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Abstract. The goal of this note is to provide a background and references for
the invited lecture presented at Computer Science Logic 2006. We briefly discuss
motivations that led to the emergence of nonmonotonic logics and introducetwo
major nonmonotonic formalisms, default and autoepistemic logics. We thenpoint
out to algebraic principles behind the two logics and present an abstract algebraic
theory that unifies them and provides an effective framework to study properties
of nonmonotonic reasoning. We conclude with comments on other major research
directions in nonmonotonic logics.

1 Why nonmonotonic logics

In the late 1970s, research on languages for knowledge representation, and considera-
tions of basic patterns of commonsense reasoning brought attention to rules of inference
that admitexceptionsand are used only under the assumption of normality of the world
in which one functions or to put it differently, when things are as expected.

For instance, a knowledge base concerning a university should support an inference
that, given no information that might indicate otherwise, if Dr. Jones is a professor at
that university, then Dr. Jones teaches. Such conclusion might be sanctioned by an infer-
ence rule stating thatnormallyuniversity professors teach. In commonsense reasoning
rules with exceptions are ubiquitous. Planning our day and knowing we are to have
lunch with a friend, we might use the following rule:normally, lunches end by 1:00pm.
If nothing we know indicates that the situation we are in is not normal, we use this rule
and conclude that our lunch will be over by 1:00pm.

The problem with such rules is that they do not lend themselves in any direct way
to formalizations in terms of first-order logic, unlessall exceptions are known and ex-
plicitly represented — an unrealistic expectation in practice. The reason is that standard
logical inference ismonotone: whenever a sentenceα is a consequence of a setT of
sentences thenα is also a consequence of any set of sentencesT ′ such thatT ⊆ T ′. On
the other hand, it is clear that reasoning with normality rules when complete informa-
tion is unavailable, is not monotone. In our lunch scenario,we may conclude that the
lunch will be over by 1:00pm. However, if we learn that our friend will be delayed, the
normality assumption is no longer valid our earlier inference is unsupported; we have
to withdraw it.

Such reasoning, where additional information may invalidate conclusions, is called
nonmonotonic. As we briefly noted above, it is common. It has been a focus of extensive



studies by the knowledge representation community since the early eighties of the last
century. This research developed along two major directions.

The first direction is concerned with the design of nonmonotonic logics — for-
malisms with direct ways to model rules with exceptions and with ways to use them.
Arguably, two most studied nonmonotonic formalisms are default logic [1] and au-
toepistemic logic [2,3]. These two logics are the focus of this note. Our main goal in
this paper is to introduce default and autoepistemic logics, identify algebraic principles
that underlie them, and show that both logics can be viewed through a single abstract
unifying framework of operators on complete lattices.

The second direction focused on studies of nonmonotone inference relations either
in terms of classes of models or abstract postulates, the twoperspectives being quite
closely intertwined. Circumscription [4] and, more generally, preference logics [5] fall
in this general research direction, as do studies of abstract properties of nonmonotonic
inference relations [6,7,8,9]. Although outside our focus, for the sake of completeness,
we will provide a few comments on preference logics and nonmonotonic inference
relations in the last section of the paper.

2 Default Logic — an introduction

In his ground-breaking paper [1] Ray Reiter wrote:Imagine a first order formaliza-
tion of what we know about any reasonably complex world. Since we cannot know
everything [...] — there will be gaps in our knowledge — this first order theory will be
incomplete. [...] The role of a default is to help fill in some of the gaps in the knowledge
base [...]. Defaults therefore function somewhat like meta-rules: they are instructions
about how to create anextensionof this incomplete theory. Those formulas sanctioned
by the defaults and which extend the theory can be viewed as beliefs about the world.
Now in general there are many different ways of extending an incomplete theory, which
suggests that the default rules may be nondeterministic. Different applications of the
defaults yield different extensions and hence different sets of beliefs about the world.

According to Reiter defaults are meta-rules of the form “in the absence of any infor-
mation to the contrary, assume ...” (hence, they admit exceptions), and default reasoning
consists of applying them. Reiter’s far-reaching contribution is that he provided a formal
method to do so.

