Ultimate approximation and its application in

nonmonotonic knowledge representation

systems *

Marc Denecker ?

& Department of Computer Science, K.U.Leuven
Celestijnenlaan 200A, B-3001 Heverlee
Département d’Informatique, U.L.Bruzelles

Bld du Triomphe CP 212, B-1050 Brussels
Belgium

Victor W. Marek P

b Department of Computer Science
University of Kentucky
Lexington, KY 40506-0046
USA

Mirostaw Truszczynski ¢

¢ Department of Computer Science
University of Kentucky
Lexington, KY 40506-0046
USA

Abstract

In this paper we study fixpoints of operators on lattices and bilattices in a sys-
tematic and principled way. The key concept is that of an approrimating operator, a
monotone operator on the product bilattice, which gives approximate information on
the original operator in an intuitive and well-defined way. With any given approxi-
mating operator our theory associates several different types of fixpoints, including
the Kripke-Kleene fixpoint, stable fixpoints and the well-founded fixpoint, and re-
lates them to fixpoints of operators being approximated. Compared to our earlier
work on approximation theory, the contribution of this paper is that we provide an
alternative, more intuitive and better motivated construction of the well-founded
and stable fixpoints. In addition, we study the space of approximating operators by
means of a precision ordering and show that each lattice operator O has a unique
most precise — we call it ultimate — approximation. We demonstrate that fixpoints
of this ultimate approximation provide useful insights into fixpoints of the operator
O. We then discuss applications of these results in logic programming.

Preprint submitted to Elsevier Science 29 March 2004

Key words: Knowledge Representation, Bilattices, Approximation

1 Introduction

This paper presents a fixpoint theory of lattice operators. It has its origin and
applications in knowledge representation and declarative programming, and is
particularly useful in the study of semantics of nonmonotonic logics. It casts
major nonmonotonic modes of reasoning in an abstract algebraic framework,
reveals constructive principles behind them, and provides a clear understand-
ing of how nonmonotonic logics are related to each other. Our theory can also
be viewed as an extension of Tarski’s least-fixpoint theory of monotone lattice
operators [Tar55] to the case of arbitrary ones, computing fixpoints by iterated
induction [Acz77], rather than monotone induction.

It is well known that semantic objects such as interpretations and possible-
world structures form complete lattices. A theory in a nonmonotonic logic
determines a characteristic operator on the complete lattice of semantic ob-
jects appropriate for the logic. That operator formalizes a view of the theory
as a device for revising interpretations. A semantics of the theory is defined
by the set of fixpoints of its characteristic operator, or by some subset of these
fixpoints. Arguably, the most representative example of a characteristic oper-
ator is the operator Tp associated with a normal logic program P and defined
on the lattice of interpretations [vEK76]. We study it in Section 6, where we
show how techniques and results of our paper apply to logic programming.
Other noteworthy examples of characteristic operators include the operators
Dy [DMT99] associated with a modal theory 7' [DMT99] (implicitly defined in
[Moo84]), and Ex, associated with a default theory A [DMT99], both defined
on the lattice of possible-world structures.

Consequently, an abstract framework of lattices and operators on lattices has
emerged as an effective tool in investigations of nonmonotonic reasoning. This
algebraic approach can be traced back to studies of semantics of logic pro-
grams [VEK76,AvE82 Fit85,Prz90,Van93] and of applications of lattices and
bilattices in knowledge representation [Gin88|. Fitting [Fit85,Fit91,Fit02] used
this approach to characterize all major 2-, 3- and 4-valued semantics of logic
programs, specifically, supported-model semantics [Cla78|, stable-model se-
mantics [GL88], Kripke-Kleene semantics [Fit85,Kun87] and well-founded se-
mantics [VRS91], in terms of fixpoints of operators on the bilattice of 4-valued

* This is a full version of the extended abstract published in the Proceedings of
KR’2002 as [DMT02].

interpretations [Fit02]. Similar methods were used in [Lif90,BS91,DMT99] to
study the semantics of default logic [Rei80] and autoepistemic logic [Moo84].

In [DMTO00a], we studied fixpoint principles behind semantics of these logics
in a more abstract algebraic setting of arbitrary complete lattices. To get infor-
mation on fixpoints of an operator O on a complete lattice L, we introduced
and studied the notion of an approzrimating operator for O. Approximating
operators are operators on the product bilattice L?. They are designed to
approximate the behavior of O. Using purely algebraic techniques, given an
approximating operator A for O, we introduced the stable operator and the
concepts of the Kripke-Kleene, well-founded and stable fixpoints of A. We
also showed how these fixpoints provide information about fixpoints of the
operator O.

We discussed two key applications of the theory of approximating operators
and their fixpoints. First, we showed that it generalizes the results on seman-
tics of logic programs described in [Fit02]. Specifically, we observed that the
4-valued immediate consequence operator 7p of a logic program is an approx-
imating operator for the 2-valued immediate consequence operator Tp and
showed that all the semantics considered by Fitting can be derived from 7p
by means of general algebraic constructions described in [DMT00a].

We used the same algebraic principles also for default and autoepistemic logics.
In [DMT00b,DMTO03], for a given default or autoepistemic theory we defined
its characteristic approximating operator on the bilattice of possible-world
structures. By applying our theory of fixpoints of approximating operators,
we obtained families of different semantics for both logics, including all major
known semantics for these logics and, in addition, some new ones. However,
the approximation theory did more than just provide a uniform approach to
existing and new semantics for default and autoepistemic logics. It also pro-
vided insights into fundamental relations between them. We showed that a
default theory A and the autoepistemic theory 7(A), obtained by applying
Konolige’s interpretation of defaults as modal formulas [Kon88|, have identical
characteristic operators. Consequently, there is a one-to-one correspondence
between families of fixpoint semantics of default and autoepistemic logics and,
under this correspondence, Konolige’s interpretation is equivalence preserving.
Different semantics formalize different “dialects” of default or autoepistemic
reasoning. These dialects can be aligned so that formalizations of nonmono-
tonic reasoning in default and autoepistemic logics coincide. In other words,
Konolige’s mapping establishes a perfect match between default and autoepis-
temic logics, once proper semantics on each side are identified and correctly
aligned. Our paper [DMTO03] provides a detailed study and discussion of the
relationship between the two logics.

These results demonstrate that the algebraic framework developed in [DMT00a]

is an effective tool in studies of semantics of knowledge representation for-
malisms. However, there are at least two directions in which the theory of
[DMTO00a] can be improved.

First, one should explore the issue of motivations and intuitions behind the
approximation theory as presented in [DMT00a]. The problem is that only
a fraction of the lattice L? (of pairs of elements of L) has a natural inter-
pretation as approximations. Specifically, we regard a pair (z,y) € L? as an
approximation to all those elements z € L for which x < z < y. That is, x is a
lower estimate and y is an upper estimate for each such z. The problem is that
this interpretation makes sense only for consistent pairs (x,y), that is, pairs
such that x < y. Inconsistent pairs lack such semantic intuitions®. In Section
3, we show that as far as stable and well-founded fixpoints are concerned, the
theory developed in [DMT00a] can be reformulated in an equivalent way in
terms of the so called consistent approrimating operators concerned with con-
sistent pairs only. Not only this result completes the theory from [DMTO00a]
but it also provides a more natural setting for the study of the precision of
approximating operators, the main focus of the remaining part of this paper.

Second, the use of the theory developed in [DMTO00a] in studies of fixpoints
of a lattice operator O : L — L requires that one is given some approxi-
mating operator A : L? — L? for O. In the context of logic programming
and default and autoepistemic logic, this approximating operator turns up
rather naturally, by using a 4-valued truth evaluation scheme rather than the
2-valued one. There is no a priori reason that such natural approximations
will emerge in other applications. Given an operator O : L — L, the theory
described in [DMT00a] does not provide any principled way for selection of
an approximating operator. Thus, the following questions arise:

e Does every lattice operator has an approximation?

e If an operator has several different approximations, how do their fixpoints
relate to each other?

e What criteria to use to discriminate between approximations? Is there a
natural way to (partially) order approximations? In particular, does there
exist a best approximation?

In order to turn approximation theory into a full-fledged algebraic fixpoint
theory, these questions need to be resolved. This is the other major goal of this
paper. To this end, we will study the family of all approximations of a lattice
operator and introduce the notion of the precision of an approximation. We
will show that more precise approximations have more precise Kripke-Kleene
and well-founded fixpoints, and have more stable models. We will show that

L' Tt is important to note, though, that under other interpretations of bilattice ele-
ments, for instance, when they represent information coming from multiple sources,
inconsistent bilattice elements can be given a natural intuitive account [Fit91].

the family of approximations of each lattice operator O contains a unique
most precise approximation of O. We will call it the ultimate approximation of
O. Since the ultimate approximation is determined by O, it is well suited for
investigations of fixpoints of O and yields concepts of ultimate stable fixpoints,
the ultimate Kripke-Kleene fixpoint and the ultimate well-founded fixpoint.
To define these fixpoints we only need to know O. There is no need to specify
any particular approximating operator.

The two goals outlined above form the core of our paper. To show the ap-
plicability of the concept of an ultimate approximation we investigate the
consequences of our expanded theory in logic programming. We compare our
new ultimate semantics of logic programs with the corresponding “standard”
semantics. In particular, we show that the ultimate Kripke-Kleene and the
ultimate well-founded semantics are more precise and have more attractive
properties from the logic perspective than the standard Kripke-Kleene and
well-founded semantics. The higher accuracy comes, however, at a cost. We
show that ultimate semantics are in general computationally more complex.
However, we demonstrate that for wide classes of programs, including pro-
grams likely to occur in practice, the complexity of main computational prob-
lems remains the same as in the case of corresponding standard semantics.

In summary, our contributions are as follows. We demonstrate that the theory
of approximating operators can be developed entirely in terms of consistent
approximations. Within that context, we develop a principled way of deriving
an approximation to a lattice operator. In this way, we obtain concepts of
Kripke-Kleene fixpoint, well-founded fixpoint and stable fixpoints that are de-
termined by the operator O and not by the choice of an approximation. In the
specific context of logic programming with negation we obtain new semantics
with desirable logical properties and possible computational applications.

2 Preliminaries

In this section we recall basic algebraic concepts underlying our work. We
assume that the reader is familiar with the concept of a partially ordered set
(poset). For a poset (L, <) and a set of elements X C L, by VX and A X
we denote the least upper bound and the greatest lower bound of X in L,
respectively. We note that, in general, these bounds are not guaranteed to
exist. We also recall that posets are, by definition, nonempty.

A lattice is a poset (L, <) such that every pair of elements z,y € L has
a unique greatest lower bound and least upper bound, denoted = A y and

x V1, respectively 2. A lattice is complete if every subset has a greatest lower
bound and a least upper bound. If S is a subset of a complete lattice L, we
denote the least upper bound and the greatest lower bound of S by V.S and
N\ S, respectively. It is clear that a complete lattice has a least and a greatest
element, denoted L and T, respectively.

Let L be a poset. For any two elements x,y € L, we define [z,y] = {z €
L: x <z <y} We note that this set is non-empty if and only if = < y. If L is
a complete lattice and z < y, then [z,y]| forms a complete lattice, too (under
the ordering relation obtained by restricting the relation < on L to [z, y]).

Let L be a poset. By an operator on L we mean any function O : L. — L. For
an operator O on L and for a subset S C L, we define O(S) = {O(z) : z € S}.
An operator O on a poset L is monotone if for every x,y € L such that z <y,
O(x) < O(y). An operator O on a poset L is increasing if for every x € L,
x < O(x).

Let O be an operator on a poset L. An element x of an operator O is a pre-
fizpoint of O if O(x) < x; x is a post-fizpoint of O if O(z) > x; x is a fixpoint
of O if O(z) = z. If the set of fixpoints of O has a least element, we call this
element the least fizpoint of O and denote it by Ifp(O).

One of the most fundamental results used in studies of semantics of logics
and programming languages is a theorem of Tarski and Knaster on fixpoints
of monotone operators on complete lattices [Tar55]. Among other things, it is
concerned with the existence of the least fixpoint and the least pre-fixpoint of
such operators. We recall here this fragment of the Tarski-Knaster result.

Theorem 2.1 Let L be a complete lattice and let O be a monotone operator on
L. Then O has a least fixpoint and a least pre-fixpoint, and these two elements
of L coincide. That is, we have lfp(O) = N{z € L: O(z) < z}.

In this paper, we need a generalization of Theorem 2.1 to a broader class of
algebraic structures: chain-complete posets. A chain C'in a poset L is a linearly
ordered subset of L. A poset L is chain-complete if it contains a least element
L and if every chain C' of elements of L has a least upper bound. Clearly, each
complete lattice is a chain-complete poset. The converse, in general, does not
hold. Chain-complete posets are discussed in detail in [Mar76].

The Tarski-Knaster result (to be precise, the fragment we stated above) holds
also in the context of chain-complete posets. Let O be a monotone operator
on a chain-complete poset L. Let us define a sequence of elements of L by
transfinite induction as follows:

2 Throughout the paper, whenever the ordering relation < of a poset (lattice) is
clear from the context, we drop it from the notation.

(1) Co = 1
(2) Cat1 = O(Ca>
(3) ca = V{cs: B < a}, for a limit ordinal a.

One can show that this sequence is well defined, that it has in L a least upper
bound, and that this least upper bound is the least fixpoint and the least pre-
fixpoint of O. The argument can be summarized in the following constructive
generalization of Theorem 2.1.

Theorem 2.2 ([Mar76]) Let L be a chain-complete poset and let O be a
monotone operator on L. Then the sequence {cy}acora has a least upper bound
and it is the least fixrpoint and the least pre-fixpoint of O.

Let L be a complete lattice. By the product bilattice [Gin88] of L we mean the
set L? = L x L with the following two orderings <, and <:

(1) (may) Sp (I/,y/) if x<a' and y/ <y
(2) (z,y) < (2,y) if e<2’andy <y

Both orderings are complete lattice orderings in L?. In this paper we are mostly
concerned with the ordering <,.

