
Under onsideration for publiation in Theory and Pratie of Logi Programming 1On the problem of omputing the well-foundedsemantis�Zbigniew Lony and Miros law Truszzy�nskiDepartment of Computer Siene, University of Kentuky, Lexington, KY 40506-0046, USA(e-mail: lon|mirek�s.uky.edu)AbstratThe well-founded semantis is one of the most widely studied and used semantis of logiprograms with negation. In the ase of �nite propositional programs, it an be omputedin polynomial time, more spei�ally, in O(jAt(P)j�size(P)) steps, where size(P) denotesthe total number of ourrenes of atoms in a logi program P . This bound is ahieved byan algorithm introdued by Van Gelder and known as the alternating-�xpoint algorithm.Improving on the alternating-�xpoint algorithm turned out to be diÆult. In this paperwe study extensions and modi�ations of the alternating-�xpoint approah. We then re-strit our attention to the lass of programs whose rules have no more than one positiveourrene of an atom in their bodies. For programs in that lass we propose a new im-plementation of the alternating-�xpoint method in whih false atoms are omputed in atop-down fashion. We show that our algorithm is faster than other known algorithms andthat for a wide lass of programs it is linear and so, asymptotially optimal.1 IntrodutionThe well-founded semantis was introdued in (Van Gelder et al., 1991) to provide3-valued interpretations to logi programs with negation. Sine its introdution,the well-founded semantis has beome one of the most widely studied and mostommonly aepted approahes to negation in logi programming (Alferes et al.,1995; Fitting, 1991; Chen et al., 1995; Chen & Warren, 1996; Zukowski et al., 1997;Brass & Dix, 1998). It was implemented in several top-down reasoning systems,most prominent of whih is XSB (Rao et al., 1997).The well-founded semantis is losely related to the stable-model semantis (Gel-fond & Lifshitz, 1988), another major approah to logi programs with negation.The well-founded semantis approximates the stable-model semantis (Van Gelderet al., 1991; Fitting, 2001). Moreover, omputing the well-founded model of proposi-tional programs is polynomial (Van Gelder, 1989) while omputing stable models isNP-hard (Marek & Truszzy�nski, 1991). Consequently, evaluating the well-foundedsemantis an be used as an e�etive preproessing tehnique in algorithms to om-pute stable models (Subrahmanian et al., 1995). In addition, as demonstrated by� A preliminary version of this paper appeared in the Proeedings of Computational Logi { CL2000, Leture Notes in Arti�ial Intelligene, 1861, Springer Verlag, 2000.y On leave from Warsaw University of Tehnology.

2 Z. Lon and M. Truszzy�nskismodels (Niemel�a & Simons, 1996), at present the most advaned and most eÆ-ient system to ompute stable models of DATALOG: programs, the well-foundedsemantis an be used as a powerful lookahead mehanism.Despite the importane of the well-founded semantis, the question of how fast itan be omputed has not attrated signi�ant attention. Van Gelder (Van Gelder,1989) desribed the so alled alternating-�xpoint algorithm. Van Gelder's algorithmruns in time O(jAt(P)j � size(P)), where At(P) is the set of atoms ourring in alogi program P , jAt(P)j denotes the ardinality of At(P), and size(P) is the size ofP (the total number of atom ourrenes in P). Improving on this algorithm turnedout to be diÆult. The �rst progress was obtained in (Berman et al., 1995). Thealgorithm desribed there, when restrited to programs whose rules ontain at mosttwo positive ourrenes of atoms in their bodies, runs in time O(jAt(P)j4=3jP j2=3+size(P)), where jP j is the number of rules in P . For programs whose rules have nomore than one positive atom in the body a better estimate of O(jAt(P)j3=2jP j1=2 +size(P)) was obtained. For some lasses of programs this is an asymptotially betterestimate than the O(jAt(P)j � size(P)) estimate that holds for the algorithm byVan Gelder.A di�erent approah to omputing the well-founded model was proposed in(Zukowski et al., 1997; Brass et al., 2001). It is based on the notion of a programtransformation (Brass & Dix, 1998). The authors desribe there several transfor-mations that an be implemented in linear time and that simplify a program while(essentially) preserving the well-founded semantis. These transformations are: thepositive redution, suess, negative redution, and failure (PSNF transformations,for short). They allow one to ompute in linear time the Kripke-Kleene seman-tis (Fitting, 1985) of the program. To ompute the well-founded semantis onealso needs to detet the so-alled positive loops. The omplexity of this task dom-inates the asymptoti omplexity of the well-founded semantis omputation. Noimproved algorithms for the positive-loop detetion are o�ered in (Brass et al.,2001) so the worst-ase asymptoti omplexity of the algorithm presented thereremains the same as that of the alternating-�xpoint method. However, due to theuse of PSNF transformations, that simplify the program, the algorithm based onprogram transformations may in pratie run faster. In ontrast to the approahstudied in (Brass et al., 2001), we fous here on the positive-loop detetion task.The alternating-�xpoint algorithm works by suessively improving lower ap-proximations T and F to the sets of atoms that are true and false (under thewell-founded semantis), respetively. The algorithm starts with T = ;. Using thisestimate, it omputes the �rst estimate for F . Next, using this estimate, in turn,it omputes a better estimate for T . The algorithm ontinues until further im-provements are not possible. It returns the �nal sets T and F as the well-foundedsemantis. A dual version of the alternating-�xpoint algorithm, starting with F = ;and then alternatingly omputing approximations to T and F , is also possible. Themost time-onsuming part of this algorithm is in omputing estimates to the set ofatoms that are false (in this part, in partiular, positive loops are deteted). In theVan Gelder algorithm, the best possible approximation (given the urrent estimatefor T) is always omputed by using a bottom-up approah.