We will now present basic notions of default logic. We consider the languageL(At)
(or simply,L) of propositional logic determined by a setAt of propositional variables.
A defaultis an expression

d =
α : β1, . . . , βk

γ
, (1)

whereα, βi, 1 ≤ i ≤ k, andγ are formulas fromL. We say thatα is theprerequisite, βi,
1 ≤ i ≤ k, arejustifications, andγ is theconsequentof defaultd. If α is a tautology,
we omit it from the notation. For a defaultd, we write p(d), c(d) and j(d) for its
prerequisite, consequent, and the set of justifications, respectively.

An informal reading of a default (1) is:concludeγ if α holds and if all justifications
βi are possible. In other words, to apply a default and assert its consequent, we must
derive the prerequisite and establish that all justifications are possible. We will soon



formalize this intuition. For now, we note that we can encodethe rule arising in the
university example by the following default:

profJ : teachesJ

teachesJ

saying that ifprofJ holds and it is possible thatteachesJ holds (no information con-
tradictsteachesJ ), thenteachesJ does hold.

A default theoryis a pair(D,W ), whereD is a set of defaults andW is a theory
in the languageL. The role ofW is to represent our knowledge (which is, in general,
incomplete) while the role of defaults inD is to serve as “meta-rules” we might use to
fill in gaps in what we know.

Let ∆ = (D,W ) be a default theory and letS be a propositional theory closed
under consequence. If we start withS as our beliefs,∆ could be used to revise them.
The revised belief set should containW . Further, it should be closed under propositional
consequence (to be a belief set) and under those defaults whose justifications are not
contradicted by the current belief setS (are possible with respect toS). This revision
process can be formalized by an operatorΓ∆ such that for a any setS of formulas (not
necessarily closed under propositional consequence),Γ∆(S) is defined as the inclusion-
least setU of propositional formulas satisfying the following conditions:

1. U is closed under propositional provability
2. W ⊆ U
3. for every defaultd ∈ D, if p(d) ∈ U and for everyβ ∈ j(d), S 6⊢ ¬β, then

c(d) ∈ U .

Fixpoints of the operatorΓ∆ represent belief sets (by (1) they are indeed closed under
propositional consequence) that are in a waystablewith respect to∆ — they cannot be
revised away. Reiter [1] proposed them as belief sets associated with∆ and called them
extensions.

Definition 1. Let∆ be a default theory. A propositional theoryS is anextensionof ∆
if S = Γ∆(S).

Let us look again at the university scenario, which we expandslightly. We know
that Dr. Jones is a professor. We also know that if Dr. Jones ischair of the department
then Dr. Jones does not teach. Finally we have the default rule saying that normally Dr.
Jones teaches. This knowledge can be captured by a default theory(D,W ), where

W = {profJ , chairJ ⊃ ¬teachesJ}

and

D =

{

profJ : teachesJ

teachesJ

}

.

One can check that this default theory has only one extensionand it containsteachesJ .
However, if we appendW by additional information that Dr. Jones is chair of the de-
partment (chairJ ), then the resulting default theory has also one extension but it does
not containteachesJ , anymore (it contains¬teachesJ ). Thus, default theories with the
semantics of extension can model nonmonotonic inferences.

Much of the theory of default logic is concerned with properties of extensions. A
detailed studies of extensions can be found in [10,11].



3 Autoepistemic logic

Autoepistemic logic is a logic in amodalpropositional languageLK(At) (or simply,
LK), whereAt is the a of propositional variables andK stands for the modal opera-
tor. It was proposed to formalize how a rational agent with perfect introspection might
construct belief sets [2,3].

The first modal nonmonotonic logic was introduced by McDermott and Doyle [12].
They proposed to use modal-free formulas to represent factsabout an application do-
main, and “proper” modal formulas to encode nonmonotonic reasoning patterns. An
informal reading of a modal formulaKα is “α is believed” or “α is known.” It suggests
that a formula¬K¬α ⊃ β could be read “if¬α is not believed (or, to put it differently,
if α is possible) thenβ. Given this intuition, McDermott and Doyle [12] proposed touse
the formula¬K¬α ⊃ β to represent a reasoning pattern “in the absence of information
contradictingα, infer β” and gave a method to reason with such formulas supporting
nonmonotonic inferences.

