
Local-search techniques for boolean combinations of pseudo-boolean constraints

Lengning Liu and Mirosław Truszczyński
Department of Computer Science, University of Kentucky,

Lexington, KY 40506-0046, USA

Abstract

Some search problems are most directly specified by boolean
combinations of pseudo-boolean constraints. We study a
logic PL(PB) whose formulas are of this form, and de-
sign local-search methods to compute models ofPL(PB)-
theories. In our approach we view aPL(PB)-theoryT as a
data structure — a concise representation of a certain propo-
sitional CNF theorycl(T) logically equivalent toT . We
show that parameters needed by local-search algorithms for
CNF theories, such aswalksat , can be estimated on the ba-
sis ofT , without the need to computecl(T) explicitly. Since
cl(T) is often much larger thanT , running search based on
T promises performance gains. Our experimental results con-
firm this expectation.

Introduction
We propose a stochastic local search solver for theories in an
extended version of propositional logic, in which formulas
are boolean combinations of pseudo-boolean constraints.

Recent advances in the performance of SAT solvers make
them effective in solving search problems that can be re-
duced to finding a model of a certain CNF theory. SAT
solvers fall in two camps:completeand incompleteones.
Complete solvers find a model of an input theory, when the
theory is satisfiable. Otherwise, they generate a message that
no models exist. Incomplete solvers either return a model of
an input theory or terminate with no output. In the latter
case, the satisfiability of the theory remains unknown.

In this paper, we focus on incomplete solvers, specifically,
stochastic local search solvers (SLS solvers, for short). Al-
though incomplete solvers do not guarantee to find a model
when there is one, their ability to compute models of large
satisfiable theories, which are often beyond the power of
complete solvers, makes them attractive.

A drawback of SAT solvers is that they require an input
theory to be in CNF. Constraints defining search problems
of practical importance often do not have a direct represen-
tation as a single clause and in many cases require large sets
of clauses to be faithfully described. Constraints involving
numeric values, typically modeled as linear inequalities are
such constraints. Large sizes of CNF theories representing
search problems limit the effectiveness of SAT solvers.

Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

To circumvent this issue, researchers studied constraints
that are more general than propositional clauses and are at-
tuned to constraints commonly appearing in applications.
Certain integer programming constraints, calledpseudo-
boolean, received particular attention (Benhamou, Sais, &
Siegel 1994; Barth 1995; Dixon & Ginsberg 2002; Hooker
2000). This research resulted in several solvers of pseudo-
boolean constraints (Walser 1997; Preswitch 2002; Aloulet
al. 2003; Manquinho & Roussel 2005).

We argue here that in some applications constraints are
most directly stated asboolean combinationsof pseudo-
boolean constraints. We define a logic to describe such con-
straints and propose SLS solvers to compute models of the-
ories in this logic. Specifically, our contributions are:

1. We propose a general formalism, called the propositional
logic with pseudo-boolean constraints (orPL(PB) for
short), for modeling search problems. This logic sub-
sumes both propositional logic and the formalism of
pseudo-boolean constraints. We present examples of
search problems, where combinations of pseudo-boolean
constraints appear naturally.

2. We generalize the concepts of thebreak-andmake-counts
and develop methods to estimate them. We apply these
results to design SLS solvers for arbitraryPL(PB)-
theories, extending approaches from (Selman, Kautz, &
Cohen 1994; Hoos 1999; Liu & Truszczyński 2003).

3. We demonstrate experimentally that our solvers are com-
petitive withwsat(oip)(Walser 1997) on theories consist-
ing of pseudo-boolean constraints and significantly faster
on problems with constraints most directly stated as dis-
junctions of pseudo-boolean constraints.

Technical preliminaries
A pseudo-booleanconstraint (pb-constraint, for short) is an
integer-programming constraint of the form

l ≤ w1x1 + . . . + wkxk ≤ u, (1)

wherexi are integer variables, each with the domain{0, 1},
wi are integers, which we will refer to asweights, andl and
u are integers called thebounds. An assignmentv of 0s
and 1s tox′

is is amodelof (or satisfies) the constraint (1) if
l ≤ w1v(x1) + . . . + wkv(xk) ≤ u holds.