Theory and Pratie of Logi Programming 3In this paper we fous on the problem of deteting positive loops and omputingnew false atoms. We restrit our attention to the lass of programs that have atmost one positive atom in the body. We denote this lass of programs by LP1. Weshow that for programs from LP1, false atoms an be omputed by means of a top-down approah by �nding atoms that do not have a proof. Moreover, we show thatit is not neessary to �nd all atoms that an be established to be false at a givenstage. Finding a proper subset (as long as it is not empty) is also suÆient andresults in a orret algorithm. We apply these tehniques to design a version of analternating-�xpoint algorithm omputing the well-founded semantis of programsfrom the lass LP1. We demonstrate that the resulting algorithm is asymptotiallybetter than the original alternating-�xpoint algorithm by Van Gelder. Spei�ally,we show that our algorithm runs in time O(jAt(P)j2+size(P)). Thus, for programswith size(P) � jAt(P)j2, our algorithm runs in linear time and is asymptotiallyoptimal! It is also easy to see that when jP j > jAt(P)j, the asymptoti estimate ofthe running time of our algorithm is better than that of algorithms by Van Gelder(Van Gelder, 1989) and Berman et al. (Berman et al., 1995).As mentioned above, our approah is restrited to the lass LP1. Appliabilityof our method an, however, be slightly extended. Let us denote by LP+1 the lassof these logi programs that, after simplifying by means of PSNF transformations(or, equivalently, with respet to the Kripke-Kleene semantis) fall into the lassLP1. Sine PSNF transformations (the Kripke-Kleene semantis) an be omputedin linear time, the asymptoti estimate of the running time of our method extendsto all programs in the lass LP+1 .The paper is organized as follows. In the next setion we provide a brief reviewof the key notions and terminology. In Setion 3 we desribe several modi�ationsto the original Van Gelder algorithm, we show their orretness and estimate theirrunning time. The ultimate e�et of our onsiderations there is a general templatefor an algorithm to ompute the well-founded semantis. Any algorithm omputingsome (not neessarily all) atoms that an be established as false given a urrentestimate to the well-founded an be used with it. One suh algorithm, for programsfrom the lass LP1, is desribed and analyzed in Setion 4. It onstitutes the mainontribution of the paper and yields a new, urrently asymptotially most eÆientalgorithm for omputing the well-founded semantis for programs in LP1. The lastsetion ontains onlusions. 2 PreliminariesWe start by reviewing basi onepts and notation related to logi programs andthe well-founded semantis, as well as some simple auxiliary results. In the paperwe onsider the propositional ase only.Let P be a normal logi program. By At(P) we denote the set of atoms ourringin P . Let M � At(P) (throughout the paper we often drop a referene to P from ournotation, whenever there is no danger of ambiguity). By PM we denote the programobtained from P by removing all rules whose bodies ontain negated literals ofthe form not(a), where a 2 M . Further, by P h we denote the program obtained

4 Z. Lon and M. Truszzy�nskifrom P by removing from the bodies of its rules all negative literals. Clearly, theprogram (PM)h oinides with the Gelfond-Lifshitz redut of P with respet to M(throughout the paper, we write P hM for (PM)h, to simplify notation). The Gelfond-Lifshitz operator on the algebra of all subsets of At, GL (following our onvention,we omit the referene to P from the notation), is de�ned byGL(M) = LM(P hM);where LM(Q) stands for a least model of a Horn program Q.We now present haraterizations of the well-founded semantis. We phrase themin the language of operators and their �xpoints. All operators onsidered here arede�ned on the algebra of subsets of At(P). We denote a least �xpoint (if it exists)of an operator O by lfp(O).It is well known that GL is antimonotone. Consequently, GL2 = GL Æ GL ismonotone and has a least �xpoint. The set of atoms that are true with respet tothe well-founded semantis of a program P , denoted by Twfs , is preisely the least�xpoint of the operator GL2, that is, Twfs = lfp(GL2) (Van Gelder, 1989; Fitting,2001). The set of atoms that are false with respet to the well-founded semantisof a program P , denoted by Fwfs , is given by GL(Twfs) (throughout the paper, Xdenotes the omplement of a set X with respet to At(P)).One an de�ne a dual operator to GL2 byA(M) = GL(GL(M)):It is easy to see that A is monotone and that its least �xpoint is Fwfs . Thus,Fwfs = lfp(A) and Twfs = GL(Fwfs).We lose this setion by disussing ways to ompute GL(M) for a given �nitepropositional logi program P and a set of atoms M � At(P). A straightforwardapproah is to ompute the Gelfond-Lifshitz redut P hM and then to ompute itsleast model. The resulting algorithm is asymptotially optimal as it runs in timelinear in the size of the program. However, in this paper we will use a di�erentapproah, more appropriate for the omputation of the well-founded semantis. LetP be a logi program with negation. We de�ne At�(P) = fnot(a): a 2 At(P)g. Forevery set M � At(P) [At�(P), we de�ne true(M) = M \ At(P). If we interpretliterals of At�(P) as new atoms, then for every set M � At(P), the programP [not(M) an be viewed as a Horn program. Thus, it has a least model. It iseasy to see that GLP (M) = true(LM(P [not(M))):Here, P appearing at the left-hand side of the equation stands for the originallogi program, while P appearing at the right-hand side of the equation stands forthe same program but interpreted as a Horn program. Thus, using the algorithmof Dowling and Gallier (Dowling & Gallier, 1984), the Gelfond-Lifshitz redutan be omputed in time O(size(P) + jM j) = O(size(P)) (sine M � At(P),jM j = O(size(P))).

Theory and Pratie of Logi Programming 53 AlgorithmsThe departure point for our disussion of algorithms to ompute the well-foundedsemantis is the alternating-�xpoint algorithm of Van Gelder (Van Gelder, 1989).Using the terminology introdued in the previous setion it an be formulated asfollows.Algorithm 1 (Van Gelder)F := ;;repeatT := true(LM(P [not(F)); (* or equivalently: T := GL(F); *)F := LM(P hT); (* or equivalently: GL(T); *)until no hange in F ;return T and F .Let F 0 and F 00 be the values of the set F just before and just after an iterationof the repeat loop in Algorithm 1. Clearly,F 00 = GL(GL(F 0)) = A(F 0):Thus, after iteration i of the repeat loop, F = Ai(;). Consequently, it follows fromour earlier remarks that when Algorithm 1 terminates, the set F that is returnedsatis�es F = Fwfs . Sine there is no hange in F in the last iteration, when thealgorithm terminates, we have T = Twfs . That is, Algorithm 1 is orret.We will now modify Algorithm 1. The basis for Algorithm 1 is the operator A.This operator is not progressive. That is, M is not neessarily a subset of A(M).We will now introdue a related progressive operator, say B, and show that it anbe used to replae A. Let P be a logi program and let T and F be two subsets ofAt(P). By PF;T we denote the program obtained from P by removing1. all rules whose heads are in F2. all rules whose bodies ontain a positive ourrene of an atom from F3. all rules whose bodies ontain a negated literal of the form not(a), wherea 2 T .Clearly, PF;T � PT .We de�ne an operator B(F) as follows:B(F) = LM(P hF;T);where T = GL(F) and P hF;T abbreviates (PF;T)h. The following result gathers keyproperties of the operator B.Theorem 3.1Let P be a normal logi program. Then:1. B is monotone2. For every F � At(P), A(F) � B(F)3. For every F � Fwfs , B(F) � Fwfs

