Local-search techniques for boolean combinations of pseudo-boolean constrts

Lengning Liu and Mirostaw Truszczynhski
Department of Computer Science, University of Kentucky,
Lexington, KY 40506-0046, USA

Abstract

Some search problems are most directly specified by boolean
combinations of pseudo-boolean constraints. We study a
logic PL(PB) whose formulas are of this form, and de-
sign local-search methods to compute modelsPdf PB)-
theories. In our approach we viewRL(PB)-theoryT as a
data structure — a concise representation of a certain propo-
sitional CNF theorycl(T") logically equivalent toT". We
show that parameters needed by local-search algorithms for
CNF theories, such asalksat, can be estimated on the ba-
sis of T, without the need to computé(T") explicitly. Since
cl(T) is often much larger thaf’, running search based on

T promises performance gains. Our experimental results con-
firm this expectation.

Introduction

We propose a stochastic local search solver for theorias in a
extended version of propositional logic, in which formulas
are boolean combinations of pseudo-boolean constraints.

Recent advances in the performance of SAT solvers make
them effective in solving search problems that can be re-
duced to finding a model of a certain CNF theory. SAT
solvers fall in two campscompleteand incompleteones.
Complete solvers find a model of an input theory, when the
theory is satisfiable. Otherwise, they generate a message th
no models exist. Incomplete solvers either return a model of
an input theory or terminate with no output. In the latter
case, the satisfiability of the theory remains unknown.

In this paper, we focus on incomplete solvers, specifically,
stochastic local search solvers (SLS solvers, for shoit). A
though incomplete solvers do not guarantee to find a model
when there is one, their ability to compute models of large
satisfiable theories, which are often beyond the power of
complete solvers, makes them attractive.

A drawback of SAT solvers is that they require an input
theory to be in CNF. Constraints defining search problems
of practical importance often do not have a direct represen-

To circumvent this issue, researchers studied constraints
that are more general than propositional clauses and are at-
tuned to constraints commonly appearing in applications.
Certain integer programming constraints, calleseudo-
boolean received particular attention (Benhamou, Sais, &
Siegel 1994; Barth 1995; Dixon & Ginsberg 2002; Hooker
2000). This research resulted in several solvers of pseudo-
boolean constraints (Walser 1997; Preswitch 2002; Adédul
al. 2003; Manquinho & Roussel 2005).

We argue here that in some applications constraints are
most directly stated aboolean combination®f pseudo-
boolean constraints. We define a logic to describe such con-
straints and propose SLS solvers to compute models of the-
ories in this logic. Specifically, our contributions are:

1. We propose a general formalism, called the propositional
logic with pseudo-boolean constraints (BL(PB) for
short), for modeling search problems. This logic sub-
sumes both propositional logic and the formalism of
pseudo-boolean constraints. We present examples of
search problems, where combinations of pseudo-boolean
constraints appear naturally.

2. We generalize the concepts of threak-andmake-counts
and develop methods to estimate them. We apply these
results to design SLS solvers for arbitraBL(PB)-
theories, extending approaches from (Selman, Kautz, &
Cohen 1994; Hoos 1999; Liu & Truszazski 2003).

3. We demonstrate experimentally that our solvers are com-
petitive withwsat (oip)(Walser 1997) on theories consist-
ing of pseudo-boolean constraints and significantly faster
on problems with constraints most directly stated as dis-
junctions of pseudo-boolean constraints.

Technical preliminaries
A pseudo-booleanonstraint pb-constraint for short) is an
integer-programming constraint of the form

)

I <wizy + ... +wpxr < u,

tation as a single clause and in many cases require large setSyherex, are integer variables, each with the domgin1},

of clauses to be faithfully described. Constraints invadyi
numeric values, typically modeled as linear inequalities a

w; are integers, which we will refer to ageights and/ and
u are integers called thbounds An assignmenv of 0s

such constraints. Large sizes of CNF theories representing gnd 1s tar’s is amodelof (or satisfiey the constraint (1) if

search problems limit the effectiveness of SAT solvers.

