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Abstract

This paper deals with subdivision depth computation technique for n-
ary subdivision curves/surfaces. This technique also includes error bound
evaluation technique for n-ary subdivision curves/surfaces with their control
polygon. Both techniques provide error control tools in subdivision schemes.

Keywords: Subdivision curve, subdivision surfaces, subdivision depth, error bound,

control polygon, forward differences
AMS Subject Classifications: 65D17, 656D07, 65D05

1 Introduction

Computer Aided Geometric Design (CAGD) is a branch of applied Mathematics
concerned with algorithms for the design of smooth curves/ surfaces. One common
approach to the design of curves/surfaces which related to CAGD is the subdivision
schemes. It is an algorithm to generate smooth curves and surfaces as a sequence
of successively refined control polygons. At each refinement level, new points are
added into the existing polygon and the original points remain existed or discarded
in all subsequent sequences of control polygons. The number of points inserted at
level k41 between two consecutive points from level k is called arity of the scheme.
In the case when number of points inserted are 2, 3,..., n the subdivision schemes
are called binary, ternary,. .., n-ary respectively. For more details on n-ary subdi-
vision schemes, we may refer to the thesis of N. Aspert [1] and Kwan [7].
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Although subdivision schemes have become important in recent years because
they provide a precise and efficient way to describe smooth curves/surfaces. How-
ever, the little have been done in the area of error control for n-ary subdivision
curves/surfaces. For example, given an error tolerance, how many levels of subdi-
vision should be performed on the initial control polygon so that the error/distance
between the resulting control polygon and the limit curve/ surface would be less
than the error tolerance? This error control technique is called subdivision depth
computation.

A subdivision depth and error bound are based on forward differences of control
points have been presented by [2], [3], [4], [5], [6] and [11], while the methods [8],
[9] and [10] are based on eigenanalysis. But nothing in this area has been done for
more general n-ary subdivision curves/surafces yet. In this paper we will present
a subdivision depth computation technique based on error bounds for n-ary sub-
division curves/surfaces. The paper is arranged as follows:

Section 2 is devoted for basic definitions and notations. In Section 3 and 4 we have
computed subdivision depth for n-ary subdivision curves and n-ary subdivision
surfaces respectively. Conclusion and future research directions are given in Sec-
tion 5. The typical mathematical proofs are placed in appendices for transparent
presentation of the paper.

2 Definitions and notations

N-ary subdivision curve:
Given a sequence of control points p¥ € RY i € Z, N > 1, where the upper index
k > 0 indicates the subdivision level. An n-ary subdivision curve [1] is defined by

pﬁﬁa:Zawpfﬂ, a=0,1,...,n—1, (2.1)
5=0
where m > 0 and .
d ag;=1 a=01,...n-1 (2.2)
§=0
The set of coefficients {a,;, @ = 0,1,...,n — 1};”:0 is called subdivision mask.

Given initial values p? € RY,i € Z. Then in the limit & — oo, the process (2.1)
defines an infinite set of points in RY. The sequence of control points {pf} is re-
lated, in a natural way, with the diadic mesh points t¥ = i/n*, i € Z. The process
then defines a scheme whereby p*7! & pFr! replace the values Pk & pfﬂ at the

ni ni+n
mesh points ¢¥71 = tF & ¢ =tk | respectively, while p/f! are inserted at the
new mesh points ty1' = L1((n —a)th + atf, ) fora =1,2,... ., n—1.



N-ary subdivision surface:

Given a sequence of control points pﬁj € RY i, € Z, N > 2, where the upper
index k£ > 0 indicates the subdivision level. N-ary subdivision surface is tensor
product of (2.1) defined by

m m
k1 k
pnj+a,nj+ﬂ = Z Z Uor@B,sPivrjrss B =0,1,...,n—1, (2.3)
r=0 s=0

where a,, satisfies (2.2). Given initial values pgj € RN,i,5 € Z, then in the
limit k& — oo, the process (2.3) defines an infinite set of points in RY. The se-

quence of values {pf j} is related, in a natural way, with the diadic mesh points
: k+1
ni+a,nj+8 re-

places the value pfm/n’j%/n at the mesh point (ZJ%/", ]Jrnik/") for o, 5 € {0,n},

(nik, Z5), 4,j € 7Z. The process then defines a scheme whereby p

while the values piﬁam +p are inserted at the new mesh points (%, Zﬂ? ) for
a,f=0,1,...,n—1 (where a & 3 are not zero at the same time).

Subdivision depth:

Given control polygon of n-ary subdivision curve/surface and an error tolerance e,
if we subdivide control polygon k times so that the error between resulting polygon
and subdivision curve/surface is smaller than e, then k is called subdivision depth
of subdivision curve/surface with respect to e.

