
Local-search techniques for propositional logicextended with cardinality constraintsLengning Liu and Miros law Truszczy�nskiDepartment of Computer Science, University of Kentucky, Lexington, KY40506-0046, USAAbstract. We study local-search satis�ability solvers for propositionallogic extended with cardinality atoms, that is, expressions that provideexplicit ways to model constraints on cardinalities of sets. Adding cardi-nality atoms to the language of propositional logic facilitates modelingsearch problems and often results in concise encodings. We propose two\native" local-search solvers for theories in the extended language. Wealso describe techniques to reduce the problem to standard propositionalsatis�ability and allow us to use o�-the-shelf SAT solvers. We studythese methods experimentally. Our general �nding is that native solversdesigned speci�cally for the extended language perform better than in-direct methods relying on SAT solvers.1 IntroductionWe propose and study local-search satis�ability solvers for an extension of propo-sitional logic with explicit means to represent cardinality constraints.In recent years, propositional logic has been attracting considerable atten-tion as a general-purpose modeling and computing tool, well suited for solvingsearch problems. For instance, to solve a graph k-coloring problem for an undi-rected graph G, we construct a propositional theory T so that its models encodek-colorings of G and there is a polynomial-time method to reconstruct a k-colorings of G from a model of T . Once we have such a theory T , we apply toit a satis�ability solver, �nd a model of T and reconstruct from the model thecorresponding k-coloring of G.Instances of many other search problems can be represented in a similar wayas propositional theories and this modeling capability of the propositional logichas been known for a long time. However, it has been only recently that we sawa dramatic improvement in the performance of programs to compute models ofpropositional theories [12, 8, 14, 9, 10, 6]. These new programs can often handletheories consisting of hundreds of thousands, sometimes millions, of clauses. Theydemonstrate that propositional logic is not only a tool to represent problems butalso a viable computational formalism.The approach we outlined above has its limitations. The repertoire of opera-tors available for building formulas to represent problem constraints is restrictedto boolean connectives. Moreover, since satis�ability solvers usually require CNFtheories as input, for the most part the only formulas one can use to express

constraints are clauses. One e�ect of these restrictions is often very large sizeof CNF theories needed to represent even quite simple constraints and, con-sequently, poorer e�ectiveness of satis�ability solvers in computing answers tosearch problems. Researchers recognized this limitation of propositional logic.They proposed extensions to the basic language with the equivalence operator[7], with cardinality atoms [3, 5] and with pseudo-boolean constraints [2, 13, 1,4, 11], and developed solvers capable of computing models for theories in theexpanded syntax.In this paper, we focus on an extension of propositional logic with cardinal-ity atoms, as described in [5]. Speci�cally, a cardinality atom is an expressionof the form kXm, where k and m are non-negative integers and X is a set ofpropositional atoms. Cardinality atoms o�er a direct means to represent cardi-nality constraints on sets and help construct concise encodings of many searchproblems. We call this extension of the propositional logic the propositional logicwith cardinality constraints and denote it by PLcc.To make the logic PLcc into a computational mechanism, we need programs tocompute models of PLcc theories. One possible approach is to compile cardinalityatoms away, replacing them with equivalent propositional-logic representations.After converting the resulting theories to CNF, we can use any o�-the-shelfsatis�ability solver to compute models. Another approach is to design solversspeci�cally tailored to the expanded syntax of the logic PLcc. To the best ofour knowledge, the �rst such solver was proposed in [3]. A more recent solver,aspps1, was described in [5].These two solvers are complete solvers. In this paper, we propose and studylocal-search satis�ability solvers that can handle the extended syntax of the logicPLcc. In our work we built on ideas �rst used in WSAT, one of the most e�ectivelocal-search satis�ability solvers for propositional logic [12]2. In particular, as inWSAT, we proceed by executing a prespeci�ed number of tries. Each try startswith a random truth assignment and consists of a sequence of local modi�cationsteps called
ips. Each
ip is determined by an atom selected from an unsatis�edclause. We base the choice of an atom on the value of its break-count (somemeasure of how much the corresponding
ip increases the degree to which theclauses in the theory are violated). In WSAT , the break-count of an atom is thenumber of clauses that become unsatis�ed when the truth value of the atom is
ipped. In the presence of cardinality atoms, this simple measure does not leadto satisfactory algorithms and modi�cations are necessary.In this paper, we propose two approaches. In the �rst of them, we change thede�nition of the break-count. To this end, we exploit the fact that cardinalityatoms are only high-level shorthands for some special propositional theories and,as we already indicated earlier, can be compiled away. Let T be a PLcc theory andlet T 0 be its propositional-logic equivalent. We de�ne the break-count of an atoma in T as the number of clauses in the compiled theory T 0 that become unsatis�edafter we
ip a. Important thing to note is that we do not need to compute T 01 The acronym for answer-set programming with propositional schemata.2 In the paper, we write WSAT instead of WALKSAT to shorten the notation.

