
Ultimate approximations in nonmonotonic knowledge representationsystemsMarc DeneckerDepartment of Computer ScienceK.U.LeeuvenCelestijnenlaan 200A, B-3001 HeverleeBelgium Victor W. MarekDepartment of Computer ScienceUniversity of KentuckyLexington, KY, 40506-0046USA Miros law Truszczy�nskiDepartment of Computer ScienceUniversity of KentuckyLexington, KY, 40506-0046USAAbstractWe study �xpoints of operators on lattices.To this end we introduce the notion of anapproximation of an operator. We order ap-proximations by means of a precision order-ing. We show that each lattice operator Ohas a unique most precise or ultimate ap-proximation. We demonstrate that �xpointsof this ultimate approximation provide usefulinsights into �xpoints of the operator O.We apply our theory to logic program-ming and introduce the ultimate Kripke-Kleene, well-founded and stable semantics.We show that the ultimate Kripke-Kleeneand well-founded semantics are more precisethen their standard counterparts We arguethat ultimate semantics for logic program-ming have attractive epistemological proper-ties and that, while in general they are com-putationally more complex than the standardsemantics, for many classes of theories, theircomplexity is no worse.1 INTRODUCTIONSemantics of most knowledge representation languagesare de�ned as collections of interpretations or possible-world structures. The sets of interpretations andpossible-world structures, with some natural order-ings, form complete lattices. Logic programs, and de-fault and autoepistemic theories determine operatorson these lattices. In many cases, semantics of pro-grams and theories are given as �xpoints of these oper-ators. Consequently, an abstract framework of lattices,operators on lattices and their �xpoints has emerged asa powerful tool in investigations of semantics of theselogics. Studying semantics of nonmonotonic reason-ing systems within an algebraic framework allows us

to eliminate inessential details speci�c to a particularlogic, simplify arguments and �nd common principlesunderlying di�erent nonmonotonic formalisms.The roots of this algebraic approach can be tracedback to studies of semantics of logic programs [vEK76,AvE82, Fit85, Prz90] and of applications of latticesand bilattices in knowledge representation [Gin88].Exploiting the concept of a bilattice and relying onsome general properties of operators on lattices andbilattices, Fitting proposed an elegant algebraic treat-ment of all major 2-, 3- and 4-valued semantics of logicprograms [Fit01], that is, the supported-model seman-tics [Cla78], stable-model semantics [GL88], Kripke-Kleene semantics [Fit85, Kun87] and well-founded se-mantics [VRS91].In [DMT00a], we extended Fitting's work to a moreabstract setting of the study of �xpoints of lattice op-erators. Central to our approach is the concept of anapproximation of a lattice operator O. An approxi-mation is an operator de�ned on a certain bilattice(the product of the lattice by itself, with two appro-priately de�ned lattice orderings). Using purely alge-braic techniques, for an approximation operator for Owe introduced the notion of the stable operator and theconcepts of the Kripke-Kleene, well-founded and sta-ble �xpoints, and showed how they provide informa-tion about �xpoints of the operator O. In [DMT00a]we noted that our approach generalizes the results de-scribed in [Fit01]. We observed that the 4-valued im-mediate consequence operator TP is an approximationoperator for the 2-valued immediate consequence oper-ator TP and showed that all the semantics consideredby Fitting can be derived from TP by means of thegeneral algebraic constructions that apply to arbitraryapproximation operators.In [DMT00b], we applied our algebraic approach todefault and autoepistemic logics. Autoepistemic logicwas de�ned by Moore [Moo84] to formalize the knowl-



edge of a rational agent with full introspection capa-bilities. In Moore's approach, an autoepistemic theoryT de�nes a characteristic operatorDT on the lattice ofall possible-world structures. Fixpoints of DT (or, tobe precise, their theories) are known as expansions. In[DMT00b], we proposed for DT an approximation op-erator, DT , de�ned on a bilattice of belief pairs (pairsof possible-world structures). Complete �xpoints ofDT correspond to expansions of T (�xpoints of DT ),the least �xpoint of DT provides a constructive ap-proximation to all expansions (by analogy with logicprogramming, we called it the Kripke-Kleene �xpoint).Using general techniques introduced in [DMT00a] wederived from DT its stable counterpart, the operatorDstT . Complete �xpoints of DstT yield a new seman-tics of extensions for autoepistemic logic. Finally, theleast �xpoint of the stable operator results in yet an-other new semantics, the well-founded semantics forautoepistemic logic (again, called so due to analogiesto the well-founded semantics in logic programming),which approximates all extensions.The same picture emerged in the case of default logic[DMT00b]. For a default theory � we de�ned an op-erator E� and characterized all major semantics fordefault logic in terms of �xpoints of E�. In partic-ular, the standard semantics of extensions [Rei80] isdetermined by complete �xpoints of the stable opera-tor Est� derived from E�. Our results on autoepistemicand default logics obtained in [DMT00b] allowed us toclarify the issue of their mutual relationship and pro-vided insights into fundamental constructive principlesunderlying these two modes of nonmonotonic reason-ing.These result prove that the algebraic framework devel-oped in [DMT00a] is an e�ective tool in studies of se-mantics of knowledge representation formalisms. It al-lowed us to establish a comprehensive semantic treat-ment for nonmonotonic logics and demonstrated thatmajor nonmonotonic systems are closely related. How-ever, the approach, as it was developed, is not entirelysatisfactory. It provides no criteria that would allowus to prefer one approximation over another when at-tempting to de�ne the concept of a stable �xpoint orwhen approximating �xpoints by means of the Kripke-Kleene or well-founded �xpoints. It does not give usany general indications how to obtain approximationsand which approximation to pick. Thus, our theoryleaves out a key link in the process of de�ning andapproximating �xpoints of operators on lattices.In particular, when de�ning semantics of nonmono-tonic formalisms, we select an approximation opera-tor, rather then derive it in a principled way. The

