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Abstract

The purpose of this paper is to provide yet another solution to a fundamental problem in computer aided
geometric design, i.e., constructing a smooth curve satisfying given endpoint (position and tangent) conditions.
A new class of curves, callegptimized geometric Hermif®GH) curves is introduced. An OGH curve is defined
by optimizing the magnitudes of the endpoint tangent vectors in the Hermite interpolation process so that the
strain energy of the curve is a minimum. An OGH curve is not only mathematically smooth, i.e., with minimum
strain energy, but also geometrically smooth, i.e., loop-, cusp- and fold-free if the geometric smoothness conditions
and the tangent direction preserving conditions on the tangent angles are satisfied. If the given tangent vectors do
not satisfy the tangent angle constraints, one can use a 2-segment or a 3-sEgnpEo¥ite optimized geometric
Hermite (COH) curveto meet the requirements. Two techniques for constructing 2-segment COH curves and five
techniques for constructing 3-segment COH curves are presented. These techniques ensure automatic satisfaction
of the tangent angle constraints for each OGH segment and, consequently, mathematical and geometric smoothness
of each segment of the curve. The presented OGH and COH curves, combined with symmetry-based extension
schemes, cover tangent angles of all possible cases. The new method has been compared with the high-accuracy
Hermite interpolation method by de Boor et al. and the Pythagorean-hodograph (PH) curves by Farouki et al. While
the other two methods both would generate unpleasant shapes in some cases, the new method generates satisfactor
shapes in all the cases.
0 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Constructing a smooth curve with given endpoint conditions is a fundamental problem in computer
aided geometric design (CAGD). The Hermite interpolation process is frequently used in the construction
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Fig. 1. Examples of a Hermite curve with (a) a loop, (b) a cusp, and (c) a fold.

of such a curve and the resulting cubic polynomial curve is called a Hermite curve. As pointed out in
(Zhang et al., 2001), a cubic Hermite curve is mathematically smooth because it has the minimum strain
energy among alC! cubic polynomial spline curves satisfying the same endpoint conditions. Hence,
fairing aC* cubic spline curve with endpoint (position and tangent) constraints will eventually lead to a
cubic Hermite curve. Unfortunately, a mathematically smooth Hermite curve might not be geometrically
smooth. As shown in Fig. 1, cubic Hermite curves may have loops, cusps, or folds.

The standard Hermite technique has been extended in several directions. A recent focus is the so called
geometric Hermite curve§le Boor et al., 1987; Hoéllig and Koch, 1995, 1996; Reif, 1999; Schaback,
1998; Wang and Cheng, 1997). A curve of this type allows flexibility on the magnitudes of the two given
tangent vectors and, consequently, can satisfy additional requirements. Current research on geometric
Hermite curves can be classified into two categories. In the first category, the research focuses on building
a low degree geometric Hermite curve with high order geometric continuity and approximation accuracy.
The first work in this category is presented by de Boor et al. (1987) in which an interpolation scheme
using a cubic spline curve with®ontinuity and sixth order approximation accuracy under a provided
condition is introduced. Several results in this direction have been presented after that (Degen, 1993;
Hollig and Koch, 1995, 1996). Hollig and Koch (1995) present a method for interpolating space curves
by interpolating a third point in the parameter interval. The new interpolation scheme introduced by
them produces a quadratic geometric Hermite interpolant with curvature continuity and fourth order
approximation accuracy (Hollig and Koch, 1996). An analysis on the local existence of the quadratic
geometric Hermite interpolant of the Hdllig and Koch type is provided by Reif (1999). Schaback’s
work (1998) focuses on determining the minimal degree under a specific situation.

Research work in the second category focuses on producing ge@netric Hermite curve with a
pleasing shape (Meek and Walton, 1997a, 1997b). A curve with a pleasing shape should not contain
undesired features such as loops, cusps or folds. The work of this paper falls into this category. A reason
for one to get undesired shapes is unsuitable magnitudes of the given tangent vectors. Usually, the larger
the magnitudes of the tangent vectors, the more likely the occurrence of a loop in the resulting curve. On
the other hand, the smaller the magnitudes of the tangent vectors, the closer the resulting curve to the
base line segment. Therefore, the problem is how to choose suitable magnitudes for the endpoint tangent
vectors.

Another reason for one to get undesired shapes is unsuitable directions of the given tangent vectors.
This can be easily verified by holding the (large enough) magnitudes of the endpoint tangent vectors fixed,
while rotating the directions of the tangent vectors. Hence, another problem with Hermite interpolation
is how to deal with the directions of the given tangent vectors.
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Meek and Walton (1997a) use a Tschirnhausen cubic (or, sifiptybic (Farouki and Sakkalis,