explicitly in order to compute the break-count of a. It can be computed directlyon the basis of T alone.Our second approach keeps the concept of the break-count exactly as it isde�ned in WSAT but changes the notion of a
ip. This approach applies when-ever a PLcc theory T can be separated into two parts T1 and T2 so that: (1) T2consists of propositional clauses, (2) it is easy to construct random assignmentsthat satisfy T1, and (3) for every truth assignment satisfying T1, (modi�ed)
ipsexecuted on this assignment result in assignments that also satisfy T1. In suchcases, we can start a try by generating an initial truth assignment to satisfyall clauses in T1, and then executing a sequence of (modi�ed)
ips, choosingatoms for
ipping based on the number of clauses in T2 (which are all standardpropositional CNF clauses) that become unsatis�able after the
ip.In the paper, we develop and implement both ideas. We study experimen-tally the performance of our algorithms on several search problems: the graphcoloring problem, the vertex-cover problem and the open latin-square problem.We compare the performance of our algorithms to that of selected SAT solversexecuted on CNF theories obtained from PLcc theories by compiling away car-dinality atoms.2 Logic PLccThe language of the logic PLcc is determined by the set At of propositional atomsand two special symbols ? and > that we always interpret as false and true,respectively. A cardinality atom (c-atom, for short) is an expression of the formkXm, where X is a set of propositional atoms, and k and m are non-negativeintegers. If X = fa1; : : : ; ang, we will also write kfa1; : : : ; angm to denote ac-atom kXm. One (but not both) of k and m may be missing. Intuitively, ac-atom kXm means: at least k and no more than m of atoms in X are true. If k(or m) is missing, the c-atom constrains the number of its propositional atomsthat must be true only from above (only from below, respectively).A clause is an expression of the form :�1 _ : : : _ :�r _ �1 _ : : : _ �s; whereeach �i, 1 � i � r, and each �j , 1 � j � s, is a propositional atom or a c-atom.A theory of the logic PLcc is any set of clauses3.An interpretation is an assignment of truth values t and f to atoms in At .An interpretation I satis�es an atom a if I(a) = t. An interpretation I satis�esa c-atom kfa1; : : : ; angm if k � jfi : I(ai) = tgj � m:This notion of satis�ability extends in a standard way to clauses and theories.We will write interchangingly \is a model of" and \satis�es". We will also writeI j= E, when I is a model of an atom, c-atom, clause or theory E.We will now illustrate the use of the logic PLcc as a modeling tool by pre-senting PLcc theories that encode (1) the graph-coloring problem, (2) the graph3 It is easy to extend the language of PLcc and introduce arbitrary formulas builtof atoms and c-atoms by means of logical connectives. Since clausal theories, as inpropositional logic, are most fundamental, we focus on clausal theories only.

vertex-cover problem, and (3) the open latin-square problem. We later use thesetheories as benchmarks in performance tests.In the �rst of these problems we are given a graph G with the set V =f1; : : : ; ng of vertices and a set E of edges (unordered pairs of vertices). We arealso given a set C = f1; : : : ; kg of colors. The objective is to �nd an assignmentof colors to vertices so that for every edge, its vertices get di�erent colors. APLcc theory representing this problem is built of propositional atoms ci;j , where1 � i � n, and 1 � j � k. An intended meaning of an atom ci;j is that vertex igets color j. We de�ne the theory col(G; k) to consist of the following clauses:1. 1fci;1; : : : ; ci;kg1, for every i, 1 � i � n. These clauses ensure that everyvertex obtains exactly one color2. :cp;j _ :cr;j , for every edge fp; rg 2 E and for every color j. These clausesenforce the main colorability constraint.It is easy to see that models of the theory col(G; k) are indeed in one-to-onecorrespondence with k-colorings of G.In a similar way, we construct a theory vc(G; k) that represents the vertex-cover problem. Let G be an undirected graph with the set V = f1; : : : ; ng ofvertices and a set E of edges. Given G and a positive integer k, the objective isto �nd a set U of no more than k vertices, such that every edge has at least oneof its vertices in U (such sets U are vertex covers). We build the theory vc(G; k)of atoms ini, 1 � i � n, (intended meaning of ini: vertex i is in a vertex cover)and de�ne it to consist of the following clauses:1. fin1; : : : ; inngk. This clause guarantees that at most k vertices are chosento a vertex cover2. inp _ inr, for every edge fp; rg 2 E. These clauses enforce the main vertexcover constraint.Again, it is evident that models of theory vc(G; k) are in one-to-one correspon-dence with those vertex covers of G that have no more than k elements.In the open latin-square problem, we are given an integer n and a collectionD of triples (i; j; k), where i, j and k are integers from f1; : : : ; ng. The goal is to�nd an n�n array A such that all entries in A are integers from f1; : : : ; ng, norow and column of A contains two identical integers, and for every (i; j; k) 2 D,A(i; j) = k. In other words, we are looking for a latin square of order n thatextends the partial assignment speci�ed by D. To represent this problem weconstruct a PLcc theory ls(n;D) consisting of the following clauses:1. ai;j;k, for every (i; j; k) 2 D (to represent the partial assignment D given asinput)2. 1fai;j;1; : : : ; ai;j;ng1, for every i; j = 1; : : : ; n (to enforce that every entryreceives exactly one value)3. fai;1;k; : : : ; ai;n;kg1, for every i; k = 1; : : : ; n (in combination with (2) theseclauses enforce that an integer k appears exactly once in a row i)4. fa1;j;k; : : : ; an;j;kg1, for every j; k = 1; : : : ; n (in combination with (2) theseclauses enforce that an integer k appears exactly once in a column j).

