
Under
onsideration for publi
ation in Theory and Pra
ti
e of Logi
 Programming 1On the problem of
omputing the well-foundedsemanti
s�Zbigniew Lon
y and Miros law Trusz
zy�nskiDepartment of Computer S
ien
e, University of Kentu
ky, Lexington, KY 40506-0046, USA(e-mail: lon
|mirek�
s.uky.edu)Abstra
tThe well-founded semanti
s is one of the most widely studied and used semanti
s of logi
programs with negation. In the
ase of �nite propositional programs, it
an be
omputedin polynomial time, more spe
i�
ally, in O(jAt(P)j�size(P)) steps, where size(P) denotesthe total number of o

urren
es of atoms in a logi
 program P . This bound is a
hieved byan algorithm introdu
ed by Van Gelder and known as the alternating-�xpoint algorithm.Improving on the alternating-�xpoint algorithm turned out to be diÆ
ult. In this paperwe study extensions and modi�
ations of the alternating-�xpoint approa
h. We then re-stri
t our attention to the
lass of programs whose rules have no more than one positiveo

urren
e of an atom in their bodies. For programs in that
lass we propose a new im-plementation of the alternating-�xpoint method in whi
h false atoms are
omputed in atop-down fashion. We show that our algorithm is faster than other known algorithms andthat for a wide
lass of programs it is linear and so, asymptoti
ally optimal.1 Introdu
tionThe well-founded semanti
s was introdu
ed in (Van Gelder et al., 1991) to provide3-valued interpretations to logi
 programs with negation. Sin
e its introdu
tion,the well-founded semanti
s has be
ome one of the most widely studied and most
ommonly a

epted approa
hes to negation in logi
 programming (Alferes et al.,1995; Fitting, 1991; Chen et al., 1995; Chen & Warren, 1996; Zukowski et al., 1997;Brass & Dix, 1998). It was implemented in several top-down reasoning systems,most prominent of whi
h is XSB (Rao et al., 1997).The well-founded semanti
s is
losely related to the stable-model semanti
s (Gel-fond & Lifs
hitz, 1988), another major approa
h to logi
 programs with negation.The well-founded semanti
s approximates the stable-model semanti
s (Van Gelderet al., 1991; Fitting, 2001). Moreover,
omputing the well-founded model of proposi-tional programs is polynomial (Van Gelder, 1989) while
omputing stable models isNP-hard (Marek & Trusz
zy�nski, 1991). Consequently, evaluating the well-foundedsemanti
s
an be used as an e�e
tive prepro
essing te
hnique in algorithms to
om-pute stable models (Subrahmanian et al., 1995). In addition, as demonstrated by� A preliminary version of this paper appeared in the Pro
eedings of Computational Logi
 { CL2000, Le
ture Notes in Arti�
ial Intelligen
e, 1861, Springer Verlag, 2000.y On leave from Warsaw University of Te
hnology.

2 Z. Lon
 and M. Trusz
zy�nskismodels (Niemel�a & Simons, 1996), at present the most advan
ed and most eÆ-
ient system to
ompute stable models of DATALOG: programs, the well-foundedsemanti
s
an be used as a powerful lookahead me
hanism.Despite the importan
e of the well-founded semanti
s, the question of how fast it
an be
omputed has not attra
ted signi�
ant attention. Van Gelder (Van Gelder,1989) des
ribed the so
alled alternating-�xpoint algorithm. Van Gelder's algorithmruns in time O(jAt(P)j � size(P)), where At(P) is the set of atoms o

urring in alogi
 program P , jAt(P)j denotes the
ardinality of At(P), and size(P) is the size ofP (the total number of atom o

urren
es in P). Improving on this algorithm turnedout to be diÆ
ult. The �rst progress was obtained in (Berman et al., 1995). Thealgorithm des
ribed there, when restri
ted to programs whose rules
ontain at mosttwo positive o

urren
es of atoms in their bodies, runs in time O(jAt(P)j4=3jP j2=3+size(P)), where jP j is the number of rules in P . For programs whose rules have nomore than one positive atom in the body a better estimate of O(jAt(P)j3=2jP j1=2 +size(P)) was obtained. For some
lasses of programs this is an asymptoti
ally betterestimate than the O(jAt(P)j � size(P)) estimate that holds for the algorithm byVan Gelder.A di�erent approa
h to
omputing the well-founded model was proposed in(Zukowski et al., 1997; Brass et al., 2001). It is based on the notion of a programtransformation (Brass & Dix, 1998). The authors des
ribe there several transfor-mations that
an be implemented in linear time and that simplify a program while(essentially) preserving the well-founded semanti
s. These transformations are: thepositive redu
tion, su

ess, negative redu
tion, and failure (PSNF transformations,for short). They allow one to
ompute in linear time the Kripke-Kleene seman-ti
s (Fitting, 1985) of the program. To
ompute the well-founded semanti
s onealso needs to dete
t the so-
alled positive loops. The
omplexity of this task dom-inates the asymptoti

omplexity of the well-founded semanti
s
omputation. Noimproved algorithms for the positive-loop dete
tion are o�ered in (Brass et al.,2001) so the worst-
ase asymptoti

omplexity of the algorithm presented thereremains the same as that of the alternating-�xpoint method. However, due to theuse of PSNF transformations, that simplify the program, the algorithm based onprogram transformations may in pra
ti
e run faster. In
ontrast to the approa
hstudied in (Brass et al., 2001), we fo
us here on the positive-loop dete
tion task.The alternating-�xpoint algorithm works by su

essively improving lower ap-proximations T and F to the sets of atoms that are true and false (under thewell-founded semanti
s), respe
tively. The algorithm starts with T = ;. Using thisestimate, it
omputes the �rst estimate for F . Next, using this estimate, in turn,it
omputes a better estimate for T . The algorithm
ontinues until further im-provements are not possible. It returns the �nal sets T and F as the well-foundedsemanti
s. A dual version of the alternating-�xpoint algorithm, starting with F = ;and then alternatingly
omputing approximations to T and F , is also possible. Themost time-
onsuming part of this algorithm is in
omputing estimates to the set ofatoms that are false (in this part, in parti
ular, positive loops are dete
ted). In theVan Gelder algorithm, the best possible approximation (given the
urrent estimatefor T) is always
omputed by using a bottom-up approa
h.