—

An element (z,y) € L? is consistent if x < y. We can think of a consistent
element (x,y) € L? as an approximation to every z € L such that z < z < .
With this interpretation in mind, the ordering <,, when restricted to consis-
tent elements, can be viewed as a precision ordering. Consistent pairs that are
“higher” in the ordering <, provide tighter approximations. Maximal consis-
tent elements with respect to <, are pairs of the form (z,z). We call approx-
imations of the form (x,z) — exact. We note that the consistent elements of
L? are exactly those for which [z,y] is non-empty.

The approximation interpretation of bilattice elements and the corresponding
intuition of the precision ordering guide our work here. This is the reason
why we depart from the more common notation for the bilattice orderings, <
and <;, respectively [Fit91]. As an aside, we note that elements of bilattices
can be given several alternative interpretations [Fit91], in which they describe
“degree of belief” and “degree of doubt” (“evidence for” and “against”) or
represent information coming from multiple agents (sources).

For a pair (z,y) € L?, we define its projections as:
(,yh =2 and (z,y)2=y.

Given a set C' C L% we define two subsets of L, C; = {z; : 2 € C'} and Cy =
{22 : z € C} as the projections of C' on the first and the second coordinate,
respectively. When an operator A maps the bilattice L? into L? we simplify

notation and denote the first projection of the value of the operator A on the
pair (z,y) by A(x,y); instead of more formal (A(x,y));. Likewise, we write
A(z,y)y instead of (A(z,y))s.

An operator A : L? — A? induces two families of operators from L to L as
follows. Given an element b € A, we define the operator A(-,b); as follows. To
every element a € L, the operator A(-,b); assigns the value A(a,b);. Analo-
gously, with a fixed a € L, we define the operator A(a, -) as the operator that
assigns the value A(a,b)s to every element b € L.

We denote the set of all consistent pairs in L? by L¢. The set (L¢, <,) is not
a lattice. In particular, a pair of different exact elements has no upper bound
in L°. In fact, exact pairs are maximal elements in L°.

The structure (L, <,) is, however, a chain-complete poset. Indeed, the element
(L, T) is the least element in L¢ and the following straightforward result shows
that every chain in L¢ has a least upper bound in L°.

Proposition 2.3 Let L be a complete lattice and let C' be a chain in L° (or-
dered by the relation <,). Let Cy, Cy be the projections of C'. Then:

(1) VC1 < NCy
(2) The least upper bound of C exists, and is equal to (\/ C1, A\ C3).

3 Consistent approximations

In this section we develop a new formalization of the approximation theory
based on the structure L¢ rather than on L2. In Section 4, we will show that
this new approach is equivalent to the original one as long as we are interested
in consistent fixpoints only.

An operator A : L® — L¢ is a consistent approximating operator if it is <,-
monotone and for every z € L, A(x,z); = A(z,x)q, that is, A assigns exact
pairs to exact pairs. To simplify the notation, in the next two sections we will
use the term approximating operator rather than consistent approximating
operator.

We denote the set of all consistent approximating operators on L¢ by Appz(L°).
Let A € Appz(L°). Since A is <,-monotone and L° is chain-complete, A has
a least fixpoint, called the Kripke-Kleene fizpoint of A (k(A), in symbols)?.

3 We use the term Kripke-Kleene fixpoint to acknowledge an analogy with a Kripke-
Kleene model of a logic program (a least fixpoint of a 3-valued van Emden-Kowalski
operator).

Directly from the definition it follows that k(A) approximates all fixpoints of
A. That is, for every fixpoint (z,y) of A we have k(A) <, (z,y).

An operator A € Appx (L) approximates an operator O: L — L (is an ap-
proximation of O) if for every x € L, A(z,x); = O(z) = A(z,x)q. It is easy
to see that when A approximates O, then for each (z,y) € L¢ and for each
z € [I7y]7 A(x7y)1 < O(Z) < A(.T,y)g. That is, O([l‘,yD - [A(x7y>17A(xay)2]'
We denote the set of all consistent approximations of O by Appz°(O).

Properties of the fixpoints of an operator O can be studied by considering
fixpoints of approximations of O. Indeed, we have the following two simple
results.

Proposition 3.1 If O is an operator on a complete lattice L and A is an
approzimation of O, then x € L is a fizpoint of O if and only if (z,x) is a
fixpoint of A.

Corollary 3.2 If O is an operator on a complete lattice L and A is an ap-
proximation of O, then for every fizpoint x of O, k(A); < x < k(A)s (that is,
k(A) approzimates x).

In applications, we are usually not interested in all fixpoints of the operator O.
For instance, if O is a monotone operator on L, it is common to focus attention
on the least fixpoint of O, as it can be given an effective characterization and
captures intuitions behind inductive definitions and computational processes.
In the case of operators determined by theories in nonmonotonic logics, we are
often interested in fixpoints that satisfy some minimality condition. While the
Kripke-Kleene fixpoint of an approximating operator of O approximates all
fixpoints of O, when we are interested in special classes of fixpoints only, better
approximations are possible. Below, based on constructiveness and minimality
principles developed in knowledge representation and logic programming, we
identify an important class of stable fixpoints of an operator O and introduce
techniques to obtain more refined approximations of these fixpoints.

An operator A from Appz (L) provides means to revise consistent approx-
imations: given a pair (a,b) € L° A(a,b) can be viewed as a revision of
(a,b). Of particular interest are those pairs whose revisions are at least as
accurate. We call an approximation (a,b) A-reliable if it is a post-fixpoint of
A, that is, if (a,b) <, A(a,b). When A is an approximating operator for a
lattice operator O, then A-reliable pairs (a,b) are especially useful for study-
ing fixpoints of O. Indeed, as we will show below in Proposition 3.5, such
pairs represent intervals where O behaves in a local way: for each z € [a, b,
O(z) € [a,b]. Consequently, we can obtain a tighter bound on the fixpoints
of O in [a,b], simply by the iterated application of A on (a,b). By the <,-
monotonicity of A, A(a,b) is also A-reliable and approximates all fixpoints of
O in [a,b]. Tterating the operator A over (a,b) yields a (transfinite) sequence

(a,b) <, A'(a,b) <, ... <, A%(a,b) <, ... of approximations of increasing
precision approximating the fixpoints of O in [a,b]. In particular, (L, T) is
A-reliable and approximates all fixpoints of O. The corresponding increasing
sequence of approximations generates the least fixpoint k(A) of A, which is a
better approximation to the fixpoints of O than (L, T).

Proposition 3.3 Let L be a complete lattice and A € Appz(L°). If (a,b) €
L¢ is A-reliable then, for every x € [L,b], A(x,b); € [L,b] and, for every
x € [a, T], Aa,z)s € [a, T].

Proof: Let = € [L,b]. Then (x,b) <, (b,b). By the <,-monotonicity of A,
A(ZL’, b)l S A(b, b)l = A(b, b)g S A(CL, b)g S b.

The last inequality follows from the fact that (a,b) is A-reliable. The second
part of the assertion can be proved in a similar manner. O

Proposition 3.3 implies that for every A-reliable pair (a,b), the restrictions
of A(-,b); to [L,b] and A(a,-)s to [a, T] are in fact operators on [L,b] and
la, T], respectively. Moreover, they are <-monotone operators on the posets
([L,0], <) and ([a, T], <). Since ([L, b], <) and ([a, T], <) are complete lattices,
the operators A(-,b); and A(a, -)2 have least fixpoints in the lattices ([L,], <)
and ([a, T], <), respectively. We define:

b = lfp(A(7b)1) and ol = lfp(A(CL,)2)

We call the mapping (a,b) — (b2, a41), the stable revision operator for A.
When A is clear from the context, we will drop the reference to A from the
notation.

The stable revision operator for A provides a different (but related) way to
revise A-reliable approximations than that given by A. However, there is a
caveat. The image (b, a'") of (a,b) under the stable operator does not have,
in general, to be a refinement of (a,b).

We will now discuss intuitions behind the definition of the stable revision
operator for A. First, we motivate the computation of b'. Our goal here is to
produce a lower bound to all fixpoints of O that are smaller than or equal to
b. To this end, we use the approximating operator A. Clearly, b° = L provides
such a bound. By <,-monotonicity of A, the operator A(-,b); is <-monotone.
Thus, for every fixpoint = € [L,b] of O

bt = A(L,b); < A(z,b); < Az, 7); = O(z) = 2.

and every fixpoint # € [L,b] of O belongs, in fact, to the interval [b!,b].
A similar reasoning shows that b? = A(b',b); is a further improvement on
the bound for all fixpoints z € [L,b] of O. Continuing this construction we

10

find that the limit b' is also a bound. This argument provides a proof of the
following result.

Proposition 3.4 Let A be an approximating operator for an operator O and
let (a,b) be A-reliable. For every fizpoint ¢ of O, if ¢ < b then b' < c.

The new upper bound a' is computed to reflect a different intuitive require-
ment. In the computation of the new upper bound, we are not concerned with
preserving all fixpoints greater than a because in this way, we could never
eliminate non-minimal fixpoints. On the contrary, we want to select a new up-
per bound that is as small (tight) as possible. However, any new upper bound
b associated to a should at least satisfy the requirement that the interval [a, O']
be closed under application of O. This is the case, in particular, when (a, ')
is reliable. Indeed, we have the following simple proposition.

Proposition 3.5 Let A be an approximating operator for an operator O and
let (a,b) be A-reliable. For every x € [a,b], O(x) € [a,b]. In other words, [a,b]
is closed under O.

Proof: Since (a,b) <, A(a,b), we have a < A(a,b);. Next, since (a,b) <, (z,),
A(a,b); < A(z,z); = O(z). The inequality O(z) < b can be argued in the
same way. O

Interestingly, the set of elements &’ of L such that (a,b’) is reliable, has a least
element and it is easy to show that this element is Ifp(A(a, -)s) = a'. We select
this element as the new upper estimate produced by the stable operator when
applied to (a,b).

We now study the properties of the stable revision operator.

Proposition 3.6 Let A € Appz(L°). For every A-reliable pair (a,b), bt < b,
a <a' <b, and the pair (b*,a') is consistent.

Proof: Inequalities b' < b and a < a' follow directly from the definition of the
stable revision operator.

By A-reliability of (a,b), we also have that A(a,b)s < b. Since a < b, b is in
the domain of the operator A(a,-)y and, moreover, it is a pre-fixpoint of this
operator. Thus, since a' is the least pre-fixpoint of A(a,), al < b.

In particular, we have that a' is in the domain of the operator A(-,b);. By the
<,-monotonicity of A we obtain:

Ala' b)) < Aa',a"), = A(a',al)y < Aa,a’)y = a'. (1)
It follows that a is a pre-fixpoint of the operator A(-,b);. Thus, b* = Ifp(A(-,b)1) <

a' and so, (b',a') is consistent. O

11

The notion of A-reliability is not strong enough to guarantee desirable prop-
erties of the stable revision operator. For instance, if (a,b) € L¢ is A-reliable,
it is not true in general that (a,b) <, (b',a'). There is, however, a class of
A-reliable pairs for which this property holds. An A-reliable approximation
(a,b) is A-prudent if a < bt. Proposition 3.4 implies that if (a, b) is A-prudent,
then [a, b] is guaranteed to contain all fixpoints of the lattice operator O ap-
proximated by A that belong to [L,b]. In particular, it contains all minimal
fixpoints that belong to [L,b]. We will now prove several basic properties of
A-prudent approximations.

Proposition 3.7 Let L be a complete lattice, A € Appz(L°) and let (a,b) €
L¢ be A-prudent. Then, (b*,a') is A-prudent and (a,b) <, (b*,al).

Proof: By Proposition 3.6, we have that b < b and a < a'. Since (a,b) is
A-prudent, it follows that a < b'. From Proposition 3.6 it also follows that
al <b. Thus, (a,b) <, (b*,al).

Next, let us observe that b = A(b*, b); < A(b',a')y. Similarly, o' = A(a,a’); >
A(bt, al)y. Thus, the pair (b, al) is reliable.

Lastly, we note that for every x € [L,a'], A(z,b); < A(x,a');. It follows that
each pre-fixpoint of A(-,a'); is a pre-fixpoint of A(-,b);. By (1) (cf. the proof
of Proposition 3.6), A(a',a'); < a'. Thus, the set of pre-fixpoints of A(-,a');
is non-empty. Consequently, b* = Ifp(A(-,b);) < Ifp(A(-,a');) = (a')' and
(b, a') is A-prudent. O

We recall that an A-reliable pair (a,b) is revised by an operator A into a more
precise approximation A(a,b). An A-prudent pair (a,b) can be “revised even
more” by the stable revision operator.

Proposition 3.8 Let A € Appz(L°). If (a,b) is A-prudent then A(a,b) <,
(b',al).

Proof. Tt is easy to see that A(a,b); < A(b',b); = b* and o' = A(a,a')s <
A(a,b)s. Thus, the assertion follows. O

The stable revision operator satisfies a useful monotonicity property.
Proposition 3.9 Let L be a complete lattice, A € Appz (L) and let (a,b), (c,d) €
Le. If (a,b) is A-reliable, (c,d) is A-prudent and if (a,b) <, (c,d), then
(b4, al) <, (d',).

Proof: Clearly, we have d < ¢! < d < b. By the <,-monotonicity of A, it

follows that A(d',b); < A(d',d); = d*. Thus, d' is a pre-fixpoint of A(-,b);.
Since b! is the least fixpoint of Ifp(A(+, b)), it follows that b! < d'.