One can verify that models of the theory ls(n;D) correspond to solutions to theopen latin-square problem with input D.The use of c-atoms in all these three examples results in concise represen-tations of the corresponding problems. Clearly, we could eliminate c-atoms andreplace the constraints they represent by equivalent CNF theories. However, theencodings become less direct, less concise and more complex.3 Using SAT Solvers to Compute Models of PLccTheoriesWe will now discuss methods to �nd models of PLcc theories by means of stan-dard SAT solvers. A key idea is to compile away c-atoms by replacing them withtheir propositional-logic descriptions. We will propose several ways to do so.Let us consider a c-atom C = kfa1; :::; angm and let us de�ne a CNF theoryC 0 to consist of the following clauses:1. :ai1 _ :::_:aim+1 , for any m+ 1 atoms ai1 ; :::; aim+1 from fa1; :::; ang (thereare � nm+1� such clauses); and2. ai1 _ :::_ain�k+1 , for any n�k+1 atoms ai1 ; :::; ain�k+1 in fa1; :::; ang (thereare � nk�1� such clauses).It is easy to see that the theory C 0 has the same models as the c-atom C.Let T be a PLcc theory. We denote by compile-basic(T) the CNF theoryobtained from T by replacing every c-atom C with the conjunction of clausesin C 0 and by applying distributivity to transform the resulting theory into theCNF. This approach translates T into a theory in the same language but it ispractical only if k and m are small (do not exceed, say 2). Otherwise, the size ofthe theory compile-basic(T) quickly gets too large for SAT solvers to be e�ective.Our next method to compile away c-atoms depends on counting. To simplifythe presentation, we will describe it in the case of a c-atom of the form kX butit extends easily to the general case. We will assume that k � 1 (otherwise, kXis true) and k � jX j (otherwise kX is false).Let us consider a PLcc theory T and let us assume that T contains a c-atomof the form C = kfa1; : : : ; ang. We introduce new propositional atoms: bi;j ,i = 0; : : : ; n; j = 0; : : : ; k. The intended role for bi;j is to represent the fact thatat least j atoms in fa1; : : : ; aig are true. Therefore, we de�ne a theory C 0 toconsist of the following clauses:1. b0;j $?, j = 1; : : : ; k,2. bi;0 $ >, i = 0; : : : ; n,3. bi;j $ bi�1;j _ (bi�1;j�1 ^ ai), i = 1; : : : ; n, j = 1; : : : ; k.Let I be an interpretation such that I j= C 0. One can verify that I j= bi;j ifand only if I j= jfa1; : : : ; aig. In particular, I j= bn;k if and only if I j= C.Thus, if we replace C in T with bn;k and add to T the theory C 0 the resultingtheory has the same models (modulo new atoms) as T . By repeated application

of this procedure, we can eliminate all c-atoms from T . Moreover, if we representtheories C 0 in CNF, the resulting theory will itself be in CNF. We will denote thisCNF theory as compile-uc(T), where uc stands for unary counting. One can showthat the size of compile-uc(T) is O(R � size(T)), where R is the maximum ofall integers appearing in T as lower or upper bounds in c-atoms. It follows that,in general, this translation leads to more concise theories than compile-basic.However, it does introduce new atoms.The idea of counting can be pushed further. Namely, we can design a moreconcise translation than compile-uc by following the idea of counting and byrepresenting numbers in the binary system and by building theories to modelbinary counting and comparison. For a PLcc theory T , we denote the resultof applying this translation method to T by compile-bc (bc stands for binarycounting). Due to space limitation we omit the details of this translation. Weonly note that the size of compile-bc(T) is O(size(T) log2(R + 1)), where R isthe maximum of all integer bounds of c-atoms appearing in T .4 Local-search Algorithms for the Logic PLccIn this section we describe a local-search algorithm Generic-WSAT cc designedto test satis�ability of theories in the logic PLcc. It follows a general patternof WSAT [12]. The algorithm executes Max -Tries independent tries. Each trystarts in a randomly generated truth assignment and consists of a sequence ofup to Max -Flips
ips, that is, local changes to the current truth assignment.The algorithm terminates with a truth assignment that is a model of the inputtheory, or with no output at all (even though the input theory may in fact besatis�able). We provide a detailed description of the algorithm Generic-WSAT ccin Figure 1.We note that the procedure Flip may, in general, depend on the input theoryT . It is not the case in WSAT and other similar algorithms but it is so in oneof the algorithms we propose in the paper. Thus, we include T as one of thearguments of the procedure Flip .We also note that in the algorithm, we use several parameters that, in our im-plementations, we enter from the command line. They are Max -Tries , Max -Flipsand p. All these parameters a�ect the performance of the program. We come backto this matter later in Section 5.To obtain a concrete implementation of the algorithm Generic-WSAT cc, weneed to de�ne break -count(x) and to specify the notion of a
ip. In this paper wefollow two basic directions. In the �rst of them, we use a simple notion of a
ip,that is, we always