If one of the bounds in the constraint (1) is missing,
we call it a strict pb-constraint. Typically only strict pb-

constraints are considered as every pb-constraint is equiva-
lent to a set of two strict pb-constraints. For us it will be
more convenient to consider (general) pb-constraints, as we
defined them above.

To simplify the notation, we will write a pb-constraint (1)
asl[w1x1, . . . , wkxk]u. We will omit the appropriate bound
for strict pb-constraints. If all weightswi are equal to 1, we
drop them from the notation and writel[x1, . . . , xk]u instead
of l[w1x1, . . . , wkxk]u. We refer to such pb-constraints as
cardinality constraints.

By establishing the correspondence between integer val-
ues 0 and 1 on the one hand, and truth valuesfalse and
true, respectively, on the other, we can view integer 0-1
variables as propositional atoms. Furthermore, we can view
pb-constraints as representations of propositional formulas.
Specifically, we say that a constraint (1) represents a propo-
sitional formulaϕ (built of the same variablesxi, but now
interpreted as propositional atoms) if (1) andϕ have the
same models (modulo the correspondence between{0, 1}
and{false, true}). In particular, a (strict) pb-constraint

1 − m ≤ x1 + . . . + xk − y1 − . . . − ym

represents a propositional clause

x1 ∨ . . . ∨ xk ∨ ¬y1 ∨ . . . ∨ ¬ym.

Thus, pb-constraints generalize clauses, and sets of pb-
constraints generalize propositional CNF theories.

Many practical search and optimization problems have
concise encodings in terms of pb-constraints. To solve
such problems by means of SAT solvers — an approach
that received much attention lately due to advances in the
performance of SAT solvers — each of the pb-constraints
involved in the problem statement must be compiled first
into a set of propositional clauses. However, the result-
ing CNF theory is often much larger than the original
set of pb-constraints, which hinders the effectiveness of
SAT solvers. Hence, researchers started extending tech-
niques developed for and implemented in SAT solvers to
handle collections of pb-constraintsdirectly (Walser 1997;
Aloul et al. 2003).

In this paper we are interested in an even broader class of
theories, namely theories consisting of constraints (formu-
las) that are boolean combinations of propositional literals
and pb-constraints (viewed as propositional formulas). We
refer to the formalism we are about to describe aspropo-
sitional logic with pb-constraints(or PL(PB), for short).
While it can be given a more general treatment, in this paper
we focus only on a certain class of formulas and theories.

A PL(PB)-clause(or, simply, aclause) is an expression
of the form

l1 ∨ . . . ∨ lm ∨ W1 ∨ . . . ∨ Wn, (2)

where li’s are propositional literals andWi’s are pb-
constraints. We calll1 ∨ . . . ∨ lm thepropositionaldisjunct
of the clause (2). APL(PB)-theoryis any set ofPL(PB)-
clauses.

The notions ofsatisfiabilityand amodelextend in a stan-
dard way toPL(PB)-clauses andPL(PB)-theories. We

will write I |= E, whenI is a model of aPL(PB)-clause or
PL(PB)-theoryE.

The following problem, a slight generalization of the
dominating-set problem in graphs (Garey & Johnson 1979),
illustrates the usefulness ofPL(PB)-clauses in modeling.

Weighted dominating-set problem. Let G = (V,E) be
a directed graph with each edge(x, y) assigned an integer
weight wx,y ≥ 0. Given an integerw, a setD ⊆ V of
vertices ofG is w-dominatingfor G if for every vertexx ∈
V at least one of the conditions listed below holds.

1. x ∈ D
2. the sum of weights of edges “fromx to D” is at leastw:

w ≤
∑

(x,y)∈E,y∈D wx,y

3. the sum of weights of edges “fromD to x” is at leastw:
w ≤

∑

(z,x)∈E,z∈D wz,x.

The following PL(PB)-theory encodes the problem of
the existence of aw-dominating set with at mostk vertices.
In the encoding we use atomsinx, x ∈ V , with the intended
meaning:vertexx is in a w-dominating set. The clauses of
the theory are:

1. inx ∨ W1 ∨ W2, for everyx ∈ V , where
W1 = w[wx,yiny : (x, y) ∈ E], and
W2 = w[wz,xinz : (z, x) ∈ E].
These clauses enforce the defining constraint for aw-
dominating set.