Theory and Pra
ti
e of Logi
 Programming 3In this paper we fo
us on the problem of dete
ting positive loops and
omputingnew false atoms. We restri
t our attention to the
lass of programs that have atmost one positive atom in the body. We denote this
lass of programs by LP1. Weshow that for programs from LP1, false atoms
an be
omputed by means of a top-down approa
h by �nding atoms that do not have a proof. Moreover, we show thatit is not ne
essary to �nd all atoms that
an be established to be false at a givenstage. Finding a proper subset (as long as it is not empty) is also suÆ
ient andresults in a
orre
t algorithm. We apply these te
hniques to design a version of analternating-�xpoint algorithm
omputing the well-founded semanti
s of programsfrom the
lass LP1. We demonstrate that the resulting algorithm is asymptoti
allybetter than the original alternating-�xpoint algorithm by Van Gelder. Spe
i�
ally,we show that our algorithm runs in time O(jAt(P)j2+size(P)). Thus, for programswith size(P) � jAt(P)j2, our algorithm runs in linear time and is asymptoti
allyoptimal! It is also easy to see that when jP j > jAt(P)j, the asymptoti
 estimate ofthe running time of our algorithm is better than that of algorithms by Van Gelder(Van Gelder, 1989) and Berman et al. (Berman et al., 1995).As mentioned above, our approa
h is restri
ted to the
lass LP1. Appli
abilityof our method
an, however, be slightly extended. Let us denote by LP+1 the
lassof these logi
 programs that, after simplifying by means of PSNF transformations(or, equivalently, with respe
t to the Kripke-Kleene semanti
s) fall into the
lassLP1. Sin
e PSNF transformations (the Kripke-Kleene semanti
s)
an be
omputedin linear time, the asymptoti
 estimate of the running time of our method extendsto all programs in the
lass LP+1 .The paper is organized as follows. In the next se
tion we provide a brief reviewof the key notions and terminology. In Se
tion 3 we des
ribe several modi�
ationsto the original Van Gelder algorithm, we show their
orre
tness and estimate theirrunning time. The ultimate e�e
t of our
onsiderations there is a general templatefor an algorithm to
ompute the well-founded semanti
s. Any algorithm
omputingsome (not ne
essarily all) atoms that
an be established as false given a
urrentestimate to the well-founded
an be used with it. One su
h algorithm, for programsfrom the
lass LP1, is des
ribed and analyzed in Se
tion 4. It
onstitutes the main
ontribution of the paper and yields a new,
urrently asymptoti
ally most eÆ
ientalgorithm for
omputing the well-founded semanti
s for programs in LP1. The lastse
tion
ontains
on
lusions. 2 PreliminariesWe start by reviewing basi

on
epts and notation related to logi
 programs andthe well-founded semanti
s, as well as some simple auxiliary results. In the paperwe
onsider the propositional
ase only.Let P be a normal logi
 program. By At(P) we denote the set of atoms o

urringin P . Let M � At(P) (throughout the paper we often drop a referen
e to P from ournotation, whenever there is no danger of ambiguity). By PM we denote the programobtained from P by removing all rules whose bodies
ontain negated literals ofthe form not(a), where a 2 M . Further, by P h we denote the program obtained

4 Z. Lon
 and M. Trusz
zy�nskifrom P by removing from the bodies of its rules all negative literals. Clearly, theprogram (PM)h
oin
ides with the Gelfond-Lifs
hitz redu
t of P with respe
t to M(throughout the paper, we write P hM for (PM)h, to simplify notation). The Gelfond-Lifs
hitz operator on the algebra of all subsets of At, GL (following our
onvention,we omit the referen
e to P from the notation), is de�ned byGL(M) = LM(P hM);where LM(Q) stands for a least model of a Horn program Q.We now present
hara
terizations of the well-founded semanti
s. We phrase themin the language of operators and their �xpoints. All operators
onsidered here arede�ned on the algebra of subsets of At(P). We denote a least �xpoint (if it exists)of an operator O by lfp(O).It is well known that GL is antimonotone. Consequently, GL2 = GL Æ GL ismonotone and has a least �xpoint. The set of atoms that are true with respe
t tothe well-founded semanti
s of a program P , denoted by Twfs , is pre
isely the least�xpoint of the operator GL2, that is, Twfs = lfp(GL2) (Van Gelder, 1989; Fitting,2001). The set of atoms that are false with respe
t to the well-founded semanti
sof a program P , denoted by Fwfs , is given by GL(Twfs) (throughout the paper, Xdenotes the
omplement of a set X with respe
t to At(P)).One
an de�ne a dual operator to GL2 byA(M) = GL(GL(M)):It is easy to see that A is monotone and that its least �xpoint is Fwfs . Thus,Fwfs = lfp(A) and Twfs = GL(Fwfs).We
lose this se
tion by dis
ussing ways to
ompute GL(M) for a given �nitepropositional logi
 program P and a set of atoms M � At(P). A straightforwardapproa
h is to
ompute the Gelfond-Lifs
hitz redu
t P hM and then to
ompute itsleast model. The resulting algorithm is asymptoti
ally optimal as it runs in timelinear in the size of the program. However, in this paper we will use a di�erentapproa
h, more appropriate for the
omputation of the well-founded semanti
s. LetP be a logi
 program with negation. We de�ne At�(P) = fnot(a): a 2 At(P)g. Forevery set M � At(P) [At�(P), we de�ne true(M) = M \ At(P). If we interpretliterals of At�(P) as new atoms, then for every set M � At(P), the programP [not(M)
an be viewed as a Horn program. Thus, it has a least model. It iseasy to see that GLP (M) = true(LM(P [not(M))):Here, P appearing at the left-hand side of the equation stands for the originallogi
 program, while P appearing at the right-hand side of the equation stands forthe same program but interpreted as a Horn program. Thus, using the algorithmof Dowling and Gallier (Dowling & Gallier, 1984), the Gelfond-Lifs
hitz redu
t
an be
omputed in time O(size(P) + jM j) = O(size(P)) (sin
e M � At(P),jM j = O(size(P))).

Theory and Pra
ti
e of Logi
 Programming 53 AlgorithmsThe departure point for our dis
ussion of algorithms to
ompute the well-foundedsemanti
s is the alternating-�xpoint algorithm of Van Gelder (Van Gelder, 1989).Using the terminology introdu
ed in the previous se
tion it
an be formulated asfollows.Algorithm 1 (Van Gelder)F := ;;repeatT := true(LM(P [not(F)); (* or equivalently: T := GL(F); *)F := LM(P hT); (* or equivalently: GL(T); *)until no
hange in F ;return T and F .Let F 0 and F 00 be the values of the set F just before and just after an iterationof the repeat loop in Algorithm 1. Clearly,F 00 = GL(GL(F 0)) = A(F 0):Thus, after iteration i of the repeat loop, F = Ai(;). Consequently, it follows fromour earlier remarks that when Algorithm 1 terminates, the set F that is returnedsatis�es F = Fwfs . Sin
e there is no
hange in F in the last iteration, when thealgorithm terminates, we have T = Twfs . That is, Algorithm 1 is
orre
t.We will now modify Algorithm 1. The basis for Algorithm 1 is the operator A.This operator is not progressive. That is, M is not ne
essarily a subset of A(M).We will now introdu
e a related progressive operator, say B, and show that it
anbe used to repla
e A. Let P be a logi
 program and let T and F be two subsets ofAt(P). By PF;T we denote the program obtained from P by removing1. all rules whose heads are in F2. all rules whose bodies
ontain a positive o

urren
e of an atom from F3. all rules whose bodies
ontain a negated literal of the form not(a), wherea 2 T .Clearly, PF;T � PT .We de�ne an operator B(F) as follows:B(F) = LM(P hF;T);where T = GL(F) and P hF;T abbreviates (PF;T)h. The following result gathers keyproperties of the operator B.Theorem 3.1Let P be a normal logi
 program. Then:1. B is monotone2. For every F � At(P), A(F) � B(F)3. For every F � Fwfs , B(F) � Fwfs