Copyright © 2006, American Association for Atrtificial Intelli-
gence (www.aaai.org). All rights reserved.

I <wv(zr) + ... +wev(zk) < wholds.
If one of the bounds in the constraint (1) is missing,
we call it astrict pb-constraint. Typically only strict pb-

constraints are considered as every pb-constraint is &quiv
lent to a set of two strict pb-constraints. For us it will be

more convenient to consider (general) pb-constraints,eas w
defined them above.

To simplify the notation, we will write a pb-constraint (1)
aslwyzy, ..., wgxg]u. We will omit the appropriate bound
for strict pb-constraints. If all weights; are equal to 1, we
drop them from the notation and write, . . . , x;Ju instead
of lfwyzy, ..., wpzk]u. We refer to such pb-constraints as
cardinality constraints

By establishing the correspondence between integer val-

ues 0 and 1 on the one hand, and truth valfidse and
true, respectively, on the other, we can view integer 0-1

variables as propositional atoms. Furthermore, we can view

pb-constraints as representations of propositional ftamu
Specifically, we say that a constraint (1) represents a propo
sitional formulayp (built of the same variables;, but now
interpreted as propositional atoms) if (1) apdhave the
same models (modulo the correspondence betwéeh}
and{false, true}). In particular, a (strict) pb-constraint

l-m<xi+...4+2k—Yy1— ... — Ym
represents a propositional clause

1 V... VZpVyr V...V y,.

Thus, pb-constraints generalize clauses, and sets of pb-

constraints generalize propositional CNF theories.

Many practical search and optimization problems have
concise encodings in terms of pb-constraints. To solve
such problems by means of SAT solvers — an approach
that received much attention lately due to advances in the
performance of SAT solvers — each of the pb-constraints
involved in the problem statement must be compiled first
into a set of propositional clauses. However, the result-
ing CNF theory is often much larger than the original
set of pb-constraints, which hinders the effectiveness of

SAT solvers. Hence, researchers started extending tech-

niques developed for and implemented in SAT solvers to
handle collections of pb-constraindérectly (Walser 1997;
Aloul et al. 2003).

In this paper we are interested in an even broader class of

theories, namely theories consisting of constraints (ierm
las) that are boolean combinations of propositional litera
and pb-constraints (viewed as propositional formulas). We
refer to the formalism we are about to describepaspo-
sitional logic with pb-constraintgor PL(PB), for short).
While it can be given a more general treatment, in this paper
we focus only on a certain class of formulas and theories.

A PL(PB)-clause(or, simply, aclausg is an expression
of the form

LV NIy VWLV .V W,)

where [;’s are propositional literals andV;’s are pb-
constraints. We caly Vv ... V [, thepropositionaldisjunct
of the clause (2). APL(PB)-theoryis any set ofPL(PB)-
clauses.

The notions ofatisfiabilityand amodelextend in a stan-
dard way toPL(PB)-clauses andPL(PB)-theories. We

will write I = E, whenI is a model of aPL(PB)-clause or
PL(PB)-theoryE.

The following problem, a slight generalization of the
dominating-set problem in graphs (Garey & Johnson 1979),
illustrates the usefulness &fL(PB)-clauses in modeling.

Weighted dominating-set problem. Let G = (V, E) be
a directed graph with each edge, y) assigned an integer
weightw, , > 0. Given an integew, a setD C V of
vertices ofG is w-dominatingfor G if for every vertexz €
V' at least one of the conditions listed below holds.

l.xeD

2. the sum of weights of edges “fromto D” is at leastw:
w < 2(93711)65;71/613 Wa,y

3. the sum of weights of edges “from to z” is at leastw:

w < Z(z,x)eE,zeD Wz,

The following PL(PB)-theory encodes the problem of
the existence of a-dominating set with at mogt vertices.
In the encoding we use ators,, « € V, with the intended
meaning:vertexz is in aw-dominating setThe clauses of
the theory are:

1.in, V Wy vV Wy, for everyx € V', where
Wi = wlw, yiny: (z,y) € E], and
Wy = wlw, in,: (z,2) € E.
These clauses enforce the defining constraint fas-a
dominating set.