2. [inx : x ∈ V]k.
This clause guarantees that a selected subset has at most
k vertices.

We note thatPL(PB)-clauses of the first type are disjunc-
tions of a propositional atom and two pb-constraints. It is not
obvious how to concisely rewrite the set of these clauses as
a set of pb-constraints without using auxiliary variables.If
one introduces auxiliary variables, such representationscan
be found but they are also of larger size than the original set.
This underscores the potential ofPL(PB)-theories in mod-
eling and shows that it is important to design solvers that can
find models ofPL(PB)-theories directly without rewriting.

Local-search algorithms for logicPL(PB)
In this section we describe a family of SLS algorithms de-
signed to compute models ofPL(PB)-theories. The gen-
eral structure of the algorithms follows that ofwalksat (Sel-
man, Kautz, & Cohen 1994) andvb-WSAT cc, the latter pro-
posed in (Liu & Truszczýnski 2003) for a fragment of logic
PL(PB), in which formulas are built of cardinality con-
straints. Briefly, the algorithms executeMax -Tries inde-
pendenttries. Each try starts in a randomly generated truth
assignment and consists of a sequence of up toMax -Flips
flips, that is, local changes to the current truth assignment. A
flip usually selects an atom in an input theory and changes
its truth value in the current truth assignment to its dual. The
algorithms terminate with a truth assignment that is a model
of the input theory, or with no output at all (even though the
input theory may in fact be satisfiable).

Algorithms that implement this general structure differ in
heuristics they use to select an atom for a flip. Experiments

demonstrated that for standard CNF theories two heuris-
tics are particularly effective: theSKCheuristics (Selman,
Kautz, & Cohen 1994) and theRNovelty+heuristics (Hoos
1999). TheSKC heuristics takes into account thebreak-
count of an atom, that is, the number of clauses that are
satisfied by the current assignment but become unsatisfied
once we flip the atom. TheRNovelty+ heuristics, in addi-
tion to the break-count, also considers themake-countof an
atom, that is, the number of clauses that are not satisfied by
the current assignment but become satisfied after we flip the
atom. IfS is a CNF formula (or a set of clauses in this for-
mula),I is a truth assignment andx is an atom, we denote
the corresponding break- and make-counts bybctS(x) and
mctS(x), respectively. SinceI is always determined by the
context, we do not explicitly refer toI in the notation.

(Liu & Truszczýnski 2003) extended theSKC heuristics
to PL(PB)-theories, in which every pb-constraint is a car-
dinality constraint. The key idea behind this extension is
that of thevirtual break-count. (Liu & Truszczýnski 2003)
proposed a way to compile a theoryT , with cardinality
constraints, into an equivalent set ofpropositional clauses,
cl(T), and defined the virtual break-count of an atomx in
T to be the break-count ofx in cl(T). (Liu & Truszczýnski
2003) then showed that virtual break-count can be computed
directly from the input theory, without the need to actually
produce the setcl(T). This observation is fundamental as
cl(T) is often exponentially larger thanT .

In the remainder of the paper, we extend the translation
T 7→ cl(T) to arbitrary PL(PB)-theories. We then use
this translation to define thevirtual break-andmake-counts.
For both concepts we develop fast methods to estimate them
directly on the basis ofT and not requiring thatcl(T) be
computed explicitly. We apply the virtual break-count and
make-count to extendSKC and RNovelty+ heuristics to
the case of arbitraryPL(PB)-theories and obtain in this way
two SLS solvers for computing models ofPL(PB)-theories,
wsat(plpb)-skc andwsat(plpb)-rnp, respectively.

Virtual break-count and make-count
These two concepts depend on a particular representation of
a PL(PB)-theoryT as amultisetof propositional clauses,
cl(T). We will allow repetitions of clauses in sets and repe-
titions of literals in clauses, as by doing so we simplify some
technical calculations.

We recall that we view pb-constraints as propositional for-
mulas. Given a pb-constraintW , byTW we denote a certain
CNF formula (which we will also view as a multiset of its
clauses) such thatTW is logically equivalent toW . We will
specifyTW later.