6 Z. Lon
 and M. Trusz
zy�nski4. lfp(B) = Fwfs5. For every F � At(P), B(F) = F [(F nLM(P hF;T)), where T = GL(F).Proof: (1) Assume that F1 � F2. Set Ti = GL(Fi), i = 1; 2. Clearly, F2 � F1 and,by antimonotoni
ity of GL, T1 � T2. By the de�nition of PF;T , PF2;T2 � PF1;T1 .Consequently, LM(P hF2;T2) � LM(P hF1;T1) and, so, B(F1) � B(F2).(2) Let T = GL(F). Clearly, PF;T � PT . Thus, A(F) = LM(P hT) � LM(P hF;T) =B(F).(3) We have, LM(P hTwfs) = Fwfs . It follows that removing from P hTwfs rules withheads in Fwfs and those that
ontain an atom from Fwfs in their bodies does not
hange the least model. That is,LM(P hFwfs ;Twfs) = LM(P hTwfs):Sin
e, Twfs = GL(Fwfs), B(Fwfs) = LM(P hFwfs ;Twfs). Let F � Fwfs . Then, by (1),B(F) � B(Fwfs). Thus, we haveB(F) � B(Fwfs) = LM(P hFwfs ;Twfs) = LM(P hTwfs) = Fwfs :(4) The least �xpoint of B is given by lfp(B) = SBi(;). By (3), lfp(B) � Fwfs . Onthe other hand, by (1) and (2), Ai(;) � Bi(;). Thus, Fwfs = lfp(A) � lfp(B). Itfollows that lfp(B) = Fwfs .(5) Let T = GL(F). Sin
e PF;T has no rules with head in F , LM(P hF;T) � F and,
onsequently, F � B(F). Thus, the assertion follows. 2Theorem 3.1 allows us to prove the
orre
tness of the following modi�
ation ofAlgorithm 1.Algorithm 2F := ;;repeatT := true(LM(P [not(F));�F := F n LM(P hF;T);F := F [�F ;until no
hange in F ;return T and F .By Theorem 3.1, ea
h iteration of the repeat loop
omputes B(F) as the newvalue for the set F . More formally, the set F just after iteration i, satis�es F =Bi(;). Thus, when the algorithm terminates, the set F that is returned is the least�xpoint of B. Consequently, by Theorem 3.1(4), Algorithm 2 is
orre
t.We will now modify Algorithm 2 to obtain a general template for an alternating-�xpoint algorithm to
ompute the well-founded semanti
s. The key idea is to ob-serve that it is enough to
ompute a subset of �F in ea
h iteration and the algorithmremains
orre
t.Let us assume that for some operator �w de�ned for pairs (F;Q), where F �At(P) and Q is a Horn program su
h that At(Q) � F (the
omplement is, as always,evaluated with respe
t to At(P)), we have:

Theory and Pra
ti
e of Logi
 Programming 7(W1) �w(F;Q) � F n LM(Q)(W2) �w(F;Q) = ; if and only if F n LM(Q) = ;.Let F � At(P). By the de�nition of PF;T , At(P hF;T) � F . Thus, we de�neBw(F) = F [�w(F; P hF;T), where T = true(LM(P [not(F))). It is
lear thatfor every F � At(P), F � Bw(F) � B(F), the latter in
lusion follows from Theo-rem 3.1(5) and (W1). Consequently, for every i,Biw(;) � Bi(;):It follows that Biw(;) � lfp(B) = Fwfs . It also follows that there is the �rst i su
hthat Biw(;) = Bi+1w (;). Let us denote this set Biw(;) by F0. Then F0 � Fwfs . In thesame time, by
ondition (W2), B(F0) = F0. Sin
e Fwfs is the least �xpoint of B,Fwfs � F0. It follows that a modi�
ation of Algorithm 2 in whi
h line�F := F n LM(P hF;T);is repla
ed by �F := �w(F; P hF;T);
orre
tly
omputes the well-founded semanti
s of a program P . Thus, we obtainthe following algorithm for
omputing the well-founded semanti
s.Algorithm 3F := ;;repeatT := true(LM(P [not(F));�F := �w(F; P hF;T);F := F [�F ;until no
hange in F ;return T and F .We will now re�ne Algorithm 3. Spe
i�
ally, we will show that the sets T and F
an be
omputed in
rementally.Let R be a Horn program. We de�ne the residual program of R, res(R), to be theHorn program obtained from R by removing all rules of R with the head in LM(R)and by removing from the bodies of the remaining rules those elements that are inLM(R). We have the following te
hni
al result.Lemma 3.2Let R be a Horn program and let M be a set of atoms su
h that M \head(R) = ;.Then LM(R [M) = LM(R) [LM(res(R) [M). 2Lemma 3.2 implies that (we treat here negated literals as new atoms and P asHorn program over the extended alphabet)LM(P [not(F [�F)) = LM(P [not(F)) [LM(res(P [not(F)) [not(�F)):Thus, if the set F is expanded by new elements from �F , then the new set T
anbe
omputed by in
reasing the old set T by �T = true(LM(res(P [not(F)) [