approximations used, the bilattice operators TP , DTand E�, are not algebraically determined by their cor-responding lattice operators TP , DT and E�, respec-tively. Consequently, some programs or theories withthe same basic operators have di�erent Kripke-Kleene,well-founded or stable �xpoints associated with them.We address this problem here. We extend our theoryof approximations and introduce the notion of the pre-cision of an approximation. We show that each latticeoperator O has a unique most precise approximationwhich we call the ultimate approximation of O. Sincethe ultimate approximation is determined by O, it iswell suited for investigations of �xpoints of O. As aresult we obtain concepts of ultimate stable �xpoints,the ultimate Kripke-Kleene �xpoint and the ultimatewell-founded �xpoint that depend on O only and noton a (possibly arbitrarily) selected approximation toO.We apply our theory to logic programming, defaultlogic and autoepistemic logic (only the �rst systemis discussed here, due to space limitations). We com-pare ultimate semantics with the corresponding \stan-dard" semantics of logic programs. In particular, weshow that the ultimate Kripke-Kleene and the ultimatewell-founded semantics are more precise then the stan-dard Kripke-Kleene and well-founded semantics. Thisbetter accuracy comes, however, at a cost. We showthat ultimate semantics are in general computation-ally more complex. On the other hand, we show thatfor wide classes of theories, including theories likely tooccur in practice, the complexity remains the same.Thus, our new semantics may prove useful in comput-ing stable models and default extensions.The ultimate semantics have also properties that areattractive from the logic perspective. In particular,two programs or theories determining the same basic2-valued operator have the same ultimate semantics.This property, as we noted, is not true in the standardcase.In summary, our contributions are as follows. We ex-tend the algebraic theory of approximations by provid-ing a principled way of deriving an approximation toa lattice operator. In this way, we obtain concepts ofKripke-Kleene �xpoint, well-founded �xpoint and sta-ble �xpoints that are determined by the operator Oand not by the choice of an approximation. In speci�ccontexts of most commonly used nonmonotonic sys-tems we obtain new semantics with desirable logicalproperties and possible computational applications.



2 PRELIMINARIESLet hL;�i be a poset and let A be an operator on L. Aposet is chain-complete if it contains the least element? and if every chain of elements of L has a least upperbound (lub) in L. An element x of A is a pre-�xpointof A if A(x) � x; x is a �xpoint of A if A(x) = x.Let A be a monotone operator on a chain-completeposet hL;�i. Let us de�ne a sequence of elementsof L by trans�nite induction as follows: (1) c0 = ?;(2) c�+1 = A(c�); (3) c� = lub(fc� : � < �g), for alimit ordinal �. One can show that this sequence iswell de�ned, that is has in L its least upper boundand that this least upper bound is the least �xpointof A (lfp(A), in symbols). One can also show thatthe least �xpoint of a monotone operator on a chain-complete poset is the least pre-�xpoint of A. That is,we have lfp(A) = glb(fx 2 L : A(x) � xg). Monotoneoperators on chain-complete posets and their �xpointsand pre-�xpoints are discussed in [Mar76].A lattice is a poset hL;�i such that L 6= ; and everypair of elements x; y 2 L has a unique greatest lowerbound and least upper bound. A lattice is completeif its every subset has a greatest lower bound and aleast upper bound. In particular, a complete latticehas a least and a greatest element denoted by ? and>, respectively.For any two elements x; y 2 L, we de�ne [x; y] = fz 2L : x � z � yg. If hL;�i is a complete lattice andx � y, then h[x; y];�i is a complete lattice, too.Let hL;�i be a complete lattice. By the product bi-lattice [Gin88] of hL;�i we mean the set L2 = L � Lwith the following two orderings �p and �:1. (x; y) �p (x0; y0) if x � x0 and y0 � y2. (x; y) � (x0; y0) if x � x0 and y � y0.Both orderings are complete lattice orderings for L2.However, in this paper we are mostly concerned withthe ordering �p.An element (x; y) 2 L2 is consistent if x � y. We canthink of a consistent element (x; y) 2 L2 as an approx-imation to every z 2 L such that x � z � y. Withthis interpretation in mind, the ordering �p, when re-stricted to consistent elements, can be viewed as a pre-cision ordering. Consistent pairs that are \higher" inthe ordering �p provide tighter approximations. Max-imal consistent elements with respect to �p are pairsof the form (x; x). We call approximations of the form(x; x) | exact.We denote the set of all consistent pairs in L2 by Lc.The set hLc;�pi is not a lattice. It is, however, chain-

complete. Indeed, the element (?;>) is the least ele-ment in Lc and the following result shows that everychain in Lc has (in Lc) the least upper bound.Proposition 2.1 Let L be a complete lat-tice. If f(a�; b�)g� is a chain of elementsin hLc;�pi then lub(fa�g�) � glb(fa�g�) and(lub(fa�g�); glb(fa�g�)) = lub�p(f(a�; b�)g�).It follows that every �p-monotone operator on Lc hasa least �xpoint.3 PARTIAL APPROXIMATIONSFor an operator A : Lc ! Lc, we denote by A1and A2 its projections to the �rst and second coor-dinates, respectively. Thus, for every (x; y) 2 Lc, wehave A(x; y) = (A1(x; y); A2(x; y)). An operator A :Lc ! Lc is a partial approximation operator if it is �p-monotone and if for every x 2 L, A1(x; x) = A2(x; x).We denote the set of all partial approximation oper-ators on Lc by Appx (Lc). Let A 2 Appx (Lc). SinceA is �p-monotone and Lc is chain-complete, A has aleast �xpoint, called the Kripke-Kleene �xpoint of A(KK(A), in symbols). Directly from the de�nition, itfollows that KK(A) approximates all �xpoints of A.If A 2 Appx (Lc) and O : L ! L is an operator on Lsuch that A(x; x) = (O(x); O(x)) then we say that Ais a partial approximation of O. We denote the set ofall partial approximations of O by Appx (O). If A is apartial approximation of O then x 2 L is a �xpoint ofO if and only if (x; x) is a �xpoint of A. Thus, for every�xpoint x of O, we have KK(A) �p (x; x) or, equiv-alently, KK1(A) � x � KK2(A), where KK1(A) andKK2(A) are the two components of the pair KK(A).Operators from Appx (Lc) describe ways to revise con-sistent approximations. Of particular interest arethose situations when the revision of an approxima-tion leads to another one that is at least as accurate.Let A be an operator on Lc. We call an approximation(a; b) A-reliable if (a; b) �p A(a; b).Proposition 3.1 Let L be a complete lattice and A 2Appx (Lc). If (a; b) 2 Lc is A-reliable then, for everyx 2 [?; b], A1(x; b) 2 [?; b] and, for every x 2 [a;>],A2(a; x) 2 [a;>].Proof: Let x 2 [?; b]. Then (x; b) �p (b; b). By the�p-monotonicity of A,A1(x; b) � A1(b; b) = A2(b; b) � A2(a; b) � b:The last inequality follows from the fact that (a; b) isA-reliable. The second part of the assertion can beproved in a similar manner. 2