Let us consider aPL(PB)-clauseC of the form (2). We
definecl(C) to be the multiset of propositional clauses that
are disjuncts in the CNF formula obtained by replacing in
C each pb-constraintWi with the CNF formulaTWi

and by
applying the distributivity law. For aPL(PB)-theoryT we
then set

cl(T) =
⋃

{cl(C) : C ∈ T}.

Let I be a truth assignment. We define thevirtual break-
andmake-countsof an atomx in a PL(PB)-theoryT with

respect toI as the break- and make-counts ofx in cl(T) with
respect toI. We will denote these two quantities asbctT (x)
andmctT (x), respectively (we again drop the reference toI
from the notation). It follows that

bctT (x) = bctcl(T)(x) =
∑

{bctcl(C)(x) : C ∈ T}.

Similarly,

mctT (x) = mctcl(T)(x) =
∑

{mctcl(C)(x) : C ∈ T}.

We now estimatebctcl(C)(x) andmctcl(C)(x). To this
end we need more notation. LetW be a pb-constraint,I an
interpretation andx a propositional atom. ByI x̄ we denote
the truth assignment obtained fromI by flipping the truth
value ofx. Next, we define three sets of clauses that are rel-
evant forbctcl(C)(x) andmctcl(C)(x) (we once again omit
I in the notation):

1. EW,x = the set of clauses inTW that are satisfied byI but
not byI x̄

2. FW,x = the set of clauses inTW that are not satisfied by
I but are satisfied byI x̄

3. GW,x = the set of clauses inTW that are not satisfied by
I nor byI x̄.

We observe thatEW,x = FW,x = ∅ if x does not appear
in W . We sete = |EW,x|, f = |FW,x| andg = |GW,x|.

The following formula computesbctcl(C)(x) (we labele,
f andg with indicesi of pb-constraintsWi occurring in (2).
We writeL for the propositional disjunctl1∨ . . .∨ lm of C):

bctcl(C)(x) =







0 case 1
∏n

i=1(ei + gi) case 2
∏n

i=1(ei + gi) −
∏n

i=1 gi o/w
(3)

where case 1 occurs whenI x̄ |= L and case 2 occurs when
case 1 does not hold andI |= L.

Indeed, every clause incl(C) is of the formL ∨ D1 ∨
. . . ∨ Dn, whereDi ∈ TWi

, 1 ≤ i ≤ n. In case 1, all
such clauses are satisfied inI x̄. Thus,bctcl(C)(x) = 0. In
case 2, all clauses incl(C) are satisfied inI. In order not to
be satisfied inI x̄, every disjunctDi must be an element of
EWi,x ∪GWi,x. Thus, there are

∏n
i=1(ei + gi) such clauses

in cl(C). The argument for the last case is similar.
Reasoning as above, we also obtain a formula for

mctcl(C)(x):

mctcl(C)(x) =







0 case 1
∏n

i=1(fi + gi) case 2
∏n

i=1(fi + gi) −
∏n

i=1 gi o/w
(4)

where case 1 occurs whenI |= L and case 2 occurs when
case 1 does not hold andI x̄ |= L.

To make these formulas complete, we need to specify a
CNF representationTW of a pb-constraintW and, given this
representation and a truth assignmentI, for each atomx find
formulas fore, f andg. In our discussion, we assume that
W contains no negative weights. This assumption simplifies
the discussion but is not essential.

Let us then consider a pb-constraintW :

W = l[a1w1, . . . , akwk]u,

where allwi are non-negative. For each atomai we intro-
duce new atomsaj

i , 1 ≤ j ≤ wi. We then define a cardinal-
ity constraint

W ′ = l[a1
1, . . . , a

w1

1 , . . . , a1
k, . . . , awk

k]u,

and a set of formulas

EQ = {ai ≡ aj
i : 1 ≤ i ≤ k, 1 ≤ j ≤ wi}.

The pb-constraintW and{W ′} ∪ EQ are equivalent in the
following sense. There is a one-to-one correspondence be-
tween models ofW and models of{W ′} ∪ EQ. The cor-
responding models coincide on the set{a1, . . . , ak}. In
the case of the theory{W ′} ∪ EQ, the part of the model
contained in{a1, . . . , ak} determines the rest, as models of
{W ′} ∪ EQ must satisfy formulas inEQ.