2. [ing: x € V]k.
This clause guarantees that a selected subset has at most
k vertices.

We note thatPL(PB)-clauses of the first type are disjunc-
tions of a propositional atom and two pb-constraints. 1o n
obvious how to concisely rewrite the set of these clauses as
a set of pb-constraints without using auxiliary variabl¥s.
one introduces auxiliary variables, such representatians
be found but they are also of larger size than the original set
This underscores the potential BL.(PB)-theories in mod-
eling and shows that it is important to design solvers that ca
find models of PL(PB)-theories directly without rewriting.

Local-search algorithms for logic PL(PB)

In this section we describe a family of SLS algorithms de-
signed to compute models @tL(PB)-theories. The gen-
eral structure of the algorithms follows thato#lksat (Sel-
man, Kautz, & Cohen 1994) and- WSAT*, the latter pro-
posed in (Liu & Truszczgiski 2003) for a fragment of logic
PL(PB), in which formulas are built of cardinality con-
straints. Briefly, the algorithms execufdax- Tries inde-
pendentries. Each try starts in a randomly generated truth
assignment and consists of a sequence of ulde-Flips
flips, that is, local changes to the current truth assignment. A
flip usually selects an atom in an input theory and changes
its truth value in the current truth assignment to its duale T
algorithms terminate with a truth assignment that is a model
of the input theory, or with no output at all (even though the
input theory may in fact be satisfiable).

Algorithms that implement this general structure differ in
heuristics they use to select an atom for a flip. Experiments

demonstrated that for standard CNF theories two heuris- respect td as the break- and make-countseah cl(7T") with
tics are particularly effective: th8KC heuristics (Selman, respect td. We will denote these two quantities &g 1 ()
Kautz, & Cohen 1994) and theNovelty+heuristics (Hoos andmctr(z), respectively (we again drop the referencé to
1999). TheSKC heuristics takes into account tieeak- from the notation). It follows that

countof an atom, that is, the number of clauses that are

satisfied by the current assignment but become unsatisfied betr(x) = beteyry () = Z{thcl(C)(x)3 CeT}.
once we flip the atom. Th& Novelty+ heuristics, in addi- Similarly,

tion to the break-count, also considers thake-counof an

atom, that is, the number of clauses that are not satisfied by mctr(z) = mctor)(z) = 3 _{mctycy(x): C € T}

the current assignment but become satisfied after we flip the
atom. If S is a CNF formula (or a set of clauses in this for-
mula), I is a truth assignment andis an atom, we denote
the corresponding break- and make-countdy () and

We now estimatébct ;o (x) and met (o) (z). To this
end we need more notation. LBf be a pb-constraint], an
interpretation and: a propositional atom. By* we denote

mctg(x), respectively. Sincé is always determined by the the truth assignment obtalned frafmby flipping the truth
context, we do not explicitly refer téin the notation. value ofz. Next, we define three sets of clauses that are rel-

(Liu & Truszczyhski 2003) extended th&K C' heuristics eYaanorthclKC) (x) andmet ci(c) (x) (we once again omit
to PL(PB)-theories, in which every pb-constraint is a car- I'in the notation). . o
dinality constraint. The key idea behind this extension is 1. Ew,. = the set of clauses ifiyy that are satisfied by but

that of thevirtual break-count (Liu & Truszczyhski 2003) not by I

proposed a way to compile a theo#y, with cardinality 2. Fw,, = the set of clauses ity that are not satisfied by
constraints, into an equivalent setbpositional clauses I but are satisfied by”

cl(T), and defined the virtual break-count of an aterin 3.Gw,, = the set of clauses iffiyy that are not satisfied by
T to be the break-count afin cl(T'). (Liu & Truszczyhski I'norbyI®.