ip just one atom. We introduce, however, a more complexconcept of the break-count, which we call the virtual break-count. In the secondapproach, we use a simple notion of the break-count | the number of clausesthat become unsatis�ed | but introduce a more complex concept of a
ip, whichwe call the double-
ip.To specify our �rst instantiation of the algorithm Generic-WSAT cc(T), wede�ne the break-count of an atom x in T as the number of clauses in the CNF

Figure 1 Algorithm Generic-WSAT cc(T)INPUT: T - a PLcc theoryOUTPUT: � - a satisfying assignment of T , or no outputBEGIN1. For i 1 to Max -Tries , do2. � randomly generated truth assignment;3. For j 1 to Max -Flips, do4. If � j= T then return �;5. C randomly selected unsatis�ed clause;6. For each atom x in C, compute break -count (x);7. If any of these atoms has break-count 0 then8. randomly choose an atom with break-count 0, call it a;9. Else10. with probability p, a an atom x with minimum break -count(x);11. with probability 1� p, a a randomly chosen atom in C;12. End If13. � F lip(T; �; a);14. End for of j15. End for of iENDtheory compile-basic(T) that become unsatis�ed after
ipping x. The key ideais to observe that this number can be computed strictly on the basis of T , thatis, without actually constructing the theory compile-basic(T). It is critical sincethe size of the theory compile-basic(T) is in general much larger than the size ofT (sometimes even exponentially larger). We refer to this notion of the break-count as the virtual break-count as it is de�ned not with respect to an inputPLcc theory T but with respect to a \virtual" theory compile-basic(T), whichwe do not explicitly construct.Further, we de�ne the procedure Flip(�; a) (it does not depend on T hence,we dropped T from the notation) so that, given a truth assignment � and an atoma, it returns the truth assignment �0 obtained from � by setting �0(a) to the dualvalue of �(a) and by keeping all other truth values in � unchanged (this is the ba-sic notion of the
ip that is used in many local-search algorithms, in particular inWSAT). We call the resulting version of the the algorithm Generic-WSAT cc(T),the virtual break-count WSAT cc and denote it by vb-WSAT cc.The second instantiation of the algorithm Generic-WSAT cc that we willdiscuss applies only to PLcc theories of some special syntactic form. A PLcctheory T is simple, if T = T cc [T cnf , where T cc \ T cnf = ; and1. T cc consists of unit clauses Ci = kiXimi, 1 � i � p, such that sets Xi arepairwise disjoint2. T cnf consists of propositional clauses3. for every i, 1 � i � p, ki < jXij and mi > 0.Condition (3) is not particularly restrictive. In particular, it excludes c-atomskXm such that k > jX j, which are trivially false and can be simpli�ed away

Figure 2 Algorithm F lip(T; �; a)INPUT: T - a simple PLcc theory (T = T cc [T cnf)� - current truth assignmenta - an atom chosen to
ipOUTPUT: � - updated � after a is
ippedBEGIN1. If a occurs in a clause in T cc and
ipping a will break it then2. pick the best opposite atom, say b, in that clause w.r.t. break-count;3. �(b) dual of �(b);4. End if5. �(a) dual of �(a);6. return �;ENDfrom the theory, as well as those for which k = jX j, which forces all atoms inX to be true and again implies straightforward simpli�cations. The e�ect of therestriction m > 0 is similar; it eliminates c-atoms with m = 0, for which itmust be that all atoms in X be false. We note that PLcc theories we proposedas encodings of the graph-coloring and vertex-cover problems are simple; thetheory encoding the latin-square problem is not.In this section, we consider only simple PLcc theories. Let us assume that wedesigned the procedure Flip(T; �; a) so that it has the following property:(DF) if a truth assignment � is a model of T cc then �0 = Flip(T; �; a) is also amodel of T cc.Let us consider a try starting with a truth assignment � that satis�es all clausesin T cc. If our procedure Flip satis�es the property (DF), then all truth assign-ments that we will generate in this try satisfy all clauses in T cc. It follows thatthe only clauses that can become unsatis�ed during the try are the propositionalclauses in T cnf . Consequently, in order to compute the break-count of an atom,we only need to consider the CNF theory T cnf and count how many clauses inT cnf become unsatis�able when we perform a
ip.Since all c-atoms in T cc are pairwise disjoint, it is easy to generate randomtruth assignments that satisfy all these constraints. Thus, it is easy to generate arandom starting truth assignment for a try. Moreover, it is also quite straightfor-ward to design a procedure Flip so that it satis�es property (DF). We will outlineone such procedure now and provide for it a detailed pseudo-code description.Let us assume that � is a truth assignment that satis�es all clauses in T ccand that we selected an atom a as the third argument for the procedure Flip .If
ipping the value of a does not violate any unit clause in T cc, the procedureFlip(T; �; a) returns the truth assignment obtained from � by
ipping the valueof a. Otherwise, since the c-atoms forming the clauses in T cc are pairwise disjoint,there is exactly one clause in T cc, say kXm, that becomes unsatis�ed when thevalue of a is
ipped. In this case, clearly, a 2 X .