The logic of McDermott and Doyle was found to have counterintuitive properties
[13,2,3]. Moore proposed autoepistemic logic [2,3] as a wayto address this problem.
As in the case of default logic, the goal was to describe a mechanism to assign to a
theory belief sets that can be justified on its basis. Unlike in default logic, a specific
objective for autoepistemic logic was to formalize belief sets a rational agent reasoning
with perfect introspection might form.

Given a theoryT ⊆ LK , Moore [3] defined anexpansionof T to be a theory
E ⊆ LK such that

E = Cn(T ∪ {Kα | α ∈ E} ∪ {¬Kα | α /∈ E})

(Cn stands for the operator of propositional consequence whichtreats formulasKα
as propositional variables). Moore justified this fixpoint equation by arguing that ex-
pansions should consist precisely of formulas that can be inferred fromT and from
formulas obtained by positive and negative introspection on the agent’s beliefs.

Moore’s expansions ofT indeed have properties that make them adequate for mod-
eling belief sets a rational agent reasoning with perfect introspection may built out of
a theoryT . In particular, expansions satisfy postulates put forth byStalnaker [14] for
belief sets in a modal language:

B1: Cn(E) ⊆ E (rationality postulate)
B2: if α ∈ E, thenKα ∈ E (closure under positive introspection)
B3: if α /∈ E, then¬Kα ∈ E (closure under negative introspection).

Although motivated differently, autoepistemic logic can capture similar reasoning
patterns as default logic does. For instance, the university example can be described in
the modal language by a single theory

T = {profJ , chairJ ⊃ ¬teachesJ ,KprofJ ∧ ¬K¬teachesJ ⊃ teachesJ}.

This theory has exactly one expansion and it containsteachesJ . When extended with
chairJ , the new theory also has just one expansion but it contains¬teachesJ .



Examples like this one raised the question of the relationship between default and
autoepistemic logics. Konolige suggested to encode a default

d =
α : β1, . . . , βk

γ

with a modal formula

k(d) = Kα ∧ ¬K¬β1 ∧ . . . ∧ ¬K¬βk ⊃ γ

and to represent a default theory∆ = (D,W ) by a modal theory

k(∆) = W ∪ {k(d) : d ∈ D}.

The translation seemed intuitive enough. In particular, itworked in the university ex-
ample in the sense that extension of the default logic representation correspond to ex-
pansions of the modal logic representation obtained by translating the default logic one.
However, it turned not to align extensions with expansions in general (a default theory
({p : q

p
}, ∅) has one extension but its modal counterpart has two expansions).

4 Default and autoepistemic logics — algebraically

Explaining the relationship between the two logics became amajor research challenge.
We will present here a recent algebraic account of this relationship [15]. As the first
step, we will describe expansions and extensions within theframework of operators on
the lattice of possible-world structures.

A possible-world structureis a set (possibly empty) of truth assignments to atoms
in At . Possible-world structures can be ordered by thereverse set inclusion: for Q,Q′ ∈
W, Q ⊑ Q′ if Q′ ⊆ Q. The ordering⊑ can be thought of as an ordering of increasing
knowledge. As we move from one possible-world structure to another, greater with re-
spect to⊑, some interpretations are excluded and our knowledge of theworld improves.
We denote the set of all possible-world structures withW. One can check that〈W,⊑〉
is a complete lattice.