This proposition implies that for every A-reliable pair(a; b), the restrictions of A1(�; b) to [?; b] and A2(a; �)to [a;>] are in fact operators on [?; b] and [a;>],respectively. Moreover, they are �-monotone oper-ators on the posets h[?; b];�i and h[a;>];�i. Sinceh[?; b];�i and h[a;>];�i are complete lattices, the op-erators A1(�; b) and A2(a; �) have least �xpoints in thelattices h[?; b];�i and h[a;>];�i, respectively. We de-�ne:bA# = lfp(A1(�; b)) and aA" = lfp(A2(a; �)):We call the mapping (a; b) 7! (bA#; aA"), de�ned onthe set of A-reliable elements of Lc, the stable revisionoperator for A. When A is clear from the context, wewill drop the reference to A from the notation.Directly from the de�nition of the stable revision op-erator it follows that for every A-reliable pair, b# � band a � a".The stable revision operator for A 2 Appx (Lc) is cru-cial. It allows us to distinguish an important subclassof the class of all �xpoints of A. Let L be a completelattice and let A 2 Appx (Lc). We say that (x; y) 2 Lcis a stable �xpoint of A if (x; y) is A-reliable and is a�xpoint of the stable revision operator (that is, x = y#and y = x"). By the A-reliability of (x; y), the secondrequirement is well de�ned.Stable �xpoints of an operator are, in particular, its�xpoints.Proposition 3.2 Let L be a complete lattice and letA 2 Appx (Lc). If (x; y) is a stable �xpoint of A then(x; y) is a �xpoint of A.Proof: Since (x; y) is stable, x = lfp(A1(�; y)). In par-ticular, x = A1(x; y). Similarly, y = A2(x; y). 2Let O be an operator on a complete lattice L and letA 2 Appx (O). We say that x is an A-stable �xpointof O if (x; x) is a stable �xpoint of A. The notation isjusti�ed. Indeed, it follows from Proposition 3.2 andour earlier remarks that every stable �xpoint of O is,in particular, a �xpoint of O.The notion of A-reliability is not strong enough toguarantee desirable properties of the stable revisionoperator. In particular, if (a; b) 2 Lc is A-reliable, itis not true in general that (b#; a") is consistent northat (a; b) �p (b#; a"). There is, however, a class ofA-reliable pairs for which both properties hold. AnA-reliable approximation (a; b) is A-prudent if a �b#. We note that every stable �xpoint of A is A-prudent. We will now prove several basic propertiesof A-prudent approximations.

Proposition 3.3 Let L be a complete lattice, A 2Appx (Lc) and (a; b) 2 Lc be A-prudent. Then, (b#; a")is consistent, A-reliable and A-prudent and (a; b) �p(b#; a").Proof: By the de�nition of b# and a" we have thatb# � b and a � a". Moreover, since (a; b) is A-prudent,it follows that a � b#.Next, since (a; b) is A-reliable, it follows that a � band A2(a; b) � b. Thus, b is a pre-�xpoint of A2(a; �).Consequently, a" � b (as a" is the least �xpoint ofA2(a; �)). Hence, (a; b) �p (b#; a").By the �p-monotonicity of A we obtain:A1(a"; b) � A1(a"; a") = A2(a"; a") � A2(a; a") = a":It follows that a" is a pre-�xpoint of the operatorA1(�; b). Thus, b# = lfp(A1(�; b)) � a" and so, (b#; a")is consistent.Let us now observe that b# = A1(b#; b) � A1(b#; a").Similarly, a" = A2(a; a") � A2(b#; a"). Thus, the pair(b#; a") is reliable.Lastly, we note that for every x 2 [?; a"], A1(x; b) �A1(x; a") � a" (the last inequality follows by the A-reliability of (b#; a")). Hence, b# = lfp(A1(�; b)) �lfp(A1(�; a")) and, consequently, (b#; a") is A-prudent.2Let us observe that an A-reliable pair (a; b) is revisedby an operator A into a more accurate approxima-tion A(a; b). An A-prudent pair (a; b) can be revised\even more". Namely, it is easy to see that A1(a; b) �A1(b#; b) = b# and a" = A2(a; a") � A2(a; b). Thus,A(a; b) �p (b#; a"). In other words, (b#; a") is indeedat least as precise revision of (a; b) as A(a; b) is.The stable revision operator satis�es a certain mono-tonicity property.Proposition 3.4 Let L be a complete lattice and letA 2 Appx (Lc). If (a; b) 2 Lc is A-reliable, (c; d) 2 Lcis A-prudent and if (a; b) �p (c; d), then (b#; a") �p(d#; c").Proof: Clearly, we have d# � c" � d � b. Bythe �p-monotonicity of A, it follows that A1(d#; b) �A1(d#; d) = d#. Thus, d# is a pre-�xpoint of A1(�; b).Since b# is the least �xpoint of lfp(A1(�; b)), it followsthat b# � d#.It remains to prove that c" � a". Let u = glb(a"; d#).By Proposition 3.3, (c; d) �p (d#; c"). Since (a; b) �p(c; d), it follows that a � d#. Further, by the A-reliability of (a; b) and (c; d), we have a � a" and