1990)) curve to avoid unpleasant shapes. T-cubic curves have several very desirable properties and
can be joined with circular arcs to form nice spirals. Actually, a T-cubic would also provide fourth
order approximation accuracy if the curve segment is short enough (Meek and Walton, 1997a, 1997b).
What we are interested here, however, are explicit ways to quantize the smoothness of a curve in
the geometric Hermite interpolation process both mathematically and geometrically. As a curve with
minimum strain energy is often considered as the “smoothest” curve mathematically (Horn, 1983) and
strain energy minimization has become a popular method in curve/surface fairing (Zhang et al., 2001),

it is desired to actually construct a curve with minimum strain energy in the designing process instead
of obtaining it by approximate methods during the fairing process. Furthermore, it is also desired to
know explicitly under what circumstance (or, circumstances) would one get a curve in the geometric
Hermite interpolation process without the possibility of getting a loop, a cusp, or a fold. Meek and Walton
achieve the goal of getting pleasing curves by implicitly putting restriction on the directions of the input
tangent vectors (Meek and Walton, 1997a). In this paper, we provide a solution to these problems by
presenting a new class of curves caltgddimized geometric Hermit®©GH) curves. A curve in this class

is defined by optimizing the magnitudes of the endpoint tangent vectors in the Hermite interpolation
process so that the strain energy of the curve is a minimum. An explicit formula for obtaining such a
curve is presented. Circumstances (tangent direction preserving conditions and geometric smoothness
conditions on the given tangent angles) under which an OGH curve would be geometrically smooth, i.e.,
loop-, cusp- and fold-free are also found. If the given tangent vectors do not satisfy these tangent angle
constraints, one can use a 2-segment or 3-segment composite optimized geometric Hermite (COH) curve
to meet the requirements. Two techniques for constructing 2-segment COH curves and five techniques for
constructing 3-segment COH curves are constructed. These techniques guarantee automatic satisfaction
of the tangent angle constraints for each segment and, consequently, the mathematical and geometric
smoothness of each segment of the curve. The OGH curves and the (2-segment and 3-segment) COH
curves, together with some symmetry-based extension schemes, can cover tangent angles of all different
cases.

The methods developed in this paper find applications in several important areas, such as surface
fairing (Chen, 1993; Chen et al., 1997; Zhang and Cheng, 1998). Local irregularities of a NURBS surface
are detected by identifying the resulting abnormal portions of the highlight lines in the corresponding
regions of the surface. Each abnormal portion of the highlight lines is then replaced with a smooth
curve constructed using the above curve construction process. The surface is then deformed so that
the new surface would have the modified highlight lines as the new highlight lines. The control
points of the new surface are obtained by solving a system of linear equations. In (Chen, 1993;
Chen et al., 1997), the abnormal highlight lines are manually moved to the desired positions. (Zhang
and Cheng, 1998) uses Hermite curves in their fairing process, which may have loops, cusps, or folds as
shown in Fig. 1. The performance of these methods would be improved by our new methods since the
resulting curves are guaranteed to be mathematically and geometrically smooth.

The remaining part of the paper is arranged as follows. Related preliminary results, the definition
of an optimized geometric Hermite (OGH) curve and constraints on the endpoint tangents to ensure
tangent direction preserving property and geometric smoothness of the resulting OGH curve are given
in Section 2. Definition of a composite optimized geometric Hermite (COH) curve and construction
techniques of 2-segment COH curves and 3-segment COH curves are presented in Section 3. Extension
of the one-segment, two-segment and three-segment COH curves to cover all possible tangent angles are
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presented in Section 4. Concluding remarks and a comparison of the new method with the high-accuracy
Hermite interpolation method by de Boor et al. (1987) and the Pythagorean-hodograph (PH) curves by
Farouki et al. (Farouki and Sakkalis, 1990; Farouki and Neff, 1995) on some typical data sets are given
in Section 5.

2. Optimized geometric Hermite (OGH) curves

A cubic Hermite curveQ(?), t € [1o, t1] (Whererg, 1 € R andzg < t1) , is a cubic polynomial curve
satisfying the following endpoint location and tangent vector conditions:

Q(rp) =Py, Q(r1)=P1, Q'(ro) =Vo, and Q'(r1) =Vj,

where Py and P, are given 2D or 3D points, andy and V; are given tangent vectors By and P,
respectivelyQ(z) can be expressed as follows:

Q(t) = (25 + 1)(s — D)?Po + (=25 +3)s°P1+ (1 — 5)%5(t1 — to)Vo + (s — Ds®(t1 — V1, (1)

wheres = ﬁ The strain energy of a (piecewis€§-continuous curvef (¢) defined or{zo, #1] is defined
as follows:

L

[y,

fo
where f”(¢) is the second derivative of(z).
A Hermite curve is considered mathematically smooth because it has minimum strain energy among
all C* cubic polynomial spline curves satisfying the same endpoint conditions. This follows from the
following theorem in (Zhang et al., 2001).

Theorem 1. If a cubic Hermite curveQ(r) and a G cubic polynomial spline curv®(r) have the same
parameter spacdy, t1], and the same endpoint conditions, i.e.,

Q(to) =Q(to) =Py, Q1) =Q(t1) =P1, Q'(to) =Q'(to) =Vo, Q'(1) =Q'(11) = V1,

then
41 5%

f [Q"(1)]dr > f [Q" ()] .

fo fo

The above theorem can be proved by mathematical induction. Note that, @fildn the above
theorem is uniquely determined by the endpoint constr&is, has much more degree of freedom than
the cubic Hermite curv(r). This can be easily seen from the constructio®af). Givenn + 1 (n € Z)
real numberss;}7_,, n 4+ 1 points{R;}_,, andn + 1 vectors{T;}"_, with

=50 <851 <8<+ ++<Sp_1 <8, =M. (2)

Ro = Po, R, =Py, To = Vo, andT, = Vy, Q(¢) can be considered as a composition of cubic Hermit
curve segment®; (¢), r € [s;_1,5] ((i=1,2,...,n), satisfying the conditions

QiGsii)=Ri_1, Qi) =R;, Qi(s;c1)=T,1, and Qi(s)=T..
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{s:}_, are usually called the knots @(r). Equations of the segments Qf(r) are similar to the one

in Eq. (1). The expression @(¢) can be converted into a B-spline form by solving a system of linear
equations. The degree of freedom@ft) is easy to identify nows can be any positive integer; the knot
sequencgs; }7_, only needs to satisfy the constrain (2); the joim}j:ll and the tangent vecto(§',-}§’:‘1l

at these joints can be arbitrarily chosen. Theorem 1 shows that f&ingbased on minimizing strain
energy will eventually lead to a cubic Hermite curve, i@(z).