A possible-world structureQ and an interpretationI, determine the truth function
HQ,I inductively as follows:

1. HQ,I(p) = I(p), if p is an atom.
2. HQ,I(ϕ1 ∧ ϕ2) = t if HQ,I(ϕ1) = t andHQ,I(ϕ2) = t. Otherwise,HQ,I(ϕ1 ∧

ϕ2) = f.
3. HQ,I(ϕ1∨ϕ2) = t if HQ,I(ϕ1) = t orHQ,I(ϕ2) = t. Otherwise,HQ,I(ϕ1∨ϕ2) =

f.
4. HQ,I(¬ϕ) = t if HQ,I(ϕ) = f. Otherwise,HQ,I(ϕ) = f.
5. HQ,I(Kϕ) = t, if for every interpretationJ ∈ Q, HQ,J (ϕ) = t. Otherwise,

HQ,I(Kϕ) = f.

It is clear that for every formulaϕ ∈ LK , the truth valueHQ,I(Kϕ) does not
depend onI. Thus, and we will denote it byHQ(Kϕ), droppingI from the notation.



Themodal theoryof a possible-world structureQ, denoted byThK(Q), is the set of all
modal formulas that are believed inQ. Formally,

ThK(Q) = {ϕ : HQ(Kϕ) = t}.

The(modal-free) theoryof Q, denotedTh(Q), is defined by

Th(Q) = ThK(Q) ∩ L.

(As an aside, we note here a close relation between possible-world structures and Kripke
models with universal accessibility relations.)

Default and autoepistemic logics can both be defined in termsof fixpoints of oper-
ators on the lattice〈W,⊑〉. A characterization of expansions in terms of fixpoints of
an operator onW has been known since Moore [2]. Given a theoryT ⊆ LK and a
possible-world structureQ, Moore defined a possible-world structureDT (Q) as fol-
lows:

DT (Q) = {I : HQ,I(ϕ) = t, for everyϕ ∈ T}.

The intuition behind this definition is as follows (perhaps not coincidentally, as in
the case of default logic, we again refer to belief-set revision intuitions). The possible-
world structureDT (Q) is a revision of a possible-world structureQ. This revision con-
sists of the worlds that are acceptable given the constraints on agent’s beliefs captured
by T . That is, the revision consists precisely of these worlds that make all formulas in
T true (in the context ofQ — the current belief state). Fixpoints of the operatorDT

represent “stable” belief sets — they cannot be revised any further and so take a special
role in the space of belief sets. It turns out [3] that they correspond to expansions!

Theorem 1. Let T ⊆ LK . A theoryE ⊆ LK is an expansionof T if and only if
E = ThK(Q), for some possible-world structureQ such thatQ = DT (Q).

A default theory defines a similar operator. With the Konolige’s interpretation of
defaults in mind, we first define a truth function on the set of all propositional formulas
and defaults. Namely, for a propositional formulaϕ, we define

Hdl
Q,I(ϕ) = I(ϕ),

and for a defaultd = α : β1,...,βk

γ
, we set

Hdl
Q,I(d) = t

if at least one of the following conditions holds:

1. there isJ ∈ Q such thatJ(α) = f.
2. there isi, 1 ≤ i ≤ k, such that for everyJ ∈ Q, J(βi) = f.
3. I(γ) = t

(we setHdl
Q,I(d) = f, otherwise).

Given a default theory∆ = (D,W ), for a possible-world structureQ, we define a
possible-world structureD∆(Q) as follows:

D∆(Q) = {I : HQ,I(ϕ) = t, for everyϕ ∈ W ∪ D}.



Do fixpoints ofD∆ correspond to extensions? The answer is no. Fixpoints ofD∆ corre-
spond toweak extensions[16], another class of belief sets one can associate with default
theories.

To characterize extensions a different operator is needed.The following definition is
due (essentially) to Guerreiro and Casanova [17]. Let∆ = (D,W ) be a default theory
and letQ be a possible-world structure. We defineΓ ′

∆(Q) to be the least possible-world
structureQ′ (with respect to⊑) satisfying the conditions:

1. W ⊆ Th(Q′)
2. for every defaultd ∈ D, if p(d) ∈ Th(Q′) and for everyβ ∈ j(d), ¬β /∈ Th(Q),

thenc(d) ∈ Th(Q′).