12

To prove the assertion, it now suffices to show that ¢! < a!. Let u = a' Ad'. By
Proposition 3.7, (¢,d) <, (d}, ¢!). Since (a,b) <, (¢,d), it follows that a < dt.
Further, by the A-reliability of (a,b) and (c,d), we have a < a' and d' < d
(Proposition 3.6). Thus, a < u < a' and u < d' < d. Consequently,

Au,d); < A(u,u)y = Alu,u)y < A(a,al)y = a'
and
A(u,d); < A(d,d), = d.
It follows that A(u,d); < a' A d' = u. In particular, u is a pre-fixpoint of
A(+,d);. Since d' is the least fixpoint of A(-,d);, d' < u. Hence, d* < al.

We now have a < ¢ < d' < a' (the first inequality follows from the assumption
(a,b) <, (c,d), the second one follows by Proposition 3.7 from the assumption
that (c,d) is A-prudent). Since a < ¢ < a', the <,-monotonicity of A implies

A(c,al)y < A(a,al)y = a'.

Hence, a! is a pre-fixpoint of A(c,-)s. Since ¢! is the least fixpoint of A(c, -)s,
it follows that ¢! < al. O

The next result states that the limit of a chain of A-prudent pairs is A-prudent.

Proposition 3.10 Let L be a complete lattice, A € Appz (L) and let C' be a
chain of A-prudent pairs from L¢. Then, \/ C is A-prudent.

Proof: Let C; = {p1 : p € C} and Cy = {py : p € C} be the projections
of C. We define > = \/ C; and b> = A Cy. By Proposition 2.3, (a*,b>) is
consistent and (a*,b>*) =\ C. Let (z,y) € C. Then, (z,y) is A-reliable (since
it is A-prudent) and (z,y) <, (a*,b>). Combining these two observations and
using the <,-monotonicity of A, we obtain:

(z,y) <p Az,y) <p A(a™,0%).

By the fact that (z,y) is an arbitrary element in C', we have
(a™,0%) =\ C <, A(a™,0),

and it follows that (a®,b>) is A-reliable.

Let us now consider an element x € C';. Then there is an element y € C5 such
that (z,y) € C. Clearly, b> <y and, by the <,-monotonicity of A, for every
z < b>

A(z,y)1 < A(z,0%);.
Thus, if z € [L,0>] is a pre-fixpoint of the operator A(-,b>)y, it is also a
pre-fixpoint of the operator A(-,y);. Moreover, the set of pre-fixpoints of the
operator A(-, b*); is nonempty (since (a*>,b>) is A-reliable, it is in the domain

13

of the stable revision operator for A and (b>)! is a pre-fixpoint of A(-,b>);).
Thus,

Ufp(A(sy)1) < Up(A(,0)1).
Since (x,y) is A-prudent, we have z < y' = Ifp(A(-,y)1). Thus, z < Ifp(A(-, b>),).
Since z is an arbitrary element of Cy, a® < Ifp(A(-,b>)1). It follows that the
pair (a*,b>) is A-prudent. O

The following theorem summarizes the results on the properties of the stable
revision operator.

Theorem 3.11 Let L be a complete lattice, A € Appx(L€). The set of A-
prudent elements of L¢ is a chain-complete poset under the precision order
<,, with least element (L, T). The stable revision operator is a well-defined,
increasing and monotone operator in this poset.

It follows that the stable revision operator has fixpoints and a least fixpoint.
Let L be a complete lattice and let A € Appx(L°). We say that (z,y) € L°
is a stable fixpoint of A if (z,y) is A-reliable (hence, it belongs to the domain
of the stable revision operator) and if (x,y) is a fixpoint of the stable revision
operator (that is, x = y! and y = z'). We note that a stable fixpoint of A is
A-prudent. Moreover, as we show next, stable fixpoints of an approximating
operator A are, in particular, fixpoints of A.

Proposition 3.12 Let L be a complete lattice and let A € Appx(L°). If (z,y)
is a stable fizpoint of A then (x,y) is a fizpoint of A.

Proof: Since (x,y) is stable, x = Ifp(A(-,y)1). In particular, z = A(x,y);.
Similarly, y = A(z,y)a. Thus, A(z,y) = (z,y). O

Let O be an operator on a complete lattice L and let A € Appz°(O). We
say that z is an A-stable fixpoint of O if (z,x) is a stable fixpoint of A. The
notation is justified as, by Proposition 3.12 and our earlier remarks, every A-
stable fixpoint of O is, in particular, a fixpoint of O. The following proposition
gives several simple characterizations of A-stable fixpoints of O.

Proposition 3.13 Let A be an approzimating operator for an operator O on
a complete lattice L and let x € L. The following conditions are equivalent:

(1) x is an A-stable fixpoint of O

(2) x is a fizpoint of O and v = x!

(3) x is a fixpoint of O and v < xt

(4) x is a fixpoint of O and (x,x) is A-prudent.

Proof: We note that each of these conditions guarantees that x is a fixpoint

of O and (z,z) a fixpoint of A. Therefore, in each case (z, x) is A-reliable and
hence, z! is well-defined.

14

(1)=(2) If = is an A-stable fixpoint of O then it is a fixpoint of O. Moreover,
(z,z) is a stable fixpoint of A and, consequently, z = .

(2)=-(3) This implication is straightforward.

(3)=-(4) Since z is a fixpoint of O, (z,z) = (O(x),0(z)) = A(x,z). Hence,
(x,z) is A-reliable. Moreover, we have x < x!. Consequently, (x,z) is A-

(4)=-(1) By Theorem 3.11, (z,z) is a fixpoint of a stable revision operator for
A. Since (z, z) is A-prudent and the stable revision operator for A is increasing
on the set of A-prudent pairs, (z,x) is a stable fixpoint of A. Thus, = is a A-
stable fixpoint of O. O

The next proposition shows that A-stable fixpoints of O are minimal fixpoints
of O.

Proposition 3.14 An A-stable fixpoint x of O is a minimal fixrpoint of O.
More, generally, a stable fizpoint (x,y) of A is a minimal fixpoint of A with
respect to ordering < of the product bilattice (the second ordering of the bilat-
tice).

Proof: Let us assume that (z,y) is a stable fixpoint of A and let (z/,y') <,
(x,y) be a fixpoint of A. Since 2’ <y’ <y, A(2’,y); < A(2',y'); = «’. Thus,
x’ is a pre-fixpoint of A(-,y);. Since (z,y) is a stable fixpoint of A, x is the
least pre-fixpoint of A(-,y);. Thus, x < 2’ and, consequently, z = 2’ (we recall
that by our assumption, 2’ < x). In a similar way, we argue that y/ =y. O

Since A-stable fixpoints are A-prudent, we obtain the following corollary to
Proposition 3.9.

Corollary 3.15 Let L be a complete lattice, A € Appx(L°) and let (c,d) € L°
be a stable fixpoint of A. If (a,b) € L¢ is A-reliable and (a,b) <, (¢,d) then
(b',al) <, (c,d). O

The stable revision operator is a monotone operator on the chain-complete
poset of A-prudent pairs and has a least fixpoint. Therefore A has a least
precise stable fixpoint. We call this least stable fixpoint the well-founded fiz-
point of A and denote it by w(A). This fixpoint is the limit of the sequence
{(a®,0%) }acora of elements of L¢ defined in by transfinite induction:

(1) (a®0%) =(L,T)
(2) attl = (ba)l and pet! = (aa)T
(3) (a®,b*) = V{(a?,b°): B < a} for limit ordinals a.

The well-founded fixpoint approximates all stable fixpoints of A. In particular,
it approximates all A-stable fixpoints of the operator O. That is, for every A-
stable fixpoint = of O, w(A) <, (x,x) or, equivalently, w(A); < z < w(A)s,.
Moreover, the well-founded fixpoint is more precise than the Kripke-Kleene

15

Fig. 1. Lattice L
fixpoint.

Proposition 3.16 For any approzimating operator A € Appz(L°), k(A) <,
w(A).

Proof: Since k(A) approximates all fixpoints of A and since w(A) is a fixpoint
of A (by Proposition 3.12), the assertion follows. O

We will now illustrate the concepts of A-reliable and A-prudent approxima-
tions and stable and well-founded fixpoints. We will also demonstrate that not
all minimal fixpoints are stable. Let L be the lattice shown in Figure 1. Let
O be an operator in L defined by: O(L) = ¢,0(q) = q,0(p) = p,O(T) = p.
It is evident that O has two (minimal) fixpoints: p and q.

We define A(z,y) = (AO([z,y]),V O([z,y])). It is easy to see that A is an ap-
proximating operator for O (we will study this construction in a more general
setting later in the paper). We give the explicit definition of the operator A
in Table 1.

(z,y) | (LT | (Lp) | (L | (LD] ®T)|®p| (@T) | (g | (T,T)

Az, y) | (L, T) | (L, T) | (g9 | (¢9) | () | (o) | (L, T) | (2,9) | (p,p)

Table 1
Operator A.

From Table 1 it is evident that there are five A-reliable pairs in L¢: (L, T),
(L,q), (g,q), (p, T) and (p, p). Thus, values z! can be computed for z = p, ¢
and T, while values 2! can be computed for z = L, p and ¢. These values are
given in two tables in Figure 2.

x| plgl|T z || L|plgq

:UlJ_qL mquq

Fig. 2. Values 2! and !

It follows that there are three A-prudent pairs: (L, T), (L,q) and (g, q). One
can also verify that: (T!, LT) = (L, q), (¢', L") = (¢,q) and (¢',¢") = (q,q).
Thus, (g,q) is the well-founded fixpoint of A (we reached (g, q) by iterating
the stable revision operator over (L, T)). Since the well-founded fixpoint (g, q)

16

is complete, (g, q) is also the unique stable fixpoint of A and ¢ is the unique
A-stable fixpoint of O. We also note that p, the other minimal fixpoint of O,
is not an A-stable fixpoint of O.

4 Approximations in the bilattice

We will now show that the theory of consistent approximations captures all
results of the theory of approximations in the product bilattice developed in
[DMTO00a], as long as we restrict our attention to consistent pairs. We start
by recalling some basic concepts defined in [DMT00a].

Let L be a complete lattice. An operator A: L? — L? is symmetric if for
every (z,y) € L? A(z,y); = A(y,z)s (as before, (-); and (), are the two
projection functions). Further, A is approzimating if A is symmetric and <,-
monotone® . While it is possible to develop a generalization of the theory
presented in this paper without the symmetry assumption, we chose to adopt
it because the motivating examples, that is, operators occurring in knowledge
representation, are symmetric.

Every approximating operator A on L? maps exact pairs to exact pairs (in-
deed, A(z,z) = (A(z,x)1, A(z, x)2) and, by the symmetry of A, A(z,x); =
A(z,x)2). If A is an approximating operator and O is an operator on L such
that for every x € L A(z,z) = (O(x),0(x)), then A is an approzimating
operator for O. We denote the set of all approximating operators on L? by
Appz(L?) and the set of all approximating operators for an operator O on L
by Appz(O).

Let A: L? — L? be an approximating operator. It is easy to see that for
every y € L, the operator A(-,y); (defined on L) is <-monotone. Thus, it
has a least fixpoint. For every y € L, we define Cx(y) = Ifp(A(-,y)1) or,
equivalently (as A is symmetric), Ca(y) = ifp(A(y, -)2). We call the operator
Ca(z,y) = (Ca(y),Ca(x)) the stable operator for A.

In [DMTO00a], we proved that all fixpoints of C4 are also fixpoints of A and
called them stable fizpoints of A. Furthermore, we proved that C4 is <,-
monotone. Thus, it has a least fixpoint (with respect to <,). We called this
fixpoint the well-founded fixpoint of A.

We showed in [DMTO00a] that if A: L? — L? is an approximating operator
then for every (z,y) € L, A(x,y) € L°. It follows that the restriction of A to

4 In this section we will always use the term consistent approzimating operator
for approximating operators on L¢ and approximating operator for approximating
operators on L2.

17

L* is an operator on L¢. We will denote this operator by A¢. It follows directly
from the relevant definitions that if A: L? — L? is an approximating operator,
then A€ is a consistent approximating operator and, since A(z,x) = A%(x, z),
the two operators approximate the same operator on the lattice L.

We will now establish a correspondence between consistent fixpoints of A and
fixpoints of A°. We start with a lemma which shows that on A°prudent pairs,
the stable operator of A and the stable revision operator of A° coincide.

Lemma 4.1 Let A be an approzimating operator. A consistent pair (x,y) is
Ac-prudent if and only if (x,y) <, A(x,y) and x < Cx(y). Moreover, if (x,y)
is A°-prudent then Ca(x,y) = (y*°, 24°T).

Proof: Let us assume that (x,y) is A°prudent. Then (z,y) is A%reliable and,

since A°(z,y) = A(x,y) for (z,y) € L, (x,y) <, A(z,y). Further, A°(-,y),

is a monotone operator on [L,y]. Since for (z,y) € L¢, A%(x,y) = A(x,y),

gp((A;(-,y)l) = Ufp(A(-,9)1). Thus, z < y* = Ifp(A°(-,y)1) = Up(A(,y)) =
A\Y)-

Conversely, let us assume that (z,y) <, A(x,y) and x < Cy(y). Since,
A(z,y) = A%(x,y), it follows that (x,y) is Areliable. Thus, y*°! is well de-
fined and, reasoning as before, one can show that yA°t = Ifp(A°(-,y)1) =
Ifp(A(,y)1) = Ca(y). Thus, x < y4°! and, since (x,y) is A%reliable, (z,y) is
A¢-prudent.

Next we will prove the second part of the assertion. We proved earlier that
if (z,y) is A%prudent, then y*°' = C4(y). Let us now observe that, by A
reliability of (z,y), A¢(z,-)s is a monotone operator on [z, T]. Since 4T is a
fixpoint of A°(z,-), (viewed as an operator on [z, T]), (z,2") is consistent
and 24T is a fixpoint of A(z,-)o. Thus, Ifp(A(x,-)2) < 24T and Cy(z) =
Up(A(2)) = Ufp(Al,)2) < 2.