However, a cubic Hermite curve might not be geometrically smooth. A curve is said to be
geometrically smooth if it is loop-, cusp- and fold-free. As shown in Fig. 1, Hermite curves could have
loops, cusps, or folds. Hence, Hermite interpolation based curve construction techniques alone are not
sufficient for generating curves that are both mathematically and geometrically smooth. We will present
a solution to this problem by putting more flexibility on one aspect of the interpolation process, i.e.,
magnitudes of the endpoint tangent vectors. The intention is to construct a curve that is not only loop-,
cusp- and fold-free, but also has minimum strain energy among all similar Hermite curves. We need a
definition first.

Definition 1. Given two endpoint®y and P;, and two endpoint tangent vectovg andV,, a cubic
polynomial curveQ(t), t € [to, t1], is called armoptimized geometric Hermif@GH) curvewith respect

to the given endpoint conditions§, Py, Vo, V1} if the curve has the smallest strain energy among all
cubic Hermite curve(r), € [1o, 1], satisfying the following conditions:

Qo) =Py, Q(r1) =P1, Q'(to) =agVo, Q'(r1) =a1Vy, 3
whereag anda; are arbitrary real numbers.

Such an OGH curve always exists. Actually, one can find the valuegs ahda; which define the
OGH curve explicitly. This follows from the following theorem.

Theorem 2. Given two endpoint®, and Py, two endpoint tangent vectok% andV,, and a parameter
space[ry, t1], an OGH curveQ(?), t € [1, t1], with respect to the endpoint conditiofiBy, P1, Vo, V1}
IS obtained atig = ag anda; = aj where
61(P1—P0)-Vol(V3) —3[(P1—Po)-V1l(Vo-V1)
[4V5(VD-(VoV1)21(11—1o) ’
g = 3P1=P0)Vol(VoV)—6l(P1=Po)-V11(V§)
1= [(Vo-V1)?—4V5(VD](11—10)

a

O *

(4)

Proof. A cubic Hermite curveQ(r), t € [1o, 1], Satisfying the constraints in (3) can be expressed as
Q) = (25 + 1)(s — D?Po+ (=25 +3)s°P1+ (1 — $)%s(11 — t0)aoVo + (s — D)s*(11 — 1)1V,
wheres = ﬁ With Pg, P1, Vo, V1 being known, the strain energy &) can be represented as a

function ofag anda; as follows:
A%(ty — 10)

3 + (A - B) (11 — to) + B2(t1 — to),

f(ao’ Cl]_) =

where
12P, 12P, 6agVo 6a1V1

(h—1tg)?> (1—1)? h—ty Hh—tg
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and

B 6Pg N 6P, dagVo 2a1V,
(11— 10)?  (1—10)? n—fy t—1fy
The optimization problem,

mln f(aO’ al)a
is equivalent to two equations
dflag.a) _
dag -
flag.a) _
dai -

Solving these equations, we get

B-Vo=0,

Substituting the values & andB into the above two equations, we obtain
{ [ 6P0)2 + 6P1  4agVo 2a1V1] . VO — O,

T (110 (1—-102  t1—to  t—to
12Pg 12P4 6agVo 6a1V1 6Pg 6Py 4agVo _ 2a1V3 . _
[ + e 7 ]-Vvi=o.

(1—t0)2  (t1—10)? 1—to  (1—t0)? ' (1—t0)?  n—to 11—1o
Simplifying the above equations, we get
{ 2a0V3(t1 — to) +a1(Vo - V1) (t1 — 1g) = 3(P1 — Po) - Vo,
ao(Vo - V1)(t1 — to) + 2a1V3(t1 — to) = 3(P1 — Po) - V1.
Theorem 2 is obtained by solving the above two linear equatiomns.

ag andaj defined in Eqgs. (4) are called tloptimized coefficientsf the tangent vectors dp(r) at
to andtry, respectively. Their values are not necessarily to be positive. A neggtiieeans the tangent
vector of the OGH curv€(t) atz is in the opposite direction &f, and a negative; means the tangent
vector ofQ(¢) atr, is in the opposite direction df ;. Either of these certainly is not desired. We would
like af§ andaj both to be positive so that the tangent vectorQof) at 7o and# would have the same
direction as that oV, andV,, respectively. The conditions fef andaj to be positive are given in
Theorem 3. To make subsequent presentation simpler, we give a definition first.

Definition 2. An OGH curve is said to satisfy thangent direction preserving propetifyooth optimized
coefficients of the tangent vectors of the curve are positive.