d# � d. Thus, a � u � a" and u � d# � d. Con-sequently,A1(u; d) � A1(u; u) = A2(u; u) � A2(a; a") = a"and A1(u; d) � A1(d#; d) = d#:It follows that A1(u; d) � glb(a"; d#) = u. In particu-lar, u is a pre-�xpoint of A1(�; d). Since d# is the least�xpoint of A1(�; d), d# � u. Hence, d# � a".We now have a � c � d# � a" (the �rst inequalityfollows from the assumption (a; b) � (c; d), the secondone follows by Proposition 3.3 from the assumptionthat (c; d) is A-prudent). Thus, a � c � a" and the�p-monotonicity of A impliesA2(c; a") � A2(a; a") = a":Hence, a" is a pre-�xpoint of A2(c; �). Since c" is theleast �xpoint of A2(c; �), it follows that c" � a". 2Since stable �xpoints are prudent, we obtain the fol-lowing corollary.Corollary 3.5 Let L be a complete lattice, A 2Appx (Lc) and let (c; d) 2 Lc be a stable �xpoint ofA. If (a; b) 2 Lc is A-reliable and (a; b) �p (c; d) then(b#; a") �p (c; d). 2The next result states that the limit of a chain of A-prudent pairs is A-prudent.Proposition 3.6 Let L be a complete lattice, A 2Appx (Lc) and let f(a�; b�)g� be a chain of A-prudentpairs from Lc. Then, lub(f(a�; b�)g�) is A-prudent.Proof: Let us set a1 = lub(fa�g�) and b1 =glb(fb�g�). By Proposition 2.1, (a1; b1) is consistentand (a1; b1) = lub(f(a�; b�)g�). Let us now observethat, by A-reliability of (a�; b�) and �p-monotonicityof A, we have (a�; b�) �p A(a�; b�) �p A(a1; b1):Thus, (a1; b1) = lub(f(a�; b�)g�) � A(a1; b1): Itfollows that (a1; b1) is A-reliable.The A-reliability of (a1; b1) implies, in particular,that for every x 2 [?; b1], A1(x; b1) � b1. Thus,by �p-monotonicity of A, for every x 2 [?; b1]A1(x; b�) � A1(x; b1) � b1:Hence, pre-�xpoints of A1(�; b1) are pre�xpoints ofA1(�; b�) and, consequently,lfp(A1(�; b�)) � lfp(A1(�; b1)):

Since (a�; b�) is A-prudent, we have that a� �lfp(A1(�; b�)). Thus, for arbitrary �, a� �lfp(A1(�; b1)) and, consequently, a1 � lfp(A1(�; b1)).It follows that (a1; b1) is A-prudent. 2We will now prove that the set of all stable �xpoints ofan operator has a least element (in particular, it is notempty). To this end, we de�ne a sequence f(a�; b�)g�of elements of Lc by trans�nite induction:1. (a0; b0) = (?;>)2. If � = � + 1, we de�ne a� = b�# and b� = a�"3. If � is a limit ordinal, we de�ne (a�; b�) =lub(f(a� ; b�) : � < �g).Theorem 3.7 The sequence f(a�; b�)g� is well de-�ned, �p-monotone and its limit is the least stable �x-point of a partial approximation operator A.Proof: It is obvious that (?;>) is A-prudent. Thus, bythe trans�nite induction it follows that each elementin the sequence is well de�ned and A-prudent (Propo-sitions 3.3 and 3.6 settle the cases of successor ordinalsand limit ordinals, respectively). In the same way, onecan establish the �p-monotonicity of the sequence.Let (a1; b1) = lub(f(a� ; b�)g�). By Proposition 3.6,(a1; b1) is A-prudent. Thus, (a1; b1) is A-reliable.Moreover, we have a1 = (b1)# and b1 = (a1)".Thus, (a1; b1) is a stable �xpoint of A. Further, it iseasy to see by trans�nite induction and Corollary 3.5that (a1; b1) approximates all stable �xpoints of A.Thus, it is the least stable �xpoint of A. 2We call this least stable �xpoint the well-founded �x-point of A and denote it by WF(A). The well-founded�xpoint approximates all stable �xpoints of A. In par-ticular, it approximates all A-stable �xpoints of theoperator O. That is, for every A-stable �xpoint xof O, WF(A) �p (x; x) or, equivalently, WF1(A) �x � WF2(A), where WF1(A) and WF2(A) are thetwo components of the pair WF(A). Moreover, thewell-founded �xpoint is more precise than the Kripke-Kleene �xpoint: for A 2 Appx(O), KK(A) �p WF(A).In [DMT00b, DMT00a], we showed that when ap-plied to appropriately chosen approximation opera-tors in logic programming, default logic and autoepis-temic logic, these algebraic concepts of �xpoints, sta-ble �xpoints, the Kripke-Kleene �xpoint and the well-founded �xpoint provide all major semantics for thesenonmonotonic systems and allow us to understandtheir interrelations.We need to emphasize that the concept of a partial ap-proximation introduced here is di�erent from the con-cept of approximation introduced in [DMT00a]. The



latter notion is de�ned as an operator of the whole bi-lattice L2. That choice was motivated by our searchfor generality and potential applications of inconsis-tent �xpoints in situations when we admit a possibilityof some statements being overde�ned. While di�erent,both approaches are very closely related1.4 ULTIMATE APPROXIMATIONSPartial approximations in Appx (Lc) can be ordered.Let A;B 2 Appx (Lc). We say that A is less precisethan B (A �p B, in symbols) if for each pair (x; y) 2Lc, A(x; y) �p B(x; y). It is easy to see that if A �p Bthen there is an operator O on the lattice L such thatA;B 2 Appx (O).Lemma 4.1 Let L be a complete lattice and A;B 2Appx (Lc). If A �p B and (a; b) 2 Lc is A-prudentthen (a; b) is B-prudent and (bA#; aA") �p (bB#; aB").Proof: Clearly, (a; b) �p A(a; b) � B(a; b). Thus, (a; b)is B-reliable.For each pre-�xpoint x � b of B1(�; b), A1(x; b) �B1(x; b) � x. Consequently, x is a pre�xpoint ofA1(�; b). It follows that bA# � bB#. Since a � bA#,a � bB#. Thus (a; b) is B-prudent.Likewise, we can prove that any pre-�xpoint of A2(a; �)is a pre�xpoint of B2(a; �), and consequently, aB" �aA". Since also bA# � bB#, it follows that (bA#; aA") �p(bB#; aB"). 2More precise approximation have more precise Kripke-Kleene and well-founded �xpoints.Theorem 4.2 Let O be an operator on a completelattice L. Let A;B 2 Appx (O). If A �p B thenKK(A) �p KK(B) and WF(A) �p WF(B).Proof: Let us denote by f(a�A; b�A)g� the sequence of el-ements of hLc: �pi obtained by iterating the operatorA over (?;>). The sequence f(a�B ; b�B)g� is de�ned inthe same way. Since A �p B, it follows by an easy in-duction that for every ordinal �, (a�A; b�A) �p (a�B ; b�B).Since KK(A) is the limit of the sequence f(a�A; b�A)g�and KK(B) is the limit of the sequence f(a�B ; b�B)g�,it follows that KK(A) �p KK(B).To prove the second part of the assertion, we willnow assume that the sequences f(a�A; b�A)g� andf(a�B ; b�B)g� denote the sequences used in the de�ni-tion of the well-founded �xpoints of A and B, respec-1We will include a detailed discussion of the relationshipbetween the two approaches in the full version of the paper.