We will now show that z47 < Cy4(x). By the <,-monotonicity of A and
since z < y, for every u € L, A(u,y); < A(u,z);. In particular, if u is a
pre-fixpoint of A(-,x); (that is, if A(u,r); < u), uis a pre-fixpoint of A(-,y);.
Thus, C4(z), which is a pre-fixpoint of A(-, x); (the least pre-fixpoint, in fact),
is a pre-fixpoint of A(-,y);. Since Cy(y) is the least pre-fixpoint of A(-,y)1,
Caly) < Ca(z).

Since (x,y) is A%prudent, by the first part of the assertion, z < Cyu(y) <
Cy(x). Thus, (z,Ca(x)) is consistent. By the definition of Cx(x), Cu(x) =
A(Ca(x),x)1 = A(x,Ca(x))2 = A%(z,Ca(x))2, the last equality follows by the
consistency of (x,Ca(x)). Thus, Ca(x) is a fixpoint of A°(x,-), and, conse-
quently, 24T < Cy(z). O

The next theorem summarizes the relationship between consistent fixpoints of

18

an approximating operator A on L? and fixpoints of a consistent approximat-
ing operator A° on L°. In our discussion when we refer to stable fixpoints of an
approximating operator, we treat them according to their definition given in
[DMT00a] and reviewed above. Similarly, when we refer to stable fixpoints of
a consistent approximating operator, we understand them according to their
definitions specified in this paper. In addition, with some abuse of notation
we write w(A) and w(A°) to denote well-founded fixpoints of A and A€, even
though formally the definitions are different.

Theorem 4.2 Let L be a complete lattice and let A: L?> — L* be an approx-
imating operator. Then,

(1) A consistent pair (x,y) is a fizpoint of A if and only if (x,y) is a fizpoint
of A°.

(2) The least fizpoints of A and A® coincide. In other words, k(A) = k(A°).

(3) A consistent pair (x,y) is a stable firpoint of A if and only if it is a stable
fixpoint of A°.

(4) The well-founded fixpoints of A and A° coincide. In other words, w(A) =
w(A°).

Proof: It is a straightforward consequence of the definitions that the set of
consistent fixpoints of A and the set of fixpoints of A° (which are consistent
by definition) coincide. It follows that Ifp(A) <, Ifp(A°). Since the set of
consistent pairs, L¢ forms an initial segment of (L?, <,), lfp(A) is consistent.
Consequently, the least fixpoints of A and A° coincide as well (we recall that we
refer to these least fixpoints as Kripke-Kleene fixpoints). Thus, the assertions
(1) and (2) follow.

(3) If a consistent pair (z,y) is a stable fixpoint of A, z = C4(y). By Lemma
4.1, (z,y) is A%prudent and a fixpoint of the stable revision operator of A°.
Conversely, if (x,y) is a stable fixpoint of A¢ then it is A°prudent and, by
Lemma 4.1, it is a stable fixpoint of A.

(4) Clearly, w(A°) is consistent and so, by (3), it is a stable fixpoint of A.
Since w(A) is a least stable fixpoint of A, w(A) <, w(A°). Consequently,
w(A) is consistent. Again by (3), w(A) is a stable fixpoint of A°. Therefore,
w(A°) <, w(A). Thus, w(A°) = w(A). O

It follows from the results presented so far that the concept of a consistent
stable fixpoint of an approximating operator can be given an equivalent char-
acterization in terms of the definition of a stable fixpoint of the consistent
restriction of A, the operator A°. We will now study the converse problem:
can stable fixpoints of a consistent approximating operator (including its well-
founded fixpoint) be studied and characterized in the setting of the theory of
approximating operators developed in [DMT00a]? To resolve this question we
will show that every consistent approximating operator A can be viewed as a
restriction of some approximating operator B to L°.

19

Let A € Appz(L°). We say that an operator B on L? extends A if A = B¢,
that is, if A is the restriction of B to L. We will now study two fundamental
questions concerning consistent approximating operators: given a consistent
approximating operator A, (1) can A be extended to an approximating oper-
ator on the bilattice, and (2) is the extension unique?

We will start by constructing, given a consistent approximating operator C'
on L¢, two operators C* and C~ on L?, and by showing that each of them
is an approximating operator that extends C'. To this end, for an element
(z,y) € L* we define

Cons(z,y) = {(a,b) € L®: (a,b) <, (x,y)}.

Next, for every (z,y) € L? we define C(z,y) = (CT(z,y)1,CT(z,y)2) as
follows:

C(z,yh if o <y

C+(l‘,y)1 =
NMC(a,b)s: (a,b) € Cons(y,z)} otherwise.

We complete the definition by setting C*(z,y)s = C*(y, x);.

Similarly, we define an operator C~ on L? as follows:

C(z,y)2 if o <y

c- (ZL‘, y)Z =
V{C(a,b);: (a,b) € Cons(y,z)} otherwise.
As before, we complete the definition by setting C~(x,y); = C~(y,x)2. We
have the following result.

Theorem 4.3 Let C': L — L be a consistent approximating operator. The
operators C~ and Ct are approzimating operators on L? and each of them
extends C'.

Proof: We will prove the result for the operator Ct only. The case of the
operator C'~ can be established by a similar argument.

It follows directly from the definition that C'* is symmetric. We will now show
that CT is <,-monotone. Let (x,y), (z',y) be two elements of L? such that
(z,y) <, (2',9/). Since C* is symmetric, to prove <,-monotonicity of C'*" it
is enough to show that C*(z,y); < C*T(2',y);. To this end, we will consider
the following three cases.

Case 1. Both pairs (z,y) and (2/,y’) are consistent. In this case,

C+(l‘,y)1 = C(Iay)l < C(x/7y/)1 = C+(I'/,y/)1,

20

Case 2. The pair (z,y) is consistent and the pair (z/,y') is inconsistent. Let
(a,b) € Cons(y',«'). Then, since (z,y) <, (z/,v),

a<y <y and z <2’ <b.
Since x < y and a < b, it follows that a Vo <y and a V x < b. Thus,
(z,y) <p (aVz,aVez) and (a,b) <, (aVz,aV).
Consequently,
Ct(z,y)1 =C(z,y)1 <C(xVa,xVa), =ClxVazxVa) <Cla,b)s.
Thus, since (a,b) is an arbitrary element of Cons(y/,2"), we have
C*(z,y)1 < N{C(a,b)2: (a,b) € Cons(y',2")} = CT (2,).

Case 3. Both pairs (z,y) and (2/,y') are inconsistent. Since (z,y) <, (z',y'),
we have (v, 2') <, (y,x). Thus, Cons(y’,2") C Cons(y,z) and

C*t(z,y)1 = N{C(a,b)2: (a,b) € Cons(y,z)}
< A{C(a,b)2: (a,b) € Cons(y',2")} = C* (2, y).

The cases (1) - (3) exhaust all possibilities for pairs (z,y) and (2',y’), where
(z,y) <, (2,y). Thus, C* is <,-monotone. To complete the proof, it remains
to show that C* extends C. Let (x,y) € L. By the definition of C", we have
C(z,y)1 = C*(x,y);. Next, we observe that (x,y) is the greatest element in
Cons(z,y). By <,-monotonicity of C,

C*(y,z)1 = N{C(a,b)2: (a,b) € Cons(z,y)} = C(z,y).

Thus, C*(z,y)2 = CT(y,x); = C(x,y)2 and consequently, for every (z,y) €
Le, O (x,y) = (O (z,)1, O (x,9)2) = (Cla,y)1, Clz,9)2) = Clz,y). O

The two approximating operators C~ and C are not arbitrary. They provide
boundaries for the space of approximating operators extending a consistent
approximating operator C' with respect to the second ordering in the product
bilattice L2, that is, the componentwise extension of the lattice ordering <
to L? (cf. Section 2). By somewhat abusing the notation, we use the same
symbol, <, to denote this ordering of L?. We now have the following result.

Theorem 4.4 If C is a consistent approximating operator and A is an ap-
prozimating operator extending C, then for each (x,y) € L?, C~(x,y); <
Alz,y)1 < CT(x,y)1 and C~(z,y)s < A(x,y)2 < CT(z,y)2. In other words,
in the notation introduced above: C~ (z,y) < A(z,y) < Ct(z,y).

21

Proof: If z < y, the assertion follows from the fact that C—, C*™ and A all
extend C' and, consequently, they all coincide on (x,y). If x > y then, by
symmetry, C~, C" and A all coincide on (x,y) and the assertion follows in
this case, as well.

To complete the proof, let us consider a pair (z,y) € L? such that neither
x <y nor z >y holds. Let (a,b) € Cons(y, z). Since (a,b) <, (y,z) and A is
symmetric and <,-monotone, we have:

A(z,y)1 = Aly,)2 < A(a,b)y = CT(a,b),

(the last equality follows by the fact that A and C'" coincide on consistent
pairs). Since (a,b) is an arbitrary element of Cons(y,x), we obtain

A(ﬁa y)l < /\{O+(aa b)2: (CL, b) S CO?’LS(y,[E)} = C+<l‘,y)1,
The inequality C~(z,y); < A(z,y); can be proved in the same way.

The inequalities involving A(x,y)s follow directly from those of A(z,y); and
the symmetry of C~, A and C™. O

We now turn to the question of the uniqueness of the extension. Theorem 4.4
and its proof imply the following result.

Corollary 4.5 Let C € Appx(L©). If C~ = C™ then there is only one approx-
imating operator in Appx(L?) that extends C. In particular, if the ordering <
on L is linear, then C~ = Ct and C has a unique extension to an approxi-
mating operator in Appz(L?).

Corollary 4.5 exhibits conditions under which a consistent approximating op-
erator admits a unique extension to an approximating operator. In general,
however, the extension is not unique. Let L be the four-element lattice shown
in Figure 1. We define an operator on L as follows:

(L,T) ifer<y
Clz,y) =
(x,z) ifx=y

It is evident that the operator C' is <,-monotone and exact. Thus, C' is a
consistent approximating operator on L°.

We will show that the operators C~ and C'* do not coincide. To this end,
we will compute C~(p, q) and C*(p,q). First, we observe that Cons(q,p) =
{(L,T),(L,p), (g, T)}. By the definition,

C™(p,@)2=C(L, Th VO(Lph V(g Th =L

22

Similarly, C~(p,q);1 = C~(¢,p)2 = L. Thus, C~(p,q) = (L, L). In the same
way,

O+(p7 Q)l = O(La T)Q A C(J—ap>2 A C(Qa T)Q =T

and C*(p,q)s = T. Thus, C*(p,q) = (T, T) and, consequently, C~(p,q) #
C*(p,q).

Lack of uniqueness of an extension is not a problem as long as we are interested
in consistent fixpoints and stable fixpoints. Since for every two extensions A
and B of a consistent approximating operator C'; A and B coincide on L¢ (A° =
B¢ = (), Theorem 4.2 implies that consistent fixpoints (including the Kripke-
Kleene fixpoints) and consistent stable fixpoints (including the well-founded
fixpoints) of A and B coincide. Thus, the choice of a particular extending
approximating operator is not essential, as long as we limit our interest to
consistent fixpoints. In other words, it follows from Theorems 4.2 and 4.3 that
the theories of fixpoints and stable fixpoints developed in this paper and in
[DMTO00a] are equivalent for the most interesting and important case when
consistency of fixpoints is required. Consequently, they are equivalent in their
ability to approximate fixpoints of lattice operators.

We end this section with a reflection on differences between the two approaches
to the theory of approximating operators. When considering consistent ap-
proximations, that is, operators defined on L¢ only, we introduce one revision
operator to compute a suitable upper bound from a given lower bound, and
another revision operator, with different underlying intuitions, to compute a
suitable lower bounds from a given upper bound. These two operators are
partial, that is, defined on only some pairs in L¢. Consequently, proofs often
require tedious analysis concerning whether a revision of an approximation is
well-defined, or whether it is consistent. The strength of this approach is that
all notions have a compelling intuitive appeal.

When we consider approximating operators defined on the bilattice L?, all
technical difficulties mentioned above disappear. We define a single stable
operator and use it when revising both the lower and the upper bounds of
the present approximation. As a result the whole theory and, in particular,
proofs, get significantly simpler. However, on the intuitive level, this theory
gives little insight. It does not explain what motivates the way the stable
operator is defined.

The existence of two equivalent theories providing trade-offs between mathe-
matical elegance and intuitive appeal is useful — it allows us to proceed on an
intuitive level, knowing that a natural and elegant mathematical constructions
can be provided in a properly constructed superstructure.

23

5 Ultimate approximations

In this section we will study ways to order approximations. To this end, we
will again restrict our attention to consistent approximations only. Let A, B €
Appz(L°). We say that A is less precise than B (A <, B, in symbols) if for
each pair (z,y) € L, A(x,y) <, B(z,y). It is easy to see that if A <, B then
they approximate the same operator O on the lattice L.

Lemma 5.1 Let L be a complete lattice and A, B € Appxz(L°). If A <, B and
(a,b) € L¢ is A-prudent then (a,b) is B-prudent and (b4, a) <, (bP!, aPT).

Proof: Clearly, (a,b) <, A(a,b) <, B(a,b) (the first inequality follows by
A-reliability of (a,b)). Thus, (a,b) is B-reliable.

Since (a, b) is both A- and B-reliable, the least fixpoints b and b5} are well-
defined. For each x € L such that z < b, if z is a pre-fixpoint of B(-,b);, then
A(z,b); < B(z,b); < x. Consequently, z is a pre-fixpoint of A(-, b);. It follows
that b4 < bP!. Since a < b, a < bBL. Thus (a,b) is B-prudent.

In a similar way one can prove that a?’ < a41. We already proved above that
bAl < BBl Thus, it follows that (b4}, aT) <, (bBL aBT). O

More precise approximations have more precise Kripke-Kleene and well-founded
fixpoints.

Theorem 5.2 Let L be a complete lattice and let A, B € Appx(L°). If A <, B
then k(A) <, k(B) and w(A) <, w(B).