Theorem 3. Q(2), t € [to, 11], is an OGH curve with respect to the endpoint conditipfg P1, Vo, V1},
a and af are the optimized coefficients of the tangent vector@§ at 7o andt,, respectivelyQ(z)
satisfies the tangent direction preserving property if and only if the followgingent direction preserving
conditionsare satisfied

3cosy > co96 —2¢) and 3cosp > cop — 20), (5)

whered is the counterclockwise angle from the vedRgP, to Vo, and ¢ is the counterclockwise angle
from the vectoiPoP; to V1. 6 and ¢ are both2r -periodic (hence, a clockwise angle would be measured
in negative degreés
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Fig. 2. Building the coordinate system.

Proof. Itis sufficient to prove that§ > 0 if and only if
3coY > coq0 — 2¢),

andaj > 0 if and only if
3cosp > coSp — 29).

Without loss of generality, we shall assume tRgtis at the origin andP; is at[1,0]" (see Fig. 2).
Suppose the magnitudes \d§ andV, arerg andry, respectively, wherey, r; > 0. Thus, coordinates of
Vo andV are[rgcosd, rosind]™ and[r, cosy, r1Sing]", respectively. Substitute these coordinates into
Egs. (4), we obtain

6cog60)—3cogp)-cog0—¢p)

a; =
0 [4—co2(6—9)1(t1—to)ro ’
at = 6 cogp)—3c0%0)-cog6—¢)
17 [4—co2(—-p)](1—to)r1

Thereforeag > 0 if and only if
6cog0) — 3cogp) - co96 — ¢) > 0,
andaj > 0 if and only if
6cog¢p) —3cogH) - co96 — ¢) > 0.
Simplify the above two inequalities, we get the conclusion of Theorent3.
The regions of th&@g-plane where the tangent direction preserving conditions (5) are satisfied, i.e.,
where the corresponding; anda; would be positive, are shown in Fig. 3.
In some cases, one might want to hold the ratio of the tangent vector magnitudes unchanged, i.e.,

settingag = a7 in Definition 1, so that a fixed shape style can be maintained on the resulting curve. In
such a caseQ(¢) obtains the minimum energy when

. _ 3[(P1—Po) - Vo+ V1)l
2(VE+Vo-Vi+ V(1 —19)

In such a casey* is positive if and only if

* ok
ag=a; =a

rp COSH + r1COSp > 0,

where 6 € [0, 2r) is the counterclockwise angle from the vectsP; to Vo, ¢ € [0, 27) is the
counterclockwise angle from the vectBgP; to V1, andro(> 0) and r1(> 0) are the lengths o¥q
andV 4, respectively. The regions of tié@-plane where:* is positive whenq = r; are shown in Fig. 4.
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Fig. 4. Regions where* > 0 whenrg =rj.

Fig. 5. Comparison of an OGH curve (solid) with a cubic Hermite curve (dashed).

Fig. 5 shows the comparison of an OGH curve (solid line) with an ordinary cubic Hermite curve
(dashed line). In this example, the input parameters are:

-1 1 3 3
1 ) P].: ; VO: _2 b Vl: 2 .

t0=0, n=2, Py= 1



J.-H. Yong, F.F. Cheng / Computer Aided Geometric Design 21 (2004) 281-301 289

As show in this figure, the cubic Hermite curve in this case has a cusp, while the OGH curve has a
guite good shape. The following theorem gives the conditions for an OGH curve to be loop-, cusp-, and
fold-free.

Theorem 4. LetQ(¢) = [x(1), y(¢)]" be an OGH curve with respect to the endpoint conditifP Pa,
Vo, V1}, with Py being the origin of the coordinate system and the velegdh, coinciding with thec-axis.
Thenx'(t) > 0, Vr € [tg, 11], if

1 1
> = d = 6
cosf >3 and cosp > 2, (6)
wheref and ¢ are defined in Theorei®

Proof. Without loss of generality, we shall again assume B2 coordinates argl, 0]" (see Fig. 2).
Besides, we shall also assume thandz, are 0 and 1, respectively, alg andV, are both unit vectors.
These assumptions simplify the proof of the theorem but do not change the sig@)ofi.e., do not
change the conditions far (1) to be positive. Thus, coordinatesif, P,, Vo andV are[0, 0]7, [1, 0]T,
[cosp, sinf]" and[cosy, sing]T, respectively. These coordinates and the OGH curve are illustrated in
Fig. 2 as well. Substitute the above values into Eq. (1), we have

x(t) = [—2+ af cos0) + aj cosp) |t* + [3 — 2a§ cog0) — a; cosp) |t* + ai coxO)t,
where

atf = 6cog60)—3cogp)-cog0—gp)
0~ 4—co2(6—p) ’
at = 6 cogp)—3c0%0)-co360—¢)
1= 4—coZ(0—p)
Therefore,

x(t) = [—6+ 3a§ cos0) + 3aj cosp) |2 + [6 — 4ag cosB) — 2a} cosp) ]t + af coKH).
According to Theorem 3, we have
ai >0, when cog/) > 1/3,
ai >0, when cosp) > 1/3.
Hence, we obtain
x'(0) =agcogd) >0, when cog)) > 1/3,
x'(1) = ajcodyp) >0, when cosp) > 1/3.
For simplicity, we shall us€ to notate the coefficient of the second-degree iten (n)
C = —6+ 3a; cog0) + 3a; cody).
Substitute the values af; anda; into C, we have
co —24+6C0%(0 — @) + 18coZ(h) — 18 cogH) cosp) cosh — ¢) + 18 cod(p)
4 — co2(0 — o) ’
Through straightforward algebra, one can show that
—12—9[cos6 + @) — cos6 — ¢)]> + 3cog(0 — @) + 9coZ(6 + @)
2[4 — co(0 — )] '

C=
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/(1)

/ 0 1 W
Fig. 6.x(¢) is a concave down parabola wher ¢ ¢ S, and co$?) and cosyp) are both> 1/3 .