6 Z. Lon and M. Truszzy�nski4. lfp(B) = Fwfs5. For every F � At(P), B(F) = F [(F nLM(P hF;T)), where T = GL(F).Proof: (1) Assume that F1 � F2. Set Ti = GL(Fi), i = 1; 2. Clearly, F2 � F1 and,by antimonotoniity of GL, T1 � T2. By the de�nition of PF;T , PF2;T2 � PF1;T1 .Consequently, LM(P hF2;T2) � LM(P hF1;T1) and, so, B(F1) � B(F2).(2) Let T = GL(F). Clearly, PF;T � PT . Thus, A(F) = LM(P hT) � LM(P hF;T) =B(F).(3) We have, LM(P hTwfs) = Fwfs . It follows that removing from P hTwfs rules withheads in Fwfs and those that ontain an atom from Fwfs in their bodies does nothange the least model. That is,LM(P hFwfs ;Twfs) = LM(P hTwfs):Sine, Twfs = GL(Fwfs), B(Fwfs) = LM(P hFwfs ;Twfs). Let F � Fwfs . Then, by (1),B(F) � B(Fwfs). Thus, we haveB(F) � B(Fwfs) = LM(P hFwfs ;Twfs) = LM(P hTwfs) = Fwfs :(4) The least �xpoint of B is given by lfp(B) = SBi(;). By (3), lfp(B) � Fwfs . Onthe other hand, by (1) and (2), Ai(;) � Bi(;). Thus, Fwfs = lfp(A) � lfp(B). Itfollows that lfp(B) = Fwfs .(5) Let T = GL(F). Sine PF;T has no rules with head in F , LM(P hF;T) � F and,onsequently, F � B(F). Thus, the assertion follows. 2Theorem 3.1 allows us to prove the orretness of the following modi�ation ofAlgorithm 1.Algorithm 2F := ;;repeatT := true(LM(P [not(F));�F := F n LM(P hF;T);F := F [�F ;until no hange in F ;return T and F .By Theorem 3.1, eah iteration of the repeat loop omputes B(F) as the newvalue for the set F . More formally, the set F just after iteration i, satis�es F =Bi(;). Thus, when the algorithm terminates, the set F that is returned is the least�xpoint of B. Consequently, by Theorem 3.1(4), Algorithm 2 is orret.We will now modify Algorithm 2 to obtain a general template for an alternating-�xpoint algorithm to ompute the well-founded semantis. The key idea is to ob-serve that it is enough to ompute a subset of �F in eah iteration and the algorithmremains orret.Let us assume that for some operator �w de�ned for pairs (F;Q), where F �At(P) and Q is a Horn program suh that At(Q) � F (the omplement is, as always,evaluated with respet to At(P)), we have:

Theory and Pratie of Logi Programming 7(W1) �w(F;Q) � F n LM(Q)(W2) �w(F;Q) = ; if and only if F n LM(Q) = ;.Let F � At(P). By the de�nition of PF;T , At(P hF;T) � F . Thus, we de�neBw(F) = F [�w(F; P hF;T), where T = true(LM(P [not(F))). It is lear thatfor every F � At(P), F � Bw(F) � B(F), the latter inlusion follows from Theo-rem 3.1(5) and (W1). Consequently, for every i,Biw(;) � Bi(;):It follows that Biw(;) � lfp(B) = Fwfs . It also follows that there is the �rst i suhthat Biw(;) = Bi+1w (;). Let us denote this set Biw(;) by F0. Then F0 � Fwfs . In thesame time, by ondition (W2), B(F0) = F0. Sine Fwfs is the least �xpoint of B,Fwfs � F0. It follows that a modi�ation of Algorithm 2 in whih line�F := F n LM(P hF;T);is replaed by �F := �w(F; P hF;T);orretly omputes the well-founded semantis of a program P . Thus, we obtainthe following algorithm for omputing the well-founded semantis.Algorithm 3F := ;;repeatT := true(LM(P [not(F));�F := �w(F; P hF;T);F := F [�F ;until no hange in F ;return T and F .We will now re�ne Algorithm 3. Spei�ally, we will show that the sets T and Fan be omputed inrementally.Let R be a Horn program. We de�ne the residual program of R, res(R), to be theHorn program obtained from R by removing all rules of R with the head in LM(R)and by removing from the bodies of the remaining rules those elements that are inLM(R). We have the following tehnial result.Lemma 3.2Let R be a Horn program and let M be a set of atoms suh that M \head(R) = ;.Then LM(R [M) = LM(R) [LM(res(R) [M). 2Lemma 3.2 implies that (we treat here negated literals as new atoms and P asHorn program over the extended alphabet)LM(P [not(F [�F)) = LM(P [not(F)) [LM(res(P [not(F)) [not(�F)):Thus, if the set F is expanded by new elements from �F , then the new set T anbe omputed by inreasing the old set T by �T = true(LM(res(P [not(F)) [