We proceed now as follows. We �nd in X another atom, say b, whose truthvalue is opposite to that of a, and
ip both a and b. That is, Flip(T; �; a) returnsthe truth assignment obtained from � by
ipping the values assigned to a and bto their duals. Clearly, by performing this double
ip we maintain the propertythat all clauses in T cc are still satis�ed. Indeed all clauses in T cc other thankXm are not a�ected by the
ips (these clauses contain neither a nor b) andkXm is satis�ed because
ipping a and b simply switches their truth values and,therefore, does not change the number of atoms in X that are true.The only question is whether such an atom b can be found. The answer isindeed positive. If �(a) = t and
ipping a breaks clause kXm, we must havethat the number of atoms that are true in X is equal to k. Since jX j > k, thereis an atom in X that is false. The reasoning in the case when �(a) = f is similar.A pseudo-code for the procedure is given in Figure 2.5 Experiments, Results and DiscussionWe performed experimental studies of the e�ectiveness of our local-search al-gorithms in solving several di�cult search problems. For the experiments weselected the graph-coloring problem, the vertex-cover problem and the latin-square problem. We discussed these problems in Section 2 and described PLcctheories that encode them. To build PLcc theories for testing, we randomly gen-erate or otherwise select input instances to these search problems and instantiatethe corresponding PLcc encodings. For the graph-coloring and vertex-cover prob-lems we obtain simple PLcc theories and so all methods we discussed apply. Thetheories we obtain from the latin-square problem are not simple. Consequently,the algorithm df -WSAT cc does not apply but all other methods do.Our primary goal is to demonstrate that our algorithms vb-WSAT cc anddf -WSAT cc can compute models of large PLcc theories and, consequently, aree�ective tools for solving search problems. To this end, we study the performanceof these algorithms and compare it to the performance of methods that employSAT solvers, speci�cally WSAT and zcha� [10]. We chose WSAT since it isa local-search algorithm, as are vb-WSAT cc and df -WSAT cc. We chose zcha�since it is one of the most advanced complete methods. In order to use SATsolvers to compute models of PLcc theories, we executed them on the CNFtheories produced by procedures compile-bc and compile-basic (Section 3). Weselected the method compile-bc as it results in most concise translations4. Weselected the method compile-basic as it is arguably the most straightforwardtranslation and it does not require auxiliary atoms.For all local-search algorithms, including WSAT , we used the same valuesof Max -Tries and Max -Flips : 100 and 100000, respectively. The performanceof local-search algorithms depends to a large degree on the on the value of theparameter p (noise). For each method and for each theory, we ran experiments4 Our experiments with the translation compile-uc show that it performs worse. Webelieve it is due to larger size of theories it creates. We do not report these resultshere due to space limitations.

to determine the value of p, for which the performance was the best. All resultswe report here come from the best runs for each local-search method.To assess the performance of solvers on families of test theories, we use thefollowing measures.1. The average running time over all instances in a family2. The success rate of a method: the ratio of the number of theories in a family,for which the method �nds a solution, to the total number of instances inthe family for which we were able to �nd a solution using any of the methodswe tested (for all methods we set a limit of 2 hours of CPU time/instance).The success rate is an important measure of the e�ectiveness of local-searchtechniques. It is not only important that they run fast but also that they arelikely to �nd models when models exist.We will now present and discuss the results of our experiments. We start withthe coloring problem. We generated for testing �ve families C1; : : : ; C5, eachconsisting of 50 random graphs with 1000 vertices and 3850, 3860, 3870 3880and 3890 edges, respectively. The problem was to �nd for these graphs a coloringwith 4 colors (each of these graphs has a 4-coloring). We show the results in Table5. Columns vb-WSAT cc, df -WSAT cc show the performance results for our local-search algorithms run on PLcc theories encoding the 4-colorability problem onthe graphs in the families Ci, 1 � i � 5. Columns WSAT -bc and zcha� -bc showthe performance of the algorithms WSAT and zcha� on CNF theories obtainedfrom the PLcc-theories by the procedure compile-bc. Columns WSAT -basic andzcha� -basic show the performance of the algorithms WSAT and zcha� on CNFtheories produced by the procedure compile-basic (since the bounds in c-atomsin the case of 4-coloring are equal to 1, there is no dramatic increase in the sizewhen using the