
3D Extension of Aestheti Plane Curveand Its B-Spline ApproximationKenjiro T. Miura, Makoto Fujisawa, Kazuya G. Kobayashi�, Fuhua ChengyGraduate Shool of Siene and TehnologyShizuoka UniversityAddress 3-5-1 Johoku, Hamamatsu, Shizuoka, 432-8561, Japan�Department of Mehanial Systems EngineeringToyama Prefetural UniversityAddress 5180 Kurokawa, Imizu, Toyama, 939-0398, JapanyDepartment of Computer SieneThe University of KentukyAddress Lexington, Kentuky 40506, USAvoie: [+81℄(53)478-1074; fax: [+81℄(53)478-1074e�mail: tmkmiur�ip.shizuoka.a.jpwww: http://ktm11.eng.shizuoka.a.jp/profile/ktmiura/welome.htmlAbstratCurves are basi design elements in determiningthe shape and silhouette of an industrial produt.Being able to build aestheti and attrative urvesertainly would inrease a designed's ability in de-signing good quality 3D shapes. Suh a apabilitydepends on if there are ways/standards for one todetermine if a urve is an aestheti urve and, aswell as, to reate an aestheti urve.We have found the general equations of aes-theti urves. But these equations are for pla-nar urves only. In this paper, we improve thiswork by �rst showing the neessary and suÆ-ient ondition for a urve to have self-aÆnityand then extending the aestheti urves into 3-dimensional spae. The proess of omputing aB-spline approximation of an 3D aestheti urveis also shown.Keywords: aestheti urve, spaial aesthetiurve, self-aÆnity1 Introdution\Aestheti urves" were �rst introdued byHarada [1℄ as urves whose logarithmi distribu-tion diagrams of urvature (LDDCs) are lose to
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Figure 1: Aestheti plane urves with various �valuesa straight line. Miura et al. [2, 3℄ derived an-alytial expressions for urves whose LDDCs arestritly given by a straight line and alled thoseexpressions general equations of aestheti urves.Yoshida and Saito [4℄ further analyzed propertiesof the urves represented by the general equa-tions and developed a new method to intera-tively generate suh a urve by speifying two endpoints, tangent vetors at those points, three on-trol points and an �: slope of the straight linethat de�nes the LDDC. In this researh, we allthe urves represented by the general equations of



aestheti urves the aestheti urves.Aestheti urves inlude logarithmi (equiangu-lar) urves (� = 1), lothoid urves (� = �1)and involute urves (� = 2) as speial ases. It ispossible to generate and deform aestheti urveseven if they are represented by integral forms usingtheir unit tangent vetors as integrands (� 6= 1; 2).These urves are expeted to play important rolein pratial appliations. However, the generalequations at this moment an be used for planeurves only, they an not be used for 3D spaeurves. In this paper, we will �rst show the ne-essary and suÆient ondition for a plane urveto have self-aÆnity and then extend the aesthetiurves into 3-dimensional spae with guaranteedself-aÆnity. We all the derived urves aesthetispae urves. We will also show how to omputea B-spline approximation of an aestheti spaeurve.2 Aestheti plane urvesWe will show several important properties of aes-theti urves in this setion. Reall that an aes-theti urve is a urve whose LDDC is de�ned bya straight line.2.1 General equations of aesthetiurvesGiven an aestheti urve, we assume ar length ofthe urve is represented by s and radius of ur-vature is represented by �. The horizontal axisof LDDC measures log � and the vertival axismeasures log(ds=d(log �)) = log(� ds=d�). SineLDDC is de�ned by a straight line, there exists aonstant � suh that the folloing equation is sat-is�ed: log(�dsd�) = � log �+ C (1)where C is a onstant. We all this the funda-mental equation of aestheti urves. Eq.(1) anbe written as 1���1 dsd� = eC = C0 (2)Hene there is some onstant 0 suh that���1 d�ds = 0 (3)