8 Z. Lon and M. Truszzy�nskinot(�F))). Important thing to note is that the inrement �T an be omputedon the basis of the residual program and the inrement �F . Similarly, we havePF[�F;T[�T = (PF;T)�F;�T :Thus, omputing PF;T an also be done inrementally on the basis of the programonsidered in the previous iteration by taking into aount most reently omputedinrements �F and �T .This disussion implies that Algorithm 3 an be equivalently restated as follows:Algorithm 31 T := F := �T := �F := ;;2 R := P ; (*R will be treated as a Horn program *)3 Q := P ;4 repeat5 �T := true(LM(R [not(�F));6 R := res(R [not(�F));7 T := T [�T ;8 Q := Q�F;�T ;9 �F := �w(F;Qh);10 F := F [�F ;11 until no hange in F ;12 return T and F .We will now estimate the running time of Algorithm 3. Clearly line 1 requiresonstant time. Setting up appropriate data strutures for programs R and Q (lines2 and 3) takes O(size(P)) steps. In eah iteration, �T is omputed and the ur-rent program R is replaed by the program res(R [not(�F)) (lines 5 and 6). Bymodifying the algorithm from (Dowling & Gallier, 1984) and assuming that R isalready stored in the memory (it is avaliable either as the result of the initializationin the ase of the �rst iteration or as a result of the omputation in the previousiteration), both tasks an be aomplished in O(size(Ro)+ j�F j�size(Rn)) steps.Here Ro denotes the old version of R and Rn denotes the new version of R. Con-sequently, the total time needed for lines 5 and 6 over all iterations is given byO(size(P) + jAt(P)j � size(Rt)) = O(size(P)) (where Rt is the program R, whenthe algorithm terminates). The time needed for all lines 7 is proportional to thenumber of iterations and is O(jAt(P)j) = O(size(P)).Given a logi program Q and sets of atoms �T and �F , it takes O(size(Q) �size(Q�F;�T) + j�T j+ j�F j) steps to ompute the program Q�F;�T in line 8. Weassume here that Q is already in the memory as a result of the initialization inthe ase of the �rst iteration, or as the result of the omputation in the previousiteration, otherwise. It follows that the total time over all iterations needed toexeute line 8 is O(size(P) + jAt(P)j) = O(size(P)).Thus, we obtain that the running time of Algorithm 3 is given by O(size(P)+m),where m is the total time needed to ompute �w(F;Qh) over all iterations of thealgorithm.

Theory and Pratie of Logi Programming 9In the standard (Van Gelder's) implementation of Algorithm 3, we ompute thewhole set F n LM(Qh) as �w(F;Qh). In addition, omputation is performed in abottom-up fashion. That is, we �rst ompute the least model of Qh and then itsomplement with respet to F . Suh approah requires O(size(Qh)) = O(size(P))steps per iteration to exeute line 9 and leads to O(jAt(P)j�size(P)) running-timeestimate for the alternating-�xpoint algorithm.4 Proedure �wIn this setion we will fous on the lass of programs, LP1, that is, programs whoserules have no more than one positive atom in their bodies. We assume that we havea proedure false that, given a Horn program Q 2 LP1, returns a subset of theset At(Q) nLM(Q). We also assume that false returns the empty set if and only ifAt(Q) = LM(Q). For every pair (F;Q), where F � At(P) and Q is a Horn programsuh that At(Q) � F , we de�ne�w(F;Q) = false(Q):It is easy to see that this operator �w(F;Q) satis�es onditions (W1) and (W2).Consequently, it an be used in Algorithm 3. Clearly, the proedure �w and itsomputational properties are determined by the proedure false. In the remainderof the paper, we will desribe a partiular implementation of the proedure falseand estimate its running time. We will use this estimate to obtain a bound on therunning time of the resulting version of Algorithm 3.A straightforward way to ompute the least model of Q and so, to �nd At(Q) nLM(Q), is "bottom-up". That is, we start with atoms whih are heads of ruleswith the empty bodies and use the rules of Q to ompute all atoms in LM(Q)by iterating the van Emden-Kowalski operator. An eÆient implementation of theproess is provided by the Dowling-Gallier algorithm (Dowling & Gallier, 1984).The approah we follow here in the proedure false is "top-down" and gives us,in general, only a part of the set At(Q) nLM(Q). More preisely, for an atom a weproeed \bakwards" attempting to onstrut a proof or to demonstrate that noproof exists. In the proess, we either go bak to an atom that is the head of a rulewith empty body or we show that no proof exists. In the former ase, a 2 LM(Q).In the latter one, none of the atoms onsidered while searhing for a proof of aare in LM(Q) (beause Q 2 LP1 and eah rule has at most one anteedent). Theproblem is that we may �nd an atom a that does not have a proof only after welook at all other atoms �rst. Thus, in the worst ase, �nding one new false atommay require time that is proportional to the size of Q.To improve the time performane, we look for proofs simultaneously for all atomsand grow the proofs \bakwards" in a arefully ontrolled way. Namely, we neverlet one searh to get too muh ahead of the other searhes. This ontrolled way oflooking for proofs is the key idea of our approah and leads to a better performane.We will now provide an informal desription of the proedure false followed laterby a formal spei�ation and an example.In the proedure, we make use of a new atom, say s, di�erent from all atoms