2003) then showed that virtual break-count can be computed e observe thaEy , = Fiy, = 0 if z does not appear
directly from the input theory, without the need to actually in 1. We sete = |Eyy,|, f = |Fiw.| andg = |Gw.|.
produce the set/(7"). This observation is fundamental as The following formula computesct ., () (we labele,
cl(T') is often exponentially larger thah. f andg with indicesi of pb-constraint$V; occurring in (2).

In the remainder of the paper, we extend the translation we write L for the propositional disjund \V . .. \V1,,, of C):
T — cl(T) to arbitrary PL(PB)-theories. We then use

this translation to define thértual break-andmake-counts 0 case 1
For both concepts we develop fast methods to estimate them 0¢tci(c) (z) = N [Lizi(ei + gi)n case 2
directly on the basis of' and not requiring that!(T") be [[i=i(ei+9:) —Ilizy9i olw
computed explicitly. We apply the virtual break-count and 3)

make-count to extendKC and RNovelty+ heuristics to where case 1 occurs whéfi = L and case 2 occurs when
the case of arbitrar’L(PB)-theories and obtain in thisway ~ case 1 does not hold ard= L.

two SLS solvers for computing models BL.(PB)-theories, Indeed, every clause in/(C) is of the formL v Dy v
wsat(plpb)-ske andwsat (plpb)-rnp, respectively. ...V Dy, whereD; € Ty,, 1 < i < n. Incase 1, all
such clauses are satisfiedfin. Thus,bct.yc)(z) = 0. In
Virtual break-count and make-count case 2, all clauses iel(C') are satisfied ird. In order not to
These two concepts depend on a particular representation of °¢ Satisfied i, every disjunct); must be an element of

n
a PL(PB)-theoryT as amultisetof propositional clauses, WlLCU Cfrvﬁ»b Thus, th?e '?]rﬁ[z‘:l(ei +9i) $U(_3Ih clauses
cl(T). We will allow repetitions of clauses in sets and repe- n IC?()- The argumgnt or the alst casg IS Simi ?r. la f
titions of literals in clauses, as by doing so we simplify gom easoning as above, we also obtain a formula for

technical calculations. metei(o) (2):

We recall that we view pb-constraints as propositional for- 0 case 1
mulas. Given a pb-constrailit’, by 7Ty we denote a certain met ooy (z) = T, (fi + 92) case 2
CNF formula (which we will also view as a multiset of its e (fZ:L g)—II" g olw
clauses) such thdt, is logically equivalent tdv. We will =t =t @

specifyTy, later.

Let us consider &L(PB)-clauseC of the form (2). We
definecl(C) to be the multiset of propositional clauses that
are disjuncts in the CNF formula obtained by replacing in
C each pb-constrairit’; with the CNF formulalyy, and by
applying the distributivity law. For &L(PB)-theoryT we
then set

where case 1 occurs whén= L and case 2 occurs when
case 1 does not hold ardd = L.

To make these formulas complete, we need to specify a
CNF representatiofiy;, of a pb-constraint” and, given this
representation and a truth assignmgrfor each atom find
formulas fore, f andg. In our discussion, we assume that
W contains no negative weights. This assumption simplifies
c(T) = U{CZ(C)Z CeT}. the discussion but is not essential.

Let I be a truth assignment. We define thigual break Let us then consider a pb-constralit
andmake-count®f an atomz in a PL(PB)-theoryT with W =l[aywy, ..., apwg]u,

where allw; are non-negative. For each atamwe intro-
duce new atoms’, 1 < j < w;. We then define a cardinal-
ity constraint

W' =lai,..
and a set of formulas
EQ:{aiEagzlgiSk,lgjgwi}.

w1

1 W
Lalt, a0,

The pb-constraintl” and{W'} U EQ are equivalent in the

I = ay, {a},...,ay*} NN = . The definitions ofS and
Ew . imply thatC' € Ew , if and only if C' is obtained from
aclause”’ in S of the form (6) such that’ contains at least
one atonu!, 1 < p < wy, and for every other disjungt of