Notations:
Here we settle some notations for fair reading of this paper. Assume

x = max||pf,, —p{|| (2.4)

07 = max {
6 ‘7

m
> bsj
7=0

,5:0,1,...,n—1}, (2.5)

52:m%x{zaa,52bﬁ,r ,a,5:0,1,...,n—1}, (2.6)
» s=0 r=0
where .
J
bBJ: Z(aﬁ,t_aﬂ-i-l,t)v 520717”'771_27
=0 (2.7)
bn-1,; = ao,; > bsj
=0
Also

-,azO,l,...,n—l}, (2.8)




m
1 04(” - 5)
Nayg = 480 2_ Gt = — 3 + (a0
t=1 S
m m m—1
Mo = § agy — —=| + E (s § ag,s
t=1 r=0 s=1
m m m
a
Mo = E Ayt E ag. 5| T E ag.,
t=1 t=1 t=1
where
m
~ (07
aa,O - Z aa,t )
= a=01,...,n—1

Suppose further for o, 6 =0,1,...,n — 1,

k+1

1
V= [kt & (0= ot k)

1
ko _
e, |

+a(n = Bl + (0 — )8 + aBpii i}

Assume i i i

Ai,j,l = Dit1,; — Dijs
i?j?
E o _ .k k
i.5,3 = Pit1,+1 — Pij+1s

Further more suppose

3
U = max {Z(XQ(U&,[?)? 0576 - 07 17 s, = 1

«,
p t=1

3 Depth for n-ary subdivision curves

pfzztla,njm T2 {(” —a)(n — 5)17?,]'

2=l — ol o= max||AL ]|, £ =123

(2.9)

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)

In this section we find subdivision depth for n-ary subdivision curves. Moreover
we prove that error bounds for binary and ternary subdivision curves [4] & [5] are

special cases of our bounds.

Lemma 3.1. Given an initial control polygon pi = p;, i € Z, let the values pF,
k > 1 be defined recursively by subdivision process (2.1) together with (2.2) then

NE < yx (68,

(3.1)

where x, 61, N¥and v are defined by (2.4), (2.5), (2.8) & (2.15) respectively.
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Proof. Proof is given in Appendix A. O

Lemma 3.2. Given an initial control polygon p? = p;, i € Z, let the values p¥,
k > 1 be defined recursively by subdivision process (2.1) together with (2.2). Suppose
P* be the piecewise linear interpolant to the values p¥ and P> be the limit curve
of the process. If d; < 1 then the error bound between limit curve and its control
polygon after k-fold subdivision is

51k
|P* = P=|| <1y (1(_;)51) , (3.2)

where x, d1 and 7y are defined by (2.4), (2.5) & (2.8) respectively.

Proof. Let ||.|| . denote the maximum norm. Since the maximum difference be-
tween P! and PF is attained at a point on the (k + 1)th mesh, we have

[P = PY|, < max{N}, a=0,1,....n—1}, (3:3)

where N¥ is defined by (2.13). From (3.1) and (3.3) we get
| PEFY— PH|| < yx (),

where x, d; and ~y are defined by (2.4), (2.5) & (2.8) respectively.
Triangle inequality yields (3.2). This completes the proof. O

Remark 3.1. Here we mention that for n = 2 & 3 Lemma 3.2 reduces to Theorem
1 [4] and Theorem 2.1 [5] respectively.

Now we offer the computational formula of subdivision depth for n-ary subdi-
vision curves.

Theorem 3.3. Let k be subdivision depth and let d* be the error bound between
n-ary subdivision curve P> and its k-level control polygon P¥. For arbitrary e > 0,

if

then

Proof. From (3.2), we have

k
&= ||Pt— P||_ < 7X(<51) ),




This implies, for arbitrary given ¢ > 0, when subdivision depth k satisfy the

following inequality
X
k> logs -1 | ——— ],
ok <€(1 - 51))

d* <e.

then

This completes the proof. n

4 Depth for n-ary subdivision surfaces

In this paragraph we compute subdivision depth for n-ary subdivision surfaces.
Moreover, we show that results of error bounds for binary and ternary subdivision
surfaces [4] & [5] are special cases of our result. Here we need following lemmas
for Theorem 4.4. The proof of first two lemmas are shown in Appendices B & C
respectively.

Lemma 4.1. Given an initial control polygon pgﬁj = Dij, 4] € Z, let the values
pf,j, k > 1 be defined recursively by subdivision process (2.3) together with (2.2)
then

maXHA ]l < (62) maXHA Ll (4.1)

where 6y, A¥ ..t =1,2,3 are defined by (2.6) & (2.15) respectively.

77,87

Lemma 4.2. Given an initial control polygon p?J- = Dij, 4] € 4, let the values
pﬁj, k > 1 be defined recursively by subdivision process (2.3) together with (2.2)

then

3

Z naﬂ (42)
where 52,773ﬂ, Miﬁ, Xt, a,3=0,1,...,n—1 are defined by (2.6),(2.9)-(2.11),(2.14)
& (2.15).

