
WSAT(CC ) | a fast lo
al-sear
h ASP solverLengning Liu and Miros law Trusz
zy�nskiDepartment of Computer S
ien
e, University of Kentu
ky, Lexington, KY40506-0046, USAAbstra
t. We des
ribeWSAT (CC ), a lo
al-sear
h solver for 
omputingmodels of theories in the language of propositional logi
 extended by
ardinality atoms. WSAT (CC ) is a pro
essing ba
k-end for the logi
PS+, a re
ently proposed formalism for answer-set programming.1 Introdu
tionWSAT (CC ) is a lo
al-sear
h solver for 
omputing models of theories in the logi
PL

, the propositional logi
 extended by 
ardinality atoms [3,4℄. It 
an serve asa pro
essing ba
k-end for the logi
 PS+ [3℄, an answer-set programming (ASP)formalism based on the language of predi
ate 
al
ulus and, hen
e, di�erent fromtypi
al ASP systems that have origins in logi
 programming.A 
lause in the logi
 PL

 is a formula �1 ^ : : :^�r ! �r+1 _ : : :_�s, whereea
h �i, 1 � i � s, is a propositional atom, or a 
ardinality atom (
-atom, forshort) | an expression kfa1; : : : ; angm, where ai are propositional atoms andk;m and n are integers su
h that 0 � k � m � n. A set of atoms M is a model ofa 
-atom kfa1; : : : ; angm if k � jM \fa1; : : : ; angj � m. With this de�nition, thesemanti
s of 
lauses and theories in the logi
 PL

 is a straightforward extensionof the semanti
s of propositional logi
. PL

 theories arise by grounding theoriesin the ASP logi
 PS+ by means of the grounder program asppsgrnd [3℄.We dis
uss here an implementation of WSAT (CC ). We restri
t the dis
ussionto most essential 
on
epts and options only. For more details and bibliographyon related work on propositional logi
 extended by 
-atoms and pseudo-boolean
onstraints, we refer to [4℄, whi
h introdu
ed WSAT (CC ), and to [2℄.2 WSAT(CC ) | a brief des
ription and a list of optionsAs other WSAT-like lo
al-sear
h solvers [6,7℄, WSAT (CC ) sear
hes for modelsin a series of tries, starting with a random assignment of truth values to atoms.Ea
h try 
onsists of steps, 
alled 
ips, whi
h produ
e "new" truth assignmentsby 
ipping the truth values of some of the atoms. If a 
ip produ
es a satisfyingassignment, this try is terminated and another one starts. WSAT (CC ) supportsseveral strategies to sele
t atoms for 
ipping. All of them require a parameter
alled the noise level. It determines the probability of applying a random walkstep in order to es
ape from a lo
al minimum. The maximum numbers of triesand 
ips, and the noise level are set from the 
ommand line by means of theoptions -t, -
 and -N, respe
tively.



WSAT (CC ) is di�erent from other similar algorithms in the way in whi
h it
omputes the break-
ount of an atom (used to de
ide whi
h atom to 
ip) and inthe way it exe
utes a 
ip. The 
hoi
e of the break-
ount 
omputation methodor of the way a 
ip is de�ned determines a parti
ular lo
al-sear
h strategy inWSAT (CC ). At present, WSAT (CC ) supports three basi
 methods.Virtual break-
ount. We de�ne virtual break-
ounts with respe
t to a propo-sitional theory, in whi
h 
-atoms are repla
ed by their equivalent propositionalrepresentations. However, in the a
tual 
omputation we use the original the-ory (with 
-atoms) rather than its propositional-logi
 
ounterpart (with 
-atomsremoved), as the latter is usually exponentially larger. To invoke virtual break-
ount method, we use the option -VB. The virtual break-
ount method is appli-
able with all PL

 theories and is a default method of WSAT (CC ).Double 
ip. It applies only to simple PL

 theories that are spe
i�ed by thefollowing two 
onditions: (a) all the 
-atoms appear in unit 
lauses, and (b) allthe sets of atoms in the 
-atoms are pairwise disjoint. A 
ip is designed so thatall unit 
lauses built of 
-atoms remain satis�ed. Thus, on o