C',y € N. SinceN = |N], there arg{ 7)) — (. .))

such clause§”. Since when generatirigj;, from S we do

not remove any clauses, the formula (7), case 2, follows.
We now use the formulas for break- and make-counts

to design algorithmsvsat(plpb)-ske and wsat(plpd)-rnp.

following sense. There is a one-to-one correspondence be- The algorithm wsat(plpb)-ske follows the design of

tween models oft/ and models of W'} U EQ. The cor-
responding models coincide on the det;,...,a;}. In
the case of the theoryV'} U EQ, the part of the model
contained in{aq, . . ., ax } determines the rest, as models of
{W'} U EQ must satisfy formulas i Q.

One can check that the cardinality constraintis equiv-
alent to the sef' consisting of the following clauses:

-2y VooV T, (5)
for every (u + 1)-element subset{x; ,...,x;, } of
{ai,...,a?™, ... a},...,a}"}, and

Ty VooV T (6)
for every(K — [+1)-element subseftz;,, ..., 2, _,,, } of

w1

{al,....a{", ... a},...,a;*}, whereK = 3" w;.

Thus, W is equivalent toS U EQ (in the same sense as
before). Consequentlyy is equivalent (has the same mod-
els) as the multiset of clauses obtained frSrby replacing
each atomu] with ;. We definely to be this multiset. We
also note that clauses in this multiset may contain multiple
occurrences of the same literals.

We do not simplifyTy;, further (that is, we do not elim-
inate duplicate clauses nor duplicate occurrences oflger
in clauses) since the multiset form @f;; makes it easier
to compute the cardinalities f andg of the sub-multisets
Ew ., Fw » andGyw,, of Ty and their cardinalities, f and
g. Namely, we have the following formulas fer f andg:

0 case 1
€= (Klerl) - (K—]\;-s-l) case 2)
(") = (K otherwise
0 case 1
f= (%il) - (Z;‘l_“) case 2 ®)
(1) — (k) otherwise
(K—;\l[+1) + (Jgil) case 1
g9=1 (xh) +(LLY) case2 9)
(1) + (oY) otherwise.

Case 1 covers all situations whendoes not occur V.
Case 2 covers situations wheroccurs inW and! = .
In these formulas we use the notatiéh = > w;, P =
Dora; Wis N = pp,, wi, and writew for the weight of
atomz in W (if = occurs ini¥).

We provide an argument for the case 2 of (7). In this case,
2 occurs inW and] = z. Let us assume that = a; and

|et./\/':{ag:1§i§k,lgjgwi,lb&a,;}. Since

walksat (Selman, Kautz, & Cohen 1994) andl- WSAT

(Liu & Truszczyhski 2003), except that it uses the formulas
we derived above to compute virtual break-counts of atoms.
It accepts arbitraryPL(PB)-theories. The pseudo-code is
given in Algorithm 1. We note that the algorithm decides
between a random choice and a greedy choice in lines 5 and
6 according to the probability, called thenoise ratio

Algorithm 1 Heuristic function SKC(T,1,C) used in
wsat(plpd)-ske

T - a PL(PB)-theory
I - atruth assignment d&f'
C - an unsat clause
OUTPUT: a - an atom (to be flipped)
BEGIN
1. Foreachatomz in C, computebct(z);
If exist atoms whoséct = 0 then
randomly return such an atom;
Else
with probabilityp, return a randomly chosen atomdh
otherwise, return an atomwith minimum bct(z);
. EndIf
END

INPUT:

2.
3.
4.
5.
6.

(Hoos 1999) introduced a different heuristiB$\ovelty+
for choosing an atom to flip and showed it to be effective for
walksat. It uses both the break- and the make-count values.
By replacing these values with the virtual break-count and
the virtual make-count, respectively, we obtain a versibn o
RNovelty+that computes models dtL(PB)-theories. We
present a pseudo-code description in Algorithm 2.