One can check that the cardinality constraintW ′ is equiv-
alent to the setS consisting of the following clauses:

¬xi1 ∨ . . . ∨ ¬xiu+1
(5)

for every (u + 1)-element subset{xi1 , . . . , xiu+1
} of

{a1
1, . . . , a

w1

1 , . . . , a1
k, . . . , awk

k }, and

xi1 ∨ . . . ∨ xiK−l+1
(6)

for every(K − l + 1)-element subset{xi1 , . . . , xiK−l+1
} of

{a1
1, . . . , a

w1

1 , . . . , a1
k, . . . , awk

k }, whereK =
∑

wi.
Thus,W is equivalent toS ∪ EQ (in the same sense as

before). Consequently,W is equivalent (has the same mod-
els) as the multiset of clauses obtained fromS by replacing
each atomaj

i with ai. We defineTW to be this multiset. We
also note that clauses in this multiset may contain multiple
occurrences of the same literals.

We do not simplifyTW further (that is, we do not elim-
inate duplicate clauses nor duplicate occurrences of literals
in clauses) since the multiset form ofTW makes it easier
to compute the cardinalitiese, f andg of the sub-multisets
EW,x, FW,x andGW,x of TW and their cardinalitiese, f and
g. Namely, we have the following formulas fore, f andg:

e =







0 case 1
(

N+w
K−l+1

)

−
(

N
K−l+1

)

case 2
(

P+w
u+1

)

−
(

P
u+1

)

otherwise
(7)

f =







0 case 1
(

P
u+1

)

−
(

P−w
u+1

)

case 2
(

N
K−l+1

)

−
(

N−w
K−l+1

)

otherwise
(8)

g =











(

N
K−l+1

)

+
(

P
u+1

)

case 1
(

N
K−l+1

)

+
(

P−w
u+1

)

case 2
(

P
u+1

)

+
(

N−w
K−l+1

)

otherwise.
(9)

Case 1 covers all situations whenx does not occur inW .
Case 2 covers situations whenx occurs inW andI |= x.
In these formulas we use the notationK =

∑

wi, P =
∑

I|=ai
wi, N =

∑

I 6|=ai
wi, and writew for the weight of

atomx in W (if x occurs inW).
We provide an argument for the case 2 of (7). In this case,

x occurs inW andI |= x. Let us assume thatx = a1 and
let N = {aj

i : 1 ≤ i ≤ k, 1 ≤ j ≤ wi, I 6|= ai}. Since

I |= a1, {a1
1, . . . , a

w1

1 } ∩ N = ∅. The definitions ofS and
EW,x imply thatC ∈ EW,x if and only if C is obtained from
a clauseC ′ in S of the form (6) such thatC ′ contains at least
one atomap

1, 1 ≤ p ≤ w1, and for every other disjuncty of
C ′, y ∈ N . SinceN = |N |, there are

(

N+w1

K−l+1

)

−
(

N
K−l+1

)

such clausesC ′. Since when generatingTW from S we do
not remove any clauses, the formula (7), case 2, follows.

We now use the formulas for break- and make-counts
to design algorithmswsat(plpb)-skc andwsat(plpb)-rnp.
The algorithm wsat(plpb)-skc follows the design of
walksat (Selman, Kautz, & Cohen 1994) andvb-WSAT cc

(Liu & Truszczýnski 2003), except that it uses the formulas
we derived above to compute virtual break-counts of atoms.
It accepts arbitraryPL(PB)-theories. The pseudo-code is
given in Algorithm 1. We note that the algorithm decides
between a random choice and a greedy choice in lines 5 and
6 according to the probabilityp, called thenoise ratio.

Algorithm 1 Heuristic function SKC (T, I, C) used in
wsat(plpb)-skc

INPUT : T - aPL(PB)-theory
I - a truth assignment ofT
C - an unsat clause

OUTPUT: a - an atom (to be flipped)
BEGIN
1. For eachatomx in C, computebct(x);
2. If exist atoms whosebct = 0 then
3. randomly return such an atom;
4. Else
5. with probabilityp, return a randomly chosen atom inC;
6. otherwise, return an atomx with minimumbct(x);
7. End If
END

(Hoos 1999) introduced a different heuristics,RNovelty+,
for choosing an atom to flip and showed it to be effective for
walksat . It uses both the break- and the make-count values.
By replacing these values with the virtual break-count and
the virtual make-count, respectively, we obtain a version of
RNovelty+that computes models ofPL(PB)-theories. We
present a pseudo-code description in Algorithm 2.