Figure 1 shows several planar aestheti urveswith various � values.2.2 Self-aÆnity of plane urvesWe de�ne self-aÆnity of a plane urve as follows[3℄. Given a plane urve, if we an regenerate itby removing an arbitrary head portion from theurve and then saling the remaining partg withsome fators in the tangent and normal diretionsat some point of the urve, then the urve is saidto have self-aÆnity.A plane urve satisfying Eq.(3) has self-aÆnity[2℄.2.3 Neessary and suÆient onditionfor self-aÆnityFor a given urve C(s) parametrerized by the arlength parameter s � 0, we assume derivative ofits urvature and derivative of its radius of ur-vature are both ontinuous. In other words, weassume the urve has C3 ontinuity. In addition,we assume the radius of urvature �(s) is non-zero.By saling the urve with di�erent fators inthe tangent and normal diretions (aÆne trans-formation of the plane urve [3℄) at various pointsof the urve, we look for ases where the saledurve ontains a portion that is ongruent to theoriginal urve. We therefore reparameterize thegiven urve C(s) using a new parameter t = as+bwhere a and b are positive onstants as shown inFigure 2.3. To sale the urve uniformly in thetangent diretion is equivalent to relate a pointC(t0 = as0 + b) to another point C(s0) as shownin Figure 2.3. In this relationship the saling fa-tor in the tangent diretion ft is given by 1=a.Although a and b are onstants, they are relatedto the saling fators in the tangent and normaldiretions ft and fn and they depend on the shapeof the urve. Hene we an not speify them in-dependently.The start point of the urve C(t) is given byC(b), the point orresponding to s = 0. HeneC(t) is a urve without a head porition of theorigianl urve C(s).The ondition for a urve to have self-aÆnityan be desribed as follows. For an aribitray on-stant b > 0, let a > 0 be a onstant determinedby b. Then the following equation is satis�ed for



The original curve (s)C

The curve without head portion C(t)

t=as+b

Figure 2: Correspondene between the originalurve and a reparameterized version of the urveany s � 0: �(s)�(as+ b) = fn (4)where fn is a onstant dependent on b and is asaling fator in the normal diretion. fn is givenby setting s to 0 in the above equation, as follows:fn = �(0)�(b) (5)2.3.1 In ase of fn = 1To make the subsequent derivation simpler, we�rst disuss the ase when fn = 1. From Eq.(4)we have �(s) = �(as+ b) (6)By the lemma proven in the appendix, �(s) turnsout to be a onstant and the urve is given by anar or a straight line (�(s) =1).In the following, fn 6= 1 is assumed. RewriteEq.(4) as �(s)� fn �(as+ b) = 0 (7)Sine the radius of urvature �(s) is di�erentiable,we haved�(s)ds � a fn d�(t)dt ����t=as+b= d�(s)ds � fnft d�(t)dt ����t=as+b = 0 (8)By substituting 0 for s and rewriting the aboveequation, ft = fn d�(b)dtd�(0)ds (9)

Hene, as Eq.(5) is satis�ed, both fn and ft aredetermined uniquely by the values of the radiusof urvature and its derivative at the start pointof the urve footnoteFrom a = 1=ft, a is alsouniquely determined by b.2.3.2 In ase of fn=ft = 1First, for some b > 0, if fn=ft = 1 then from Eq.8 we have d�(s)ds = d�(t)dt ����t=as+b (10)From this equation and the lemma in the ap-pendix, it follows thatd�(s)ds = 0 (11)for some onstant 0. By integrating the aboveequation, one gets�(s) = 0 s+ 1 (12)where 1 is a onstant of integration. Eq.(12) rep-resents the relationship between the radius of ur-vature and the ar length of the logarithmi spiraland the urva has a speial self-aÆnity, i.e., self-aÆnity when ft is equal to fn.2.3.3 In ase of fn=ft 6= 1Next, onsider the ase fn=ft 6= 1. Sine fn 6= 1,there is some � 6= 1 suh thatfnft = f1��n (13)Thend�(s)ds = f1��n d�(t)dt ����t=as+b= � �(s)�(as+ b)�1�� d�(t)dt ����t=as+b (14)Hene�(s)��1 d�(s)ds = �(as+ b)��1 d�(t)dt ����t=as+b (15)Threfore, if � is independent of b, then by thelemma, we obtain the following equation whih isquivalent to Eq.(3)�(s)��1 d�(s)ds = 0 (16)where 0 is a onstant. By integrating the aboveequation, the �rst and seond general equationsare derived [2℄.