To help search escape loops, with probability the
heuristics chooses a random atom from the input clause
to return as the next atom to flip. As in (Hoos 1999), we use
wp = 0.01 in our implementation. Otherwise, the algorithm
selects an atom to flip based on theality of atoms (the
quality of an atom is a difference between its virtual break-
and make-counts), thege of atoms (the age of an atom is
defined as the time, measured in flips, when the atom was
last flipped; initially all atoms have age 0), and a probapili
p, which determines whether an atom with the best or the
second best quality value is selected. Even though the role
of the parametep is different here than it is in the case of
theSKCheuristics, we call this value thmise ratiq as well.

We also note that if all atoms i@’ have the same value of
glty, then one is selected randomly.

Experiments

We tested the implementations of our algorithms on
PL(PB)-theories encoding instances of four search prob-

Algorithm 2 Heuristic functionRNovelty+ (T, I,C) used
in wsat(plpb)-rnp

INPUT andOUTPUT as in Algorithm 1
BEGIN
1. With probabilitywp, return a random atom frod’;
2. Foreachatomzin C,

qlty(z) «— bet(x) — met(x);
agemas — the maximum age of atoms @;
best «— atomsz with the leastyity(z);
second «— atomsz with the second leasiity (x);
If second = @, return a random atom froi®;
diff — qlty(z) — qlty(y), wherex € best, y € second,;
If Ja € best such that its age&l agemaqz, returna;
If diff > 1, then
0. with probabilitymin{2 — 2p, 1},

return a random atom froiest;

BOooNo kW

11. otherwise, return a random atom freatond;
12. EndIf
13. With probabilitymaz{1 — 2p, 0},

return a random atom fromrest;
14. otherwise, return a random atom frearond;
END

| | wsat(plpb)-skc | wsat(plpb)-rnp ‘ wsat(oip) |

veov | 30/0/474.89 48/44/4.92 | 42/4/25.26
bst 50/10/2.03 50/41/1.57 50/0/5.80
wdm 49/25/0.65 50/26/0.64 4/0/1000
wnq | 50/38/52.24 | 46/11/218.85 2/0/1000

Table 1: Summary on all instances

formed encodings witlvsat(oip).

3. Theories encoding instances of the last two problems con-

sist of non-unaryPL(PB)-clauses. To avoid a blow-up in

the size of representation, when expressing these clauses
in terms of sets of pb-constraints, weedto introduce

new atoms. As before, we use original encodings with our
algorithms and transformed encodings withut (oip).

We could encode the instances of these four problems as
CNF theories using the naive encoding defined by clauses
(5) and (6). However, the sizes of the resulting theories are
too large for current solvers such as WalkSAT to be effective

Since the choice of the noise rafiooften has strong ef-
fect on the performance afsat(plpb)-rnp, we tested all
methods with 9 different noise ratidsl, 0.2,...,0.9. For
comparisons, we used results obtained with the best value of

lems. We Compared the performance of our solvers to that pfor each method. For each inStance, we allocated 1000 sec-

of wsat(oip) (Walser 1997). The four search problems are:

1. Vertex-cover problem (vcov). Given an undirected graph
G = (V,E) and an integek > 0, find a set/ C V such
that|U| < k and every edge it has at least one of its
vertices inU.

2.Bounded spanning tree problem bst). LetG = (V, E)

be an undirected graph with each edge assigned an intege

weight. Given an integew find a spanning tre& in G
such that for each vertex € V, the sum of the weights
of all edges inl" incident tox is at mostw.

3. Weighted dominating set problem (vdm). The problem
is defined earlier in the paper.

4. Weighted n-queens problem (vnq). Squares of an x n
chess-board have inetger weights. Given two integers
andd, find an arrangement of queens on the board so
that 1) no two queens attack each other; 2) the sum of
weights of the squares with queens does not exeeed
and 3) for each queef), there is at least one queé}i
in a neighboring row or column such that the Manhattan
distance betwee® and(@’ does not exceed.