8 Z. Lon
 and M. Trusz
zy�nskinot(�F))). Important thing to note is that the in
rement �T
an be
omputedon the basis of the residual program and the in
rement �F . Similarly, we havePF[�F;T[�T = (PF;T)�F;�T :Thus,
omputing PF;T
an also be done in
rementally on the basis of the program
onsidered in the previous iteration by taking into a

ount most re
ently
omputedin
rements �F and �T .This dis
ussion implies that Algorithm 3
an be equivalently restated as follows:Algorithm 31 T := F := �T := �F := ;;2 R := P ; (*R will be treated as a Horn program *)3 Q := P ;4 repeat5 �T := true(LM(R [not(�F));6 R := res(R [not(�F));7 T := T [�T ;8 Q := Q�F;�T ;9 �F := �w(F;Qh);10 F := F [�F ;11 until no
hange in F ;12 return T and F .We will now estimate the running time of Algorithm 3. Clearly line 1 requires
onstant time. Setting up appropriate data stru
tures for programs R and Q (lines2 and 3) takes O(size(P)) steps. In ea
h iteration, �T is
omputed and the
ur-rent program R is repla
ed by the program res(R [not(�F)) (lines 5 and 6). Bymodifying the algorithm from (Dowling & Gallier, 1984) and assuming that R isalready stored in the memory (it is avaliable either as the result of the initializationin the
ase of the �rst iteration or as a result of the
omputation in the previousiteration), both tasks
an be a

omplished in O(size(Ro)+ j�F j�size(Rn)) steps.Here Ro denotes the old version of R and Rn denotes the new version of R. Con-sequently, the total time needed for lines 5 and 6 over all iterations is given byO(size(P) + jAt(P)j � size(Rt)) = O(size(P)) (where Rt is the program R, whenthe algorithm terminates). The time needed for all lines 7 is proportional to thenumber of iterations and is O(jAt(P)j) = O(size(P)).Given a logi
 program Q and sets of atoms �T and �F , it takes O(size(Q) �size(Q�F;�T) + j�T j+ j�F j) steps to
ompute the program Q�F;�T in line 8. Weassume here that Q is already in the memory as a result of the initialization inthe
ase of the �rst iteration, or as the result of the
omputation in the previousiteration, otherwise. It follows that the total time over all iterations needed toexe
ute line 8 is O(size(P) + jAt(P)j) = O(size(P)).Thus, we obtain that the running time of Algorithm 3 is given by O(size(P)+m),where m is the total time needed to
ompute �w(F;Qh) over all iterations of thealgorithm.

Theory and Pra
ti
e of Logi
 Programming 9In the standard (Van Gelder's) implementation of Algorithm 3, we
ompute thewhole set F n LM(Qh) as �w(F;Qh). In addition,
omputation is performed in abottom-up fashion. That is, we �rst
ompute the least model of Qh and then its
omplement with respe
t to F . Su
h approa
h requires O(size(Qh)) = O(size(P))steps per iteration to exe
ute line 9 and leads to O(jAt(P)j�size(P)) running-timeestimate for the alternating-�xpoint algorithm.4 Pro
edure �wIn this se
tion we will fo
us on the
lass of programs, LP1, that is, programs whoserules have no more than one positive atom in their bodies. We assume that we havea pro
edure false that, given a Horn program Q 2 LP1, returns a subset of theset At(Q) nLM(Q). We also assume that false returns the empty set if and only ifAt(Q) = LM(Q). For every pair (F;Q), where F � At(P) and Q is a Horn programsu
h that At(Q) � F , we de�ne�w(F;Q) = false(Q):It is easy to see that this operator �w(F;Q) satis�es
onditions (W1) and (W2).Consequently, it
an be used in Algorithm 3. Clearly, the pro
edure �w and its
omputational properties are determined by the pro
edure false. In the remainderof the paper, we will des
ribe a parti
ular implementation of the pro
edure falseand estimate its running time. We will use this estimate to obtain a bound on therunning time of the resulting version of Algorithm 3.A straightforward way to
ompute the least model of Q and so, to �nd At(Q) nLM(Q), is "bottom-up". That is, we start with atoms whi
h are heads of ruleswith the empty bodies and use the rules of Q to
ompute all atoms in LM(Q)by iterating the van Emden-Kowalski operator. An eÆ
ient implementation of thepro
ess is provided by the Dowling-Gallier algorithm (Dowling & Gallier, 1984).The approa
h we follow here in the pro
edure false is "top-down" and gives us,in general, only a part of the set At(Q) nLM(Q). More pre
isely, for an atom a wepro
eed \ba
kwards" attempting to
onstru
t a proof or to demonstrate that noproof exists. In the pro
ess, we either go ba
k to an atom that is the head of a rulewith empty body or we show that no proof exists. In the former
ase, a 2 LM(Q).In the latter one, none of the atoms
onsidered while sear
hing for a proof of aare in LM(Q) (be
ause Q 2 LP1 and ea
h rule has at most one ante
edent). Theproblem is that we may �nd an atom a that does not have a proof only after welook at all other atoms �rst. Thus, in the worst
ase, �nding one new false atommay require time that is proportional to the size of Q.To improve the time performan
e, we look for proofs simultaneously for all atomsand grow the proofs \ba
kwards" in a
arefully
ontrolled way. Namely, we neverlet one sear
h to get too mu
h ahead of the other sear
hes. This
ontrolled way oflooking for proofs is the key idea of our approa
h and leads to a better performan
e.We will now provide an informal des
ription of the pro
edure false followed laterby a formal spe
i�
ation and an example.In the pro
edure, we make use of a new atom, say s, di�erent from all atoms

10 Z. Lon
 and M. Trusz
zy�nskio

urring in Q. Further, we denote by head(r) the atom in the head of a rule r 2 Qand by tail(r) the atom whi
h is either the unique positive atom in the body ofr, if su
h an atom exists, or s otherwise. We
all an atom a 2 At(Q) a

essible ifthere are rules r1; : : : ; rk in Q su
h that tail(ri+1) = head(ri), for i = 1; : : : ; k � 1,tail(r1) = s and head(rk) = a. Clearly, the least model LM(Q) of Q is pre
iselythe set of all a

essible atoms.In ea
h step of the algorithm, the set of atoms from At(Q) is partitioned intopotentially false sets or pf-sets, for short. We say that a set v � At(Q) is a pf-setif for ea
h pair of distin
t atoms a; b 2 v there are rules r1; : : : ; rk in Q su
h thattail(ri+1) = head(ri) 2 v, for i = 1; : : : ; k � 1, tail(r1) = b and head(rk) = a. Itis
lear that if v is a pf-set then either all its elements are a

essible (belong tothe least model of Q) or none of them does (they are all false). Clearly, singletonsets
onsisting of individual atoms in At(Q) are pf-sets. In the algorithm, with ea
hpf-set we maintain its
ardinality.Current information about the state of all top-down sear
hes and about thedependen
ies among atoms, that were dis
overed so far, is maintained in a dire
tedgraph G. The vertex set of this graph, say S,
onsists of fsg and of a family of pf-sets forming a partition of the set At(Q). The edges of G are spe
i�ed by a partialfun
tion pred : S ! S. We write pred(v) = unde�ned if pred is unde�ned for v.Thus, the set of edges of G is given by f(pred(v); v): pred(v) 6= unde�nedg. Sin
epred is a partial fun
tion, it is easy to see that the
onne
ted
omponents of thegraph G are uni
y
li
 graphs or trees rooted in those verti
es v for whi
h pred(v)is unde�ned. Throughout the algorithm we always have pred(fsg) = unde�ned.Thus, the
onne
ted
omponent of G
ontaining fsg is always a tree and fsg is itsroot.If w and v are two di�erent pf-sets, the existen
e of the edge (w; v) in G meansthat we have already dis
overed a rule in the original program whose head is in vand whose tail is in w. Thus, if verti
es in w are a