tively. To prove the assertion we will now show thatfor every ordinal �, (a�A; b�A) �p (a�B ; b�B).Clearly, (a0A; b0A) �p (a0B ; b0B). Let us assume that � =� + 1 and that (a�A; b�A) �p (a�B ; b�B). Since (a�A; b�A)is A-prudent, Lemma 4.1 entails that it is B-prudentand(a�A; b�A) = ((b�A)A#; (a�A)A") �p ((b�A)B#; (a�A)B"):By Proposition 3.4,((b�A)B#; (a�A)B") �p ((b�B)B#; (a�B)B") = (a�B ; b�B):The case of the limit ordinal � is straightforward.Since WF(A) and WF(B) are the limits of the se-quences f(a�A; b�A)g� and f(a�B; b�B)g�, respectively, thesecond part of the assertion follows. 2The next result shows that as the precision of an ap-proximation grows, all exact �xpoints and exact stable�xpoints are preserved.Theorem 4.3 Let O be an operator on a complete lat-tice L. Let A;B 2 Appx (O). If A �p B then everyexact �xpoint of A is an exact �xpoint of B, and everyexact stable �xpoint of A (that is, an A-stable �xpointof O) is also an exact stable �xpoint of B (that is, aB-stable �xpoint of O).Proof: Since for every x 2 L, A(x; x) = B(x; x) =(O(x); O(x)), the �rst part of the assertion follows. Letus now assume that (x; x) is an exact stable �xpoint ofA. In particular, it follows that (x; x) is a �xpoint of Aand is A-prudent. By Lemma 4.1, (x; x) is B-prudentand (x; x) �p (xB#; xB"). The latter pair is consistent(Proposition 3.3). Consequently, (x; x) is (xB#; xB")and hence x is an exact stable �xpoint of B. 2Non-exact �xpoints are not preserved, in general. Letus consider two partial approximations A and B suchthat A �p B. Let us also assume that WF(A) <pWF(B) (that is, A has a strictly less precise well-founded �xpoint than B). Then, clearly, WF(A) isno longer a stable �xpoint of B. Thus, �xpoints ofA may disappear when we move on to a more preciseapproximation B.More precise approximations of a non-monotone oper-ator O yield more precise well-founded �xpoints andadditional exact stable �xpoints. The natural questionis whether there exists an ultimate approximation of O,that is, a partial approximation most precise with re-spect to the ordering �p. Such approximation wouldhave a most precise Kripke-Kleene and well-founded



�xpoint and a largest set of exact stable �xpoints. Wewill show that the answer to this key question is pos-itive. Such ultimate approximation, being a distin-guished object in the collection of all approximationscan be viewed as determined by O. Consequently, �x-points of the ultimate approximation of O (includingstable, Kripke-Kleene and well-founded �xpoints) canbe regarded as determined by O and can be associatedwith it.We start by providing a non-constructive argumentfor the existence of ultimate approximations. Let usnote that the set Appx (O) is not empty. Indeed, letus de�ne AO(x; y) = (O(x); O(x)), if x = y, andAO(x; y) = (?;>), otherwise. It is easy to see thatAO 2 Appx (O) and that it is the least precise ele-ment in Appx (O). Next, we observe that Appx (O)with the ordering �p is a complete lattice, as theset Appx (O) is closed under the operations of takinggreatest lower bounds and least upper bounds. It fol-lows that Appx (O) has a greatest element (most pre-cise approximation). We call this partial approxima-tion the ultimate approximation of O and denote it byUO.We call the Kripke-Kleene and the well-founded �x-points of UO, the ultimate Kripke-Kleene and the ul-timate well-founded �xpoint of O. We denote them byKK(O) and WF(O), respectively. We call a stable �x-point of UO an ultimate partial stable �xpoint of O.We refer to an exact stable �xpoint of UO as an ulti-mate stable �xpoint of O. Exact �xpoints of all partialapproximations are the same and correspond to �x-points of O. Thus, there is no need to introduce theconcept of an ultimate exact �xpoint of O. We havethe following corollary to Theorems 4.2 and 4.3.Corollary 4.4 Let O be an operator on a completelattice L. For every A 2 Appx (O), KK(A) �pKK(UO), WF(A) �p WF(UO) and every A-stable �x-point of O is an ultimate stable �xpoint of O.We will now provide a constructive characterization ofthe notion. To state the result, for every x; y 2 L suchthat x � y, we de�ne O([x; y]) = fO(z) : z 2 [x; y]g.Theorem 4.5 Let O be an operator on a completelattice L. Then, for every (x; y) 2 Lc, UO(x; y) =(glb(O([x; y])); lub(O([x; y]))).Proof: We de�ne an operator C : Lc ! L2 by settingC(x; y) = (glb(O([x; y])); lub(O([x; y]))):First, let us notice that since glb(O([x; y])) �lub(O([x; y])), the operator C maps Lc into Lc. More-over, it is easy to see that C is �p-monotone. Lastly,

since O([x; x]) = fO(x)g,glb(O([x; x])) = lub(O([x; x])) = O(x):and, consequently, C(x; x) = (O(x); O(x)). Thus, itfollows that C is a partial approximation of O. SinceUO is the most precise approximation, we have C �pUO.On the other hand, UO(x; y) � (O(z); O(z)) for everyz 2 [x; y]. Therefore U1O(x; y) �p O(z) for all z 2[x; y] and thus U1O(x; y) � glb(O([x; y])). Similarly,lub(O([x; y])) � U2O(x; y). Since x � y are arbitrary,UO �p C, as desired. 2With this result we obtain an explicit characterizationof ultimate stable �xpoints of an operator O.Corollary 4.6 Let L be a complete lattice. An ele-ment x 2 L is an ultimate stable �xpoint of an opera-tor O : L ! L if and only if x is the least �xpoint ofthe operator glb(O([�; x])) regarded as an operator on[?; x].We conclude this section by describing ultimate ap-proximations for monotone and antimonotone opera-tors on L.Proposition 4.7 If O is a monotone operator ona complete lattice L then for every (x; y) 2 Lc,UO(x; y) = (O(x); O(y)). If O is antimonotone thenfor every (x; y) 2 Lc, UO(x; y) = (O(y); O(x)).Proof: By Theorem 4.5,UO(x; y) = (glb(O([x; y])); lub(O([x; y]))):Now, it is easy to see that if O is monotone, thenglb(O([x; y])) = O(x) and lub(O([x; y])) = O(y). IfO is antimonotone, then glb(O([x; y])) = O(y) andlub(O([x; y])) = O(x). The proposition follows. 2Using the results from [DMT00a] and Proposition 4.7we now obtain the following corollary.Corollary 4.8 Let O be an operator on a completelattice L. If O is monotone, then the least �xpointof O is the ultimate well-founded �xpoint of O and theunique ultimate stable �xpoint of O. If O is antimono-tone, then KK(O) = WF(O) and every �xpoint of Ois an ultimate stable �xpoint of O.5 ULTIMATE SEMANTICS FORLOGIC PROGRAMMINGThe basic operator in logic programming is the one-step provability operator TP introduced in [vEK76]. It