For testing, for each problem we generated 50 random
instances, setting parameters so that all instances had sol
tions and then expressed the instanceBBSPB)-theories.

We presented théL(PB)-theory encoding an instance of
the problemwdmearlier. Encodings for other problems can
be found at (Liu & Truszcziyski 2006). We note that:

1. Theories for thevcov problem consist only of strict pb-

r

onds to each method and ran it in one try, with the maximum

number of flips set so that to guarantee the unsuccessful try
does not end prior to the 1000-second limit. We set other

parameters of each solver to their default settings. We then
recorded the CPU time spent by each method on each in-
stance. All experiments were done on P4 3.2GHz machines
with 1GB memory and Linux kernel version 2.6.10.

Table 1 is a summary of all experiments with entries of the
form s/w/m, wheres is the number of instances in a family
solved by a solverw is the number of instances when the
solver was the fastest one, amds the median running time
over all 50 instances in the family; the time of 1000 seconds
was used whenever the solver timed out on an instance).

These results demonstrate the superiority of our methods
over wsat(oip) on the instances we used in experiments.
Of the two methods we proposedsat (plpb)-rnp performs
better in three out of four problems, withsat(plpb)-skc
being significantly better for the remaining one. We empha-
size, that our algorithms performed better thasut(oip)
even for problems that were encoded directly as sets of
strict pb-constraints or required only small and simple mod
ifications (problemsscovandbs). There is only one ex-
ception: for the problenmvcov wsat(oip) outperformed
wsat (plpb)-ske (but was outperformed bysat (plpb)-rnp).

(Hoos & Stitzle 2005) argued thatin-time distribution
(or RTDfor short) is a more reliable measure to compare the
performance of SLS solvers. We now present RTD graphs
for the problem$standwdmproblem. Figure 1 shows that

constraints and are accepted directly by our programs and wsat(plpb)-rnp performs the best.

wsat(oip).
2. Theories for théost problem contain formulas which are
not strict pb-constraints. However, these formulas have

simple representations as one or two strict pb-constraints about 8 seconds).

and do not require the help of new atoms. In experiments,
we use original encodings with our algorithms and trans-

Figure 2 shows thatsat(oip) is not effective. It also
shows thatwsat(plpb)-skc has a higher probability of solv-
ing easy instances (instances that can be solved in up to
Theasat(plpb)-rnp catches up and
the performance of the two algorithms is very similar, with
wsat(plpb)-rnp being slightly better (in fact, it is the only

bounded spanning tree v=30 e=240 w=15 wrange=[1..29]

0.8
0.6

0.4 |

! wsat(plpb)-skc (p=0.1y——
/ wsat(plpb)-mp (p=0.7)-----
' wsatoip (p=0.2)—-¢-—

Probability of solving an instance

02/

= @/ I I I I 1 1 1
8 16 32 64 128 256 512 1024
Time (< seconds)

Figure 1: RTDs on thést problem

&

2

algorithm that solved all instances in the family).

weighted dominating set v=500 e=2000 w=40 k=330 wrange=[1..19]

wsat(plpb)-skc (p=
wsat(plpb)-rmp (p=

0.
0.
wsatoip (p=0.

0.2

&l

Probability of solving an instance

O OO DO — =<
I L 8 I I 1

16 32 64
Time (< seconds)

Figure 2: RTDs on thevdm problem

&

2

1 4 8 128 256 512 1024

We do not present here the two other RTD graphs. They
can be found at (Liu & Truszczyski 2006). In the case
of the problemvcoy, RTDs show thatvsat(plpb)-rnp per-
forms better than bothsat(oip) and wsat(plpb)-ske. The
RTD graph for the problemvng shows thatwsat(oip) is
not effective at all (it solves only two instances), and that
wsat(plpd)-ske performs much better thansat (plpd)-rnp.