10 Z. Lon and M. Truszzy�nskiourring in Q. Further, we denote by head(r) the atom in the head of a rule r 2 Qand by tail(r) the atom whih is either the unique positive atom in the body ofr, if suh an atom exists, or s otherwise. We all an atom a 2 At(Q) aessible ifthere are rules r1; : : : ; rk in Q suh that tail(ri+1) = head(ri), for i = 1; : : : ; k � 1,tail(r1) = s and head(rk) = a. Clearly, the least model LM(Q) of Q is preiselythe set of all aessible atoms.In eah step of the algorithm, the set of atoms from At(Q) is partitioned intopotentially false sets or pf-sets, for short. We say that a set v � At(Q) is a pf-setif for eah pair of distint atoms a; b 2 v there are rules r1; : : : ; rk in Q suh thattail(ri+1) = head(ri) 2 v, for i = 1; : : : ; k � 1, tail(r1) = b and head(rk) = a. Itis lear that if v is a pf-set then either all its elements are aessible (belong tothe least model of Q) or none of them does (they are all false). Clearly, singletonsets onsisting of individual atoms in At(Q) are pf-sets. In the algorithm, with eahpf-set we maintain its ardinality.Current information about the state of all top-down searhes and about thedependenies among atoms, that were disovered so far, is maintained in a diretedgraph G. The vertex set of this graph, say S, onsists of fsg and of a family of pf-sets forming a partition of the set At(Q). The edges of G are spei�ed by a partialfuntion pred : S ! S. We write pred(v) = unde�ned if pred is unde�ned for v.Thus, the set of edges of G is given by f(pred(v); v): pred(v) 6= unde�nedg. Sinepred is a partial funtion, it is easy to see that the onneted omponents of thegraph G are uniyli graphs or trees rooted in those verties v for whih pred(v)is unde�ned. Throughout the algorithm we always have pred(fsg) = unde�ned.Thus, the onneted omponent of G ontaining fsg is always a tree and fsg is itsroot.If w and v are two di�erent pf-sets, the existene of the edge (w; v) in G meansthat we have already disovered a rule in the original program whose head is in vand whose tail is in w. Thus, if verties in w are aessible, then so are the vertiesin v. A pf-set that is the root of a tree forming a omponent of G is alled an ativepf-set. If v is an ative pf-set then no rule r with head(r) 2 v and tail(r) 62 vhas been deteted so far. Thus, v is a andidate for a set of atoms whih does notinterset the least model of Q. Let us note that even though fsg is a root of a treein G it is never ative as it is not a pf-set in the �rst plae.We let ative pf-sets grow by gluing them with other pf-sets. However, we allowto grow only these ative pf-sets whose ardinalities are the least. In eah iterationof the algorithm the value of the variable size is a lower bound for the ardinalitiesof ative pf-sets. To grow an ative pf-set v, we look for rules with heads in v andwith tails in pf-sets other than v (not neessarily ative) or in fsg. The dependeniesbetween pf-sets disovered in this way are represented as new direted edges in G.Pf-sets that appear in the same yle are glued together (in the proedure yle).Sine fsg is not an ative pf-set, it never beomes an element of a yle in G.If, when attempting to grow a pf-set v we disover a rule with head in v and withthe tail in a vertex of the tree of G rooted in fsg, then v is from now on ignored(all its verties belong to the least model of Q). Indeed, v gets onneted to a tree

Theory and Pratie of Logi Programming 11of G rooted in fsg. Consequently, it annot beome a member of a yle in G in thefuture and is never again onsidered by the proedure yle.The main loop (lines 6-23) of the algorithm false below starts by inrementingsize followed by a all to the proedure yle(S; pred; size; L). This proedure sansthe graph G and identi�es all its yles. It then modi�es G by onsidering eah yleand by gluing its pf-sets into a single pf-set. To this end, it modi�es the vertex setS of G and the funtion pred de�ning the edges of G. Eah suh new pf-set beomesthe root of its tree in G and so, it beomes ative. The proedure yle omputes theardinality of eah new ative pf-set. Finally, it reates a list L so that it onsistsof ative pf-sets of ardinality size. If no suh set is found (L is empty), we moveon to the next iteration of the main loop and inrement size by 1. We give a moredetailed desription of the proedure yle later in the paper when we analyze thetime omplexity of our method.For eah ative pf-set v 2 L we onsider the tail of eah rule with head in v (lines9-22). If there is a rule r with head(r) 2 v and tail(r) 62 v then it is deteted (line15). The value pred(v) is set to this element in S that ontains tail(r) (it may bethat this set is fsg). We also set the variable suess to true (line 16). The pf-setv stops to be ative. We move on to the next ative pf-set on L.If suh a rule r does not exist then suess = false and v is a set of ardinalitysize onsisting of atoms whih are not in the least model of Q. This set is returnedby the proedure false (line 21). Hene, for an ative pf-set onsidered in the loop6-23, either we �nd a pf-set pred(v) 2 S n fvg (and we have to onsider the nextpf-set on L) or v is returned as a set of atoms whih are not in the least model ofQ (and the proedure false terminates). Thus, the proedure false is ompleted ifeither a nonempty set v of atoms whih are not in the least model of Q is found or,after some passes of the loop 6-23, the graph G has no ative pf-sets. In the latterase G is a tree with the root in fsg. Thus, At(Q) = LM(Q) and v = ; is returned(line 24).In the proedure false, as formally desribed below, an input program Q is rep-resented by lists IN(a), a 2 At(Q), of all atoms b suh that b is the body of somerule with the head a. If there is a rule with the head a and empty body, we inserts into the list IN(a).We also use an operation next on lists and elements. Let l be a list and w be anelement, either belonging to l or having a speial value unde�ned. Thennext(w; l) = � the next element after w in l if w 2 lthe �rst element in l if w is unde�ned:The value unde�ned should not be mixed with nil whih indiates the end of alist.Finally, we use a proedure �ndset(w;S) whih, for an atom w and a olletionS of disjoint sets, one of whih ontains w, �nds the name of the set in S on-taining w (it follows from our assumptions that suh a set is unique). Elements ofS are maintained as linked lists. Eah element on suh a list has a pointer to thehead of the list. The head serves as the identi�er for the list. When the proedure�ndset(w;S) is alled, it returns the head of the list to whih w belongs.

12 Z. Lon and M. Truszzy�nski1 proedure false(Q);2 S := ffxg : x 2 At(Q)g [ffsgg;3 for v 2 S do pred(v) := unde�ned;4 for x 2 At(Q) do fw(x) := unde�ned; ardinality(x) := 1g;5 size := 0;6 while size < jAt(Q)j do7 fsize := size+ 1;8 yle(S; pred; size; L);9 for all v 2 L do10 fsuess := false;11 u := next(u; v);12 while u 6= nil and not suess do13 w(u) := next(w(u); IN(u));14 while w(u) 6= nil and not suess do15 fif �ndset(w(u);S) 6= v16 then fsuess := true; pred(v) := �ndset(w(u);S)g17 else w(u) := next(w(u); IN(u))18 end while (14)g;19 if not suess then u := next(u; v)20 end while (12)g;21 if not suess then return v (* the proedure terminates *)22 end for (9)g23 end while (6)g;24 return v = ;25 end false;We will now illustrate the operation of the algorithm. Let us onsider the followingHorn logi program Q:a b a a a a e d ef d e f d f e g g j j gi j j h k j k h h kThis program is represented as a graph, GQ, in Fig. 1. The verties of this graphorrespond to the atoms of the program. In addition, GQ has an auxiliary vertexs =2 At(Q). An edge (x; y), where x; y 2 At(Q), represents the lause y x fromQ. An edge (s; y), where y 2 At(Q), represents the lause y . When illustratingthe algorithm, we assume that atoms from At(Q) (atoms a; : : : ; k in our example)appear on the lists IN(x), x 2 At(Q), in the alphabetial order. We also assumethat whenever s belongs to a list IN(x), it appears as the �rst atom on the list.In the algorithm false, the urrent state of knowledge about the possibility ofproving an atom from Q is represented by the graph G. Initially, G onsists ofisolated verties. Indeed, line 3 of the algorithm sets pred(x) to unde�ned, for everyvertex x of S (see Fig. 2 (left)). All of the verties of G, exept for fsg are ative