One can show thatΓ ′

∆(Q) is well defined. Moreover, for every possible-world struc-
tureQ,

Th(Γ ′

∆(Q)) = Γ∆(Th(Q))

Consequently, we have the following result connecting fixpoints of Γ ′

∆(Q) and exten-
sions of∆ [17].

Theorem 2. Let∆ be a default theory. A theoryS ⊆ L is an extension of∆ if and only
if S = Th(Q) for some possible-world structureQ such thatQ = Γ ′

∆(Q).

Several questions arise. Is there a connection between the operatorsD∆ andΓ ′

∆?
Is there a counterpart to the operatorΓ ′

∆ in autoepistemic logic? Can these operators,
their fixpoints and their interrelations be considered in a more abstract setting? What
are abstract algebraic principles behind autoepistemic and default logics? We provide
some answers in the next section.

5 Approximation theory

Possible-world structures form a complete lattice. As we argued, default and autoepis-
temic theories determine “revision” operators on this lattice. These operators formalize
a view of a theory (default or modal) as a device forrevisingpossible-world structures.
Possible-world structures that are stable under the revision or, more formally, which are
fixpoints of the revision operator give a semantics to the theory (of course, with respect
to the revision operator used).

Operators on a complete lattice of propositional truth assignments and their fix-
points were used in a similar way to study the semantics of logic programs with nega-
tion. Fitting [18,19,20] characterized all major 2-, 3- and4-valued semantics of logic
programs, specifically, supported-model semantics [21], stable-model semantics [22],
Kripke-Kleene semantics [18,23] and well-founded semantics [24], in terms of fixpoints
of the van Emden-Kowalski operator [25,26] and its generalizations and variants.

These results suggested the existence of more general and abstract principles un-
derlying these characterizations. [27,28] identified themand proposed a comprehensive
unifying abstractframework ofapproximatingoperators as an algebraic foundation for
nonmonotonic reasoning. We will now outline the theory of approximating operators
and use it to relate default and autoepistemic logics. For details, we refer to [27,28].



Let 〈L,≤〉 be a poset. An elementx ∈ L is apre-fixpointof an operatorO : L → L
if O(x) ≤ x; x is a fixpoint of O if O(x) = x. We denote a least fixpoint ofO (if it
exists) bylfp(O).

An operatorO : L → L is monotoneif for everyx, y ∈ L such thatx ≤ y, O(x) ≤
O(y). Monotone operators play a key role in the algebraic approach to nonmonotonic
reasoning. Tarski and Knaster’s theorem asserts that monotone operators on complete
lattices (from now onL will always stand for a complete lattice) have least fixpoints
[29].

Theorem 3. LetL be a complete lattice and letO be a monotone operator onL. Then
O has a least fixpoint and a least pre-fixpoint, and these two elements ofL coincide.
That is, we havelfp(O) =

∧

{x ∈ L : O(x) ≤ x}.

Theproduct bilattice[30] of a complete latticeL is the setL2 = L × L with the
following two orderings≤p and≤:

1. (x, y) ≤p (x′, y′) if x ≤ x′ andy′ ≤ y
2. (x, y) ≤ (x′, y′) if x ≤ x′ andy ≤ y′.

Both orderings are complete lattice orderings inL2. For the theory of approximating
operators, the ordering≤p is of primary importance.

If (x, y) ∈ L2 andx ≤ z ≤ y, then(x, y) ∈ L2 approximatesz. The “higher” a
pair (x, y) in L2 with respect to≤p, the morepreciseestimate it provides to elements
it approximates. Therefore, we call this ordering theprecisionordering. Most precise
approximations are provided by pairs(x, y) ∈ L2 for whichx = y. We call such pairs
exact.

For a pair(x, y) ∈ L2, we define itsprojectionsas:

(x, y)1 = x and (x, y)2 = y.

Similarly, for an operatorA : L2 → L2, if A(x, y) = (x′, y′), we define

A(x, y)1 = x′ and A(x, y)2 = y′.

Definition 2. An operatorA : L2 → L2 issymmetricif for every(x, y) ∈ L2, A(x, y)1 =
A(y, x)2; A is approximatingif A is symmetric and≤p-monotone.