Thus, we have
Cc<o.
And the equality holds only when
cog + ¢) =cos6 — ¢),
cog( —¢) =1,
cog (6 +¢) =1,
which is equivalent to
0,9peS, whereS={km |k ecZ}.
Whené, ¢ € S, we have
x'(t)=1 Vrel01].

If cos(6) > % cogy) > % and(® ¢ Sor ¢ ¢ S), as shown in Fig. 65'(¢) is a concave down parabola.
Therefore, in this case, we have

x'(t) >0, Vtel0,1],

because its leading coefficie@t< 0, x'(0) > 0, andx’(1) > 0. Summarizing the above two cases in the
proof, we obtain the conclusion of Theorem 42

Sincex’(t) > 0, Vr € [1o, t1], Q(¢) does not have any degenerate points. TRUs) does not have any
cusps. The reason th@t(r) is loop- and fold-free follows from the fact thafr) is an increasing function
in this case. The conditions in (6) will be called #@ometric smoothness conditiasisce they guarantee
the geometric smoothness of the resulting curve. Note that the tangent direction preserving conditions of
Theorem 3 are satisfied if the geometric smoothness conditions of Theorem 4 are satisfied.

It should be pointed out that an OGH curve is in general different from a circular arc in that a circular
arc cannot be represented in parametric polynomial form. Furthermore, a circular arc (Yong et al., 1999)
requires thap = 2kmr — 6, wherek € Z. This is not required for an OGH curve.
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3. Composite optimized geometric Hermite (COH) curves

As shown in Theorem 3, an OGH curve satisfies the tangent direction preserving property if and only
if the tangent direction preserving conditions in (5) are satisfied. If the given tangent vectors do not satisfy
the conditions in (5), one needs to use a composite OGH curve, instead of a single OGH curve, to ensure
the satisfaction of the tangent direction preserving property and the fairness of the resulting curve. The
definition of a composite OGH curve is given below.

Definition 3. A piecewise cubic polynomial curve is calledcamposite optimized geometric Hermite
(COH) curveif the curve is G continuous and each segment of the curve is an OGH curve.

The reason to study and use COH curves is obvious. Consider the example given in Fig. 7. The
angles of the given tangent vectors in this casefater /6 andy = 21 /3, respectively (Fig. 7(a)).
So 3cow = —3/2 < cogp — 20) = 1/2. Hence, the tangent direction preserving conditionsferr,
in Theorem 3 is not satisfied and, consequently, the direction of the tangent Vectbr = ¢, is not
preserved by the OGH curve (Fig. 7(b)). This is certainly not desired. A standard cubic Hermite curve
(defined by Eg. (1)), on the other hand, would always retain the directions of the given tangent vectors.
However, as shown in Fig. 8, the shape of a standard cubic Hermite curve (solid line) is not good if the
given tangent angles or magnitudes of the given tangent vectors are not in suitable conditions. The remedy
here is to use COH curves. As shown in Fig. 8, a COH curve (dashed line) would not only satisfy the
tangent direction preserving property, but also carry a shape much better than that of the corresponding
standard Hermite curve (solid line). The COH curves in Fig. 8 are the same as the ones in Figs. 9(a), 10(a)
and 10(d), respectively. In general, the number of OGH segments in a COH curve should be as small as
possible, so long as all possible endpoint tangent vectors can be covered. Each COH curve should satisfy
the conditions of Theorems 3 and 4 so the directions of the endpoint tangent vectors would be retained
and each segment of the COH curve would be loop-, cusp- and fold-free. Our investigation shows that it

4 Vi Vi

@ (b)

Fig. 7. Direction of a tangent vector is reversed when conditions in Theorem 2 are not satisfied. (a) Given endpoint conditions.
(b) OGH curve.

0 o

Fig. 8. Standard cubic Hermite curves (solid) compared with COH curves (dashed). (a) Example 1. (b) Example 2.
(c) Example 3.
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(@) (b)
Fig. 9. Two methodsM 1 andM 5, for generating two-segment COH curves. (a) Methbg (b) MethodM 5.

is sufficient to study two-segment and three-segment COH curves only because these curves are enough
to cover all possible cases of the tangent vectors (see Section 4). It is necessary to consider three-segment
COH curves because two-segment COH curves alone can not cover all the cases. For example, there is
no two-segment COH curve that can satisfy the tangent vectors given in Fig. 10(e) and the conditions of
Theorem 3 at the same time.

Several technigues can be used to construct two-segment and three-segment COH curves. In the
following, two methods for generating two-segment COH curves are presented. These methods are
illustrated in Fig. 9. As will be proved in Theorem 5, these methods guarantee that each segment of
the constructed COH curve satisfies the conditions of Theorems 3 and 4 and, therefore, is not only loop-,
cusp- and fold-free, but also retains the directions of the given tangent vectors. In these methods, the
two OGH segments, their joint and the tangent vector at the joint are de@gted Q.(z), T andV;,
respectively.