Theory and Pratie of Logi Programming 13
i

dc f j k

ab e h

s

gFig. 1. Graph GQ representing program Q.pf-sets. The proedure yle (line 8), alled with size = 1, puts all of them on thelist L.The algorithm onsiders next (line 9) all elements on the list L, that is, allverties of G that are ative pf-sets and have ardinality equal to size. During the�rst iteration of the loop 6-23, L onsists of all verties of G, exept for fsg (thatis, singleton sets fxg, where x 2 At(Q) = V (GQ) n fsg). For eah vertex v of G onL, the algorithm looks for a bak rule for v, that is, a rule in Q with the head inv and the tail in a pf-set other than v or in fsg. In our graphial representation ofQ by means of the graph GQ, a bak rule for v orresponds to an edge (referred toas a bak edge) in GQ with the head in v and the tail in a vertex of G other than v(possibly in fsg). To �nd a bak rule (edge) for v, all atoms u of Q (equivalently,all verties u of GQ) that belong to v are onsidered (the loop 12-20). For eah suhatom u, the algorithm searhes for the �rst atom on the list IN(u) that does notbelong to v. Let us reall that IN(u) is the list of atoms that are the tails of ruleswith the head u or, in the terms of the graph GQ, that are the tails of edges withthe head u. If suh an atom is found, together with u it determines a bak rule(edge) r for v. The algorithm sets pred(v) to be equal to the pf-set ontaining thetail of r (line 16). That is, an edge from pred(v) to v is added to G. The algorithmmoves then on to the next element of the list L.In our example, in the �rst iteration of the loop 6-23, a bak rule is found forevery element on L, that is, for every vertex of G other than fsg. For instane, forthe vertex fdg, the algorithm onsiders atoms on the list IN(d) = (e; f) (let usreall that atoms on lists IN(x) are arranged alphabetially with the exeption ofthe speial atom s whih, if present on a list, is always its �rst element). The �rstatom on the list, e does not belong to fdg. Thus, it de�nes, together with d a bakrule for fdg, d e. The resulting graph G is shown in Fig. 2 on the right.Let us note that when sanning the list IN(d) in subsequent iterations the algo-rithm resumes the san with the �rst atom that has not been looked at yet (f. thede�nition of the operation next). Thus, the next time d is onsidered as an elementof an ative pf-set for whih a bak rule is searhed for, the san of IN(d) will startwith f . The same holds true for all lists IN(x), x 2 At(Q). Consequently, eah atomon eah of these lists is onsidered just one. Suh an approah still guarantees that�nding bak rules works orretly (that is, that they are found by the algorithm

14 Z. Lon and M. Truszzy�nski
{ b} { a}

{ s }

{ e } { g} { h}

{ k}{ j }

{ i }

{ f }{ d}{ c }

{ b} { a}

{ s }

{ e } { g} { h}

{ k}{ j }

{ i }

{ }{ d}{ c } f

Fig. 2. Graph G initially (left side) and after the �rst iteration of the loop 6-23 (on theright).whenever they exist). Indeed, when an atom on a list IN(x) is onsidered, it eitherde�nes a bak rule with the head x (and, thus, annot de�ne any new bak rulewith the head x in the future) or it is in the same ative pf-set as x (and, thus, itneither de�nes a bak rule now nor it will de�ne it in the future, as it will remainin the same pf-set as x till the algorithm terminates).The seond iteration of the loop 6-23 starts with the proedure yle ontratingeah yle in the graph G to a single vertex. The resulting graph is shown in Fig. 3on the left. The proedure yle then reates a new list L. It onsists of all ativepf-sets of ardinality 2. In our ase, L ontains fg; jg and fh; kg (fd; e; fg is alsoative but has ardinality 3).Continuing with the seond iteration, the algorithm next onsiders eah vertexon L (the loop 9-22) and looks for bak rules. In this iteration, a bak rule is foundfor eah of the nodes on L and the modi�ed graph G is given in Fig. 3 on the right.
{ d,e,f } { d,e,f }{ b} { a}

{ s }

{ i }

{ c }

{ g,j } { h,k} { b} { a}

{ s }

{ i }

{ c }

{ g,j } { h,k}Fig. 3. Graph G after the exeution of the proedure yle in the seond iteration of theloop 6-23 (left) and after the seond iteration of the loop 6-23 (right).In the third iteration, the proedure yle ontrats the only yle in G to asingle ative pf-set of ardinality 4 (Figure 4, left side). It also reates a new listL. This time it onsists of ative pf-sets of ardinality 3. There is just one suh set- fd; e; fg. Subsequently, the algorithm false looks for a bak rule for fd; e; fg. Itstarts by onsidering edges ending in d (line 11; we assume that v is representedby the list (d; e; f)). It sans the list IN(d) starting at the �rst atom that has notbeen inspeted so far, that is, f . However, sine f belongs to the same pf-set as d,f does not speify a bak rule. Sine there are no more atoms on the list IN(d),we move on to the next iteration of the loop 12-20 and onsider atom e. We haveIN(e) = (f; g). Sine f was already onsidered (and yielded a bak rule for feg)

Theory and Pratie of Logi Programming 15in the �rst iteration, we onsider g. Sine g =2 fd; e; fg, it de�nes a bak rule forfd; e; fg, d g.
{ d,e,f } { g,h,j,k} { d,e,f }{ b} { a}