Every approximating operatorA on L2 maps exact pairs to exact pairs. Indeed,
A(x, x) = (A(x, x)1, A(x, x)2) and, by the symmetry ofA, A(x, x)1 = A(x, x)2.

Definition 3. If A is an approximating operator andO is an operator onL such that
for everyx ∈ L A(x, x) = (O(x), O(x)), thenA is anapproximating operator forO.

Let A : L2 → L2 be an approximating operator. Then for everyy ∈ L, the operator
A(·, y)1 (on the latticeL) is ≤-monotone. Thus, by Theorem 3, it has a least fixpoint.
This observation brings us to the following definition.

Definition 4. Let A : L2 → L2 be an approximating operator. Thestable operatorfor
A, CA, is defined by

CA(x, y) = (CA(y), CA(x)),

whereCA(y) = lfp(A(·, y)1) (or equivalently, asA is symmetric,CA(y) = lfp(A(y, ·)2)).



The following result states two key properties of stable operators.

Theorem 4. LetA : L2 → L2 be an approximating operator. Then

1. CA is ≤p-monotone, and
2. if CA(x, y) = (x, y), thenA(x, y) = (x, y).

OperatorsA andCA are≤p-monotone. By Theorem 3, they have least fixpoints. We
call them theKripke-Kleeneand thewell-foundedfixpoints ofA, respectively (the latter
term is justified by Theorem 4).

Let A be an approximating operator for an operatorO. An A-stable fixpointof O is
any elementx such that(x, x) is a fixpoint ofCA. By Theorem 4, if(x, x) is a fixpoint
of CA then it is a fixpoint ofA and so,x is a fixpoint ofO. Thus, our terminology is jus-
tified. The following result gathers some basic properties of fixpoints of approximating
operators.

Theorem 5. Let O be an operator on a complete latticeL and A its approximating
operator. Then,

1. fixpoints of the operatorCA are minimal fixpoints ofA (with respect to the ordering
≤ of L2); in particular, A-stable fixpoints ofO are minimal fixpoints ofO

2. the Kripke-Kleene fixpoint ofA approximates all fixpoints ofO
3. the well-founded fixpoint ofA approximates allA-stable fixpoints ofO

How does it all relate to default and autoepistemic logic? Inboth logics operators
D∆ and DT have natural generalizations,D∆ andDT , respectively, defined on the
latticeW2 — the product lattice of the latticeW of possible-world structures [15]. One
can show thatD∆ andDT are approximating operators for the operatorsD∆ andDT .
Fixpoints of operatorsD∆ andDT and their stable counterparts define several classes
of belief sets one can associate with default and autoepistemic theories.

Exact fixpoints of the operatorsD∆ andDT (or, more precisely, the correspond-
ing fixpoints of operatorsD∆ andDT ) define the semantics ofexpansions(in the case
of autoepistemic logic, proposed originally by Moore; in the case of default logic, ex-
pansions were known as weak extensions [16]). The stable fixpoints of the operators
D∆ andDT define the semantics ofextensions(in the case of default logic, proposed
originally by Reiter, in the case of autoepistemic logic theconcept was not identified
until algebraic considerations in [15] revealed it). Finally, the Kripke-Kleene and the
well-founded fixpoints provide three-valued belief sets that approximate expansions
and extensions (except for [31], these concepts received essentially no attention in the
literature, despite their useful computational properties [15]).

Moreover, these semantics are aligned when we cross from default to autoepis-
temic logic by means of the Konolige’s translation. One can check that the operators
D∆ andDk(∆) coincide. The Konolige’s translation preserves expansions, extensions,
the Kripke-Kleene and the well-founded semantics. However, clearly, it does not align
default extensions with autoepistemic expansions. Different principles underlie these
two concepts. Expansions are fixpoints of the basic revisionoperatorD∆ or DT , while
extensions are fixpoints of the stable operators forD∆ orDT , respectively.