is de�ned on the lattice of all interpretations. This lat-tice consists of subsets of the set of all atoms appearingin P and is ordered by inclusion (we identify truth as-signments with subsets of atoms that are assigned thevalue t).Let P be a logic program. We denote by UP the ulti-mate approximation operator for the operator TP . Byspecializing Theorem 4.5 to the operator TP we obtainthat for every two interpretations I � J ,UP (I; J) = (glb(TP ([I; J ])); lub(TP ([I; J ]))):Replacing the ultimate approximation operator UOin the de�nitions of ultimate Kripke-Kleene, well-founded and stable �xpoints with UP results in thecorresponding notions of ultimate Kripke-Kleene, well-founded and stable models (semantics) of a programP .We are now in a position to discuss commonsense rea-soning intuitions underlying abstract algebraic con-cepts of ultimate approximation and its �xpoints. Letus consider two interpretations I and J such thatI � J . We interpret I as a current lower bound and Jas a current upper bound on the set of atoms that aretrue (under P ). Thus, I speci�es atoms that are def-initely true, while J speci�es atoms that are possiblytrue. Arguably, if an atom p is derived by applyingthe operator TP to every interpretation K 2 [I; J ], itcan safely be assumed to be true (in the context ofthe knowledge represented by I and J). Thus, the setI 0 = glb(TP ([I; J ])) can be viewed as a revision of I .Similarly, since every interpretation K 2 [I; J ] mustbe regarded as possible according to the pair (I; J)of conservative and liberal estimates, an atom mightpossibly be true if it can be derived by the operatorTP from at least one interpretation in [I; J ]. Thus, theset J 0 = lub(TP ([I; J ])), consisting of all such atoms,can be regarded as a revision of J . Clearly, (I 0; J 0) =UP (I; J) and, consequently, UP can be viewed as away to revise our knowledge about the logical valuesof atoms as determined by a program P from (I; J) to(I 0; J 0).By iterating UP starting at (?;>), we obtain the ulti-mate Kripke-Kleene model of P as an approximationthat cannot be further improved by applying UP . Theultimate Kripke Kleene model of P approximates all�xpoints of UP and, in particular, all supported mod-els of P . Often, however, the Kripke-Kleene modelis too weak as we are commonly interested in those(partial) models of P that satisfy some minimality orgroundedness conditions. These requirements are sat-is�ed by ultimate stable models and, in particular, bythe ultimate well-founded model of P .

When constructing the ultimate well-founded model,we start by assuming no knowledge about the statusof atoms: no atom is known true and all atoms areassumed possible. Our goal is to improve on thesebounds.To improve on the lower bound, we proceed as follows.Our current knowledge does not preclude any inter-pretation and all of them (the whole segment [?;>])need to be taken into account. If some atom p canbe derived by applying the operator TP to each el-ement of [?;>] then, arguably, p could be acceptedas de�nitely true. The set of all these atoms is ex-actly glb(TP ([?;>])). So, this set, say I1, can betaken as a safe new lower bound, giving a smaller in-terval [I1;>] of possible interpretations. We now re-peat the same process and obtain a new lower bound,say I2, consisting of those atoms that can be derivedfrom every interpretation in [I1;>]. It is given byI2 = glb(TP ([I1;>])). Clearly, I2 improves on I1. Weiterate this process until a �xpoint is reached. This�xpoint, say I1, consists of all these atoms for whichthere is a constructive argument that they are true,given that no atoms are known to be false (all atomsare possible). Thus, it provides a safe lower bound forthe set of atoms the program should specify as true.The reasoning for revising the upper bound is di�er-ent. The goal is to make false all atoms for whichthere cannot be a constructive argument that they aretrue. Let us consider an interpretation J such thatfor every K 2 [?; J ], TP (K) 2 [?; J ], or equivalently,lub(TP ([?; J ])) � J . An atom p =2 J (false in J) can-not be made true by applying TP to any element inthe segment [?; J ]. In order to derive p by means ofTP , some atoms that are false in J would have to bemade true. That, however, would mean that p is notgrounded and could be assumed to be false. Thus, eachsuch interpretation J represents an upper estimate onwhat is possible (its complement gives a lower estimateon what is false) under the assumption that no atom isknown to be true yet. It turns out that there is a leastinterpretation, say J1 such that lub(TP ([?; J1])) � J1and it can be constructed in a bottom up way by iter-ating the operator lub(TP ([?; �]). This interpretationcan be taken as a safe lower bound on what is false(given that no atom is known to be true).The pair (I1; J1) is the �rst improvement on (?;>).It is precisely the pair produced by the �rst iterationof the general well-founded �xpoint de�nition givenearlier. It can now be used, in place of (?;>), toobtain an even more re�ned estimate, (I2; J2) and theprocess continues until the �xpoint is reached. Theresulting pair is the ultimate well-founded model of P .



