 = φ3 = φ4 = φ5 = φ6 = φ = 2π + ϕ − θ

6
and

‖P0T0‖ = 1

2
‖P0P1‖.

Theorem 6. Given two endpointsP0 and P1 and two endpoint tangent vectorsV0 and V1, if Q0(t) is
constructed with respect to{P0, T0, V0, Vt0}, Q1(t) is constructed with respect to{T0, T1, Vt0, Vt1}, and
Q2(t) is constructed with respect to{T1, V1, Vt1, V1}, where the joints and their tangent vectors,{T0, T1,
Vt0, Vt1}, are determined by one of the above methods(M3–M7) thenQ0(t), Q1(t) andQ2(t) all satisfy
the conditions of Theorems3 and4.

Proof. We prove the case for methodM4 only. The other cases can be proved similarly.
In Fig. 10(b), letT be the intersection point of the line segmentT0T1 and the line segmentP0P1, θ1

be the counterclockwise angle from the vector
−−−−→
P0P1 to the vector

−−−−→
P0T0, θ2 be the counterclockwise ang

from the vector
−−−→
TT0 to the vector

−−−→
TP0, θ3 be the counterclockwise angle from the vector

−−−→
TT1 to the

vector
−−−→
TP1, andθ4 be the counterclockwise angle from the vector

−−−−→
P1P0 to the vector

−−−−→
P1T1. We have

φ2 + φ3 = θ1 + θ2 and φ4 + φ5 = θ3 + θ4.

Becauseα1 = θ/2 andα5 = ϕ/2, one sees that

φ1 = θ1 ∈ l[π/6, π/3] and φ6 = θ4 ∈ [0, π/3].
On the other hand, since

‖P0T0‖ + ‖T0T‖ + ‖TT1‖ + ‖T1P1‖ > ‖P0T‖ + ‖TP1‖ = ‖P0P1‖
and, by hypothesis,

‖P0T0‖ = 1

3
‖P0P1‖ and ‖T1P1‖ = 1

6
‖P0P1‖,

one must have

‖T0T‖ > ‖P0T0‖ or ‖TT1‖ > ‖T1P1‖
or, equivalently,

θ2 < θ1 or θ3 < θ4.

Therefore, we see that

θ2 = θ3 ∈ [0, π/3].
Consequently,

φ2 = φ3 = θ1 + θ2

2
∈ [0, π/3]
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and

φ4 = φ5 = θ3 + θ4

2
∈ [0, π/3].

With

φ1, φ2, φ3, φ4, φ5, φ6 ∈ [0, π/3],
we have

cosφ1,cosφ2,cosφ3,cosφ4,cosφ5,cosφ6 ∈ (1/3,1].
Thus, all OGH segments generated byM4 satisfy the conditions of Theorem 4 and, consequently,
conditions of Theorem 3 as well.✷

4. Symmetry-based extension schemes

Let M0 denote the method that generates one-segment COH curves (i.e., OGH curves) sa
the conditions of Theorem 3. Thus, totally, we have eight methods for generating COH curves
methods are not enough to cover all the possible cases of the tangent angles since they do n
the entireθϕ-space,[0,2π) × [0,2π). Instead of introducing more methods to generate two-seg
or three-segment COH curves, in this section, we will present symmetry-based techniques to ex
coverage of the above methods so that all cases can be considered. Three schemes will be used

As shown in Fig. 11(a), the first scheme creates a new curveQT(t) symmetric to the original curv
Q(t) with respect to the base line ofQ(t). The second scheme constructs a new curveQR(t) that reverses
the original curveQ(t) (Fig. 11(b)). The third one is a mixture of the first two schemes, i.e., per
the first scheme then the second scheme, or the second scheme then the first scheme (QTR(t) or QRT(t),
Fig. 11(c)). The result of the third scheme is order independent, i.e., the result will be the same no
which scheme is applied first (i.e.,QRT(t) = QTR(t)).

For a given methodMi , we useMT
i to refer to the combination ofMi and the first scheme,MR

i to refer
to the combination ofMi and the second scheme, andMRT

i to refer to the combination ofMi and the
third scheme. Define theapplicable regionof a method as the tensor product of the applicable regio
the start point tangent angle and the applicable region of the end point tangent angle that would
the satisfaction of Theorems 3 and 4 of the created curve. For example, the applicable region of
M1 is [0, π/6] × [π/3,2π/3] (see MethodM1). Then we have the following theorem.

Theorem 7. The applicable regions of the methodsMi , MT
i , MR

i , and MRT
i , i = 0,1, . . . ,7, cover the

entire [0, 2π) × [0,2π) space.

(a) (b) (c)

Fig. 11. Symmetry-based schemes. (a) First scheme. (b) Second scheme. (c) Third scheme.



298 J.-H. Yong, F.F. Cheng / Computer Aided Geometric Design 21 (2004) 281–301

ent
d point.
Proof. For a given curveQ(t), let θ and ϕ be the counterclockwise angles of the start point tang
vector and the end point tangent vector with respect to the vector from the start point to the en
Similarly, we haveθT andϕT for the curveQT(t), θR andϕR for the curveQR(t), andθRT andϕRT for
the curveQRT(t). These angles satisfy the following formulae:{

θT = 2π − θ,

ϕT = 2π − ϕ,{
θR = 2π − ϕ,

ϕR = 2π − θ,

and

{
θRT = ϕ,

ϕRT = θ.