asion, two atomswill 
hange their truth values in one 
ip step. The break-
ount is de�ned withrespe
t to regular propositional 
lauses as in WSAT . To invoke this method, weuse the option -DF.Permutation 
ip. It applies to theories, in whi
h 
-atoms are used solely tospe
ify permutations (for instan
e, when de�ning an assignment of queens inthe n-queens problem). Flips realize an inverse operation on permutations and,hen
e, transform a permutation into another permutation. As a 
onsequen
e,all unit 
lauses built of 
-atoms are always satis�ed. To a

omplish that, fouratoms must have their truth values 
hanged in one 
ip step. The break-
ount isde�ned with respe
t to regular propositional 
lauses of the theory in the sameway as in WSAT . We invoke this method with the option -PF.3 WSAT(CC ) | input, output and how to invoke itWSAT (CC ) a

epts input �les 
ontaining PL

 theories des
ribed in a formatpatterned after that of CNF DIMACS. The �rst line is of the form p <na><n
>, where na and n
 are the number of propositional atoms and 
lauses in thetheory, respe
tively. The following lines list 
lauses. A 
lause �1 ^ : : : ^ �r !�r+1 _ : : : _ �s, is written as A1 ... Ar , A(r+1) ... As, where ea
h Ai is apositive integer (representing the 
orresponding atom �i), or an expression ofthe form fk m C1 ... Cng (representing a 
-atom kfa1; : : : ; angm).WSAT (CC ) outputs models that it �nds as well as several statisti
s to stan-dard output devi
e (or, depending on the options used, to a �le in a user-readableformat). It also 
reates a �le wsat

.stat that stores re
ords summarizing every
all to WSAT (CC ) and key statisti
s pertaining to the 
omputation.Typi
al 
all to WSAT (CC ) looks as follows: wsat

 -f file -t 200 -
150000 -N 10 100. It results in WSAT (CC ) looking for models to the PL

theory spe
i�ed in file, by running 200 tries, ea
h 
onsisting of 150000 
ips.The noise level is set at 10/100 (=0.1).



4 WSAT(CC ) pa
kageWSAT (CC ) solver and several related utilities 
an be obtained from http://www.
s.uky.edu/ai/wsat

/. WSAT (CC ) works on most Unix-like operatingsystems that provide g

 
ompiler. The utilities require Perl 5 or greater. Formore details on installation, we refer to [2℄.5 Performan
eOur experiments demonstrate that WSAT (CC ) is an e�e
tive tool to 
omputemodels of satis�able PL

 theories and 
an be used as a pro
essing ba
k-end forthe ASP logi
 PS+. In [4℄, we showed that WSAT (CC ) is often mu
h fasterthan a lo
al-sear
h SAT solver WSAT and has, in general, a higher su

ess rate(likelihood that it will �nd a model if an input theory has one). In [1℄, we usedWSAT (CC ) to 
ompute several new lower bounds for van der Waerden numbers.Here, we will dis
uss our re
ent 
omparisons of WSAT (CC ) with WSAT (OIP)[7℄, a solver for propositional theories extended with pseudo-boolean 
onstraints(for whi
h we developed utilities allowing it to a

ept PL

 theories).We tested these programs on PL

 theories en
oding instan
es of the vertex-
over and open n-queens problems1. We generated these theories by groundingappropriate PS+ theories extended with randomly generated problem instan
es.Table 1 shows results obtained by running WSAT (CC ) (both -VB and -DFversions are appli
able in this 
ase) and WSAT (OIP) to �nd vertex 
overs ofsizes 1035, 1040 and 1045 in graphs with 2000 verti
es and 4000 edges. The �rst
olumn shows the size of the desired vertex 
over and the number of graphs (outof 50 that we generated), for whi
h we were able to �nd a solution by meansof at least one of the methods used. The remaining 
olumns summarize theperforman
e of the three algorithms used: WSAT (CC )-VB , WSAT (CC )-DF ,and WSAT (OIP). The entries show the time, in se
onds, needed to 
omplete
omputation for all 50 instan
es and the su