essible, then so are the verti
esin v. A pf-set that is the root of a tree forming a
omponent of G is
alled an a
tivepf-set. If v is an a
tive pf-set then no rule r with head(r) 2 v and tail(r) 62 vhas been dete
ted so far. Thus, v is a
andidate for a set of atoms whi
h does notinterse
t the least model of Q. Let us note that even though fsg is a root of a treein G it is never a
tive as it is not a pf-set in the �rst pla
e.We let a
tive pf-sets grow by gluing them with other pf-sets. However, we allowto grow only these a
tive pf-sets whose
ardinalities are the least. In ea
h iterationof the algorithm the value of the variable size is a lower bound for the
ardinalitiesof a
tive pf-sets. To grow an a
tive pf-set v, we look for rules with heads in v andwith tails in pf-sets other than v (not ne
essarily a
tive) or in fsg. The dependen
iesbetween pf-sets dis
overed in this way are represented as new dire
ted edges in G.Pf-sets that appear in the same
y
le are glued together (in the pro
edure
y
le).Sin
e fsg is not an a
tive pf-set, it never be
omes an element of a
y
le in G.If, when attempting to grow a pf-set v we dis
over a rule with head in v and withthe tail in a vertex of the tree of G rooted in fsg, then v is from now on ignored(all its verti
es belong to the least model of Q). Indeed, v gets
onne
ted to a tree

Theory and Pra
ti
e of Logi
 Programming 11of G rooted in fsg. Consequently, it
annot be
ome a member of a
y
le in G in thefuture and is never again
onsidered by the pro
edure
y
le.The main loop (lines 6-23) of the algorithm false below starts by in
rementingsize followed by a
all to the pro
edure
y
le(S; pred; size; L). This pro
edure s
ansthe graph G and identi�es all its
y
les. It then modi�es G by
onsidering ea
h
y
leand by gluing its pf-sets into a single pf-set. To this end, it modi�es the vertex setS of G and the fun
tion pred de�ning the edges of G. Ea
h su
h new pf-set be
omesthe root of its tree in G and so, it be
omes a
tive. The pro
edure
y
le
omputes the
ardinality of ea
h new a
tive pf-set. Finally, it
reates a list L so that it
onsistsof a
tive pf-sets of
ardinality size. If no su
h set is found (L is empty), we moveon to the next iteration of the main loop and in
rement size by 1. We give a moredetailed des
ription of the pro
edure
y
le later in the paper when we analyze thetime
omplexity of our method.For ea
h a
tive pf-set v 2 L we
onsider the tail of ea
h rule with head in v (lines9-22). If there is a rule r with head(r) 2 v and tail(r) 62 v then it is dete
ted (line15). The value pred(v) is set to this element in S that
ontains tail(r) (it may bethat this set is fsg). We also set the variable su

ess to true (line 16). The pf-setv stops to be a
tive. We move on to the next a
tive pf-set on L.If su
h a rule r does not exist then su

ess = false and v is a set of
ardinalitysize
onsisting of atoms whi
h are not in the least model of Q. This set is returnedby the pro
edure false (line 21). Hen
e, for an a
tive pf-set
onsidered in the loop6-23, either we �nd a pf-set pred(v) 2 S n fvg (and we have to
onsider the nextpf-set on L) or v is returned as a set of atoms whi
h are not in the least model ofQ (and the pro
edure false terminates). Thus, the pro
edure false is
ompleted ifeither a nonempty set v of atoms whi
h are not in the least model of Q is found or,after some passes of the loop 6-23, the graph G has no a
tive pf-sets. In the latter
ase G is a tree with the root in fsg. Thus, At(Q) = LM(Q) and v = ; is returned(line 24).In the pro
edure false, as formally des
ribed below, an input program Q is rep-resented by lists IN(a), a 2 At(Q), of all atoms b su
h that b is the body of somerule with the head a. If there is a rule with the head a and empty body, we inserts into the list IN(a).We also use an operation next on lists and elements. Let l be a list and w be anelement, either belonging to l or having a spe
ial value unde�ned. Thennext(w; l) = � the next element after w in l if w 2 lthe �rst element in l if w is unde�ned:The value unde�ned should not be mixed with nil whi
h indi
ates the end of alist.Finally, we use a pro
edure �ndset(w;S) whi
h, for an atom w and a
olle
tionS of disjoint sets, one of whi
h
ontains w, �nds the name of the set in S
on-taining w (it follows from our assumptions that su
h a set is unique). Elements ofS are maintained as linked lists. Ea
h element on su
h a list has a pointer to thehead of the list. The head serves as the identi�er for the list. When the pro
edure�ndset(w;S) is
alled, it returns the head of the list to whi
h w belongs.

12 Z. Lon
 and M. Trusz
zy�nski1 pro
edure false(Q);2 S := ffxg : x 2 At(Q)g [ffsgg;3 for v 2 S do pred(v) := unde�ned;4 for x 2 At(Q) do fw(x) := unde�ned;
ardinality(x) := 1g;5 size := 0;6 while size < jAt(Q)j do7 fsize := size+ 1;8
y
le(S; pred; size; L);9 for all v 2 L do10 fsu

ess := false;11 u := next(u; v);12 while u 6= nil and not su

ess do13 w(u) := next(w(u); IN(u));14 while w(u) 6= nil and not su

ess do15 fif �ndset(w(u);S) 6= v16 then fsu

ess := true; pred(v) := �ndset(w(u);S)g17 else w(u) := next(w(u); IN(u))18 end while (14)g;19 if not su

ess then u := next(u; v)20 end while (12)g;21 if not su

ess then return v (* the pro
edure terminates *)22 end for (9)g23 end while (6)g;24 return v = ;25 end false;We will now illustrate the operation of the algorithm. Let us
onsider the followingHorn logi
 program Q:a b a a

 a a e d ef d e f d f e g g j j gi j j h k j k h h kThis program is represented as a graph, GQ, in Fig. 1. The verti
es of this graph
orrespond to the atoms of the program. In addition, GQ has an auxiliary vertexs =2 At(Q). An edge (x; y), where x; y 2 At(Q), represents the
lause y x fromQ. An edge (s; y), where y 2 At(Q), represents the
lause y . When illustratingthe algorithm, we assume that atoms from At(Q) (atoms a; : : : ; k in our example)appear on the lists IN(x), x 2 At(Q), in the alphabeti
al order. We also assumethat whenever s belongs to a list IN(x), it appears as the �rst atom on the list.In the algorithm false, the
urrent state of knowledge about the possibility ofproving an atom from Q is represented by the graph G. Initially, G
onsists ofisolated verti
es. Indeed, line 3 of the algorithm sets pred(x) to unde�ned, for everyvertex x of S (see Fig. 2 (left)). All of the verti
es of G, ex
ept for fsg are a
tive