Note that if[θ0, θ1] × [ϕ0, ϕ1] is the applicable region of methodMi , then

[2π − θ1,2π − θ0] × [2π − ϕ1,2π − ϕ0]

Fig. 12. Applicable chart of the methodsMi , MT
i , MR

i , andMRT
i , i = 0,1, . . . ,7.
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is the applicable region ofMT
i ;

[2π − ϕ1,2π − ϕ0] × [2π − θ1,2π − θ0]
is the applicable region ofMR and

[ϕ0, ϕ1] × [θ0, θ1]
is the applicable region ofMRT

i .
Using these formulae and relationships, it is easy to see that the applicable regions of the methMi ,

MT
i , MR

i , andMRT
i , i = 0,1, . . . ,7, satisfy the chart shown in Fig. 12. In this chart, if a region has m

than one available method, only one is shown to avoid clustering.✷

5. Discussion and conclusions

A new class of curves calledoptimized geometric Hermite(OGH) curves is presented. An OGH cur
is mathematically and geometrically smooth, i.e., loop-, cusp- and fold-free and with minimum
energy, if the geometric smoothness conditions and the tangent direction preserving conditions
tangent angles are satisfied. If the given tangent vectors do not satisfy these constraints, one can utwo-
segmentor three-segment composite optimized geometric Hermite(COH) curve instead. The constructio
techniques of thetwo-segmentandthree-segment composite optimized geometric Hermite(COH) curves
guarantee that each segment of the curve automatically satisfies the tangent angle constra
consequently is both mathematically and geometrically smooth. Symmetry-based schemes h
been given to extended the coverage of the presented methods so that all cases of the tangent a
be considered.

In general, a COH curve has only G1 continuity. However, in some cases a COH curve could be2

continuous. Fig. 13 gives such an example, where the two given end points areP0 = [0
0] andP1 = [1

0];
and the tangent vectors at those two end points areV0 = [0

1] andV1 = [ 0
−1]. As show in Fig. 13(b), two

segments in a COH curve share the same curvaturek = −2.667 at the jointT. This result is very close
to the high accuracy geometric Hermite interpolant (de Boor et al., 1987) whose curvatures at
points are both−1.5 (Fig. 13(a)). As a comparison, Fig. 13(c) shows several Pythagorean hodo
quintics (Farouki and Neff, 1995) with the same end-point conditions. The main concerns of thes
papers ((de Boor et al., 1987; Farouki and Neff, 1995) and this paper) are quite different. (de B

(a) (b) (c)

Fig. 13. Example 4: interpolated by (a) a high accuracy geometric Hermite interpolant (de Boor et al., 1987), (b) a G2 COH
curve with the methodM2, and (c) Pythagorean hodograph quintics (totally 4 curves) (Farouki and Neff, 1995).
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Fig. 14. Example 5: different contributions among (a) high accuracy geometric Hermite interpolants (totally 2 curves) (
et al., 1987), (b) an OGH curve, and (c) Pythagorean hodograph quintics (totally 4 curves) (Farouki and Neff, 1995).

al., 1987) puts its focus on G2 continuity and sixth order approximation accuracy. It does not deal
loops, cusps and folds. As shown in Fig. 14(a), a high accuracy geometric Hermite interpolant (d
et al., 1987) may have a loop, which is avoided by this paper. (Farouki and Neff, 1995) pays mo
attention on Pythagorean hodograph (PH) condition. (Farouki and Neff, 1995) points out that the s
PH curves with first-order Hermite conditions are quintics. Therefore, the degree required by (F
and Neff, 1995) is larger than that in (de Boor et al., 1987) and this paper. This paper tries to p
cubic curves with pleasing shapes under all kinds of given conditions, using strain energy minim
technique, composition methods and symmetry skills. Thus, as shown in Fig. 14, the shape of th
curve is more pleasing and more natural than the shape of other interpolants. The original data o
is from (Farouki and Neff, 1995). The curves in Fig. 14(c) are the same as the curves provided in
of (Farouki and Neff, 1995).

The presented methods can be used in applications such asshape designandcurve/surface fairing
in geometric modeling. For example, in fairing the abnormal regions of a NURBS surface (Zhan
Cheng, 1998) uses Hermite curves to replace abnormal portions of the highlight lines in those regi
deforms the surface so that the new surface would have the modified highlight lines as the new h
lines. Traditional Hermite interpolation technique is used to construct those Hermite curves. As h
shown in previous sections, such curves could contain undesired features such as loops, cusp
folds. Obviously, the deformed surface would not have the best possible shape if undesired feat
contained in the constructed Hermite curves. One should use optimized geometric Hermite (OGH
in the above highlight line modification process instead. This would not only avoid singular cases
cusps or loops in the modified highlight lines, but also maintain low strain energy of the resultant c
It might be possible to use COH curves in curve interpolation problem. This will be a work to look
the future.
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