Lemma 4.3. Given an initial control polygon p?J- = Dij, 4] € 4, let the values
Py k =1 be defined recursively by subdivision process (2.3) together with (2.2).
Suppose P¥ be the piecewise linear interpolant to the values pﬁj and P be the limit
surface of the subdivision process (2.3). If 62 < 1, then the error bound between the
limit surface and its control polygon after k-fold subdivision is

b)k
Pl <o %2 4.3
where 6o and ¥ are defined by (2.6) & (2.16) respectively.

6



Proof. Let ||.||,, denote the uniform norm. Since the maximum difference between
Pk and P* is attained at a point on the (k + 1)th mesh, we have

1P = PE| < max{M5 0,8 =0,1,.on— 1}, (44)

where M} ; is defined by (2.14). Using (4.2) & (4.4) we get
I = PH|, < 9(02)",

where d, and ¢ are defined by (2.6) & (2.16) respectively.
By triangle inequality we get (4.3). This completes the proof. O

Remark 4.1. Here we point out that for n = 2 & 3 Lemma 4.3 reduces to Theorem
7 [4] and Theorem 3.2 [5] respectively.

Here we suggest the computational formula of subdivision depth for n-ary sub-
division surfaces.

Theorem 4.4. Let k be subdivision depth and let d* be the error bound between
n-ary subdivision surface P> and its k-level control polygon P*. For arbitrary
e>0, if

%
> o ()

then
d* < e.

Proof. From (4.3), we have

k
o0 1—4

This implies, for arbitrary given ¢ > 0, when subdivision depth k satisfy the
following inequality

then

This completes the proof. n



5 Conclusion and Future work

We have computed subdivision depth based on error bounds for more general n-ary
subdivision schemes. Furthermore, we have shown that error bounds for binary
and ternary subdivision schemes [4] & [5] are special cases of our bounds. The
authors are looking, as a future work, to extend the computational techniques of
subdivision depth for n-ary subdivision schemes over volumetric models.
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6 Appendix A: Proof of Lemma 3.1

Proof. From (2.1) and (2.2) for « =0,1,...,n — 1 we obtain

1 m—
pﬁﬁa T ((” —a)pi + O‘pfﬂ Z pz+]+a+1 p?—l—j—i—a)?

7=0

where @, ; is defined by (2.12).
By (2.1), (2.2) and induction on m for §=0,1,...,n — 1 we get

i k k—1 k—1
Pritp+1 =~ Pni+p = Z bs,j (pi+j+1 ~ Piy;j );
=0

(6.1)

where bg; is defined by (2.7). It follows from (2.12), (2.13) and (6.1) that

m—1

J=0

k k k
N, < max max Hpi+1 —D; H :

Using (6.2) recursively gives

m
> sy
=0

By (6.3) and (6.4) we get (3.1). This completes the proof.

st 1 < (g S| ) s 1

7 Appendix B: Proof of Lemma 4.1

Proof. From (2.2), (2.3) and using similar approach as we did for (6.2), we obtain

m m
k k k—1 k—1
pm’+o¢+1,nj+ﬁ - pni+a,nj+ﬁ = Z ag,s (Z baﬂ" (pi+r+1,j+s _pi+r,j+s)) ) (71)
s=0 r=0

m m
k k _ k—1
pm’+o¢+1,nj+n - pni+a,nj+n - E :CLO,S E :baﬂ" (pi+r+1,j+s+1 pz+’r j+s+1
s=0 =0

m
k k _ k—1
pni+a,nj+,8+l - pni+a,nj+6 - E : Qa,r < E : bﬁﬁ (pi+r,j+s+l pz+r j+s)

m m
k k _ k—1
pni+n,nj+ﬂ+1 - pni+n,nj+ﬁ - E :a’oﬂ" E :bﬁﬁ (pi+7‘+1,j+s+l pz+r+1 Jj+s
r=0

s=0

)
)



where bg, is defined by (2.7) and o, 3 =0,1,...,n — 1.
Now using (7.1) recursively together with notations defined by (2.15), we get

m m
§ aa,s § bﬁ,r
s=0 r=0

From (2.6) and above inequality we get

k
maXHAfjl” < [ max maXHA?j1||.
0, i a,8 1,] i

max 1A%l < (52)kH}3fX 1A%

Again using (7.2) recursively and by utilizing (2.6) & (2.15) we have
e 8] < (3 e 2]

Similarly, using (7.3) & (7.4) recursively together with (2.6) & (2.15)
max 1A%52]] < (52)’“11}3,)( 1A%l

This completes the proof. O

8 Appendix C: Proof of Lemma 4.2

Proof. From (2.2) and (2.3) we get

Pk~ S a, (z - pﬁj)) | 1)
r=0 s=0

Since

NE

k k
Qp,s (pi+r,j+s - pz,j)