Proof: Since A <, B,

Therefore, k(B) is a pre-fixpoint of A. Since k(A) is the least pre-fixpoint of
A, it follows that k(A) <, k(B).

To prove the second part of the assertion, let us consider the sequences {(a%, b%) }acora
and {(a%, b%) }acora used to define he well-founded fixpoints of A and B, re-
spectively. To prove the assertion, it suffices to show that for every ordinal «,

(a%,0%) <p (af, bp).

Clearly, (a9, %) <, (a%,b%). Let us assume that a = 41 and that (a},b3) <,
(af, b).

By Proposition 3.9,

(07 (@)T) <, (0P, (ap) 1) = (ag, b).

24

Since (a,b}) is A-prudent, Lemma 5.1 entails that it is B-prudent and
(afh, %) = ()™, (@)™ <, ()7 (@2)™).
The case of the limit ordinal « is straightforward. a

The next result shows that as the precision of an approximation grows, all
exact fixpoints and exact stable fixpoints are preserved.

Theorem 5.3 Let L be a complete lattice and let A, B € Appz(L°). IfA <, B
then every exact fixrpoint of A is an exact fizpoint of B, and every exact stable
fixpoint of A is an exact stable fixrpoint of B.

Proof: Since for every x € L, A(x,z) = B(z, x), the first part of the assertion
follows. Let us now assume that (z,z) is an exact stable fixpoint of A. In
particular, it follows that (z,x) is a fixpoint of A and is A-prudent. By Lemma
5.1, (z,z) is B-prudent. Consequently, by Proposition 3.13(4), x is a B-stable
fixpoint of O. a

Corollary 5.4 Let L be a complete lattice and let A, B € Appz©(O). If A <,
B. Then every A-stable fixpoint of O is a B-stable fixpoint of O.

Non-exact fixpoints are not preserved, in general. For instance, let us consider
two consistent approximations A and B such that A <, B. Let us also assume
that w(A) <, w(B). That is, A has a strictly less precise well-founded fixpoint
than B. Then, clearly, w(A) is no longer a stable fixpoint of B.

We note that a well-founded fixpoint of an approximation yields a bound on
its exact stable fixpoints. It is worth noting that more precise approximations
yield a larger set of exact stable fixpoints (Theorem 5.3) and, at the same
time, more precise bounds on this set in terms of the well-founded fixpoint
(Theorem 5.2). Moreover, the well-founded fixpoint of a more precise operator
also provides correct approximations for exact stable fixpoints of a less precise
operator.

It is an important question whether there exists an ultimate approximation of
O, that is, a consistent approximation most precise with respect to the ordering
<,. This ultimate approximation, if existed, would have a most precise Kripke-
Kleene and well-founded fixpoints and a largest set of exact stable fixpoints.
Such ultimate approximation, being a distinguished object in the collection of
all approximations of O can be viewed as determined by O itself. Consequently,
fixpoints of the ultimate approximation of O (including stable, Kripke-Kleene
and well-founded fixpoints) could be regarded as determined by O and would
be associated with it. We will show that the answer to this key question is
positive. That is, we will show that for every operator O on a complete lattice,
the set Appz°(O) has the greatest element with respect to <,,.

25

We start by providing a non-constructive argument for the existence of ulti-
mate approximations. Let us note that the set Appz¢(O) is not empty. Indeed,
let us define Ap(z,y) = (O(z),0(x)), if © =y, and Ap(z,y) = (L, T), oth-
erwise. It is easy to see that Ap € Appz°(O) and that it is the least precise
element in Appz°(O). Next, we observe that Appz®(O) with the ordering <,
forms a complete lattice, as the set Appz°(O) is closed under the operations of
taking greatest lower bounds and least upper bounds. It follows that Appz°(O)
has a greatest element (most precise approximation). We call this consistent

approximation the (consistent) ultimate approzimation of O and denote it by
Uo.

We call the Kripke-Kleene and the well-founded fixpoints of Uy, the ultimate
Kripke-Kleene and the ultimate well-founded fixrpoint of O. We denote them by
k(O) and w(O), respectively. We call an ezact stable fixpoint of Uy an ultimate
stable firpoint of O. Exact fixpoints of all consistent approximations are the
same and correspond to fixpoints of O. Thus, there is no need to introduce the

concept of an ultimate exact fixpoint of O. We have the following corollary to
Theorems 5.2 and 5.3.

Corollary 5.5 Let O be an operator on a complete lattice L. For every A €
Appz(O) we have:

(1) k(A) <, k(O) and w(A) <, w(0),

(2) For every A-stable fizpoint x of O, x is an ultimate stable fixpoint of O
and w(0); <z < w(0),.

We will now provide a constructive characterization of the notion of ultimate
approximation. To state the result, for every x,y € L such that » < y, we

define O([z,y]) = {O(2): z € [z, y]}.

Theorem 5.6 Let O be an operator on a complete lattice L. Then, for every
(z,y) € L, Uo(z,y) = (ANO([z,9]), V O([z, y])).

Proof: We define an operator C' : L¢ — L? by setting

C(z,y) = (A O([z,y]), V Oz, y]))-

First, let us notice that since A O([z,y]) < V O([z,y]), the operator C' maps
L¢ into L. Moreover, it is easy to see that C'is <,-monotone. Lastly, since

O([z, z]) = {O(x)},
N O([z,z]) =V O([z, z]) = O()
and, consequently, C(z,z) = (O(z),O(x)). Thus, it follows that C' is a con-

sistent approximation of O. Since Uy is the most precise approximation, we
have C' <, Up.

26

On the other hand, let (z,y) € L and let z € [x,y]. Then, since Up is an ap-
proximating operator for O, Up(z,y) <, (O(z),0(2)). Thus, Up(z,y)1 < O(2)
and, consequently, Up(z,y)1 < A O([x,y]). Similarly, \V O([z,y]) < Uo(z,y)a.
Since x < y are arbitrary, Up <, C, as desired. a

We will now provide characterizations of Up-reliable pairs and of the stable
revision operator for Up.

Theorem 5.7 Let O be an operator on a complete lattice L. Then:

(1) A pair (a,b) € L¢ is Up-reliable if and only if O([a,b]) C [a,b]

(2) If (a,b) € L¢ is Ug-reliable, bV0' is the limit of the following sequence:
ap = L, a1 = ANO([aa,b]) and a, = V{ag: B < a}, for limit a; and
a0l is the least b such that [a,b] is Uo-reliable (or, equivalently, such
that O([a,b]) C [a,b]).

As a consequence to Theorem 5.6 and Proposition 3.13, we obtain the following
characterization of ultimate stable fixpoints of an operator O.

Corollary 5.8 Let L be a complete lattice. An element x € L is an ultimate
stable fizpoint of an operator O : L — L if and only if x = Ifp(ANO([, z])),
where we regard \ O([-, x]) as an operator on [L, z].

The following proposition describes the ultimate approximations for monotone
and antimonotone operators on L.

Proposition 5.9 If O is a monotone operator on a complete lattice L then
for every (x,y) € L¢, Up(z,y) = (O(z),0(y)). If O is antimonotone then for
every (z,y) € L, Uo(,y) = (O(y), O(z)).

Proof: By Theorem 5.6,

Uo(z,y) = (A O([z,9]), \ O([z, y])).

Now, it is easy to see that if O is monotone, then A O([z,y]) = O(z) and
V O([z,y]) = O(y). If O is antimonotone, then A O([z,y]) = O(y) and \ O([z,y]) =
O(z). Thus the proposition follows. O

Using Proposition 5.9 we now obtain the following corollary. The first part of
the assertion provides support to our earlier claim that the theory of ultimate
approximations generalizes Tarski’s least-fixpoint theory of monotone lattice
operators to the case of arbitrary ones.

Corollary 5.10 Let O be an operator on a complete lattice L. If O is mono-
tone, then the least fixpoint of O is the ultimate well-founded fixpoint of O
and the unique ultimate stable fixpoint of O. If O is antimonotone, then
k(O) = w(O) and every fizpoint of O is an ultimate stable fizpoint of O.

27

Ultimate approximation operator for a lattice operator O provides us with the
most precise estimates on fixpoints O. The question arises then about the role
of less precise approximations. We will now argue that in several situations
they may be useful. For instance, it may be the case that computing the well-
founded and stable fixpoints of some less precise approximation, say A, is more
tractable than computing their ultimate counterparts. In such case, in order to
compute the ultimate well-founded fixpoint of O we can first compute the well-
founded fixpoint of A. The well-founded fixpoint of A is, in general, less precise
than the ultimate well-founded fixpoint. However, in some cases the two may
coincide. Even if they are not the same, knowing the well-founded fixpoint of
A may speed up computation of the ultimate well-founded fixpoint (as the
well-founded fixpoint of A provides some information about the ultimate well-
founded fixpoint). Similarly, if we just want to find a single ultimate stable
fixpoint of O, we might first try to search for an A-stable fixpoint of O. If we
find one, it is also an ultimate stable fixpoint of O and we are done. Only if
A-stable fixpoints do not exist, we would have to deal with the more complex
task of directly computing the ultimate stable fixpoints of O.

The following result provides some sufficient conditions under which it is
enough to consider a less precise approximation in order to compute ultimate
fixpoints of and operator O.

Corollary 5.11 Let A be any element in the family of approximations of a
lattice operator O.

(1) If k(A) is exact then it is the ultimate Kripke-Kleene, the ultimate well-
founded and the unique ultimate stable fixrpoint of O.

(2) If w(A) is exact then it is the ultimate well-founded and the unique ulti-
mate stable fixpoint of O.

The next corollary shows that when different approximations are used to study
an operator O, the results will not be inconsistent with each other.

Corollary 5.12 Let A, B be two approximations of a lattice operator O.

(1) k(A) V k(B) is consistent and approzimates all fizpoints of O.

(2) w(A)V w(B) is consistent.

(3) Each of w(A), w(B) and w(A)V w(B) approximates all elements of L°
that are stable fixpoints of both A and B, and all ultimate stable fixpoints
of O.

We end this section with a discussion of the notion of ultimate approximation
in the context of bilattice approximation operators (rather than consistent
approximating operators). Let us consider two approximating operators A
and B (defined on L?). We say that B is more precise than A (A <, B, in
symbols) if for every consistent pair (x,y), A(z,y) <, B(x,y). The restriction

28

to consistent pairs is essential. Due to symmetry of approximating operators,
if x <y then

A(z,y) <, B(z,y) if and only if B(y,z) <, A(y, z).

Thus, we cannot require that A(z,y) <, B(z,y) hold for every pair (z,y). We
also note that the precision ordering <, on Appz(L?) is reflexive and transi-
tive but not antisymmetric. It is then a pre-order relation and not an order
relation, as in the case of the precision ordering on consistent approximations.
This difference is not essential. The pre-order on the set of approximating
operators gives rise to an order relation on the set of equivalence classes of
the relation =, defined as follows: an approximating operator A is equivalent
to an approximating operator B (A = B) if and only if A° = B¢ In fact,
the resulting partially ordered set is isomorphic to the partially ordered set of
consistent approximating operators considered earlier in this section.

Let O : L — L be an operator on L. We call an operator U on L? an ultimate
approximating operator for O if U is an approximating operator for O and if
for every approximating operator B for O such that U <, B, U¢ = B°. It is
easy to see that any approximating operator extending the (consistent) ulti-
mate approximating operator, as defined earlier in the section, is an ultimate
approximating operator. The following result is a straightforward consequence
of the fact that approximating operators are, by definition, symmetric.

Theorem 5.13 An operator U : L? — L? is an ultimate approzimating op-
erator for an operator O : L — L if and only if U is an extension of the
(consistent) ultimate approzimation for O.

Theorem 5.13 implies that ultimate fixpoints and ultimate stable fixpoints can
be studied in the setting of approximating operators by means of algebraic
techniques from [DMT00a].

6 Ultimate semantics for logic programming

In this section, we apply ultimate approximations to propositional logic pro-
gramming. We derive explicit characterizations of ultimate semantics for logic
programs, study their properties and establish the complexity of decision prob-
lems concerned with the existence and computing of ultimate models.

In order for the paper to be self-contained, we briefly review basic concepts
pertaining to logic programming. A propositional logic program P is a finite
set of rules of the form p < B, where p is a propositional atom called the head
of the rule, and B is a finite conjunction of [literals, that is, atoms and their

29

negations. We call this conjunction the body of the rule. We denote the set of
atoms that appear in P by At(P).

We often write logic programs in their normal form [Cla78,Fit85]. Let P be
a logic program and let p be an atom appearing in P. By Bp(p) we mean a
disjunction of the bodies of all rules in P with the head p (when p does not
appear as the head of a rule, this disjunction is empty, and so contradictory).
A collection of rules p < Bp(p), where p ranges over all atoms of P, is the
normal form of P.

A 2-valued interpretation (or, simply, an interpretation) is a total function
from the set of atoms occurring in a program P to the set of truth values
{t,f}. A 3-valued interpretation is a total function from the atoms to the set
{t,f,u}. These truth values are ordered by the truth order f <, u <; t and by
the precision order u <, f, u <, t. Both orders have point-wise extensions to
the collection of all 3-valued interpretations.

The complements of the three truth values are defined as f! = t,t~! = f and

u~! = u. A 3-valued interpretation K can be extended, by standard recursion,

to all formulas:

K(p) if ¢ is an atom
mine, {vic(Y1), vec(P2)} if o = 1 Aty
max<, {vic(¥1), vic ()} if ¢ = U1 V iy
vk (¥) ! if o=

We observe that if £ is 2-valued, then vi is also 2-valued (and coincides with
the standard extension of K to all formulas in the 2-valued case). We define
K = ¢ if ve(p) = t. The following proposition is well known.

Proposition 6.1 If K <, K', then for each formula ¢, vi(p) <, v (p).