This discussion demonstrates that abstract algebraicconcepts of ultimate approximations can be given asound intuitive account.We will now discuss the properties of the ultimate se-mantics for logic programs.Theorem 5.1 Let P , P 0 be two programs such thatTP = TP 0 . Then, the ultimate well-founded modelsand ultimate stable models of P and P 0 coincide.Proof: Theorem 4.5 implies that UP = UP 0 . But thenall �xpoints of UP and UP 0 coincide. Thus, the resultfollows. 2This assertion does not hold for the (standard) well-founded and stable models. For instance, let P1 =fp  p; p  :pg and P2 = fp  g. Clearly, TP1 =TP2 . However, P2 has a stable model, fpg, while P1 hasno stable models. Furthermore, p is true in the well-founded model of P2 and unknown in the well-foundedmodel of P1.Another appealing property is that the ultimate well-founded model of a program P with monotone opera-tor TP is the least �xpoint of this operator (the leastmodel of P ). This is a corollary of Proposition 4.8. Itis not satis�ed by the standard well-founded seman-tics, as shown by the program P1.In many cases, the ultimate well-founded semanticscoincides with the standard well-founded semantics. Aconsequence of Corollary 4.4 is that if the well-foundedmodel of a program is two-valued, then it coincideswith the ultimate well-founded model. Thus, we havethe following result dealing with the classes of Hornand weakly strati�ed programs [Prz90]:Proposition 5.2 If a logic program P is a Horn pro-gram or a (weakly) strati�ed program, then its ulti-mate well-founded semantics coincides with the stan-dard well-founded semantics.Proof: Let P be a Horn program or a weakly strati�edprogram (the argument is the same). Let WFP be thewell-founded model of P . Let TP be the van Emden-Kowalski operator for P , and let TP be the correspond-ing 3-valued operator [Fit85]. Then, TP is an approx-imation of TP and the well-founded model of P satis-�es WFP =WF(TP ) [DMT00a]. Moreover, for weaklystrati�ed programs, WFP is two-valued [VRS91]. ByCorollary 4.4WFP =WF(TP ) �p WF(UP ):Since WF(UP ) is consistent, and WFP is complete, itfollows that WFP = WF(UP ), as required. 2

We now show that in general, attractive properties ofultimate semantics come at a price. Namely, we havethe following two theorems.Theorem 5.3 The problem \given a �nite proposi-tional logic program P , decide whether P has a com-plete ultimate stable model" is �P2 -complete.Theorem 5.4 The problems \given a �nite propo-sitional logic program, compute the ultimate well-founded �xpoint of P" and \given a �nite propositionallogic program, compute the ultimate Kripke-Kleene �x-point of P" are in the class �P2 .These results might put in doubt the usefulness of ulti-mate semantics. However, for wide classes of programsthe complexity does not grow. Let k be a �xed integer.We de�ne the class Ek to consist of all logic programsP such that for every atom p 2 At(P ) at least one ofthe following conditions holds:1. P contains at most k clauses with p as the head;2. the body of each clause with the head p consistsof at most two elements;3. the body of each clause with the head p containsat most one positive literal;4. the body of each clause with the head p containsat most one negative literal.Theorem 5.5 The problem \given a �nite proposi-tional logic program from class Ek, decide whether Phas a complete ultimate stable model" is NP-complete.Theorem 5.6 The problem \given a �nite proposi-tional logic program from class Ek, compute the ulti-mate well-founded �xpoint of P" is in P.We will now prove these results. If P is a �nite propo-sitional program, then it follows directly from the def-inition of the ultimate Kripke-Kleene �xpoint of TP(that is, the ultimate Kripke-Kleene model of P ) thatit can be computed by means of polynomially many(in the size of P ) evaluations of the operator UP (I; J),where I � J are interpretations, with all other compu-tational tasks taking only polynomial amount of time.Let us also note that I is a complete ultimate stablemodel of P if and only if I = lfp(UP (�; I)). Thus, toverify whether I is a complete ultimate stable model, itis enough to iterate the operator lfp(UP (�; I)) startingwith the empty interpretation. The number of itera-tions needed to reach the least �xpoint is again poly-nomial in the size of P with all other needed tasks tak-ing polynomial time only. A similar discussion showsthat the ultimate well-founded model of P can be com-puted by means of polynomially many evaluations of



the form UP (I; J).It follows that evaluating UP (I; J), where I � J , isat the heart of computing the ultimate Kripke-Kleene,well-founded and complete stable models of a programP . Hence, we will now focus on this task.Let P be a logic program and let p be an atom in P .For every rule r 2 P such that p is the head of r, wede�ne Br to be the conjunction of all literals in thebody of r. For every atom p, we denote by BP (p) thedisjunction of all formulas Br, where r ranges over allrules in P with the head p. When p is the head of norule in P then we set BP (r) = ? (empty disjunction).Every logic program P has a normal representation.It is the collection of rules p BP (p), where p rangesover all atoms of P . The de�nition of the operator TPextends, in a straightforward way, to the case whenP is given in its normal form de�ned above. More-over, if P is a logic program and Q is its normal rep-resentation, TP = TQ. Thus, in the remainder of thissection, without loss of generality we will assume thatprograms are given by means of their normal represen-tations.Let us recall thatU1P (I; J) = glb(TP ([I; J ])) = \I�K�J TP (K)and U2P (I; J) = lub(TP ([I; J ])) = [I�K�J TP (K):Let I and J be two interpretations such that I � J .We de�ne the reduct PI;J of P to be the program ob-tained from P by substituting in each body formulaBP (p), any atom r by f if r =2 J and any atom r byt if r 2 I . Note that all body atoms of PI;J is anelement of J n I .We have the following simple properties. An atom pof P belongs to U1P (I; J) if and only if for every inter-pretation K 2 [;; J nI ], the formula BPI;J (p) is true inK (or, equivalently, if and only if the formula BPI;J (p)is a tautology). An atom p of P belongs to U2P (I; J) ifand only if for some interpretation K 2 [;; J n I ], theformula BPI;J (p) is true in K (or, equivalently, if andonly if the formula BPI;J (p) is satis�able).From the second property it follows that computingU2P (I; J) is easy | it can be accomplished in polyno-mial time (in the size of P ). Indeed, since BPI;J (p) is aDNF formula, its satis�ability can be decided in poly-nomial time and the claim follows. Thus, from now onwe will focus on the task of computing U1P (I; J).