Method M. If the tangent angle8 andg satisfy the condition

(0, 9) €10, 7/6] x [7/3, 27 /3]
(see Fig. 9(a)) wheré and¢ are defined in Theorem 3, then thijoint of the two OGH segméntis,
determined by setting the counterclockwise angle from the v@d®rto V4, ¢, to be%w and the length

of TP, to be% of tjgt of PoP1, andV; is a vector bisecting the counterclockwise angle from the vector
P,T to the vectorT P;.

Method M. If the tangent angleg andg satisfy the condition

©@,¢)e|0,7/3] x [m,57/3] or [n/3,27/3] x [4r /3,57 /3]
(see Fig. 9(b)), then the joint of the OGH segmefitsjs determined by setting the counterclockwise
angle from the vectoP,T to Vg as follows:

6—2, ifo<Z,

| 2. otherwise,

b1

and the counterclockwise angle frov to the vectorT_PZ as
2t — 9+ 1

0= 3
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And V, is determined by setting the counterclockwise angles from the vﬁpto V,, and fromV, to
the vectorP,T both equal tap.

Theorem 5. Given two endpoint®y and P, and two endpoint tangent vectovg and Vy, if Qq(?) is
constructed with respect to the endpoint conditiflg T, Vo, V,} andQ4(¢) is constructed with respect
to the endpoint condition§T, Py, V,, V1} whereT andV, are determined by methdd, or M, then
Qo(r) and Q1(¢) both satisfy the conditions of Theorefand4.

Proof. We prove the case fdvl, only. The proof of the case fov, is similar.
Becausep = ¢/2 andy € [/3, 27 /3], we havep € [ /6, 7/3]. So, obviously,
(o7 1
> —.
3

In Fig. 9(a), letd, be the counterclockwise angle from the vecﬁ“ to the vectorPo—PZ, 6, be the
counterclockwise angle from the vect®rP to the vectoP;T, ¢1 be the counterclockwise angle from
the vectorﬁﬁ to the vectoVy, ¢, be the counterclockwise angle from the ved?oﬁz toV,, and¢s be
the counterclockwise angle frowy to the vector'I'APZ. We have

G2+ Pp3 =101+ 0>
and
@
0, = > € [n/6,7/3].
Since the length of the line segmér®, is $ of PoPy, it follows that
. 1
S|n91 < é
Therefore,
61 € [0, 7/6).
Consequently,

p1=60+060,€[0,7/3)
and

61+ 6
$o=¢3= 12 2

And then we have

eln/12 7 /4).

COSpy > =, COSPp > —, and CO%3> —
> > > .
! 3 ’ 2 3 ’ 3 3

Hence, both OGH segments satisfy the conditions of Theorem 4. Theorem 3 now follows from
Theorem 4. O

Five methods for generating three-segment COH curves are presented below. These methods are
illustrated in Fig. 10. These methods also guarantee that each segment of the constructed COH curve
satisfies the conditions of Theorems 3 and 4 and, therefore, is not only loop-, cusp- and fold-free, but
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Vi

(b)

() (d)

Fig. 10. Methods for generating three-segment COH curves. (a) M&hodb) MethodM 4. (¢) MethodM 5. (d) MethodM g.
(e) MethodM 7.

also retains the directions of the given tangent vectors (see Theorem 6 below). In these methods, the
joints of the three OGH segmen@(¢), Q1(¢) andQ,(¢) are denoted o andT, and the tangent vectors
atthese pomts are denoteq andV,,, respectively. The signed (slope) angles of vedRaEo, Vi, ToT1,

Vi, andTlPl with respect td50_l5i are denoted, oy, a3, oy, andas, respectively. The counterclockwise
angles at the endpoints of these three OGH segments with respect to their base lines arepdengted

@3, P4, 5 andes, respectively (see Fig. 10).

Method M. If the tangent angleg andg satisfy the condition
0,9) €[0,7/3] x [7/3,7]
(see Fig. 10(a)), themo, T4, V4, andV,,, are determined by requiring
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%
6 — ==
¢ 3
0—¢ _ m if 6=¢ _ 7
a=1 2 s I 15 =0,
-2 + 3 otherwise
17r
o3 =—",
9
a3+ as
o4 = )
2
oy =0 — 2t,
with
loz — ay, if 75 <las—as| <,
t =121 — |az — o], ifrr<|oe3—oe1|<%,
. .
15 otherwise

and T is on the perpendicular bisector of the line segni®y®;.

Method M. If the tangent angleg andg satisfy the condition
@,¢) € [n/3,21/3] x [0, 27/3]
(see Fig. 10(b)), then the joint§y andT,, are determined by requiring
0 ¢ IPoTol 1 [T/Pyf 1

o1 =, 05 = =

2 2" PPyl 3" |PoPy| 6
the tangent vectoy,, bisects the angle from the vectdpT; to the vectoPyT,, and the tangent vector
V,, bisects the angle from the vectdgT 1 to the vectorT 1P;.

Method M. If the tangent angle8 andg satisfy the condition
©@,¢)eln/3,27/3] x [7,47/3] or [27/3,7] x [7,57/3]

(see Fig. 10(c)), then the joints and their tangent vectdig, T1, V4, V,,}, are determined by requiring
$1= 2= 3= s = 5 = ¢,

and the lineT T, tangent to the circle whose center ishat(midpoint of the line segmer®,P,) and
radius is3[|PoPy || at T.