The collections of 2-valued and 3-valued interpretations can be considered
within the lattice-based framework. Following a common convention, we iden-
tify a 2-valued interpretation I with the set of atoms that are true in I. The
set of interpretations, with the order defined by the inclusion relation, forms
a complete lattice. In particular,) and the set of all atoms from P are the
least and the greatest elements in this lattice. Furthermore, the greatest lower
bound and the least upper bound of a set S of interpretations are given by
the intersection .S and the union |J .S, respectively.

We identify a 3-valued interpretation I with a pair (I, J) of 2-valued inter-
pretations of P, where

I'={a: K(a) =t} and J ={a: K(a) =t or u}.

30

Clearly, I C J. Moreover, given a pair of 2-valued interpretations (7, J), where
I C J (a consistent pair (I, J)). One can define

tifaecl
K(a) = fifadJ

u otherwise.

Thus, each 3-valued interpretation K determines a unique pair (I, J) such that
I C J and conversely. It follows that the set of 3-valued interpretations can
be identified with the set L¢, where L is the lattice of 2-valued interpretations
(with the inclusion as the lattice order). Moreover, the precision order C,
on L¢ coincides with the precision order <, on 3-valued interpretations (that
is, the point-wise extension of the precision order on the set of truth values
{t,f,u}). Since L is a complete lattice, (L, C,) is a chain-complete poset.

Each logic program P determines a special operator on the lattice of inter-
pretations. We call this operator the immediate consequence operator or the
van Emden-Kowalski operator and denote it by Tp [VEKT76,AvES82]. For an
interpretation I, we define Tp(I) as follows:

Tp(I)={p: p<— Be€Pand I} B}

All major 2-valued semantics of logic programming, including the supported-
model [Cla78,AvES82] and stable-model semantics [GL88], are defined as classes
of fixpoints of the operator Tp.

Some logic programs do not have any 2-valued supported or stable models. To

handle such programs, researchers introduced 3-valued semantics [Fit85,Kun87,VRS91].
These semantics can be described in terms of fixpoints of the 3-valued imme-

diate consequence operator 7p of P , defined on the poset L¢ of 3-valued
interpretations [Kun87,Fit85]. For an interpretation (I,.J), where I C J, we

set Tp(I,J) = (I',J’), where

I' = {p: for some p«— B € P, vy (B)=t}

and
J' = {p: for some p«— B € P, vy (B)=toru}.
It is evident that I’ C J’, that is, 7p is indeed an operator on L¢. This

definition extends to programs given in the normal form. If () is a normal
form of a program P, then Ty = Tp and 7 = 7Tp.

It follows directly from the definitions that 7p is exact and C,-monotone.

Moreover, for every 2-valued interpretation I, Tp(I,I) = (Tp(I), Tp(I)). Thus,
7Tp is an approximating operator for Tp. Moreover, it turns out that its Kripke-

31

Kleene, supported, well-founded and stable fixpoints determine precisely the
corresponding semantics of the program P [DMT00a].

The operator 7p does not depend on Tp but on P and there is no algebraic
derivation of 7p from Tp. We will now consider the ultimate approximation
to the operator Tp, which can be constructed in a purely algebraic way from
Tp, following the technique we described in Section 5. We will then introduce
the corresponding ultimate semantics and study their properties.

Let P be a logic program. We denote by Up the ultimate approximating
operator for the operator Tp. It is an operator on pairs (I, J) of 2-valued
interpretations such that I C J or equivalently on 3-valued interpretations.
By specializing Theorem 5.6 to the operator Tp we obtain that for every two
interpretations / and J such that I C J,

Up(1,7) = (N Te([1, 7)), UTr(I, J])).

Replacing the ultimate approximating operator Uy in the definitions of ul-
timate Kripke-Kleene, well-founded and stable fixpoints with Up results in
the corresponding notions of ultimate Kripke-Kleene, well-founded and stable
models (semantics) of a program P.

The operator Up is defined algebraically in terms of the Tp operator. It turns
out that this operator and its <,-precise fixpoint were introduced earlier in
[Fit94] in a more standard way using an alternative truth valuation. For any
consistent pair (/,.J), the supervaluation (1.7 18 defined as follows [VFr66]:

t if foreach K € [I,J], K ¢
vil.y(p) = f if for each K € [I,J], K }£ ¢

u otherwise.

Clearly, for every atom a, v(r s (a) = v7 ;(a). Furthermore, since each K €
[I, J], viewed as a 3-valued interpretation, is more precise than (I, J), it follows
from Proposition 6.1 that v) (¢) <, vi(p). Consequently, we obtain the
following result.

Proposition 6.2 For every consistent pair (I, .J) and every formula o, v(; 5)(¢) <,
v7y .
(1,J)<90)

In [Fit94], Fitting used supervaluations to define the following operator ®p:
for every consistent pair (I,.J), ®p(I,J) = (I',J’), where

I'={a: v ;(Bp(a)) =t} and J' = {a: v{ ;(Bp(a)) =t or u}.

32

This operator is the same as the ultimate approximating operator Up. This is
proven in the following proposition.

Proposition 6.3 For every consistent pair (I,J), Up(I,J) = ®p(I,J).

Proof: For every atom a, a € NTp([I,J]) if and only if a € Tp(K), for every
K € [I,J]. This is equivalent to the statement that K |= Bp(a), for every
K € [I, J] which, in turn, is equivalent to v} ; (Bp(a)) = t. Similarly, one can
show that a € UT»([1, J]) if and only if v7 ;(Bp(a)) # f. O

We are now in a position to discuss commonsense reasoning intuitions under-
lying abstract algebraic concepts of ultimate approximation and its fixpoints.
We view consistent pairs (1, .J) of interpretations as approximations of inter-
pretations K such that I C K C J. Let K be an interpretation known to
be approximated by the pair (/,.J). The interpretation I represents a lower
bound and specifies atoms that are definitely true in K, while J represents an
upper bound and specifies the atoms that are possibly true in K. If an atom
p is derived by applying the operator Tp to every interpretation in [I,J], it
can safely be assumed to be true in Tp(K). Consequently, I’ = NTp([I, J])
is a safe lower bound for Tp(K). Similarly, if p can be derived by the oper-
ator Tp from at least one interpretation in [/, J], it might be true in Tp(K).
Thus, the set J' = UTp([, J]), consisting of all such atoms, can be regarded
as a safe upper bound of Tp(K). It follows that (I',J") = Up({,J) is indeed
well-motivated as an approximation of Tp(K).

In the case that interests us most, when K is a fixpoint of Tp, it follows that if
K is approximated by (1, .J), then it is also approximated by Up(I,.J). Good
approximations of K are those consistent pairs (I,J) that are Up-reliable
(that is, satisty (1,J) <, Up(L,J)). On a reliable approximation (I, J), the
ultimate approximation acts as a revision operator which improves the bounds
on fixpoints K € [I,J] by providing a larger conservative estimate U (I, J);
and a smaller liberal estimate U([, J)s. The pair (L, T) is Up-reliable and
certainly approximates all fixpoints of Tp. By iterating Up starting at (L, T),
we obtain the ultimate Kripke-Kleene model of P as the least fixpoint of
Up. This model approximates all fixpoints of Up and, in particular, all exact
fixpoints of Up, that is, fixpoints of Tp (Proposition 3.1). It follows that the
ultimate Kripke-Kleene model of P approximates all supported models of P.

Often, however, the Kripke-Kleene model is too weak because we are not in-
terested in all supported models of P. Let us consider for example the program
Py={p < p, q<« —p}. Itsoperator Tp, coincides with the operator O that
we discussed in Section 3. It is easy to see that supported models of Fy, that
is, the fixpoints of Tp,, are {p} and {¢}. In a supported model, each true atom
is supported, that is, each true atom occurs in the head of a rule with a true
body. We note that both models are minimal models. In the model {p}, p

33

is self-supported in the sense that there is no constructive argument for the
truth of atom p: p is derived using the rule p «— p. On the other hand, in the
model {q}, p is false by absence of support and ¢ is true because p is false.
The goal underlying the well-founded and stable semantics is to accept as true
only those atoms which have such a constructive argument.

The key concept in approximation theory that we use to formalize this intu-
ition is the stable revision operator of Up. The stable revision operator revises
every Up-reliable approximation (I, J) by (JYPL IUPT). First, we will explain
that, under the assumption that J is an upper bound, that is, all atoms false
in J are definitely false, all atoms true in JYP! have a constructive argument
and, so, are definitely true. Second, we will explain why, under the assumption
that I is a lower bound and all atoms in [are definitely true, atoms that are
false in 7Y?T can have no constructive argument and hence, must be false.

Let (I,J) be a Up-reliable pair. We use J to construct a new lower bound
consisting of atoms that have a constructive argument. Our only basic as-
sumption is that .J is an upper bound and atoms false in .J are definitely false.
In other words, J specifies atoms that are possibly true. So, initially we do not
preclude any interpretation contained in J. If some atom p can be derived by
applying the operator Tp to every element of [L, J] then, arguably, p should be
accepted as definitely true. The set of all these atoms is exactly NTp([L, J]).
So, this set can be taken as a safe new lower bound, giving a smaller interval
[I1, J] of possible interpretations. We now repeat the same process and obtain
a new lower bound, say I, consisting of those atoms that can be derived from
every interpretation in [[,J]. It is given by Iy = NTp([/1,J]). Clearly, I
improves on I;. We iterate this process until a fixpoint JY7! is reached. This
fixpoint consists of all these atoms for which we have a constructive argument
that they are true, given that all atoms not in J are false. Thus, under this
assumption, JY?! provides a safe lower bound for the set of atoms the program
should specify as true.

We recall from Proposition 3.4 that each fixpoint K C J of Tp is larger than
JUrL. Let us note that one cannot guarantee that JYP! improves the lower
bound I. However, if (I,.J) is prudent, then we know that I C JYPl. In the
context of the example program Py, one can verify easily that {p}' = L (that
is, (p,p) is not Up-prudent). This shows that if we only assume that ¢ is false,
there is no constructive argument for the truth of p. On the other hand, we
have {¢}' = {q} (that is, (¢, q) is Up-prudent), so assuming that p is false, we
find a constructive argument that ¢ is true.

The reasoning for revising the upper bound is different. The goal now is to
discover all the atoms that, assuming that all the atoms in I are true, cannot
possess a constructive argument. The idea is to identify atoms that can be
reached from [in the derivation process. Any atom that cannot be reached

34

must be false. Certainly, we have that all atoms in I are possibly true (in fact,
they are just true) and since all atoms in Tp(I) can be derived from I, they
are possibly true as well. We define J; = Tp(I) = Up(I,I)s. Since (I,J) is
Up-reliable, it follows that I C J;. To find more possibly true atoms, we apply
Tp on all interpretations in [/, .J;]. Each atom p that can be derived from at
least one interpretation J € [I,J;] could be possibly true. The set Jy of all
atoms that can be computed this way is exactly Up (I, J;)2 and we have that
Ji C Jo. We can now iterate this process until the fixpoint IV7" is reached.
Since we have exhausted all possible ways of deriving atoms (starting from
I), each atom false in IUPT cannot have a constructive argument and hence
is definitely false. Thus, IV?T yields a safe upper bound. By an argument in
Proposition 3.7, the new upper bound can be guaranteed to be included in J.

Let us apply this method in the example F,. We start without assuming any
atoms to be true, that is, we start from L = (). Applying T, on 0 yields
J1 = {q}. Next we apply Tp, on [L,{q}] and take the union; this yields
Jo = {q}. So we reached a fixpoint already and discovered that p cannot be
reached from | and hence is definitely false.

What do these intuitions imply for the different types of fixpoints of the stable
revision operator? The ultimate well-founded model is computed starting from
(L, T), without making any assumptions about what atoms are definitely true
or definitely false. All atoms true in that model have a constructive argument.
All atoms false in it have no constructive argument and may be taken as false.
The arguments behind the truth and falsity of atoms in partial and exact
stable models are weaker as they are based on additional assumptions. In a
partial stable model (/,.J), atoms in I have a constructive argument, under
the assumption that the atoms in J are the only possible atoms, and atoms
not in J cannot possibly have a constructive argument, given that atoms in
I are true. An ultimate stable model I has the property that it is precisely
the set of atoms with a constructive argument, under the assumption that all
its false atoms are definitely false. This discussion demonstrates that abstract
algebraic concepts of ultimate approximations can be given a sound intuitive
account.

The Tp operator is a lattice operator and determines the family of its approx-
imating operators. One of these operators, the operator 7p, underlies much
of the standard theory of normal logic programs. The operator 7p is not the
most precise approximation of Tp. In other words, in general it is different
than the ultimate approximation of Tp, the operator Up. The operator Up
generates the most precise notions of Kripke-Kleene, well-founded and stable
models of P. Exploiting the theory of fixpoints of approximating operators
presented above, we will now study properties of the ultimate semantics (that
is, those determined by Up) and their relationship to the standard ones (that
is, those determined by 7p).

35

Theorem 6.4 Let P, P’ be two programs such that Tp = Tp:. Then, the
ultimate well-founded models and ultimate stable models of P and P coincide.

Proof: Theorem 5.6 implies that Up = Up/. But then all fixpoints of Up and
Up: coincide. Thus, the result follows. O

This assertion does not hold for the (standard) well-founded and stable models.
For instance, let P, = {p < p, p < —p} and P, = {p < }. Clearly, Tp, =
Tp,. However, P, has a stable model, {p}, while P; has no stable models.
Furthermore, p is true in the well-founded model of P, and unknown in the
well-founded model of P;.

As a consequence to Theorem 6.4 we obtain the following corollary. It asserts
that applying equivalence preserving transformations to the bodies of rules
preserves all the ultimate versions of the semantics.

Corollary 6.5 Let P, P’ be two programs. If for every atom p, the formula
Bp(p) < Bp/(p) is a tautology of propositional logic, then the ultimate Kripke-
Kleene and well-founded models and the ultimate stable models of P and P’
coincide.