procedure compile-basic). The �rst number in each entry is theaverage running time in seconds, the second number | the percentage successrate. The results for local-search algorithms were obtained with the value of noisep = 0:4 (we found this value to work well for all the methods).Table 1. Graph-coloring problemFamily vb-WSATcc df -WSATcc WSAT -bc zcha� -bc WSAT -basic zcha� -basicC1 39/96% 97/100% 27/0% 68/100% 29/100% 91/100%C2 40/98% 100/100% 27/0% 142/100% 29/100% 128/100%C3 41/100% 103/100% 27/0% 233/100% 30/98% 146/100%C4 41/100% 104/98% 28/0% 275/100% 30/96% 216/100%C5 42/96% 108/98% 28/0% 478/100% 30/96% 594/100%In terms of the success rate, our algorithms achieve or come very close toperfect 100%, and are comparable or slightly better than the combination ofcompile-basic and WSAT . When comparing the running time, our algorithmsare slower but only by a constant factor. The algorithm vb-WSAT cc is onlyabout 0.3 times slower and the algorithm df -WSAT cc is about 3.5 times slower.Next, we note that the combination compile-bc and WSAT does not performwell at all. It fails to �nd a 4-coloring even for a single graph. We also observe thatzcha� performs well no matter which technique is used to eliminate c-atoms. It

�nds a 4-coloring for every graph that we tested. In terms of the running timethere is no signi�cant di�erence between its performance on theories obtainedby compile-bc as opposed to compile-basic. However, zcha� is, in general, slowerthan WSAT and our local-search algorithms vb-WSAT cc and df -WSAT cc.Finally, we note that our results suggest that our algorithms are less sensitiveto the choice of a value for the noise parameter p. In Table 5 we show theperformance results for our two algorithms and for the combination compile-basicand WSAT on theories obtained from the graphs in the family C1 and for passuming values 0.1, 0.2, 0.3 and 0.4.Table 2. Coloring: sensitivity to the value of pNoise vb-WSAT cc df -WSATcc WSAT -basicp = 0:1 16% 100% 18%p = 0:2 98% 100% 90%p = 0:3 100% 100% 98%p = 0:4 96% 100% 100%We also tested our algorithms on graph-coloring instances that were used inthe graph-coloring competition at the CP-2002 conference. We refer to http://mat.gsia.cmu.edu/COLORING02/ for details. We experimented with 63 in-stances available there. For each of these graphs, we identi�ed the smallest num-ber of colors that is known to su�ce to color it. We then tested whether thealgorithms vb-WSAT cc, WSAT and zcha� (the latter two in combination withthe procedure compile-basic to produce a CNF encoding) can �nd a coloringusing that many colors. We found that the algorithms df -WSAT cc, WSAT andzcha� (the latter two in combination with compile-basic) were very e�ective.Their success rate (the percentage of instances for which these methods couldmatch the best known result) was 62%, 56% and 54%, respectively. In com-parison, the best among the algorithms that participated in the competition,the algorithm MZ, has success rate of 40% only and the success rate of otheralgorithms does not exceed 30%.For the vertex cover problem we randomly generated 50 graphs with 200vertices and 400 edges. For i = 103; : : : ; 107, we constructed a family V Ci ofPLcc theories encoding, for graphs we generated, the problem of �nding a vertexcover of cardinality at most i. For this problem, the translation compile-basic isnot practical as translating just a single c-atom fin1; : : : ; in200gi requires �200i+1�clauses and these numbers are astronomically large for i = 103; : : : ; 107. Thetranslation compile-bc also does not perform well. Neither WSAT nor zcha�succeed in �nding a solution to even a single instance (as always, within 2 hoursof CPU time/instance). Thus, for the vertex-cover problem, we developed yetanother CNF encoding, which we refer to as ad-hoc. This encoding worked wellwith WSAT but not with zcha� . We show the results in Table 5. For thisproblem, the value of noise p = 0:1 worked best for all local-search methods.Our algorithms perform very well. They have the best running time (withvb-WSAT cc being somewhat faster than df -WSAT cc) and �nd solutions for allinstances for which we were able to �nd solutions using these and other tech-niques. In terms of the success rate WSAT , when run on ad-hoc translations,