2.3.4 Independene of � on bIn this subsetion, we prove that � is independentof b. Here we onsider the ase where b is smallenough and �b > 0. Let a to be 1+�a or 1��a(�a > 0), depending on and uniquely determinedby �b. We relax the ondition that b is positiveand onsider the ase where b = 0 and let �bbe equal to 0. Then Eq.(4) relates itself. Henea = 1, or �a = 0. Then fn = 1. For the urvewithout the portion orresponding to the domain0 � s < �b, Eq.(4) is satis�ed and from Eq.(13),there exists � suh that�(s)�((1 ��a)s+�b) = fn = �fnft �1�� (17)a is a ontinuous funtion of b and we an makethe value of �a smaller without limit if we make�b smaller.In Eq.(4), by repeatedly substituting (1��a)s+�b for s, we havefn = �(s)�((1��a)s+�b)fn = �((1 ��a)s+�b)�((1��a)2 s+�b((1 ��a) + 1))� � �fn = �((1��a)m�1s+ � � �+ 1))�((1 ��a)m s+ � � �+ 1))where � is appropriately seleted for the givenurve to satisfy �a > 0. From these equations,�(s)�((1 ��a)m s+�b((1��a)m�1 + � � � + 1)) = fmnHene the saling fator in the tangent diretionfor b = �b((1 � �a)m�1 + � � � + 1) is equal to1=(1��a)m = fmt andfmn =�fmnfmt �1�� (18)Therefore � is equal to that for �b.We will prove by ontradition that � is a on-stant. From Eq.(13), � an be expressed as aontinuous funtion of b: � = �(b). For someb0 > �b > 0, �0 = �(b0) and we assume that �0is di�erent from � = �(�b). For a small positive�, we furthermore assume thatj�0 � �j > 2� (19)

Sine �(b) is a ontinuous funtion, there existssome Æ suh that for any b > 0 satisfying jb0�bj <Æ we have j�(b0)� �(b)j < � (20)As �a is small, 1��a > 0 and �b((1��a)m�1+� � �+1)) inreases monotonously from �b and anbeome larger than any value by inreasing m.Hene there exists m suh thatbl = �b((1��a)m�1 + � � � + 1)) < b0< bu = �b((1 ��a)m + � � � + 1)) (21)Sine bu � bl = �b(1��a)m, if�b(1��a)m < 2Æ (22)we get jb0 � blj < Æ or jb0 � buj < Æ. Eq.(22)an be rewritten into 1��a < (2Æ=�b) 1m and �abeomes smaller if we make �b smaller and thereexists �b satisfying this equation. Hene Eq.(20)is satis�ed whih ontradits (19). Therefore � isonstant for any b.The results of the above disussion an besummed up as follows: a neessary and suÆientondition for a plane uve to have self-aÆnityis that for some onstant �, Eq.(16) is satis�ed.When � = 1, Eq.(16) beomes Eq.(11) and it on-tains the ase of self-aÆnity.2.4 Self-aÆnity ratio� is the slope of the LDDC and, as disussed inthe previous setion, it is related to the salingfators in the tangent and normal diretions: ftand fn. Therefore, it haraterizes the urve. Let be the reiproal of �. Then from Eq.(13) wehave,  = 1� = log fnlog ft (23)This means fn = ft .For a fratal with self-aÆnity, a way to measureits degree of aÆnity is de�ned as follows [5℄. Whenthe whole �gure is onsisted of similar �gures ofnumber 1=b saled by 1=a with b = aD, the degreeof aÆnity is given byD = log blog a (24)



Eq.(23) is similar to the above de�nition andEq.(23) an be interpreted as that it is neessaryto have fn urves to �ll up the spae in the normaldiretion if we sale the urve by 1=ft.  an be in-terpreted as a dimension and we all it self-aÆnityratio.3 Extension into 3-dimensionalspaeThe aestheti urves onsidered so far are planeurves only. We will extend them into 3-dimensional spae by using the Frenet-Serret for-mula (see, for example, [6℄).3.1 The Frenet-Serret formulaFor a spae urve C(s) parameterized by s, letits unit tangent vetor be t, unit prinipal normalvetor be n and unit binormal vetor be b. Thesevetors are related by the Frenet-Serret formula asfollows:dC(s)ds = t; dtds = �n;dnds = ��t+ �b; dbds = ��n (25)where � and � are the urvature and torsion, re-spetively. In the following we de�ne self-aÆnityof a spae urve. An aestheti spae urve is aspae urve with self-aÆnity.Given a spae urve, similar to self-aÆnity ofa plane urve, we say the urve has self-aÆnityif we an regenerate it by removing an arbitraryhead portion from the urve and then saling theremaining portion with some (di�erent) fators inthe tangent, prinipal normal and binormal dire-tions at some point of the urve.Sine the urvature and torsion, or their reipro-als: the radius of urvature and radius of torsionan be independently spei�ed with respet to theradius of torsion � = 1=� , we assume an equationsimilar to Eq.(1), as follows, is satis�ed:log(� dsd�) = � log�+ C 0 (26)where � is a onstant. Like Eq.(3), we would have���1d�ds = 1 (27)for some onstant 0. Using arguments similar tothose given in subsetion 2.3 to show that the ne-essary and suÆient ondition for a plane urve to