Method M. If the tangent angleg andg satisfy the condition
(0,9) €2r/3, 7] x /6,27 /3]
(see Fig. 10(d)), then the joints and their tangent vectdrs, T1, V,,, V,,}, are determined by requiring
2r + o5 —0
05528’ pr=¢r=¢s=a=pg= —
2 5
and

1
IPoToll = 5 [IPoPul-
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Method M+. If the tangent angle8 andg satisfy the condition
0,9)€l2r/3, 7] x [27/3, 7]
(see Fig. 10(e)), then the joints and their tangent vec{dis, T1, V,,, V,,}, are determined by requiring
2+ —0
br=2=ga=ds=ps=go=¢ = ———
and

1
IPoToll = §||P0P1||-

Theorem 6. Given two endpoint®; and P, and two endpoint tangent vectovg and Vy, if Qq(?) is
constructed with respect (o, To, Vo, V,,}, Q1(¢) is constructed with respect {@ o, T1, V4, V4, }, and
Q2z(?) is constructed with respect {d 1, V1, V,,, V1}, where the joints and their tangent vectof$y, T+,
V4, Vy, ), are determined by one of the above meth@dds—M ;) thenQq(z), Q1(¢) and Qx(¢) all satisfy
the conditions of Theorenssand4.

Proof. We prove the case for methddl, only. The other cases can be proved similarly.

In Fig. 10(b), letT be the intersection point of the line segmdRiiT; and the line segmerRyP1, 61
be the counterclockwise angle from the ved?ﬁ to the vectorPo—TE,, 6, be the counterclockwise angle
from the vectorﬁ to the vectorﬁ, 03 be the counterclockwise angle from the vecﬁfl to the
vectorT_Pi, andd, be the counterclockwise angle from the vedﬁ to the vectorPl—Ti. We have

G2+ ¢3=01+02 and ¢4+ ¢s =03+ 04.
Becauser; = 0/2 andas = ¢ /2, one sees that

p1=01€l[n/6,7/3] and ¢s=04¢€[0,7/3].
On the other hand, since

IPoToll + I ToT Il + IITTall + I TaPll > [IPoT | + [ TPy = [[PoPu
and, by hypothesis,

IPoToll = %HFTPln and ||T1Py| = %HFTPln,
one must have
IToT I > IPoToll or [TTall > [ T1Pull
or, equivalently,
6 <61 Or 6O3<0,.
Therefore, we see that
6, =603 € [0, /3.
Consequently,

_01+6;

¢2 = ¢3 >

€ [0, /3]
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and

¢4 =5 = 93;04 [0, 7/3].
With

$1, G2, ¢3, Pa. ¢, ¢e € [0, /3],
we have

COS¢h1, COSP2, COSP3, COSh4, COSPs, COSPs € (1/3, 1.

Thus, all OGH segments generated My satisfy the conditions of Theorem 4 and, consequently, the
conditions of Theorem 3 as well.0

4. Symmetry-based extension schemes

Let Mg denote the method that generates one-segment COH curves (i.e., OGH curves) satisfying
the conditions of Theorem 3. Thus, totally, we have eight methods for generating COH curves. These
methods are not enough to cover all the possible cases of the tangent angles since they do not cover
the entirefp-space,[0, 27) x [0, 27). Instead of introducing more methods to generate two-segment
or three-segment COH curves, in this section, we will present symmetry-based techniques to extend the
coverage of the above methods so that all cases can be considered. Three schemes will be used.

As shown in Fig. 11(a), the first scheme creates a new oQf@) symmetric to the original curve
Q(r) with respect to the base line Qf(¢). The second scheme constructs a new c@%¢) that reverses
the original curveQ(¢) (Fig. 11(b)). The third one is a mixture of the first two schemes, i.e., perform
the first scheme then the second scheme, or the second scheme then the first &hRemer(QR(¢),

Fig. 11(c)). The result of the third scheme is order independent, i.e., the result will be the same no matter
which scheme is applied first (i. Q37 (r) = Q™R(¢)).

For a given metho;, we useM] to refer to the combination dfl; and the first schem#/ R to refer
to the combination oM; and the second scheme, al\vllcﬁ*T to refer to the combination d¥1; and the
third scheme. Define thapplicable regiorof a method as the tensor product of the applicable region of
the start point tangent angle and the applicable region of the end point tangent angle that would ensure
the satisfaction of Theorems 3 and 4 of the created curve. For example, the applicable region of method
M, is [0, 7 /6] x [7/3, 27 /3] (see MethodM ;). Then we have the following theorem.

Theorem 7. The applicable regions of the methobls, M, MR, andMFT, i =0,1,...,7, cover the
entire[0, 2r) x [0, 27) space.

Tﬂ >>>>>>> /

] = QY (t)or Q()
(@) (b) (c)

Fig. 11. Symmetry-based schemes. (a) First scheme. (b) Second scheme. (c) Third scheme.
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Proof. For a given curveQ(z), let & and ¢ be the counterclockwise angles of the start point tangent
vector and the end point tangent vector with respect to the vector from the start point to the end point.
Similarly, we haved™ ande for the curveQT(¢), 6% andgR for the curveQR(r), andoR™ and R for

the curveQR"(¢). These angles satisfy the following formulae:

o7 =27 — 0,
{¢T=2ﬂ—¢,
OR =21 — ¢,
{(pR=27r—9

and {
gDRT

RT

_(p,
=60.