Theory and Pra
ti
e of Logi
 Programming 13
i

dc f j k

ab e h

s

gFig. 1. Graph GQ representing program Q.pf-sets. The pro
edure
y
le (line 8),
alled with size = 1, puts all of them on thelist L.The algorithm
onsiders next (line 9) all elements on the list L, that is, allverti
es of G that are a
tive pf-sets and have
ardinality equal to size. During the�rst iteration of the loop 6-23, L
onsists of all verti
es of G, ex
ept for fsg (thatis, singleton sets fxg, where x 2 At(Q) = V (GQ) n fsg). For ea
h vertex v of G onL, the algorithm looks for a ba
k rule for v, that is, a rule in Q with the head inv and the tail in a pf-set other than v or in fsg. In our graphi
al representation ofQ by means of the graph GQ, a ba
k rule for v
orresponds to an edge (referred toas a ba
k edge) in GQ with the head in v and the tail in a vertex of G other than v(possibly in fsg). To �nd a ba
k rule (edge) for v, all atoms u of Q (equivalently,all verti
es u of GQ) that belong to v are
onsidered (the loop 12-20). For ea
h su
hatom u, the algorithm sear
hes for the �rst atom on the list IN(u) that does notbelong to v. Let us re
all that IN(u) is the list of atoms that are the tails of ruleswith the head u or, in the terms of the graph GQ, that are the tails of edges withthe head u. If su
h an atom is found, together with u it determines a ba
k rule(edge) r for v. The algorithm sets pred(v) to be equal to the pf-set
ontaining thetail of r (line 16). That is, an edge from pred(v) to v is added to G. The algorithmmoves then on to the next element of the list L.In our example, in the �rst iteration of the loop 6-23, a ba
k rule is found forevery element on L, that is, for every vertex of G other than fsg. For instan
e, forthe vertex fdg, the algorithm
onsiders atoms on the list IN(d) = (e; f) (let usre
all that atoms on lists IN(x) are arranged alphabeti
ally with the ex
eption ofthe spe
ial atom s whi
h, if present on a list, is always its �rst element). The �rstatom on the list, e does not belong to fdg. Thus, it de�nes, together with d a ba
krule for fdg, d e. The resulting graph G is shown in Fig. 2 on the right.Let us note that when s
anning the list IN(d) in subsequent iterations the algo-rithm resumes the s
an with the �rst atom that has not been looked at yet (
f. thede�nition of the operation next). Thus, the next time d is
onsidered as an elementof an a
tive pf-set for whi
h a ba
k rule is sear
hed for, the s
an of IN(d) will startwith f . The same holds true for all lists IN(x), x 2 At(Q). Consequently, ea
h atomon ea
h of these lists is
onsidered just on
e. Su
h an approa
h still guarantees that�nding ba
k rules works
orre
tly (that is, that they are found by the algorithm

14 Z. Lon
 and M. Trusz
zy�nski
{ b} { a}

{ s }

{ e } { g} { h}

{ k}{ j }

{ i }

{ f }{ d}{ c }

{ b} { a}

{ s }

{ e } { g} { h}

{ k}{ j }

{ i }

{ }{ d}{ c } f

Fig. 2. Graph G initially (left side) and after the �rst iteration of the loop 6-23 (on theright).whenever they exist). Indeed, when an atom on a list IN(x) is
onsidered, it eitherde�nes a ba
k rule with the head x (and, thus,
annot de�ne any new ba
k rulewith the head x in the future) or it is in the same a
tive pf-set as x (and, thus, itneither de�nes a ba
k rule now nor it will de�ne it in the future, as it will remainin the same pf-set as x till the algorithm terminates).The se
ond iteration of the loop 6-23 starts with the pro
edure
y
le
ontra
tingea
h
y
le in the graph G to a single vertex. The resulting graph is shown in Fig. 3on the left. The pro
edure
y
le then
reates a new list L. It
onsists of all a
tivepf-sets of
ardinality 2. In our
ase, L
ontains fg; jg and fh; kg (fd; e; fg is alsoa
tive but has
ardinality 3).Continuing with the se
ond iteration, the algorithm next
onsiders ea
h vertexon L (the loop 9-22) and looks for ba
k rules. In this iteration, a ba
k rule is foundfor ea
h of the nodes on L and the modi�ed graph G is given in Fig. 3 on the right.
{ d,e,f } { d,e,f }{ b} { a}

{ s }

{ i }

{ c }

{ g,j } { h,k} { b} { a}

{ s }

{ i }

{ c }

{ g,j } { h,k}Fig. 3. Graph G after the exe
ution of the pro
edure
y
le in the se
ond iteration of theloop 6-23 (left) and after the se
ond iteration of the loop 6-23 (right).In the third iteration, the pro
edure
y
le
ontra
ts the only
y
le in G to asingle a
tive pf-set of
ardinality 4 (Figure 4, left side). It also
reates a new listL. This time it
onsists of a
tive pf-sets of
ardinality 3. There is just one su
h set- fd; e; fg. Subsequently, the algorithm false looks for a ba
k rule for fd; e; fg. Itstarts by
onsidering edges ending in d (line 11; we assume that v is representedby the list (d; e; f)). It s
ans the list IN(d) starting at the �rst atom that has notbeen inspe
ted so far, that is, f . However, sin
e f belongs to the same pf-set as d,f does not spe
ify a ba
k rule. Sin
e there are no more atoms on the list IN(d),we move on to the next iteration of the loop 12-20 and
onsider atom e. We haveIN(e) = (f; g). Sin
e f was already
onsidered (and yielded a ba
k rule for feg)

Theory and Pra
ti
e of Logi
 Programming 15in the �rst iteration, we
onsider g. Sin
e g =2 fd; e; fg, it de�nes a ba
k rule forfd; e; fg, d g.
{ d,e,f } { g,h,j,k} { d,e,f }{ b} { a}