To help search escape loops, with probabilitywp the
heuristics chooses a random atom from the input clauseC
to return as the next atom to flip. As in (Hoos 1999), we use
wp = 0.01 in our implementation. Otherwise, the algorithm
selects an atom to flip based on thequality of atoms (the
quality of an atom is a difference between its virtual break-
and make-counts), theageof atoms (the age of an atom is
defined as the time, measured in flips, when the atom was
last flipped; initially all atoms have age 0), and a probability
p, which determines whether an atom with the best or the
second best quality value is selected. Even though the role
of the parameterp is different here than it is in the case of
theSKCheuristics, we call this value thenoise ratio, as well.
We also note that if all atoms inC have the same value of
qlty , then one is selected randomly.

Experiments
We tested the implementations of our algorithms on
PL(PB)-theories encoding instances of four search prob-

Algorithm 2 Heuristic functionRNovelty+(T, I, C) used
in wsat(plpb)-rnp

INPUT andOUTPUT as in Algorithm 1
BEGIN
1. With probabilitywp, return a random atom fromC;
2. For eachatomx in C,

qlty(x)← bct(x)−mct(x);
3. agemax ← the maximum age of atoms inC;
4. best← atomsx with the leastqlty(x);
5. second← atomsx with the second leastqlty(x);
6. If second = ∅, return a random atom fromC;
7. diff ← qlty(x)− qlty(y), wherex ∈ best, y ∈ second;
8. If ∃a ∈ best such that its age< agemax, returna;
9. If diff > 1, then
10. with probabilitymin{2− 2p, 1},

return a random atom frombest;
11. otherwise, return a random atom fromsecond;
12. End If
13. With probabilitymax{1− 2p, 0},

return a random atom frombest;
14. otherwise, return a random atom fromsecond;
END

lems. We compared the performance of our solvers to that
of wsat(oip) (Walser 1997). The four search problems are:

1. Vertex-cover problem (vcov). Given an undirected graph
G = (V,E) and an integerk ≥ 0, find a setU ⊆ V such
that |U | ≤ k and every edge inE has at least one of its
vertices inU .

2. Bounded spanning tree problem (bst). Let G = (V,E)
be an undirected graph with each edge assigned an integer
weight. Given an integerw find a spanning treeT in G
such that for each vertexx ∈ V , the sum of the weights
of all edges inT incident tox is at mostw.

3. Weighted dominating set problem (wdm). The problem
is defined earlier in the paper.

4. Weightedn-queens problem (wnq). Squares of ann×n
chess-board have inetger weights. Given two integersw
andd, find an arrangement ofn queens on the board so
that 1) no two queens attack each other; 2) the sum of
weights of the squares with queens does not exceedw;
and 3) for each queenQ, there is at least one queenQ′

in a neighboring row or column such that the Manhattan
distance betweenQ andQ′ does not exceedd.

For testing, for each problem we generated 50 random
instances, setting parameters so that all instances had solu-
tions and then expressed the instances asPL(PB)-theories.
We presented thePL(PB)-theory encoding an instance of
the problemwdmearlier. Encodings for other problems can
be found at (Liu & Truszczýnski 2006). We note that:

1. Theories for thevcov problem consist only of strict pb-
constraints and are accepted directly by our programs and
wsat(oip).

2. Theories for thebst problem contain formulas which are
not strict pb-constraints. However, these formulas have
simple representations as one or two strict pb-constraints
and do not require the help of new atoms. In experiments,
we use original encodings with our algorithms and trans-

wsat(plpb)-skc wsat(plpb)-rnp wsat(oip)

vcov 30/0/474.89 48/44/4.92 42/4/25.26

bst 50/10/2.03 50/41/1.57 50/0/5.80

wdm 49/25/0.65 50/26/0.64 4/0/1000

wnq 50/38/52.24 46/11/218.85 2/0/1000

Table 1: Summary on all instances

formed encodings withwsat(oip).
3. Theories encoding instances of the last two problems con-

sist of non-unaryPL(PB)-clauses. To avoid a blow-up in
the size of representation, when expressing these clauses
in terms of sets of pb-constraints, weneedto introduce
new atoms. As before, we use original encodings with our
algorithms and transformed encodings withwsat(oip).