Figure 3: Examples of the aestheti spae urveshave self-aÆnity is the equation given in Eq.(3),we an prove that the neessary and suÆient on-dition for a spae urve to have self-aÆnity is theset of equations given in Eqs.(3) and (27)The Frenet-Serret formula an be onsidered asa set of di�erential equations and an example al-ulated by their numerial integration is shown inFigure 3. The left and right �gures show thesame �ve urves from di�erent viewpoints and theurves drawn at the bottom are idential to a loga-rithmi spiral whose torsion is always 0 and radiusof urvature is given by a linear funtion of thear length. The other urves have the same startpoint and radius of urvature as the logarithmispiral and their torsion is given by a linear funtionof the ar length with � = 1. The upper urveshave smaller oeÆient in the linear funtion ofthe ar length (larger torsion). For eah urve,at the start point and end point, and two otherpoints on the urve, we draw the tangent, prin-ipal normal and binormal vetors of the movingframe (Frenet frame) as short slim yliders.



4 B-spline approximationIt is generally useful to use the evolute of a urveas well as the urve itself to evaluate the qualityof a urve for aestheti design [4℄. The radius ofurvature of an aestheti urve hanges smoothlyand its evolute is given by another aestheti urvewih smoothly hanging urvatre. We will use asobjetive funtions 1) position errors for the leastsquares method and 2) position and urvature er-rors for the onjugate gradient method.4.1 Positional errorsLet C(s) be an aestheti urve and let Cb(t) bea ubi B-spline approximation of C(s). Cb(t)is onstruted as follows. We sample C(s) atm uniformly distributed parameter spae pointsQi = C(si) and minimize the following objetivefuntion: Rp = m�1Xi=0 jCb(ti)�Qij2 (28)Let the unit interval 0 � t � 1 be the domain ofCb and let P i, i = 0; :::; n; be its ontrol points(hene the number of segments of the B-splineurve is n�2). We use mutiple knots for the startand end points to make the start and end pointsidential to the �rst and last ontrol points P 0and P n, respetively. The parameter value ti ofthe ith sampled point is given by ti = si=l wherel is the total length of the urve C(s). The tan-gent vetors at the start and end points of C(s)are ts and te, respetively. In order to make thepositions and tangent vetors of the start and endpoints idential to the original urve, the followingonditions are imposed. P 0 = C(0), P n = C(l),P 1 = P 0 + �ts, P n�1 = P n � �te.The variables of Eq.(28) are the salars �, � andthe x and y oordinates of the ontrol points P i,i = 2; :::; n� 2. It is possible to solve the problemby the least squares method sine the objetivefuntion given by Eq.(28) is a quadrati funtionof these parameters.4.2 Curvature errorsAs in the previous setion, we use the same type ofubi B-spline urve for approximation, but min-imize the following objetive funtion to onsider

the errors of urvature as well:Rp = m�1Xi=0 fjCb(ti)�Qij2+wj	(ti)� �(si)j2g (29)where w is a weight to ontrol the signi�ane ofthe urvature error, 	(ti) is the urvature of the B-spline urve and �(si) is the urvature of the orig-inal urve at the orrespoinding point. Sine 	(t)is given by jdCb(t)=dt�d2Cb(t)=d2tj=jdCb(t)=dtj3,Eq.(29) an not be solved by the least squaresmethod. We use one of the numerial searh meth-ods: the onjugate gradient method to minimizethe objetive funtion. We use �, �, and the on-trol points that minimize Eq.(28) as the initial val-ues.4.3 Approximation resultsIn the ase of � = 1 (logarithmi spiral), Figure4 shows the approximation results by the leastsquares method and Table 1 shows the approxi-mation errors. Table 2 shows the errors by theonjugate gradient method (w = 1). The numberof sampled points for approximation was 100 andthat for error alulation was 1000. In the tables,rms means the root-mean square average and theerrors are normalizd by setting the total length to1. In the tables p means position, � stands forradius of urvature and e means position of theevolutes. Results of these tables show that errorsof these two methods are omparable and it is notneessary to inlude errors of urvature in the ob-jetive funtion. We an obtain good approxima-tion of the urve as well as high auray of itsevolute if we use large enough sampled points andthe urve segments. This is beause 1) it is possi-ble to sample any number of points on the urveand 2) it is possible to obtain aurate length ofthe aestheti urves, hene it is not neessary tooptimize ti.5 ConlusionsIn this researh, we have derived neessary andsuÆient onditions for a plane urve and a spaeurve to have self-aÆnity and extended the pla-nar aestheti urves into 3-dimensional spae withself-aÆnity based on the Frenet-Serret formula
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Figure 4: Approximation and its evoluteTable 1: Least squareseg� 1 3 7rmsp 3:966� 10�3 1:909� 10�4 5:924� 10�6emaxp 5:878� 10�3 4:405� 10�4 2:006� 10�5rms� 6:750� 10�2 1:204� 10�2 1:743� 10�3emax� � 1:660� 10�1 3:653� 10�2 6:559� 10�3rmse 6:911� 10�2 1:219� 10�2 1:747� 10�3emaxe 1:660� 10�1 3:668� 10�2 6:559� 10�3and derived the aestheti spae urve. For a spaeaestheti urve, the radius of torsion, i.e., the re-iproal of torsion to the power of some onstantis given by a linear funtion of the ar length sim-ilar to the radius of urvature. Self-aÆnity of aspae aestheti urve is guarnateed.For future work, we are planning on an auto-mati lassi�ation of urves with the followingfuntions: 1) to determine if the rhythm is sim-ple (monotoni) or omplex (onsisting of pluralrhythms), 2) to alulate the slope of the line thatapproximates the LDDC. It seems to us that thereis a lot of possible appliations of the general equa-tions of aestheti urves in the �eld of omputeraided geometri design. For example, it wouldbe possible for one to use the equations to de-form urves to hange their appearane, say, fromsharply bending to loosely bending. Another ex-ample is smoothing for reverse engineering. Even