{ s }

{ i }

{ c }

{ b} { a}

{ s }

{ i }

{ c }

{ g,h,j,k}Fig. 4. Graph G after the exe
ution of the pro
edure
y
le in the third iteration of theloop 6-23 (left) and after the third iteration of the loop 6-23 (right).The resulting graph G is shown in Figure 4 (on the right). It has no
y
les. So, theonly thing done by the pro
edure
y
le in the iteration 4 is that it puts on L a
tivepf-sets of
ardinality 4. There is just one su
h set in G, fg; h; j; kg. The algorithmfalse looks for a ba
k edge for fg; h; j; kg and does not �nd any. The variable su

essremains false. The algorithm returns fg; h; j; kg and terminates (line 21). Let usnote that this set is a proper subset of the set At(Q) n LM(Q).The following theorem formally establishes two key properties of the pro
edurefalse.Theorem 4.11. The pro
edure false returns a set v su
h that v � At(Q) n LM(Q).2. false returns the empty set if and only if At(Q) n LM(Q) = ;.Proof: (1) The statement is trivially true if false returns the empty set. Thus assumethat the returned set v 6= ;. It means that the value of the variable su

ess is falseafter all passes of the loop 12-20 for some a
tive pf-set v in the list L. Thus everyrule in Q with the head in v has been
onsidered.Suppose there is a rule r in Q with head(r) = u 2 v and tail(r) = b 62 v. This rulewas
onsidered by the pro
edure false when u = head(r) was a member of somea
tive pf-set, say y. Sin
e larger pf-sets are obtained by gluing smaller ones, y � v.While r was being
onsidered, the value of w(u) in the loop 14-18 was b and thevalue of v was y. Consequently, �ndset(b;S) 6= y in line 15 be
ause y � v and b 62 vso b 62 y. Hen
e the value of su

ess was set to true and pred(y) was de�ned tobe, say, z = �ndset(b;S) in line 16. The pf-set y stopped to be a
tive. Re
all thatv is a
tive when the pro
edure stops. Hen
e y had to be glued with other pf-setsto obtain v. This is, however, impossible be
ause if y were glued with some otherpf-sets to form a larger pf-set x then pred(y) = z � x. Noti
e that b 2 z � x � v.We have got a
ontradi
tion with b 62 v.Hen
e, there are no rules r in Q with head(r) 2 v and tail(r) 62 v. Thus no atomin v is a

essible so v � At(Q) n LM(Q).(2) Suppose false returns the empty set and
onsider the last pass of the loop 6-23,for size = jAt(Q)j. If the list L is empty then no vertex of G is an a
tive pf-set.

16 Z. Lon
 and M. Trusz
zy�nskiHen
e, G is a tree with the root fsg. Thus all atoms in At(Q) are a

essible and
onsequently LM(Q) = At(Q).If the list L is nonempty then it
ontains one pf-set v = At(Q). The empty setis returned by the pro
edure false so the value of the variable su

ess in line 16is true for v = At(Q). It means that for some rule r in Q with head(r) = u,w(u) = tail(r) 62 v = At(Q) so w(u) = s. Hen
e, u is a

essible and,
onsequently,all atoms in At(Q) are a

essible. That is, we have At(Q) n LM(Q) = ;.The
onverse of the impli
ation proved above follows immediately from the �rstpart of the theorem. 2We shall now
onsider the pro
edure
y
le a little bit more
arefully. The pro
e-dure
an be informally written in the following form.pro
edure
y
le(S; pred; size; L)1. Initialize L to empty.2. Find all
y
les C1; C2; : : : ; Cp in the graph G. Put C = fC1; C2; : : : ; Cpg.3. For every
y
le C = fv1; : : : ; vqg, C 2 C, do (i)-(iv).(i) set vC := v1 [: : : [vq ;(ii)
ompute
ardinality(vC) (sum up the
ardinalities of all verti
es in C);(iii) update the set S: set S := (S � fv1; : : : ; vqg) [fvCg; (* vC be
omesan a
tive pf-set *)(iv) update the fun
tion pred: for every i = 1; : : : ; q, if pred(z) = vi (forsome z 2 S) then pred(z) := vC ;4. For every vertex of G that is an a
tive pf-set, if
ardinality(v) = size, insert vinto the list L.Sin
e G is a dire
ted graph whose
onne
ted
omponents are either uni
y
li
graphs or trees, step 2 of the pro
edure
y
le
an be implemented in O(jSj) time.Sin
e pf-sets are represented as linked lists, with ea
h node on the list pointing tothe head of the list, step (i)
an be implemented to take O(jvC j) steps. The timeneeded for step (ii) is,
learly, O(jCj). Ea
h exe
ution of step (iii) takes also O(jCj).Finally, the running time of ea
h exe
ution of step (iv) is O(mC), where mC is thesize of the
onne
ted
omponent of the graph G
ontaining C. Thus, an iterationof the loop 3 for a
y
le C 2 C takes O(jCj + mC + jvC j). Clearly, jCj � mC .Moreover, PC2CmC � jSj � 1 � jAt(Q)j and PC2C jvC j � jAt(Q)j (they are alldisjoint subsets of At(Q)). Thus, the total time needed for the loop 3 is O(jAt(Q)j).It is easy to see that the time needed for the loop 4 is also O(jAt(Q)j). Consequently,the running time of the pro
edure
y
le is O(jAt(Q)j).We are now in a position to estimate the running time of the pro
edure false.Lemma 4.2If the pro
edure false(Q) returns a nonempty set v, then the running time of falseis O(jvj � jAt(Q)j). If false(Q) returns the empty set then its running time isO(jAt(Q)j2).Proof: Let jAt(Q)j = n and jvj = k. As we have already observed the pro
edure
y
le runs in time O(n). It is not hard to see that, sin
e we represent all sets