The problem to decide whether a DNF formula is atautology is co-NP-complete. Thus, the problem tocompute the ultimate Kripke-Kleene and well-foundedmodels of a program P is in the class �P2 . Conse-quently, Theorem 5.4 follows.It also follows that checking whether for an interpreta-tion J , J = lfp(U1P (�; J)) is in �P2 . Hence, the problemto decide whether a program has a complete ultimatestable �xpoint is in the class �P2 .We will now show the �P2 -hardness of the problem ofexistence of a complete ultimate stable model of a pro-gram P . Let ' be a propositional formula and let I bean interpretation (a set of atoms). We recall that thefollowing problem is �P2 -complete: Given a DNF for-mula ' over variables x1; : : : ; xm, y1; : : : ; yn, decidewhether there is a truth assignment I � fx1; : : : ; xmgsuch that 'I is a tautology, where 'I is the formula ob-tained by replacing in ' all occurrences of atoms fromI with t, and by replacing all occurrences of atomsfrom fx1; : : : ; xmg n I with f.We will reduce this problem to our problem. For eachxi, i = 1; : : : ;m, in ' we introduce a new variablex0i. We also introduce two new atoms p and q. By '0we denote the formula obtained from ' by replacingliterals :xi in the disjuncts of ' with new atoms x0i.We de�ne a program P (') to consist of the followingclauses:1. xi  not(x0i) and x0i  not(xi), for every i =1; : : : ;m2. yi  '0, for every i = 1; : : : ; n3. p '04. q  not(p);not(q).We will show that there is I � fx1; : : : ; xmg such that'I is a tautology if and only if P (') has an ultimatecomplete stable model.It is easy to see the that the following properties holdfor every �xpoint M of TP ('):1. q is false in M (if q is true in M , TP (') does notderive q);2. p is true in M (otherwise TP (') derives q);3. y1; ::; yn are true in M (since their rules have thesame bodies as p);4. for each xi, either xi or x0i is true in M .For a subset I � fx1; : : : ; xmg, let us de�ne I = I [fx0i : xi =2 Ig. It follows from the properties listedabove that for each �xpointM of TP (') and, a fortiori,ifM is a complete ultimate stable model of P ('), thereexists an I such thatM = I [ fp; y1; : : : ; yng:



Thus, it su�ces to show that if I � fx1; : : : ; xmg thenM = I [ fp; y1; : : : ; yng is a complete ultimate stablemodel of P (') if and only if 'I is a tautology.It is easy to verify that for every set M = I [fp; y1; : : : ; yng and for every J � M , U1(J;M) sat-is�es the following properties:1. U1P (')(J;M) \ fx1; ::; xn; x01; ::; x0ng = I2. U1P (')(J;M) \ fy1; ::; yn; p; qg is either ; orfy1; ::; yn; pg, since bodies of rules of y1; ::; yn; pare identical.Thus, we �nd that U1P (')(J;M) is either I or M and,consequently, U1P (')(�;M) has a least �xpoint, whichis either I or M . Hence M = I [ fp; y1; : : : ; yngis a complete ultimate stable model of P (') if andonly if I is not a �xpoint of U1P (')(�;M), that is ifU1P (')(I;M) =M . Consequently, all we need to proveis that p 2 U1P (')(I;M) if and only if 'I is a tautology.Let us recall that p 2 U1P (')(I;M) if and only iffor every interpretation K 2 [;;M n I ], the formulaBP (')I;M (p) is true in K, that is, if and only if the for-mula BP (')I;M (p) is a tautology. Let us observe thatBP (')(p) = '0. Thus, it is easy to see that BP (')I;M (p)is logically equivalent to 'I . Consequently, the claimand Theorem 5.3 follows.The problems of interest restricted to programs fromthe class Ek become easier. Let us recall that thedecision whether an atom p 2 At(P ) belongs toU1P (I; J) boils down to the decision whether the for-mulaBPI;J (p) is a tautology. If P is in the class Ek, thisquestion can be resolved in polynomial time. Thus, theultimate Kripke-Kleene and the well-founded modelsfor programs in Ek can be computed in polynomialtime. Thus, Theorem 5.6 follows.Similarly, it takes only polynomial time to verifywhether an interpretation I satis�es I = lfp(U1P (�; I)).Thus, the problem to decide whether a program fromEk has a complete ultimate stable model is in NP. Toprove completeness, we observe that for purely nega-tive programs:1. there is no di�erence between complete stable �x-points and complete ultimate stable �xpoints2. purely negative programs are in Ek3. the problem of existence of complete stable�xpoints for purely negative programs is NP-complete.Thus, Theorem 5.5 follows.

6 CONCLUSIONS ANDDISCUSSIONWe extended our algebraic framework [DMT00a,DMT00b] for studying semantics of nonmonotonic rea-soning systems. The main contribution of this paperis the notion of an ultimate approximation. We arguethat the Kripke-Kleene, well-founded and stable �x-points of the ultimate approximation of an operatorO can be regarded as the Kripke-Kleene, well-foundedand stable �xpoints of the operator O itself. In earlierapproaches, to study �xpoints of an operator O oneneeded to select an appropriate approximation oper-ator. There were, however, no principled, algebraicways to do so. In the present paper, we �nd a dis-tinguished element in the space of all approximationsand propose this particular approximation (ultimateapproximation) to study �xpoints of O.A striking feature of our approach is the ease withwhich it can be applied in any context where seman-tics emerge as �xpoints of operators. We applied thisapproach here in the context of logic programming andobtained a family of new semantics for logic programs:the ultimate Kripke-Kleene, the ultimate well-foundedand the ultimate stable-model semantics. These se-mantics are well motivated and have attractive prop-erties. First, they are preserved when we modify theprogram, as long as the 2-valued provability opera-tor stays the same (the property that does not holdin general for standard semantics). Second, the ul-timate Kripke-Kleene and the well-founded semanticsare stronger (in general) than their standard counter-parts, yet approximate the collection of all �xpointsof O and the collection of all stable �xpoints of O,respectively. The disadvantage is that their complex-ity is higher. But, as we noticed, for large classes ofprograms there is actually no loss in e�ciency of com-puting ultimate semantics.This approach can also be applied to default and au-toepistemic logics and results in new semantics withappealing epistemological features2. It was also re-cently used to de�ne a precise semantics for logic pro-grams with aggregates [DPB01].We end this discussion with comments on a possiblebroader role of the approximation theory. One com-mon concern when designing semantics of nonmono-tonic logics is to avoid models justi�ed by ungroundedor self-supporting (circular) arguments. The well-founded �xpoints (semantics) avoid such arguments.Groundedness is also a fundamental feature of induc-2We will include a more extensive discussion of theseapplications in the journal version of the paper.



tion, a constructive way in which humans specify con-cepts both in commonsense reasoning settings and informal considerations. In its simplest form inductionrelies only on positive information. In general, how-ever, it may make references to negative information,too. In either form it is a nonmonotonic speci�cationmechanism. As argued in [Den98], the well-foundedsemantics generalizes existing formalizations of induc-tion (for instance, positive induction and iterated in-duction .AcknowledgmentsThis material is based upon work supported by the Na-tional Science Foundation under Grants No. 9874764and 0097278. Any opinions, �ndings, and conclu-sions or recommendations expressed in this materialare those of the authors and do not necessarily re
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