{ s }

{ i }

{ c }

{ b} { a}

{ s }

{ i }

{ c }

{ g,h,j,k}Fig. 4. Graph G after the exeution of the proedure yle in the third iteration of theloop 6-23 (left) and after the third iteration of the loop 6-23 (right).The resulting graph G is shown in Figure 4 (on the right). It has no yles. So, theonly thing done by the proedure yle in the iteration 4 is that it puts on L ativepf-sets of ardinality 4. There is just one suh set in G, fg; h; j; kg. The algorithmfalse looks for a bak edge for fg; h; j; kg and does not �nd any. The variable suessremains false. The algorithm returns fg; h; j; kg and terminates (line 21). Let usnote that this set is a proper subset of the set At(Q) n LM(Q).The following theorem formally establishes two key properties of the proedurefalse.Theorem 4.11. The proedure false returns a set v suh that v � At(Q) n LM(Q).2. false returns the empty set if and only if At(Q) n LM(Q) = ;.Proof: (1) The statement is trivially true if false returns the empty set. Thus assumethat the returned set v 6= ;. It means that the value of the variable suess is falseafter all passes of the loop 12-20 for some ative pf-set v in the list L. Thus everyrule in Q with the head in v has been onsidered.Suppose there is a rule r in Q with head(r) = u 2 v and tail(r) = b 62 v. This rulewas onsidered by the proedure false when u = head(r) was a member of someative pf-set, say y. Sine larger pf-sets are obtained by gluing smaller ones, y � v.While r was being onsidered, the value of w(u) in the loop 14-18 was b and thevalue of v was y. Consequently, �ndset(b;S) 6= y in line 15 beause y � v and b 62 vso b 62 y. Hene the value of suess was set to true and pred(y) was de�ned tobe, say, z = �ndset(b;S) in line 16. The pf-set y stopped to be ative. Reall thatv is ative when the proedure stops. Hene y had to be glued with other pf-setsto obtain v. This is, however, impossible beause if y were glued with some otherpf-sets to form a larger pf-set x then pred(y) = z � x. Notie that b 2 z � x � v.We have got a ontradition with b 62 v.Hene, there are no rules r in Q with head(r) 2 v and tail(r) 62 v. Thus no atomin v is aessible so v � At(Q) n LM(Q).(2) Suppose false returns the empty set and onsider the last pass of the loop 6-23,for size = jAt(Q)j. If the list L is empty then no vertex of G is an ative pf-set.

16 Z. Lon and M. Truszzy�nskiHene, G is a tree with the root fsg. Thus all atoms in At(Q) are aessible andonsequently LM(Q) = At(Q).If the list L is nonempty then it ontains one pf-set v = At(Q). The empty setis returned by the proedure false so the value of the variable suess in line 16is true for v = At(Q). It means that for some rule r in Q with head(r) = u,w(u) = tail(r) 62 v = At(Q) so w(u) = s. Hene, u is aessible and, onsequently,all atoms in At(Q) are aessible. That is, we have At(Q) n LM(Q) = ;.The onverse of the impliation proved above follows immediately from the �rstpart of the theorem. 2We shall now onsider the proedure yle a little bit more arefully. The proe-dure an be informally written in the following form.proedure yle(S; pred; size; L)1. Initialize L to empty.2. Find all yles C1; C2; : : : ; Cp in the graph G. Put C = fC1; C2; : : : ; Cpg.3. For every yle C = fv1; : : : ; vqg, C 2 C, do (i)-(iv).(i) set vC := v1 [: : : [vq ;(ii) ompute ardinality(vC) (sum up the ardinalities of all verties in C);(iii) update the set S: set S := (S � fv1; : : : ; vqg) [fvCg; (* vC beomesan ative pf-set *)(iv) update the funtion pred: for every i = 1; : : : ; q, if pred(z) = vi (forsome z 2 S) then pred(z) := vC ;4. For every vertex of G that is an ative pf-set, if ardinality(v) = size, insert vinto the list L.Sine G is a direted graph whose onneted omponents are either uniyligraphs or trees, step 2 of the proedure yle an be implemented in O(jSj) time.Sine pf-sets are represented as linked lists, with eah node on the list pointing tothe head of the list, step (i) an be implemented to take O(jvC j) steps. The timeneeded for step (ii) is, learly, O(jCj). Eah exeution of step (iii) takes also O(jCj).Finally, the running time of eah exeution of step (iv) is O(mC), where mC is thesize of the onneted omponent of the graph G ontaining C. Thus, an iterationof the loop 3 for a yle C 2 C takes O(jCj + mC + jvC j). Clearly, jCj � mC .Moreover, PC2CmC � jSj � 1 � jAt(Q)j and PC2C jvC j � jAt(Q)j (they are alldisjoint subsets of At(Q)). Thus, the total time needed for the loop 3 is O(jAt(Q)j).It is easy to see that the time needed for the loop 4 is also O(jAt(Q)j). Consequently,the running time of the proedure yle is O(jAt(Q)j).We are now in a position to estimate the running time of the proedure false.Lemma 4.2If the proedure false(Q) returns a nonempty set v, then the running time of falseis O(jvj � jAt(Q)j). If false(Q) returns the empty set then its running time isO(jAt(Q)j2).Proof: Let jAt(Q)j = n and jvj = k. As we have already observed the proedureyle runs in time O(n). It is not hard to see that, sine we represent all sets