Theory and Pra
ti
e of Logi
 Programming 17o

urring in the pro
edure false as linked lists, with ea
h node on a list pointing tothe head of the list, the operations: �ndset and next require a
onstant time.First assume that the output v of the pro
edure false is nonempty. Let us estimatethe number of passes of the while and for loops in the pro
edure. Clearly, theloop 6-23 is exe
uted k times. Hen
e the total running time of all
alls of thepro
edure
y
le is O(kn). The number of passes of the loop 9-22 is not larger thanjL1j + jL2j + : : : + jLkj, where Li denotes the list L in an iteration i of the loop.Sin
e Li is a list of disjoint pf-sets of
ardinality i, jLij � n, for ea
h i = 1; 2; : : : ; k.Hen
e the number of passes of the loop 9-22
an be very roughly estimated by kn.The loop 12-20 is exe
uted at mostkXi=1 Xv2Li jvj � kntimes. This inequality follows from the fa
t that the sets v in the lists Li are disjointsubsets of atoms so Pv2Li jvj � n. The estimation of the number of passes of theloop 14-18 is a little bit more
ompli
ated. First noti
e that in ea
h exe
ution ofthe loop we
he
k a rule of the program Q and rules are
he
ked only one time.The rules r
he
ked in the loop have either both the head and the tail in somepf-set v 2 S or head(r) 2 v and tail(r) is in some other pf-set u 2 S. In thelatter
ase pred(v) is de�ned in line 16. The number of exe
utions of line 16 is notlarger than the number of passes of the loop 9-22 so it is bounded by kn. Whenthe pro
edure returns the output, the pf-sets have
ardinalities not larger than k.Hen
e the number of rules with both the head and the tail in the same pf-set thathas been
he
ked before the pro
edure stops is not larger thanXu2S juj(juj � 1) � (k � 1)Xu2S juj � (k � 1)n:Thus the number of passes of the loop 14-18 in the whole pro
edure false is lessthan 2kn. It follows that if the output v of false is nonempty then the running timeof false is O(jvj � jAt(Q)j).Now
onsider the
ase when the pro
edure false returns the empty set. Clearlythe number of passes of the loop 6-23 is n so it takes O(n2) time for all exe
utionsof the pro
edure
y
le. Sin
e the rules are
he
ked in the loop 14-18 only one time,the number of passes of this loop is not larger than the number m of rules in Q.Obviously m � n2 so the running time of false in this
ase is O(jAt(Q)j2). 2By Lemma 4.2 and
onsiderations in Se
tion 3 we get an estimation of the runningtime of Algorithm 3.Theorem 4.3If P is a program whose rules have at most one positive atom in the body thenAlgorithm 3
an be implemented so that its running time is O(jAt(P)j2 +size(P)).2

18 Z. Lon
 and M. Trusz
zy�nski5 Con
lusionsThe method for
omputing the well-founded semanti
s des
ribed in this paper is are�nement of the basi
 alternating-�xpoint algorithm. The key idea is to use a top-down sear
h when identifying atoms that are false. Our method is designed to workwith programs whose rules have at most one positive atom in their bodies (
lassLP1). Its running time is O(jAt(P)j2 + size(P)) (where P is an input program).Thus, our algorithm is an improvement over other known methods to
ompute thewell-founded semanti
s for programs in the
lass LP1. Our algorithm runs in lineartime for the
lass of programs P 2 LP1 for whi
h size(P) � jAt(P)j2. However, it isnot a linear-time algorithm in general. It is an open question whether a linear-timealgorithm for
omputing the well-founded semanti
s for programs in the
lass LP1exists.Our results extend to the
lass LP+1 . However, the extension is straightforwardand the
lass LP+1 is still rather narrow. Moreover, it is not spe
i�ed synta
ti
ally(it is des
ribed by means of the Kripke-Kleene semanti
s). The question ariseswhether our top-down approa
h to positive-loop dete
tion
an be generalized toany
lass of programs signi�
antly extending the
lass LP1 and possessing a simplesynta
ti
 des
ription.Finally, let us note that the general problem of
omputing the well-founded se-manti
s still remains a
hallenge. No signi�
ant improvement over the alternating-�xpoint algorithm of Van Gelder has been obtained for the
lass of arbitrary �nitepropositional logi
 programs. A
knowledgmentsThis resear
h was supported by the NSF grants CDA-9502645 and IRI-9619233.Referen
esAlferes, J.J., Dam�asio, C.V., & Pereira, L.M. (1995). A logi
 programming system fornonmonotoni
 reasoning. Journal of Automated Reasoning, 14, 93{147.Berman, K., S
hlipf, J., & J.Fran
o. (1995). Computing the well-founded semanti
s faster.Pages 113{125 of: Logi
 Programming and Nonmonotoni
 Reasoning (Lexington, KY,1995). Le
ture Notes in Computer S
ien
e, vol. 928. Springer Verlag.Brass, S., & Dix, J. (1998). Chara
terizations of the disjun
tive well-founded semanti
s:
on
uent
al
uli and iterated GCWA. Journal of Automated Reasoning, 20(1), 143{165.Brass, S., Dix, J., Freitag, B., & Zukowski, U. (2001). Transformation-based bottom-up
omputation of the well-founded model. Theory and Pra
ti
e of Logi
 Programming.To appear.Chen, W., & Warren, D.S. (1996). Tabled evaluation with delaying for general logi
programs. Journal of the ACM, 43(1), 20{74.Chen, W., Swift, T., & Warren, D.S. (1995). EÆ
ient top-down
omputation of queriesunder the well-founded semanti
s. Journal of Logi
 Programming, 24(3), 161{199.Dowling, W.F., & Gallier, J.H. (1984). Linear-time algorithms for testing the satis�abilityof propositional Horn formulae. Journal of Logi
 Programming, 1(3), 267{284.

Theory and Pra
ti
e of Logi
 Programming 19Fitting, M. C. (1985). A Kripke-Kleene semanti
s for logi
 programs. Journal of Logi
Programming, 2(4), 295{312.Fitting, M. C. (2001). Fixpoint semanti
s for logi
 programming { a survey. Theoreti
alComputer S
ien
e. To appear.Fitting, M.C. (1991). Well-founded semanti
s, generalized. Pages 71{84 of: Logi
 Pro-gramming. MIT Press Series in Logi
 Programming. MIT Press.Gelfond, M., & Lifs
hitz, V. (1988). The stable semanti
s for logi
 programs. Pages1070{1080 of: Kowalski, R., & Bowen, K. (eds), Pro
eedings of the 5th InternationalConferen
e on Logi
 Programming. MIT Press.Marek, W., & Trusz
zy�nski, M. (1991). Autoepistemi
 logi
. Journal of the ACM, 38(3),588{619.Niemel�a, I., & Simons, P. (1996). EÆ
ient implementation of the well-founded and stablemodel semanti
s. Pro
eedings of JICSLP-96. MIT Press.Rao, P., Ramskrishnan, I.V., Sagonas, K., Swift, T., Warren, D. S., & Freire, J. (1997).XSB: A system for eÆ
iently
omputing well-founded semanti
s. Pages 430{440 of:Pro
eedings of LPNMR'97. Springer-Verlag. Le
ture Notes in Computer S
ien
e, 1265.Subrahmanian, V.S., Nau, D., & Vago, C. (1995). WFS + bran
h bound = stable models.IEEE Transa
tions on Knowledge and Data Engineering, 7, 362{377.Van Gelder, A. (1989). The alternating �xpoints of logi
 programs with negation. Pages1{10 of: ACM Symposium on Prin
iples of Database Systems.Van Gelder, A., Ross, K.A., & S
hlipf, J.S. (1991). The well-founded semanti
s for generallogi
 programs. Journal of the ACM, 38(3), 620{650.Zukowski, U., Brass, S., & Freitag, B. (1997). Improving the alternating �xpoint: thetransformation approa
h. Pages 40{59 of: Pro
eedings of LPNMR'97. Springer-Verlag.Le
ture Notes in Computer S
ien
e, 1265.