Properties of fixpoints of approximating operators we stated in Theorems 4 and
5 specialize to properties of expansions and extensions of default and autoepistemic
theories. One can prove several other properties of approximating operators that im-
ply known or new results for default and autoepistemic logics. In particular, one can
generalize the notion of stratification of a default (autoepistemic) theory to the case of
operators and obtain results on the existence and properties of extensions and expan-
sions of stratified theories as corollaries of more general results on fixpoints of stratified
operators [32,33].

Similarly, one can extend to the case of operators concepts of strong and uniform
equivalence of nonmonotonic theories and prove characterization results purely in the
algebraic setting [34].

6 Additional comments

In this note, we focused on nonmonotonic logics which use fixpoint conditions to define
belief sets and we discussed abstract algebraic principlesbehind these logics. We will
now briefly mention some other research directions in nonmonotonic reasoning.

Default extensions are in some sense minimal (cf. Theorem 5(1)) and minimality
was identified early as one of the fundamental principles in nonmonotonic reasoning.
McCarthy [4] used it to definecircumscription, a nonmonotonic logic in the language
of first-order logic in which entailment is defined with respect to minimal models only.
Circumscription was extensively studied [35,36]. Computational aspects were studied
in [37,38,39]; connections to fixpoint-based logics were discussed in [40,41,42].

Preferential models [5,8] generalize circumscription andprovide a method to define
nonmonotonic inference relations. Inference relations determined by preferential mod-
els were shown in [8] to be precisely inference relations satisfying properties ofLeft
Logical Equivalence, Right Weakening, Reflexivity, And, Or andCautious Monotony.
Inference relations determined byrankedpreferential models were shown in [9] to be
precisely those preferential inference relations that satisfy Rational Monotony.

Default conditionalsthat capture statements “ifα then normallyβ” were studied in
[43,9,44]. [9,44] introduce the notion of rational closureof sets of conditionals as as a
method of inference ([44] uses the termsystem Z).

Default extensions and autoepistemic expansions also define nonmonotonic infer-
ence relations. For instance, given a set of defaultsD, we might say that a formulaβ can
be inferred from a formulaα givenD if β is in every extension of the default theory
(D, {α}). A precise relationship (if any) between this and similar inference relations
based on the concept of extension or expansion to preferential or rational inference
relations is not know at this time. Discovering it is a major research problem.

We conclude this paper by pointing to several research monographs on nonmono-
tonic reasoning [45,46,10,47,11,48,49,50].
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16. Marek, W., Truszczýnski, M.: Relating autoepistemic and default logics. In: Proceedings of

the 1st International Conference on Principles of Knowledge Representation and Reasoning
(Toronto, ON, 1989), San Mateo, CA, Morgan Kaufmann (1989) 276–288

17. Guerreiro, R., Casanova, M.: An alternative semantics for default logic. Preprint. The 3rd
International Workshop on Nonmonotonic Reasoning, South Lake Tahoe (1990)

18. Fitting, M.C.: A Kripke-Kleene semantics for logic programs. Journal of Logic Program-
ming2 (1985) 295–312

19. Fitting, M.C.: Bilattices and the semantics of logic programming. Journal of Logic Program-
ming11 (1991) 91–116

20. Fitting, M.C.: Fixpoint semantics for logic programming – a survey. Theoretical Computer
Science278(2002) 25–51

21. Clark, K.: Negation as failure. In Gallaire, H., Minker, J., eds.: Logic and data bases. Plenum
Press, New York-London (1978) 293–322

22. Gelfond, M., Lifschitz, V.: The stable semantics for logic programs. In: Proceedings of the
5th International Conference on Logic Programming, MIT Press (1988) 1070–1080

23. Kunen, K.: Negation in logic programming. Journal of Logic Programming4 (1987) 289–
308

24. Van Gelder, A., Ross, K., Schlipf, J.: The well-founded semantics for general logic programs.
Journal of the ACM38 (1991) 620–650



25. van Emden, M., Kowalski, R.: The semantics of predicate logic as a programming language.
Journal of the ACM23 (1976) 733–742

26. Apt, K., van Emden, M.: Contributions to the theory of logic programming. Journal of the
ACM 29 (1982) 841–862
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