Note that if[8g, 61] x [@0, ¢1] is the applicable region of methadd;, then

[2r — 61, 2 — O] X [2 — @1, 2 — o]

%)
2
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M,

M,

M,

M,

M,

M,

M3

M3

M,

M,

wlx

M,

Mg

Mg

M,

RT
M;

RT
M3

RT
M2

RT £\ fRT
M3" Mg

MET M,

wly

2

3

T

4
3

5m
3

Fig. 12. Applicable chart of the methots;, M, MR, andMRT, i =0,1,...,7.
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is the applicable region df|;
[27 — @1, 2 — o] x [2m — 61, 27 — 60]
is the applicable region df1R and

(@0, ¢1] X [6o, 61]

is the applicable region dfl kT

Using these formulae and relationships, it is easy to see that the applicable regions of the iethods
M, MR, andMRT i =0,1,...,7, satisfy the chart shown in Fig. 12. In this chart, if a region has more
than one available method, only one is shown to avoid clustering.

5. Discussion and conclusions

A new class of curves calleaptimized geometric Hermit®GH) curves is presented. An OGH curve
is mathematically and geometrically smooth, i.e., loop-, cusp- and fold-free and with minimum strain
energy, if the geometric smoothness conditions and the tangent direction preserving conditions on the
tangent angles are satisfied. If the given tangent vectors do not satisfy these constraints, onetean use a
segmenbr three-segment composite optimized geometric He(@i@H) curve instead. The construction
techniques of théwo-segmenandthree-segment composite optimized geometric Her(@i@&H) curves
guarantee that each segment of the curve automatically satisfies the tangent angle constraints and
consequently is both mathematically and geometrically smooth. Symmetry-based schemes have also
been given to extended the coverage of the presented methods so that all cases of the tangent angles car
be considered.

In general, a COH curve has only! ®ontinuity. However, in some cases a COH curve could be G
continuous. Fig. 13 gives such an example, where the two given end poirg ar{ag] andP; = [é];
and the tangent vectors at those two end pointd/are [2] andV, = [fl]. As show in Fig. 13(b), two
segments in a COH curve share the same curvdtare-2.667 at the joinfT. This result is very close
to the high accuracy geometric Hermite interpolant (de Boor et al., 1987) whose curvatures at the end
points are both-1.5 (Fig. 13(a)). As a comparison, Fig. 13(c) shows several Pythagorean hodograph
quintics (Farouki and Neff, 1995) with the same end-point conditions. The main concerns of these three
papers ((de Boor et al., 1987; Farouki and Neff, 1995) and this paper) are quite different. (de Boor et

k= —2.667

P
P, !

Vv
() (b)

Fig. 13. Example 4: interpolated by (a) a high accuracy geometric Hermite interpolant (de Boor et al., 1987),2 ©@PHG
curve with the methot1 5, and (c) Pythagorean hodograph quintics (totally 4 curves) (Farouki and Neff, 1995).
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VO V() V()

Py P, P, P,
\2 v P Vv,

() (b) (©

Fig. 14. Example 5: different contributions among (a) high accuracy geometric Hermite interpolants (totally 2 curves) (de Boor
et al., 1987), (b) an OGH curve, and (c) Pythagorean hodograph quintics (totally 4 curves) (Farouki and Neff, 1995).

Py

al., 1987) puts its focus on?Gontinuity and sixth order approximation accuracy. It does not deal with
loops, cusps and folds. As shown in Fig. 14(a), a high accuracy geometric Hermite interpolant (de Boor
et al., 1987) may have a loop, which is avoided by this paper. (Farouki and Neff, 1995) pays most of its
attention on Pythagorean hodograph (PH) condition. (Farouki and Neff, 1995) points out that the simplest
PH curves with first-order Hermite conditions are quintics. Therefore, the degree required by (Farouki
and Neff, 1995) is larger than that in (de Boor et al., 1987) and this paper. This paper tries to produce
cubic curves with pleasing shapes under all kinds of given conditions, using strain energy minimization
technique, composition methods and symmetry skills. Thus, as shown in Fig. 14, the shape of the OGH
curve is more pleasing and more natural than the shape of other interpolants. The original data of Fig. 14
is from (Farouki and Neff, 1995). The curves in Fig. 14(c) are the same as the curves provided in Fig. 3
of (Farouki and Neff, 1995).

The presented methods can be used in applications sushape desigrand curve/surface fairing
in geometric modeling. For example, in fairing the abnormal regions of a NURBS surface (Zhang and
Cheng, 1998) uses Hermite curves to replace abnormal portions of the highlight lines in those regions and
deforms the surface so that the new surface would have the modified highlight lines as the new highlight
lines. Traditional Hermite interpolation technique is used to construct those Hermite curves. As has been
shown in previous sections, such curves could contain undesired features such as loops, cusps or even
folds. Obviously, the deformed surface would not have the best possible shape if undesired features are
contained in the constructed Hermite curves. One should use optimized geometric Hermite (OGH) curves
in the above highlight line modification process instead. This would not only avoid singular cases such as
cusps or loops in the modified highlight lines, but also maintain low strain energy of the resultant curves.
It might be possible to use COH curves in curve interpolation problem. This will be a work to look at in
the future.
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