@
I
o

_ k k k k
= a070<pi+r,j - pi,j) + aO,l(pz'Jrr,jH - pi,j)
k k k k
+a0,2(pi+r,j+2 — Pivrj1 T Pigrjr1 — pi,j)

k k k k k k
+a03(Pisr 13 = Pitrjie T Pitrjs2 = Pisrji1 + Pigrje1 — Pij) + oo

k k k k k k
+a0,m(pz‘+r,j+m — Pivrjtm—1 T Pigrjym—1 = -+~ Pigrjy1 T Pigrjr1 — pi,j):
therefore
m
2 k
aO,s(pz‘+r,j+s - pi,j)
s=0
m m—1
_ k k k k ~ k k
= aO,O(piJrr,j - pzyj) + Z aO,t<pi+r,j+1 - pi,j) + Z aO,s(pi+r,j+s+1 - pz’+r,j+s)>
t=1 s=1

10



where @ 5 is defined by (2.12). Taking summation on both side of above equation
we get

m m m
k k _ k k
E agp,r E ao,s(pi+r,j+s _pi,j) = Qo,0 E :aovr(pwrr,j - pi,j)—i_
r=0 s=0 r=0
m m m—1
k k ~ k k
E :aO,t (E :aO,r(pi+r,j+1 _pi,j)) + E :aO,r (E :aO,s(pz‘+r,j+s+1 _pz‘+r,j+s)> :
t=1 r=0 r=0 s=1
Since

m
k kY _ k k k k k k
§ :aO,r(pHm' —pij) = ao1(Piy1; — Pij) + ao2(Pive,; — Piv1j + Pivr; — Piy)

r=0
k k k k k k
+a03(Pivs; — Pivoy + Pivoy — Piyry +Pivry — DPij) -
k k k k k k k
+a0,m(Piym; = Pivm—1j t Piym-1j — - T Piyaj = Pit1; + Piv1j — Pij)s
therefore
m m m—1
k ko _ k k ~ k k
E :aO,r(pHT,j - pz’,j) = E aO,t(pz‘+1,j - pi,j) + E :aO,s(pz‘+s+1,j - pz’+s,j)'
r=0 t=1 s=1
Similarly
m m
k ko k k k k
E :aO,r(pz‘+r,j+1 - pz‘,j) = a0,0(pz‘,jH - pi,j) + E :aO,t(pz‘+1,j+1 - pi,j)
r=0 t=1

m—1
~ k k
+ E :aO,s(Pi+s+1,j+1 _pi+s,j+1)'

s=1

Substituting these summations into (8.1) then by (2.14) we obtain

m m 2
Méﬁ,o = (ao,o Z aO,t) (P§+1,j - pf,j) + (Z CLO,t) (p§+1,j+1 - pf,jﬂ)

=1 t=1
m m—1
k k ~ k k
+ E :aO,t(Pi,jH —pij) +aoo E 0,s(Pitst1 = Pivs)
t=1 s=1
m m—1
~ k k
+ Qo ao,s(pz'+s+1,j+1 - pz’+s,j+1>
t=1 s=1

m—1

s=1

+ Z Qo,r (
r=0

ELO,s(prrr,jJrerl - pf+r,j+s)> : (82)

11



Similarly from (2.2), (2.3) and (2.14) for o, 5 = 0,1,...,n — 1 (where a & [ are
not zero at the same time) we obtain

m a(n — )
M 8= (ag,o Zaa,t - T) (pill,j B pﬁj)
(Z aatzﬁﬁt > pz+1 J+1 pﬁj*‘l)
m 6 m—1
: (z . 5) (Phjer =P 50 D s Pl ~ )

t=1 s=1
m m—1
~ k k
+ E :aﬁ,t E :aa,s(pi+s+l,j+l _pi+s,j+1)
t=1 s=1

BSGS

where @, s is defined by (2.12).
Using (2.6), (4.1), (8.2) and (8.3) for o, =0,1,...,n — 1 we get

M

aﬁ,s(pflf-s-r,j-ks-s-l - p§+r,j+s)> 5 (8.3)
s=1

i a(n — ﬁ) =
MY 5 < (62)" { ( ag,ozaa,t R + |as0 Zaas ) max || A7

. ] t:lm . s=1
+ ( Zaﬁ,t o + Zaa,r Z ag,s > Hzla.x HA?JQH

t=1 r=0 s=1 7

Q{ﬁ m m—1
+ ( Zaatzaﬁt | T Zaﬂ,t Ga,s ) HZ!E}.X”A?,J'BH}-
t=1 s=1 ’

Utilizing notations (2.9)(2.11), (2.14) & (2.15) we get (4.2).
This completes the proof. O
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