Table 3. Vertex-cover problem: graphs with 200 vertices and 400 edgesFamily vb-WSATcc df -WSAT cc WSAT -bc zcha� -bc WSAT -ad-hoc zcha� -ad-hocV C103 117/100% 300/100% 11/0% 7200/0% 1696/100% 7200/0%V C104 86/100% 225/100% 11/0% 7200/0% 1400/100% 7200/0%V C105 69/100% 178/100% 11/0% 7200/0% 1191/100% 7200/0%V C106 29/100% 78/100% 11/0% 7200/0% 848/100% 7200/0%V C107 10/100% 27/100% 11/0% 7200/0% 671/100% 7200/0%performed as well as our algorithms but was several (7 to 67, depending on themethod and family) times slower.As in the case of graph coloring, our algorithms again were less sensitive tothe choice of the noise value p, as shown in Table 5 (the tests were run on thefamily V C103. Table 4. Vertex cover: sensitivity to the value of pNoise vb-WSATcc df -WSATcc WSAT -ad-hocp = 0:1 100% 100% 100%p = 0:2 100% 100% 100%p = 0:3 100% 100% 58%p = 0:4 100% 100% 33%We also experimented with the vertex-cover problem for graphs of an orderof magnitude larger. We randomly generated 50 graphs, each with 2000 verticesand 4000 edges. For these graphs we constructed a family V C1035 consisting of 50PLcc theories, each encoding the problem of �nding a vertex-cover of cardinalityat most 1035 in the corresponding graph. With graphs of this size, all compilationmethods produce large and complex CNF theories on which both WSAT andzcha� fail to �nd even a single solution. Due to the use of c-atoms, the PLcctheories are relatively small. Each consists of 2000 atoms and 4001 clauses andhas a total of about 10,000 atom occurrences. Our algorithms vb-WSAT cc anddf -WSAT cc run on each of the theories in under an hour and the algorithmdf -WSAT cc �nds a vertex cover of cardinality at most 1035 for 9 of them. Thealgorithm vb-WSAT cc is about two times faster but has worse success rate: �ndssolutions only in 7 instances.The last test concerned the latin-square problem. We assumed n = 30 andrandomly generated 50 instances of the problem, each specifying values for some10 entries in the array. Out of these instances we constructed a family LS of thecorresponding PLcc theories. Since these PLcc theories are not simple, we didnot test the algorithm df -WSAT cc here. The results are shown in Table 5. Forthe local-search methods, we used the value of noise p = 0:1.Table 5. Open latin-square problemvb-WSATcc WSAT -bc zcha� -bc WSAT -basic zcha� -basic43/100% 0/0% 5/100% 250/84% 637/96%These results show that our algorithms are faster than the combination ofWSAT and compile-basic (compile-bc again does not work well with WSAT) and

have a better success rate. The fastest in this case is, however, the combinationof zcha� and compile-bc. The combination of zcha� and compile-basic worksworse and it is also slower than our algorithms.6 ConclusionsOverall, our local-search algorithms vb-WSAT cc and df -WSAT cc, designed ex-plicitly for PLcc theories, perform very well.It is especially true in the presence of cardinality constraints with largebounds where the ability to handle such constraints directly, without the need toencode them as CNF theories, is essential. It makes it possible for our algorithmsto handle large instances of search problems that contain such constraints. Weconsidered one problem in this category, the vertex-cover problem, and demon-strated superior performance of our search algorithms over other techniques.For large instances (we considered graphs with 2000 vertices and 4000 edges andsearched for vertex covers of cardinality 1035) SAT solvers are rendered ine�ec-tive by the size of CNF encodings and their complexity. Even for instances ofmuch smaller size (search for vertex covers of 103-107 elements in graphs with200 vertices and 400 edges), our algorithms are many times faster and have abetter success rate than WSAT (zcha� is still ine�ective).Also for PLcc theories that contain only c-atoms of the form 1X1, X1 and1X , the ability to handle such constraints directly seems to be an advantage andleads to good performance, especially in terms of the success rate. In the graph-coloring and latin-square problems our algorithms consistently had comparableor higher success rate than methods employing SAT solvers. In terms of time ourmethods are certainly competitive. For the coloring problem, they were slowerthan the method based on WSAT and compile-basic but faster than all othermethods. For the latin-square problem, they were slower than the combinationof zcha� and compile-bc but again faster than other methods.Finally, we note that our methods seem to be easier to use and more robust.SAT-based method have a disadvantage that their performance strongly dependson the selection of the method to compile away c-atoms and no method westudied is consistently better than others. The problem of selecting the rightway to compile c-atoms away does not appear in the context of our algorithms.Further, the performance of local-search methods, especially the success rate,highly depends on the value of the noise parameter p. Our results show thatour algorithms are less sensitive to changes in p than those that employ WSAT ,which makes the task of selecting the value for p for our algorithms easier.These results provide further support to a growing trend in satis�abilityresearch to extend the syntax of propositional logic by constructs to model high-level constraints, and to design solvers that can handle this expanded syntax di-rectly. In the expanded syntax, we obtain more concise representations of searchproblems. Moreover, these representations are more directly aligned with theinherent structure of the problem. Both factors, we believe, will lead to faster,more e�ective solvers.