We could encode the instances of these four problems as
CNF theories using the naive encoding defined by clauses
(5) and (6). However, the sizes of the resulting theories are
too large for current solvers such as WalkSAT to be effective.

Since the choice of the noise ratiop often has strong ef-
fect on the performance ofwsat(plpb)-rnp, we tested all
methods with 9 different noise ratios0.1, 0.2, . . . , 0.9. For
comparisons, we used results obtained with the best value of
p for each method. For each instance, we allocated 1000 sec-
onds to each method and ran it in one try, with the maximum
number of flips set so that to guarantee the unsuccessful try
does not end prior to the 1000-second limit. We set other
parameters of each solver to their default settings. We then
recorded the CPU time spent by each method on each in-
stance. All experiments were done on P4 3.2GHz machines
with 1GB memory and Linux kernel version 2.6.10.

Table 1 is a summary of all experiments with entries of the
form s/w/m, wheres is the number of instances in a family
solved by a solver,w is the number of instances when the
solver was the fastest one, andm is the median running time
over all 50 instances in the family; the time of 1000 seconds
was used whenever the solver timed out on an instance).

These results demonstrate the superiority of our methods
over wsat(oip) on the instances we used in experiments.
Of the two methods we proposed,wsat(plpb)-rnp performs
better in three out of four problems, withwsat(plpb)-skc
being significantly better for the remaining one. We empha-
size, that our algorithms performed better thanwsat(oip)
even for problems that were encoded directly as sets of
strict pb-constraints or required only small and simple mod-
ifications (problemsvcov and bst). There is only one ex-
ception: for the problemvcov wsat(oip) outperformed
wsat(plpb)-skc (but was outperformed bywsat(plpb)-rnp).

(Hoos & Sẗutzle 2005) argued thatrun-time distribution
(or RTDfor short) is a more reliable measure to compare the
performance of SLS solvers. We now present RTD graphs
for the problemsbstandwdmproblem. Figure 1 shows that
wsat(plpb)-rnp performs the best.

Figure 2 shows thatwsat(oip) is not effective. It also
shows thatwsat(plpb)-skc has a higher probability of solv-
ing easy instances (instances that can be solved in up to
about 8 seconds). Thenwsat(plpb)-rnp catches up and
the performance of the two algorithms is very similar, with
wsat(plpb)-rnp being slightly better (in fact, it is the only

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 4 8 16 32 64 128 256 512 1024

P
ro

ba
bi

lit
y

of
 s

ol
vi

ng
 a

n
in

st
an

ce

Time (≤ seconds)

bounded spanning tree v=30 e=240 w=15 wrange=[1..29]

wsat(plpb)-skc (p=0.1)
wsat(plpb)-rnp (p=0.7)

wsatoip (p=0.2)

Figure 1: RTDs on thebst problem

algorithm that solved all instances in the family).

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 4 8 16 32 64 128 256 512 1024

P
ro

ba
bi

lit
y

of
 s

ol
vi

ng
 a

n
in

st
an

ce

Time (≤ seconds)

weighted dominating set v=500 e=2000 w=40 k=330 wrange=[1..19]

wsat(plpb)-skc (p=0.1)
wsat(plpb)-rnp (p=0.6)

wsatoip (p=0.3)

Figure 2: RTDs on thewdm problem

We do not present here the two other RTD graphs. They
can be found at (Liu & Truszczyński 2006). In the case
of the problemvcov, RTDs show thatwsat(plpb)-rnp per-
forms better than bothwsat(oip) andwsat(plpb)-skc. The
RTD graph for the problemwnq shows thatwsat(oip) is
not effective at all (it solves only two instances), and that
wsat(plpb)-skc performs much better thanwsat(plpb)-rnp.