Table 2: Conjugate gradient (w = 1)seg� 1 3 7rmsp 3:984� 10�3 1:909� 10�4 5:942� 10�6emaxp 6:012� 10�3 4:393� 10�4 2:046� 10�5rms� 6:800� 10�2 1:205� 10�2 1:737� 10�3emax� 1:814� 10�1 3:653� 10�2 6:539� 10�3rmse 6:952� 10�2 1:220� 10�2 1:741� 10�3emaxe 1:814� 10�1 3:668� 10�2 6:539� 10�3if only noisy data of urves are available, we anstill use the equations as some sort of rulers tosmooth out the noise and yield aesthetially highquality urves. We will also develop a CAD sys-tem using planar and spae aestheti urves.AknowledgmentsA part of this researh is supported by the Grant-in-Aid Sienti� Researh (C) (15560117) from2003 to 2004 and (C) (18560130) from 2006 to2007.Referenes[1℄ Toshinobu Harada, \Study of QuantitativeAnalysis of the Charateristis of a Curve,"Forma, Vol.12 (No.1), pp. 55-63, 1997.[2℄ Kenjiro T. Miura, Junji Sone, Atsushi Ya-mashita and Toru Kaneko, \Derivation of aGeneral Formula of Aestheti Curves," pp.166-171, Humans and Computers 2005, Aizu-Wakamatsu (Japan), August 31-September 2,2005.[3℄ Kenjiro T. Miura, \A General Equationof Aestheti Curves and Its Self-AÆnity,"Computer-Aided Design & Appliations, Vol.3, Nos. 1-4, pp.457-464, 2006.[4℄ Norimasa Yoshida, Takafumi Saito, \Inter-ative Aestheti Curve Segment," The Vi-sual Computer, Vol. 22 (No.9-11), pp.896-905,2006.[5℄ Benoit B.Mandelbrot, The Fratal Geometryof Nature, W.H.Freeman and Company, NewYork, 1983.



[6℄ Farin, G., Curves and Surfaes for CAGD, 5thEd., Morgan Kaufmann, 2001.[7℄ M. Hosaka, Modeling of Curves and Surfaesin CAD/CAM, Springer-Verlag, 1992.AppendixA LemmaGiven a funtion f(s) patameterized by ar lengths. For an arbitrary onstant b > 0, let a > 0 be aonstant determined by b. With these a and b, ifthe following equation is satis�ed for any s � 0f(a s+ b) = f(s) (30)Then f(s) is a onstant funtion.Proof: Assume f(s) is not a onstant funtion.Then there exists some s0 > 0 suh thatf(s0) 6= f(0) (31)If b = s0. Then for some a0 > 0 we havef(a0 s+ s0) = f(s) (32)Substituting 0 for s in the above equation we getf(s0) = f(0) whih ontradits Eq.(31). There-fore, f(s) is a onstant funtion 1.

1The lemma means that for an arbitrary b > 0, a =a(b) > 0, when the given funtion is saled by a about theorigin and is translated by b, if the funtion is ongruentwith the original funtion, then the funtion is onstant.