This property is not satisfied by the standard versions of the semantics. Let
us consider programs P, and P, that we discussed above and observe that
Bp,(p) <> Bp,(p) is a tautology. At the same time, as we observed earlier, p
is unknown in the well-founded model of P, and is true in the well-founded
model of P.

The behavior displayed by P; and P is a special case of a more general
pattern. Let r = p «— B be a logic program rule. The complement splitting of
r with respect to an atom ¢ is the set of two rules: p «— B,q and p «+— B, —q.
The complement splitting of programs is an operation consisting of a sequence
of complement splittings of rules. If P’ is the result of complement splitting
applied to a program P then for every atom p, Bp(p) is logically equivalent
to Bp:(p).

One can show that if P’ can be obtained from P by complement splitting, then
Tp: is equal to or less precise than 7p. This implies that P’ has the same or
weaker Kripke-Kleene and well-founded models as P, and every stable model of
P’ is a stable model of P. Hence, complement splitting yields programs that
are “weaker” than the original ones (under the semantics induced by 7p).
Coming back to our example, one can see that P; is the result of applying
complement splitting to P.

Although standard and ultimate semantics differ, they are always consistent
with each other. The following corollary follows directly from Theorem 5.2.

36

Corollary 6.6 Let P be a logic program.

(1) The Kripke-Kleene model of P is the same as or less precise than the
ultimate Kripke-Kleene model of P

(2) The well-founded model of P is the same as or less precise than the ulti-
mate well-founded model of P

(3) Every stable model of P is an ultimate stable model of P.

While in general the standard and ultimate semantics differ, in many cases
they coincide. One consequence of Corollary 5.11 is that if the well-founded
model of a program is two-valued, then it coincides with the ultimate well-
founded model. Thus, we have the following result on the classes of Horn and
weakly stratified programs (the class of programs introduced and studied in

[Prz90]):

Corollary 6.7 If a logic program P is a Horn program or a (weakly) stratified
program, then its ultimate well-founded semantics coincides with the standard
well-founded semantics.

Another condition implying equality of the standard and ultimate semantics
is the monotonicity of the Tp operator. The following result is a consequence
of Proposition 5.10.

Corollary 6.8 Let P be a program such that Tp 1s a monotone operator. The
least Herbrand model of P is the ultimate well-founded model and the unique
ultimate stable model of P.

Again this property is not satisfied by the standard well-founded semantics,
as witnessed by the program Py = {p < p, p < —p}. The atom p is unknown
in the standard well-founded semantics of P, but true in the least Herbrand
model of this program (which exists since Tp, is monotone).

We will now study computational aspects of ultimate semantics for logic pro-
grams. First, we recall that ultimate supported models of a program P are
precisely complete supported models of P (Proposition 3.1). Consequently,
problems concerning the existence of ultimate supported models have the
same complexity as their counterparts concerning complete supported models.
In particular, it follows from the results of [MT91] that the problem of the
existence of an ultimate supported model of a finite propositional program is
NP-complete.

The situation is different for other semantics. We will show that basic compu-
tational problems associated with the exact ultimate stable models, and the
ultimate Kripke-Kleene and well-founded models are more complex. Thus, in
general, attractive properties of ultimate semantics come at a price.

37

We start the discussion of complexity results with several simple observations
and lemmas. In the remainder of this section, without loss of generality we
assume that programs are given in their normal form.

Let I and J be two interpretations such that I C J and let ¢ be a DNF
formula. By [¢];; we denote the formula obtained from ¢ by substituting
every atom z such that x ¢ J by f, and every atom x such that = € I by t.

Let P be a logic program in the normal form. We define the reduct of P with
respect to interpretations I and J such that I C J, denoted P; ;, as follows:

Pry={p < [Bp(p)lrs: p € At(P)}.

We note that all atoms appearing in formulas [Bp(p)];.s are elements of J \ I
(if I = J, the only symbols appearing in [Bp(p)];,s are £ and t). We have the
following lemma.

Lemma 6.9 Let P be a logic program in the normal form and let I, J be two
interpretations such that I C J.

(1) An atom p of P belongs to Up(I,J)1 if and only if the formula [Bp(p)|r.s
s a tautology.

(2) An atom p of P belongs to Up(I,J)s if and only if the formula [Bp(p)|r.s
18 satisfiable.

Proof: We recall that

Up(I,J)y=(Tp(II,J]) = () Te(K).

ICKCJ

Thus, an atom p belongs to Up(1,J); if and only if for every interpretation
M € [0,J\ I] (according to our notation, [(),.J \ I] is the collection of all
subsets of J \ I), the formula [Bp(p)|;.s is true in M or, equivalently, if and
only if the formula [Bp(p)];.s is a tautology. We also have that

Up(L.D)s=UTe(L]) = U To(K).

ICKCJ

It follows that an atom p belongs to Up(1, J), if and only if for some interpre-
tation M € [0, J \ I], the formula [Bp(p)]; s is true in M or, equivalently, if
and only if the formula [Bp(p)|; s is satisfiable. Thus, the assertion follows. O

Lemma 6.9 implies that the complexity of algorithms to compute Up (I, J)
depends on the complexity of the problems to decide whether a DNF formula
is a tautology and whether it is satisfiable. The first of these problems is
co-NP-complete. The second one is in P. Thus, we get the following corollary.

Corollary 6.10 Let P be a finite propositional logic program and let I, J be

38

two interpretations such that I C J. Then, computing Up(I,J); can be accom-
plished by means of polynomial number of calls to an NP-oracle, with all other
tasks taking polynomial time, and computing Up(I, J)s can be accomplished in
polynomial time.

From Lemma 6.9, we also obtain the following lower bound on the complex-
ity of the problem to determine the truth value of an atom in the ultimate
Kripke-Kleene and well-founded semantics, denoted by kY (P) and wY(P),

respectively.

Corollary 6.11 The problems: given a logic program P and an atom q, de-
termine whether q¢ € kY(P), and, similarly, determine whether ¢ € wY(P);,
are co-NP-hard.

Proof: Let ¢ be a theory in the conjunctive normal form. Let ¢) be the formula
obtained from —¢ by applying the de Morgan Laws. Clearly, ¢ is a DNF
formula. We define a program P as follows. First, we include in P the rule

q—

where ¢ is a new propositional variable that does not appear in . Since v is in
the disjunctive normal form, the expression ¢ «— 1 is indeed a program clause.
Next, for every propositional variable p in ¢ we introduce a new propositional
variable p’ and include in P the pair of rules of the form

p—
Pl =

By Lemma 6.9, it is easy to see that ¢ € k(P); (and to w(P),) if and only if
1 is a tautology or, equivalently, if and only if ¢ is not satisfiable. Thus, the
assertion follows. a

We will now prove our first complexity result concerning the problem of the
existence of exact ultimate stable models.

Theorem 6.12 The problem “given a finite propositional logic program P,
decide whether P has an exact ultimate stable model” is XL -complete.

Proof: By Corollary 5.8, an interpretation J is an ultimate stable model of a
program P if and only if J = Ifp(Up(+, J)1). One can compute ifp(Up(-, J)1)
by iterating the operator Up(-,J); starting with the empty set. At most n
iterations, where n is the number of atoms in P, are needed. Since the prob-
lem of computing Up (I, J); can be accomplished in polynomial time using
polynomially many references to an NP-oracle (Corollary 6.10), it follows that
the problem to decide whether P has an exact ultimate stable model is in the
class X1

39

To prove the “hardness” part, we proceed as follows. We start by recalling that
the following problem, denoted QBF5, is XI'-complete: given a DNF formula
¢ with m 4+ n variables z1, ..., 2, y1,. .., Ys, decide whether there is a truth
assignment I C {z,...,2,,} such that ¢; is a tautology, where ¢ is the
formula obtained by replacing in ¢ all occurrences of atoms from I with t,
and by replacing all occurrences of atoms from {zi,...,z,} \ I with f. In
particular, o; is a formula containing variables from the set {y1,...,y,} only.

We will reduce the problem QBF5 to our problem. For each x;, i =1,...,m,
in ¢, we introduce a new propositional variable x}. We also introduce two new
atoms p and ¢. By ¢’ we denote the formula obtained from ¢ by replacing
literals —z; in the disjuncts of ¢ with new atoms z;. We define a program P
to consist of the following clauses:

(1) x; < —af and z} «— —x;, for every i =1,...,m
(2) y; — ¢, forevery i =1,...,n

B) p—¢

(4) ¢ ——p,~q

We will show that there is an interpretation I C {z1, ...,z } such that ¢; is
a tautology if and only if P has an ultimate exact stable model.

For a subset I C {xy,..., 2y}, let us define I' = T U {«} : x; ¢ I}. Let us also
define M; = I"U{p, v, ..., yn}. Clearly, I C M; and the formula [¢']; p, (we
introduced this notation just before Lemma 6.9) is well defined. We observe
that
Y1 = [@l]f’,MI'

By Lemma 6.9, and since Bp(p) = ', the formula [¢'] p, (or ¢r) is a tau-
tology if and only if p € Up(I’, M;);. Therefore, to complete the proof, we
need to show that there is an interpretation I C {zi,...,z,} such that
p € Up(I', My); if and only if P has an ultimate exact stable model.

It is easy to verify that for every I C {zi,...,z,} and for every J C My,
Up(J, M), satisfies the following properties:

(1) UP(J, M[)l N {ZL‘l,. .. ,C(Zn,l’ll, SN 7ZL',/n} =TI
(2) UP(‘]’ Ml)l N {y17 <oy Yny D,y q} is either @ or {yla s 7yn7p}‘

The property (2) follows from the fact that the bodies of rules of yy,...,y,,p
are identical.

Consequently, Up(J, M), is either I' or Mj. It follows that the monotone
operator Up(+, M;); is an operator in [(), M;] and hence has a least fixpoint,
which is either I’ or Mj.

Let us assume that there is an interpretation I C {z,...,z,,} such that p €

40

Up(I', My);. This means that I’ is not a fixpoint of the operator Up(-, M;);,
hence M is the least fixpoint. Since Up approximates Tp, M; is then also a

fixpoint of T». By Proposition 3.13, M; is an ultimate exact stable model of
P.

Conversely, let us assume that M is an ultimate exact stable model of P. Then
M is a fixpoint of the operator Tp and we have the following four properties.

(1) q is false in M (if ¢ is true in M, Tp does not derive q)

(2) pis true in M (otherwise Tp derives q)

(3) y1,...,yn are true in M (since the rules defining them have the same
bodies as p)

(4) for each x;, either z; or x} is true in M.

It follows from these properties that there is I C {zy,...,x,,} such that
M = Mj. This last identity and our assumption that M is an ultimate exact
stable model of P imply that M is the least fixpoint of Up(-, M;);. By the
properties of the operator Up(-, My); that we stated above, p € Up(I', M),
(if p ¢ Up(I', My)y, then Up(I', M;); = I’, a contradiction). O

Next, we establish the complexity of computing ultimate Kripke-Kleene and
well-founded models.

Theorem 6.13 Given a finite propositional logic program, one can compute
the ultimate well-founded fizpoint of P as well as the ultimate Kripke-Kleene
fixpoint of P using polynomially many calls to an NP-oracle with all other
tasks taking polynomial time. In other words, the associated decision problems
are in the class AL

Proof: If P is a finite propositional program, then it follows directly from the
definition of the ultimate Kripke-Kleene fixpoint of T (that is, the ultimate
Kripke-Kleene model of P) that it can be computed by means of polynomially
many (in the size of P) evaluations of the value Up(I,J), where I C J are
interpretations, with all other computational tasks taking only polynomial
amount of time. Thus, the result follows from Corollary 6.10.

To compute the well-founded model we need a polynomial number of iterations
of the stable operator for Up. Fach such computation requires a polynomial
number of computations of the form Up(/,.J), where I C J. It follows that
to compute the well-founded semantics, the polynomial number of calls to a
procedure computing values of Up suffices. O

These results show that appealing semantic properties of the ultimate versions
of semantics of logic programs come at a price. In practice, this price is often
low. For wide classes of programs the complexity of computing well-founded
or stable semantics does not grow at all. For instance, it is so for any class

41

of programs for which the (standard) well-founded model is 2-valued, stan-
dard and ultimate versions of the stable and well-founded semantics coincide.
Consequently, the complexity of computing ultimate semantics is the same
as computing the standard semantics. As mentioned above, this holds for the
classes of Horn programs and weakly stratified programs.

Likewise, for any class of programs for which the ultimate approximation Up
and the standard operator 7p are identical, all standard and ultimate versions
of programs coincide. Below, we will describe one such a class.

We will also present a broad class of programs where ultimate well-founded and
exact ultimate stable models do not necessarily coincide with their standard
counterparts; yet, the complexity of computation of ultimate well-founded and
exact ultimate stable models does not increase.

The next proposition identifies a class of programs for which the standard and
ultimate approximations are identical.

Proposition 6.14 Let P be a program such that for every pair of atoms p
and q, either each occurrence of q in Bp(p) is positive or each occurrence of q
in Bp(p) is negative. Then Up and Tp are identical.

Proof: For each atom p, the formula Bp(p) is a DNF formula satisfying the
property that no atom ¢ occurs both positively and negatively in it. By Propo-
sition 6.3, to prove the assertion it is enough to show that for each DNF formula

¢ satisfying this property, v(r.s)(¢) = v(7 5 ().

By Proposition 6.2, v(1.5)(¢) < v{7 5)(0). Thus, all we need to show is that if
v(r,)(p) = u then v} ;) (¢) = u or equivalently, that there exist K, K’ € [I, J]
such that K = ¢ and K’ [~ ¢.

We define K = I U {r :r € J and r occurs positively in ¢} and K/ =T U {r:
r € J and r occurs negatively in ¢}. Clearly, both K and K’ belong to [I, J].