Theory and Pratie of Logi Programming 17ourring in the proedure false as linked lists, with eah node on a list pointing tothe head of the list, the operations: �ndset and next require a onstant time.First assume that the output v of the proedure false is nonempty. Let us estimatethe number of passes of the while and for loops in the proedure. Clearly, theloop 6-23 is exeuted k times. Hene the total running time of all alls of theproedure yle is O(kn). The number of passes of the loop 9-22 is not larger thanjL1j + jL2j + : : : + jLkj, where Li denotes the list L in an iteration i of the loop.Sine Li is a list of disjoint pf-sets of ardinality i, jLij � n, for eah i = 1; 2; : : : ; k.Hene the number of passes of the loop 9-22 an be very roughly estimated by kn.The loop 12-20 is exeuted at mostkXi=1 Xv2Li jvj � kntimes. This inequality follows from the fat that the sets v in the lists Li are disjointsubsets of atoms so Pv2Li jvj � n. The estimation of the number of passes of theloop 14-18 is a little bit more ompliated. First notie that in eah exeution ofthe loop we hek a rule of the program Q and rules are heked only one time.The rules r heked in the loop have either both the head and the tail in somepf-set v 2 S or head(r) 2 v and tail(r) is in some other pf-set u 2 S. In thelatter ase pred(v) is de�ned in line 16. The number of exeutions of line 16 is notlarger than the number of passes of the loop 9-22 so it is bounded by kn. Whenthe proedure returns the output, the pf-sets have ardinalities not larger than k.Hene the number of rules with both the head and the tail in the same pf-set thathas been heked before the proedure stops is not larger thanXu2S juj(juj � 1) � (k � 1)Xu2S juj � (k � 1)n:Thus the number of passes of the loop 14-18 in the whole proedure false is lessthan 2kn. It follows that if the output v of false is nonempty then the running timeof false is O(jvj � jAt(Q)j).Now onsider the ase when the proedure false returns the empty set. Clearlythe number of passes of the loop 6-23 is n so it takes O(n2) time for all exeutionsof the proedure yle. Sine the rules are heked in the loop 14-18 only one time,the number of passes of this loop is not larger than the number m of rules in Q.Obviously m � n2 so the running time of false in this ase is O(jAt(Q)j2). 2By Lemma 4.2 and onsiderations in Setion 3 we get an estimation of the runningtime of Algorithm 3.Theorem 4.3If P is a program whose rules have at most one positive atom in the body thenAlgorithm 3 an be implemented so that its running time is O(jAt(P)j2 +size(P)).2

18 Z. Lon and M. Truszzy�nski5 ConlusionsThe method for omputing the well-founded semantis desribed in this paper is are�nement of the basi alternating-�xpoint algorithm. The key idea is to use a top-down searh when identifying atoms that are false. Our method is designed to workwith programs whose rules have at most one positive atom in their bodies (lassLP1). Its running time is O(jAt(P)j2 + size(P)) (where P is an input program).Thus, our algorithm is an improvement over other known methods to ompute thewell-founded semantis for programs in the lass LP1. Our algorithm runs in lineartime for the lass of programs P 2 LP1 for whih size(P) � jAt(P)j2. However, it isnot a linear-time algorithm in general. It is an open question whether a linear-timealgorithm for omputing the well-founded semantis for programs in the lass LP1exists.Our results extend to the lass LP+1 . However, the extension is straightforwardand the lass LP+1 is still rather narrow. Moreover, it is not spei�ed syntatially(it is desribed by means of the Kripke-Kleene semantis). The question ariseswhether our top-down approah to positive-loop detetion an be generalized toany lass of programs signi�antly extending the lass LP1 and possessing a simplesyntati desription.Finally, let us note that the general problem of omputing the well-founded se-mantis still remains a hallenge. No signi�ant improvement over the alternating-�xpoint algorithm of Van Gelder has been obtained for the lass of arbitrary �nitepropositional logi programs. AknowledgmentsThis researh was supported by the NSF grants CDA-9502645 and IRI-9619233.ReferenesAlferes, J.J., Dam�asio, C.V., & Pereira, L.M. (1995). A logi programming system fornonmonotoni reasoning. Journal of Automated Reasoning, 14, 93{147.Berman, K., Shlipf, J., & J.Frano. (1995). Computing the well-founded semantis faster.Pages 113{125 of: Logi Programming and Nonmonotoni Reasoning (Lexington, KY,1995). Leture Notes in Computer Siene, vol. 928. Springer Verlag.Brass, S., & Dix, J. (1998). Charaterizations of the disjuntive well-founded semantis:onuent aluli and iterated GCWA. Journal of Automated Reasoning, 20(1), 143{165.Brass, S., Dix, J., Freitag, B., & Zukowski, U. (2001). Transformation-based bottom-upomputation of the well-founded model. Theory and Pratie of Logi Programming.To appear.Chen, W., & Warren, D.S. (1996). Tabled evaluation with delaying for general logiprograms. Journal of the ACM, 43(1), 20{74.Chen, W., Swift, T., & Warren, D.S. (1995). EÆient top-down omputation of queriesunder the well-founded semantis. Journal of Logi Programming, 24(3), 161{199.Dowling, W.F., & Gallier, J.H. (1984). Linear-time algorithms for testing the satis�abilityof propositional Horn formulae. Journal of Logi Programming, 1(3), 267{284.

Theory and Pratie of Logi Programming 19Fitting, M. C. (1985). A Kripke-Kleene semantis for logi programs. Journal of LogiProgramming, 2(4), 295{312.Fitting, M. C. (2001). Fixpoint semantis for logi programming { a survey. TheoretialComputer Siene. To appear.Fitting, M.C. (1991). Well-founded semantis, generalized. Pages 71{84 of: Logi Pro-gramming. MIT Press Series in Logi Programming. MIT Press.Gelfond, M., & Lifshitz, V. (1988). The stable semantis for logi programs. Pages1070{1080 of: Kowalski, R., & Bowen, K. (eds), Proeedings of the 5th InternationalConferene on Logi Programming. MIT Press.Marek, W., & Truszzy�nski, M. (1991). Autoepistemi logi. Journal of the ACM, 38(3),588{619.Niemel�a, I., & Simons, P. (1996). EÆient implementation of the well-founded and stablemodel semantis. Proeedings of JICSLP-96. MIT Press.Rao, P., Ramskrishnan, I.V., Sagonas, K., Swift, T., Warren, D. S., & Freire, J. (1997).XSB: A system for eÆiently omputing well-founded semantis. Pages 430{440 of:Proeedings of LPNMR'97. Springer-Verlag. Leture Notes in Computer Siene, 1265.Subrahmanian, V.S., Nau, D., & Vago, C. (1995). WFS + branh bound = stable models.IEEE Transations on Knowledge and Data Engineering, 7, 362{377.Van Gelder, A. (1989). The alternating �xpoints of logi programs with negation. Pages1{10 of: ACM Symposium on Priniples of Database Systems.Van Gelder, A., Ross, K.A., & Shlipf, J.S. (1991). The well-founded semantis for generallogi programs. Journal of the ACM, 38(3), 620{650.Zukowski, U., Brass, S., & Freitag, B. (1997). Improving the alternating �xpoint: thetransformation approah. Pages 40{59 of: Proeedings of LPNMR'97. Springer-Verlag.Leture Notes in Computer Siene, 1265.