Conclusions

We designed a family of extensible SLS algorithms for
PL(PB)-theories. The key idea behind our algorithms is
to view a PL(PB)-theoryT as a concise representation of
a certain propositional CNF theowrj(T') logically equiva-
lent to 7', and to show that key parameters needed by SLS
solvers developed for CNF theories can be computed on the
basis ofT, without the need to buil@!(T") explicitly. Our
experiments demonstrate that our methods are superior to
those relying on explicit representationsi(PB)-clauses
as sets of pb-constraints and resorting to off-the-sheklio
search solvers for pb-constraints suchuast (oip).

Clearly, CNF representations of pb-constraints other than
W — Ty are possible and could be used within a general

approach we developed, as long as one can derive formulas

(or procedures) to compute values&ff andg. In fact,
we can push this idea even further. For an arbitrary con-
straint (not necessarily a pb-constraint), if we can evalua

e, f andg in some translation that converts it into a set of
propositional clauses, our general framework yields sslve
accepting theories containing such constraints.

Finally, we point out that the formulas we derived use val-
ues of the form(Z), which will overflow already for rela-
tively small values ofy, if k is close ton/2. In our experi-
ments, even though in some cases overflows occurred quite
often (which we replaced with a certain fixed large integer),
for the atoms our solvers selected to flip the computation of
virtual counts only rarely involved overflows. Still, in ofu-
ture research we will study how to approximéfg to avoid
overflows. Since we only care about the relative order of the
break- and make-counts of atoms, any approximation that
maintains this ordering will be appropriate.

Acknowledgments

We acknowledge the support of NSF grant 11S-0325063 and
KSEF grant KSEF-1036-RDE-008.

References

Aloul, F.; Ramani, A.; Markov, |.; and Sakallah, K. 2003.
PBS v0.2, incremental pseudo-boolean backtrack search SAT
solver and optimizer. http://www.eecs.umich.edu/
“faloul/Tools/pbs/

Liu, L., and Truszczfiski, M. 2006. Experiments with algo-
rithms wsat(plpb) skc and wsat(plpb) rnp. http:/iwww.
cs.uky.edu/ai/wsatcc/exp/

Barth, P. 1995. A Davis- Putnam based elimination algorithm
for linear pseudo-boolean optimization. Technical report, Max-
Planck-Institut @ir Informatik. MPI-1-95-2-003.

Benhamou, B.; Sais, L.; and Siegel, P. 1994. Two proof proce-
dures for a cardinality based language in propositional calculus.
In Procs. of STACS-940l 775,LNCS Springer. 71-82.

Dixon, H., and Ginsberg, M. 2002. Inference methods for a
pseudo-boolean satisfiability solver. Rmocs. of AAAI-02635—
640. AAAI Press.

Garey, M., and Johnson, D. 197@omputers and intractability.

A guide to the theory of NP-completeneS&n Francisco, Calif.:
W.H. Freeman and Co.

Hooker, J. 2000Logic-Based Methods for Optimizatiah Wiley

and Sons.

Hoos, H., and Sttzle, T. 2005. Stochastic Local Search Algo-
rithms — Foundations and Applicationslorgan-Kaufmann.

Hoos, H. 1999. On the run-time behaviour of stochastic local
search algorithms for sat. Procs. of AAAI-99661-666. AAAI
Press.

Liu, L., and Truszcziiski, M. 2003. Local-search techniques in
propositional logic extended with cardinality atoms.Arocs. of
CP-03 volume 2833 oL.NCS Springer. 495-509.

Manquinho, V., and Roussel, O. 2005. Pseudo boolean evaluation
2005. http://www.cril.univ-artois.fr/PB05/

Preswitch, S. 2002. Randomised backtracking for welghtless
linear pseudo-boolean constraint problemsPiocs. of CPAIOR-

02, 7-19.

Selman, B.; Kautz, H.; and Cohen, B. 1994. Noise strategies for
improving local search. Irocs. of AAAI-94337-343. AAAI
Press.

Walser, J. 1997. Solving linear pseudo-boolean constraints with
local search. IriProcs. of AAAI-97269-274. AAAI Press.