If v(r 5y (p) = u then there is a disjunct B of ¢ such that v »(B) = u. Let us
assume that B = a;A. . .Aay, A=biA. . .A=by,. Since vy 5 (B) = u,allay, ..., ap
are in J. Moreover, since all aq,...,a,, occur in B positively, aq,...,a,, are
all in K. Hence, K = a;, for every i, 1 <4 < m. Since, v(; 5)(B) = u, for every
i, 1 <i<mn,b ¢ I. Moreover, by,...,b, occur in B negatively. Thus, none
of their occurrences in ¢ is positive and, so, by,...,b, are not in K. Hence,
K | —b;, for every i, 1 < i < n. It follows that K = B and, consequently,

K E .
We will now consider the interpretation K’. Since v 5 (p) = u, for every

disjunct B of ¢, v(;5)(B) = f or u. Let us observe that (I,J) C, (K', K').
If v (B) = £, then by Proposition 6.1, vxs k) (B) = f and, consequently,

42

K' = —B. Let us, therefore, assume that v(;) (B) = u. As before let us
assume that B =a; A...Aa, A—by A...A\—b,. There are two possible cases.
The first case is that for some ¢, 1 < i < m, a; ¢ I. Since v(1,)(B) = u,
v, (a;) = u. Thus, a; € J. But a; occurs in B positively and, consequently,
has no negative occurrences in ¢. Therefore, by the definition of K’, a; ¢ K.
It follows that K’ |= = B. The other case is that for every i, 1 <i < m, a; € I.
Since v(7,)(B) = u, there is j, 1 < j < n, such that v s)(—=b;) = u. Thus,
b; € J\ I. Moreover, b; occurs in B negatively. By the definition, b; € K'.
Hence K’ = b; and, so, K’ = —B.

Thus, for every disjunct B of ¢, K’ | —B. It follows that K’ = —¢. Since we
already proved that K = ¢, we obtain that v7 ;(¢) = u. O

We will now present a broad class of programs for which the complexity bounds
of Theorems 6.12 and 6.13 can be improved. Let k£ be a fixed integer. We
define the class & to consist of all logic programs P such that for every atom
p € At(P) at least one of the following conditions holds:

(1) P contains at most k clauses with p as the head,;

(2) the body of each clause with the head p consists of at most two elements;

(3) the body of each clause with the head p contains at most one positive
literal;

(4) the body of each clause with the head p contains at most one negative
literal.

The program P; belongs to & and is an example of a program where standard
well-founded and stable semantics do not coincide with ultimate versions of
these semantics.

Let us recall that the decision whether an atom p € At(P) belongs to Up (I, J);
reduces to the decision whether the formula Bp, ,(p) is a tautology. If P is
in the class &, this question can be resolved in polynomial time. Indeed each
formula Bp(p) is a disjunction of a fixed and pre-specified number (k, if P €
&r) of conjunctions of literals, a 2-DNF theory, the negation of a Horn theory,
or the negation of a dual Horn theory? . It is well-known that testing whether
a formula in any of the three latter forms is a tautology can be accomplished in
polynomial time. To see that the same holds for formulas that are disjunctions
of k conjunctions of literals (where k is fixed), it is enough to observe that
such a formula can be rewritten into an equivalent CNF formula in time n*
(where n is the number of atoms in P). Since testing whether a CNF formula
is tautology is a polynomial task, our claim follows.

Theorem 6.15 The problem “given a finite propositional logic program from
class &, decide whether P has an exact ultimate stable model” is NP-complete.

> A dual Horn theory is a set of clauses with at most one negative literal per clause.

43

Proof: Since for every program P € &, and for every interpretations I and
J such that I C J, Up(I,J) can be computed in polynomial time, it takes
polynomial time to verify whether J = Ifp(Up(+,J)1). Thus, the problem in
question is in the class NP. To prove completeness, we observe that the ul-
timate stable and the standard stable operator of purely negative programs
coincide. Consequently,

(1) there is no difference between exact stable models and exact ultimate
stable models

(2) purely negative programs are in &

(3) the problem of existence of exact stable models for purely negative pro-
grams is NP-complete [MT91].

Thus, the assertion follows. O

Theorem 6.16 The problem “given a finite propositional logic program P
from class &, compute the ultimate well-founded fizpoint of P” is in P.

Proof: For every program P € &, and for every interpretations / and J such
that I C J, Up(I,J) can be computed in polynomial time. Thus, the assertion
follows by Lemma 6.9. O

7 Conclusions and discussion

In this paper, we extended our algebraic framework [DMT00a,DMTO00b| for
studying semantics of nonmonotonic reasoning systems. We started by de-
veloping a theory of consistent approximating operators that are defined on
the set of consistent elements of the product bilattice. The advantage of the
present approach is that it refers exclusively to objects that are well motivated
by commonsense intuitions underlying the concepts of approximation, preci-
sion of an approximation and revision of an approximation. In the same time,
this new approach turns out to be essentially as powerful as the earlier one.

The main contribution of this paper is the notion of an ultimate approxima-
tion. In earlier approaches, to study fixpoints of an operator O one had to
select an appropriate approximating operator. There has been, however, no
principled algebraic way to do so. In the present paper, we found a distin-
guished element in the space of all consistent approximations and showed that
this particular approximation, the ultimate approximation, is an effective tool
in studying fixpoints of O. In fact, we argued that the Kripke-Kleene, well-
founded and stable fixpoints of the ultimate approximation of an operator O
can be regarded as the Kripke-Kleene, well-founded and stable fixpoints of the
operator O itself.

44

Our framework can be applied to any formalism whose semantics are defined
as fixpoints of some lattice operator O. In this paper, we applied our approach
to logic programming and obtained a family of new semantics generated by
the immediate consequence operator: the ultimate Kripke-Kleene, the ulti-
mate well-founded and the ultimate stable-model semantics. These semantics
are well motivated and have attractive properties. First, they are preserved
when we modify the program, as long as the 2-valued immediate consequence
operator stays the same (a property that does not hold in general for standard
semantics). Second, the ultimate Kripke-Kleene and the ultimate well-founded
semantics are stronger, in general, than their standard counterparts, yet ap-
proximate the collection of all fixpoints of O and the collection of all stable
fixpoints of O, respectively. The disadvantage is that the complexity of ul-
timate semantics is, in general, higher. Fortunately, as we demonstrated in
Section 6, for large classes of programs that are likely to arise in practical ap-
plications, the complexity of computing ultimate semantics remains the same
as that of their standard counterparts.

The approach developed in this paper can be applied in other settings as well.
In [DPBn01], it was used to define well-founded and stable semantics for an ex-
tension of logic programs with aggregates. An aggregate in this language is an
arbitrary second order relation taking set expressions and lambda expressions
as arguments. The framework can also be applied to default and autoepistemic
logics where it results in new (ultimate) semantics with appealing semantic
features.

We end this discussion with a comment on the broader role played by ap-
proximation theory. Tarski’s fixpoint theory can be considered as a general
method for modeling monotone constructions and positive inductive defini-
tions. We contend that approximation theory provides a generalized algebraic
account, of non-monotone constructions and non-monotone forms of induction
in mathematics such as iterated induction and induction in well-ordered sets.
Some arguments in support of our claim can be found in [Den98 DBMO1].
Those papers present comparative studies of different forms of non-monotone
induction and argue that logic programming with (some form of) the well-
founded semantics formalizes this broad class of constructive techniques to
specify (define) concepts.

Acknowledgments

This paper is based upon work supported by the National Science Foundation
under Grants No. 9874764, 0097278 and 0325063. Any opinions, findings, and
conclusions or recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the National Science Foun-
dation. The authors gratefully acknowledge helpful comments by anonymous

45

referees and by Nikolai Pelov.

References

[Acz77] Aczel, P. An Introduction to Inductive Definitions. In J. Barwise,
editor, Handbook of Mathematical Logic, pages 739-782, North-Holland
Publishing Company, 1977.

[AvE82] K.R. Apt and M.H. van Emden. Contributions to the theory of logic
programming. Journal of the ACM, 29(3):841-862, 1982.

[BS91] C. Baral and V.S. Subrahmanian. Dualities between alternative
semantics for logic programming and nonmonotonic reasoning In
A. Nerode, W. Marek, and V.S. Subrahmanian, editors, Logic
programming and non-monotonic reasoning, pages 69-86, MIT Press
1991.

[Cla78] K.L. Clark. Negation as failure. In H. Gallaire and J. Minker, editors,
Logic and data bases, pages 293-322. Plenum Press, 1978.

[Den98] M. Denecker. The well-founded semantics is the principle of inductive
definition. In J. Dix, L. Farinas del Cerro, and U. Furbach, editors, Logics
in Artificial Intelligence, Lecture Notes in Computer Science, volume
1489, pages 1-16, Springer-Verlag, 1998.

[DMT99] M. Denecker, V. Marek, and M. Truszczynski. Fixpoint 3-valued
semantics for autoepistemic logic. In H.J. Levesque, F. Pirri editors,
Logical Foundations for Cognitive Agents: Contributions in Honor of Ray
Reiter, pages 113 — 136, Springer-Verlag, 1999.

[DMTO00a] M. Denecker, V. Marek, and M. Truszczynski. Approximations, stable
operators, well-founded fixpoints and applications in nonmonotonic
reasoning. In J. Minker, editor, Logic-Based Artificial Intelligence, pages
127-144. Kluwer Academic Publishers, 2000.

[DMT00b] M. Denecker, V. Marek, and M. Truszczynski.
Unified semantic treatment of default and autoepistemic logics. In
A.G. Cohn, F. Giunchiglia, B. Selman, editors, Principles of Knowledge
Representation and Reasoning, Proceedings of the Seventh International
Conference (KR2000), pages 74-84. Morgan Kaufmann Publishers, 2000.

[DBMO01] M. Denecker, M. Bruynooghe, and V. Marek. Logic programming
revisited: logic programs as inductive definitions. ACM Transactions
on Computational Logic, 2(4):623-654, 2001.

[DMTO02] M. Denecker, V. Marek, and M. Truszczyriski. Ultimate approximations
in nonmonotonic knowledge representation systems. In D. Fensel,
F. Giunchiglia, D. McGuiness, M-A. Williams, editors, In Principles
of Knowledge Representation and Reasoning, Proceedings of the FEighth

46

[DMTO03]

[DPBn01]

[Fit85)]

[Fit91]

[Fit94]

[Fit02]

[Ging8)

[GLSS]

[Kongs]

[Kun8?7]

[Lif90]

[Mar76]

[Moo84]

[MT91]

[Prz90]

International Conference (KR2002), pages 177-188. Morgan Kaufmann
Publishers, 2002.

M. Denecker, V. Marek, and M. Truszczynski. Uniform semantic
treatment of default and autoepistemic logics. Artificial Intelligence
Journal, 143:79-122, 2003.

M. Denecker, N. Pelov, and M. Bruynooghe. Well-founded and stable
semantics for logic programs with aggregates. In Ph. Codognet, editor,
Logic programming, Proceedings of the 2001 International Conference on
Logic Programming, Lecture Notes in Computer Science volume 2237,
pages 212-226, Springer-Verlag, 2001.

M. C. Fitting. A Kripke-Kleene semantics for logic programs. Journal
of Logic Programming, 2(4):295-312, 1985.

M. C. Fitting. Bilattices and the semantics of logic programming. Journal
of Logic Programming , 11:91-116, 1991.

M. C. Fitting. Tableaux for logic programming. Journal of Automated
Reasoning, 13:175-188, 1994.

M. C. Fitting. Fixpoint semantics for logic programming — a survey.
Theoretical Computer Science, 278:25-51, 2002.

M.L. Ginsberg. Multivalued logics: a uniform approach to reasoning in
artificial intelligence. Computational Intelligence, 4:265-316, 1988.

M. Gelfond and V. Lifschitz. The stable semantics for logic programs. In
R. Kowalski and K. Bowen, editors, Proceedings of the 5th International
Conference on Logic Programming, pages 1070-1080. MIT Press, 1988.

K. Konolige. On the relation between default and autoepistemic logic.
Artificial Intelligence Journal, 35(3):343-382, 1988.

K. Kunen. Negation in logic programming. Journal of Logic
Programming, 4(4):289-308, 1987.

V. Lifschitz. On open defaults. In J. Lloyd, editor, Proceedings of the
Symposium on Computational Logic, pages 80-95. Springer-Verlag, 1990.

G. Markowsky. Chain-complete posets and directed sets with
applications. Algebra Universalis, 6(1):53-68, 1976.

R.C. Moore. Possible-world semantics for autoepistemic logic. In
Proceedings of the Workshop on Non-Monotonic Reasoning, pages 344—
354, 1984. Reprinted in: M. Ginsberg, editor, Readings on Nonmonotonic
Reasoning, pages 137-142, Morgan Kaufmann Publishers, 1990.

W. Marek and M. Truszczynski. Autoepistemic logic. Journal of the
ACM, 38(3):588-619, 1991.

T.C. Przymusinski. The well-founded semantics coincides with the three-
valued stable semantics. Fundamenta Informaticae, 13(4):445-464, 1990.

47

[Rei80]

[Tar55]

[Van93|

[VEKT6]

[VFr66]

[VRS91]

R. Reiter. A logic for default reasoning. Artificial Intelligence Journal,
13(1-2):81-132, 1980.

A. Tarski. Lattice-theoretic fixpoint theorem and its applications. Pacific
Journal of Mathematics, 5:285-309, 1955.

A. Van Gelder. The alternating fixpoint of logic programs with negation.
Journal of Computer and System Sciences, 47(1):185-221, 1993.

M.H. van Emden and R.A. Kowalski. The semantics of predicate logic
as a programming language. Journal of the ACM, 23(4):733-742, 1976.

B. van Fraassen. Singular terms, truth-value gaps, and free logic. The
Journal of Philosophy, 63(17):481-495, 1966.

A. Van Gelder, K.A. Ross, and J.S. Schlipf. The well-founded semantics
for general logic programs. Journal of the ACM, 38(3):620-650, 1991.

48