ess rate (the per
entage of 
aseswhere the method �nds a solution to all the instan
es, for whi
h at least onemethod found a solution).Table 1. Vertex 
over: Large GraphsFamily WSAT(CC )-VB WSAT(CC )-DF WSAT(OIP)1035 (9 / 50) 1453/77% 3426/100% 9748/11%1040 (24 / 50) 1166/95% 2464/100% 7551/100%1045 (36 / 50) 991/86% 1610/100% 6365/100%The results show that WSAT (CC )-VB is faster than WSAT (CC )-DF , whi
hin turn is faster that WSAT (OIP). However, WSAT (CC )-VB has generally thelowest su

ess rate while WSAT (CC )-DF , the highest.We note that we attempted to 
ompare WSAT (CC ) with smodels [5℄, aleading ASP system. We found that for the large instan
es that we experimented1 In the open n-queens problem, given an initial \atta
k-free" assignment of k (k < n)queens on the n� n board, the goal is to assign the remaining n� k queens so thatthe resulting assignment is also \atta
k-free".



with smodels failed to terminate within the time limit that we allo
ated perinstan
e. That is not surprising, as the sear
h spa
e is prohibitively large for a
omplete method and smodels is a 
omplete solver.The open n-queens problem allowed us to experiment with the method -PF(permutation 
ip). It proved extremely e�e
tive. We tested it for the 
ase of 50queens with 10 of them preassigned. We generated 100 random preassignmentsof 10 queens to a 50� 50 board and found that 55 of them are satis�able. Wetested the four algorithms only on those satis�able instan
es. The results areshown in Table 2. Table 2. Open n-Queens: N = 50, 10 preassignedFamily WSAT(CC )-VB WSAT(CC )-PF WSAT(OIP) smodels50+10(55 / 55) 20/1539/100% 9/768/100% 76/1459/100% 908/10%Here, we in
lude another measurement for lo
al sear
h solvers. The se
ondnumber shows the average number of 
ips ea
h method uses in �nding onesolution. WSAT (CC )-VB is faster than WSAT (OIP) even though they havethe similar number of 
ips. WSAT (CC )-PF is even more powerful be
ause ituses the fewest number of 
ip and is the fastest. Smodels 
an only �nd solutionsfor 6 instan
es within the 1000-se
ond limit and turns out to be the slowest.We tested the version -PF with one of the en
odings of the Hamiltonian-
y
leproblem and dis
overed it is mu
h less e�e
tive there. Conditions under whi
hthe version -PF is e�e
tive remain to be studied.A
knowledgmentsThis resear
h was supported by the National S
ien
e Foundation under GrantNo. 0097278.Referen
es1. M.R. Drans�eld, V.M. Marek, and M. Trusz
zy�nski. Satis�ability and 
omputingvan der Waerden numbers. In Pro
eedings of SAT-2003. LNAI, Springer Verlag,2003.2. D. East, L. Liu, S. Logsdon, V. Marek, and M. Trusz
zy�nski. ASPPS user's manual,2003. http://www.
s.uky.edu/aspps/users_manual.ps.3. D. East and M. Trusz
zy�nski. Propositional satis�ability in answer-set program-ming. In Pro
eedings of KI-2001, LNAI 2174. Springer Verlag, 2001. Full version sub-mitted for publi
ation (available at http://xxx.lanl.gov/abs/
s.LO/0211033).4. L. Liu and M. Trusz
zy�nski. Lo
al-sear
h te
hniques in propositional logi
 extendedwith 
ardinality atoms. In Pro
eedings of CP-2003. LNCS, Springer Verlag, 2003.5. I. Niemel�a and P. Simons. Extending the smodels system with 
ardinality andweight 
onstraints. In J. Minker, editor, Logi
-Based Arti�
ial Intelligen
e, pages491{521. Kluwer A
ademi
 Publishers, 2000.6. B. Selman, H.A. Kautz, and B. Cohen. Noise strategies for improving lo
al sear
h.In Pro
eedings of AAAI-94. AAAI Press, 1994.7. J.P. Walser. Solving linear pseudo-boolean 
onstraints with lo
al sear
h. In Pro-
eedings of AAAI-97. AAAI Press, 1997.