Conclusions
We designed a family of extensible SLS algorithms for
PL(PB)-theories. The key idea behind our algorithms is
to view aPL(PB)-theoryT as a concise representation of
a certain propositional CNF theorycl(T) logically equiva-
lent toT , and to show that key parameters needed by SLS
solvers developed for CNF theories can be computed on the
basis ofT , without the need to buildcl(T) explicitly. Our
experiments demonstrate that our methods are superior to
those relying on explicit representations ofPL(PB)-clauses
as sets of pb-constraints and resorting to off-the-shelf local-
search solvers for pb-constraints such aswsat(oip).

Clearly, CNF representations of pb-constraints other than
W 7→ TW are possible and could be used within a general
approach we developed, as long as one can derive formulas
(or procedures) to compute values ofe, f and g. In fact,
we can push this idea even further. For an arbitrary con-
straint (not necessarily a pb-constraint), if we can evaluate

e, f andg in some translation that converts it into a set of
propositional clauses, our general framework yields solvers
accepting theories containing such constraints.

Finally, we point out that the formulas we derived use val-
ues of the form

(

n
k

)

, which will overflow already for rela-
tively small values ofn, if k is close ton/2. In our experi-
ments, even though in some cases overflows occurred quite
often (which we replaced with a certain fixed large integer),
for the atoms our solvers selected to flip the computation of
virtual counts only rarely involved overflows. Still, in ourfu-
ture research we will study how to approximate

(

n
k

)

to avoid
overflows. Since we only care about the relative order of the
break- and make-counts of atoms, any approximation that
maintains this ordering will be appropriate.

Acknowledgments
We acknowledge the support of NSF grant IIS-0325063 and
KSEF grant KSEF-1036-RDE-008.

References
Aloul, F.; Ramani, A.; Markov, I.; and Sakallah, K. 2003.
PBS v0.2, incremental pseudo-boolean backtrack search SAT
solver and optimizer. http://www.eecs.umich.edu/
˜faloul/Tools/pbs/ .
Liu, L., and Truszczýnski, M. 2006. Experiments with algo-
rithms wsat(plpb)-skc and wsat(plpb)-rnp. http://www.
cs.uky.edu/ai/wsatcc/exp/ .
Barth, P. 1995. A Davis-Putnam based elimination algorithm
for linear pseudo-boolean optimization. Technical report, Max-
Planck-Institut f̈ur Informatik. MPI-I-95-2-003.
Benhamou, B.; Sais, L.; and Siegel, P. 1994. Two proof proce-
dures for a cardinality based language in propositional calculus.
In Procs. of STACS-94, vol 775,LNCS. Springer. 71–82.
Dixon, H., and Ginsberg, M. 2002. Inference methods for a
pseudo-boolean satisfiability solver. InProcs. of AAAI-02, 635–
640. AAAI Press.
Garey, M., and Johnson, D. 1979.Computers and intractability.
A guide to the theory of NP-completeness. San Francisco, Calif.:
W.H. Freeman and Co.
Hooker, J. 2000.Logic-Based Methods for Optimization. J. Wiley
and Sons.
Hoos, H., and Sẗutzle, T. 2005. Stochastic Local Search Algo-
rithms — Foundations and Applications. Morgan-Kaufmann.
Hoos, H. 1999. On the run-time behaviour of stochastic local
search algorithms for sat. InProcs. of AAAI-99, 661–666. AAAI
Press.
Liu, L., and Truszczýnski, M. 2003. Local-search techniques in
propositional logic extended with cardinality atoms. InProcs. of
CP-03, volume 2833 ofLNCS. Springer. 495–509.
Manquinho, V., and Roussel, O. 2005. Pseudo boolean evaluation
2005.http://www.cril.univ-artois.fr/PB05/ .
Preswitch, S. 2002. Randomised backtracking for weightless
linear pseudo-boolean constraint problems. InProcs. of CPAIOR-
02, 7–19.
Selman, B.; Kautz, H.; and Cohen, B. 1994. Noise strategies for
improving local search. InProcs. of AAAI-94, 337–343. AAAI
Press.
Walser, J. 1997. Solving linear pseudo-boolean constraints with
local search. InProcs. of AAAI-97, 269–274. AAAI Press.