In this paper, we focused on the logic PLcc, an extension of propositionallogic with c-atoms, that is, direct means to encode cardinality constraints. Thespeci�c contribution of the paper are two local-search algorithms vb-WSAT ccand df -WSAT cc, tailored to the syntax of the the logic PLcc. These algorithmsrely on two ideas. The �rst of them is to regard a PLcc theory as a compactencoding of a CNF theory modeling the same problem. One can now designlocal-search algorithms so that they work with a PLcc theory but proceed aspropositional SAT solvers would when run on the corresponding propositionalencoding. We selected the procedure compile-basic to establish the correspon-dence between PLcc theories and CNF encodings, as it does not require any newpropositional variables and makes it easy to simulate propositional local-searchsolvers. We selected a particular propositional local-search method, WSAT , oneof the best-performing local-search algorithms. Many other choices are possible.Whether they lead to more e�ective solvers is an open research problem.The second idea is to change the notion of a
ip. We applied it designingthe algorithm df -WSAT cc for the class of simple PLcc theories. However, thismethod applies whenever a PLcc theory T can be partitioned into two parts T1and T2 so that (1) it is easy to generate random truth assignments satisfyingconstraints in T1, and (2) there is a notion of a
ip that preserves satisfactionof constraints in the �rst part and allows one, in a sequence of such
ips, toreach any point in the search space of truth assignments satisfying constraintsin T1. Identifying speci�c syntactic classes of PLcc theories and the correspondingnotions of a
ip is also a promising research direction.In our experiments we designed compilation techniques to allow us to useSAT solvers in searching for models of PLcc theories. In general, approachesthat rely on counting do not work well with WSAT , as they introduce toomuch structure into the theory. The translation compile-basic is the best matchfor WSAT (whenever it does not lead to astronomically large theories). Allmethods seem to work well with zcha� at least in some of the cases we studiedbut none worked well for the vertex-cover problem. To design better techniquesto eliminate c-atoms and to make the process of selecting an e�ective translationsystematic rather than ad hoc is another interesting research direction.Our work is related to [13] and [11], which describe local-search solvers fortheories in propositional logic extended by pseudo-boolean constraints. However,the classes of formulas accepted by these two solvers and by ours are di�erent.We use cardinality atoms as generalized \atomic" components of clauses whilepseudoboolean constraints have to form unit clauses. On the other hand, pseu-doboolean constraints are more general than cardinality atoms. At present, weare comparing the performance of all the solvers on the class of theories that areaccepted by all solvers (which includes all theories considered here).AcknowledgmentsThe authors are grateful to the reviewers for comments and pointers to paperson extensions of propositional logic by pseudoboolean constraints. This researchwas supported by the National Science Foundation under Grant No. 0097278.

References1. F.A. Aloul, A. Ramani, I. Markov, and K. Sakallah. Pbs: a backtrack-searchpseudo-boolean solver and optimizer. In Proceedings of the Fifth InternationalSymposium on Theory and Applications of Satis�ability, pages 346 { 353, 2002.2. P. Barth. A davis-putnam based elimination algorithm for linear pseudo-booleanoptimization. Technical report, Max-Planck-Institut f�ur Informatik, 1995. MPI-I-95-2-003.3. B. Benhamou, L. Sais, , and P. Siegel. Two proof procedures for a cardinality basedlanguage in propositional calculus. In Proceedings of STACS-94, pages 71{82. 1994.4. H.E. Dixon and M.L. Ginsberg. Inference methods for a pseudo-boolean satis�abil-ity solver. In The 18th National Conference on Arti�cial Intelligence (AAAI-2002),2002.5. D. East and M. Truszczy�nski. Propositional satis�ability in answer-set program-ming. In Proceedings of Joint German/Austrian Conference on Arti�cial Intelli-gence, KI'2001, volume 2174, pages 138{153. Lecture Notes in Arti�cial Intelli-gence, Springer Verlag, 2001. Full version submitted for publication (available athttp://xxx.lanl.gov/abs/cs.LO/0211033).6. E. Goldberg and Y. Novikov. Berkmin: a fast and robust sat-solver. InDATE-2002,pages 142{149. 2002.7. C.M. Li. Integrating equivalency reasoning into davis-putnam procedure. In Proc-cedings of the Seventeenth National Conference on Arti�cial Intelligence (AAAI-2000), pages 291{296, 2000.8. C.M. Li and M. Anbulagan. Look-ahead versus look-back for satis�ability prob-lems. In Proceedings of the Third International Conference on Principles andPractice of Constraint Programming, 1997.9. J.P. Marques-Silva and K.A. Sakallah. GRASP: A new search algorithm for satis-�ability. IEEE Transactions on Computers, 48:506{521, 1999.10. M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik. Cha�: engineering ane�cient SAT solver. In Proceedings of the Design Automation Conference (DAC),2001.11. S.D. Prestwich. Randomised backtracking for linear pseudo-boolean constraintproblems. In Proceedings of the 4th International Workshop on Integration of AIand OR techniques in Constraint Programming for Combinatorial OptimisationProblems, CPAIOR-02, pages 7{20, 2002.12. B. Selman, H.A. Kautz, and B. Cohen. Noise strategies for improving local search.In Proceedings of the Twelfth National Conference on Arti�cial Intelligence (AAAI-94), Seattle, USA, 1994.13. J.P. Walser. Solving linear pseudo-boolean constraints with local search. In Pro-ceedings of the 11th Conference on Arti�cial Intelligence, AAAI-97, pages 269{274.AAAI Press, 1997.14. H. Zhang. SATO: an e�cient propositional prover. In Proceedings of the Inter-national Conference on Automated Deduction (CADE-97), pages 308{312, 1997.Lecture Notes in Arti�cial Intelligence, 1104.

