
Predicate-calculus based logics for modeling and

solving search problems

DEBORAH EAST

Texas State University - San Marcos

and

MIROS LAW TRUSZCZYŃSKI

University of Kentucky

The answer-set programming (ASP) paradigm is a way of using logic to solve search problems.
Given a search problem, to solve it one designs a logic theory so that models of this theory
represent problem solutions. To compute a solution to the problem one computes a model of the

theory. Several answer-set programming formalisms have been developed on the basis of logic
programming with the semantics of answer sets. In this paper we show that predicate logic also
gives rise to effective implementations of the ASP paradigm, similar in spirit to logic programming

with the answer-set semantics and with a similar scope of applicability. Specifically, we propose
two logics based on predicate calculus as formalisms for encoding search problems. We show
that the expressive power of these logics is given by the class NPMV. We demonstrate their use
in programming and discuss computational approaches to model finding. To address this latter

issue, we follow a two-pronged approach. On one hand, we show that the problem can be reduced
to that of computing models of propositional theories and more generally, of collections of pseudo-
boolean constraints. Consequently, programs (solvers) developed in the areas of propositional and
pseudo-boolean satisfiability can be used to compute models of theories in our logics. On the other

hand, we develop native solvers designed specifically to exploit features of our formalisms. We
present experimental results demonstrating computational effectiveness of the overall approach.

Categories and Subject Descriptors: I.2.4 [Artificial Intelligence]: Knowledge Representation
Formalisms and Methods —predicate logic; F.4.1 [Mathematical Logic and Formal Lan-

guages]: Mathematical Logic—Logic and constraint programming

General Terms: Predicate logic, Search problems, Constraints

Additional Key Words and Phrases: Satisfiability, pseudo-boolean constraints

1. INTRODUCTION

In this paper we show that predicate calculus gives rise to a declarative language
for modeling search problems and enables a uniform way of solving them by pro-

Author’s address: Deborah East, Department of Computer Science, Texas State University - San
Marcos, San Marcos, TX 78666, USA. Miros law Truszczyński, Department of Computer Science,

University of Kentucky, Lexington, KY 40506-0046.
Parts of this paper appeared in Proceedings of AAAI-2000 [East and Truszczyński 2000] and in
Proceedings of KI-2001 [East and Truszczyński 2001].
Permission to make digital/hard copy of all or part of this material without fee for personal

or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,

to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 20YY ACM 1529-3785/20YY/0700-0111 $5.00

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY, Pages 111–154.

2 · Deborah East and Miros law Truszczyński

viding a programming front-end for methods to compute models of propositional
formulas and sets of pseudo-boolean constraints. In the way we design our lan-
guage, and interpret and process programs, we adhere to general principles of the
answer-set programming (ASP, for short) [Marek and Truszczyński 1999; Niemelä
1999]. However, unlike typical implementations of ASP that are based on logic
programming with the stable-model semantics and its more general variant, dis-
junctive logic programming with the answer-set semantics, our formalism uses the
syntax of predicate calculus and the semantics of Herbrand models.

Logic is most commonly used in declarative programming as follows. To solve a
problem, we represent its general constraints and relevant background knowledge
as a theory. We express a specific instance of the problem as a formula. We then
use proof techniques to decide whether this formula follows from the theory. A
proof of the formula (more precisely, a variable substitution constructed by the
proof) determines a solution, which in most cases is represented by a ground term.
This use of logic in programming and computing stems from the pioneering work
by Robinson [1965], Green [1969] and Kowalski [1974]. It led to the establishment
of logic programming as, arguably, the most prominent and most broadly accepted
logic-based declarative programming formalism, and to the development of Prolog
as its implementation by Colmerauer and his group [Colmerauer et al. 1973].

Recently, researchers proposed an alternative way to use logic in declarative prob-
lem solving, commonly referred to as answer-set programming (or ASP) paradigm
[Marek and Truszczyński 1999; Niemelä 1999]. In ASP, one represents a compu-
tational problem as a theory in some logic so that models of this theory, and not
proofs or variable substitutions, represent problem solutions. In ASP, finding mod-
els rather than proofs is a primary computational task and serves as a uniform
processing mechanism.

The concept of the ASP paradigm emerged from the area of stable logic program-
ming (SLP, for short), that is, logic programming with the stable-model semantics
[Gelfond and Lifschitz 1988]1. Over the years researchers demonstrated that prob-
lems such as planning, reasoning about action, diagnosis and abduction can be
described by logic programs so that stable models of these programs represented
problem solutions. [Baral 2003] provides an in-depth discussion of these applications
and is a good source of references. Soon it became clear, however, that SLP can
also be used to encode constraint satisfaction problems [Marek and Truszczyński
1999; Niemelä 1999] and, more generally, a broad class of search problems [Saccà
1997; Marek and Remmel 2003]. In all cases, the approach was the same. Programs
encoding problems were constructed so that their stable models encoded problem
solutions. An important development, significantly simplifying modeling tasks, was
the extension of the basic language with aggregates — language constructs to rep-
resent constraints on sets of ground atoms [Simons et al. 2002].

In general, answer sets of (disjunctive) logic programs are infinite and, unless one
devises for them some finitary representation schema, they cannot be computed. To

1There is an extension of SLP that allows a richer language (disjunctions in the heads of program
rules and two types of negation, default and strong) and whose semantics is given by answer sets
[Gelfond and Lifschitz 1991]. It is this formalism and, more precisely, its semantics, that gave rise

to the term answer-set programming.

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

Predicate-calculus based logics for modeling and solving search problems · 3

overcome this difficulty, it is common in ASP to restrict attention to programs that
are finite and do not contain function symbols. Answer sets of such programs are
finite sets of ground literals and there are algorithms to compute them. Two most
advanced implementations of such algorithms are smodels [Niemelä and Simons
2000] (in the case without disjunctions) and dlv [Eiter et al. 1998; Leone et al.
2003]. These implementations compute answer sets in two steps. First, an input
program is grounded, that is, replaced by a program that consists of ground rules
only and has the same answer sets as the original one. Second, answer sets of the
ground program are computed by means of search algorithms.

The two systems we mentioned, smodels and dlv, while structured similarly as im-
plementations of the Davis-Putnam method for propositional satisfiability (or SAT)
testing, develop and exploit search techniques specific to the case of logic program-
ming with the answer-set semantics and to the types of aggregate constraints they
support. Two other systems, cmodels [Babovich and Lifschitz 2002] and assat [Lin
and Zhao 2002], reduce the problem of answer-set computation directly to that of
computing models of propositional theories and then use off-the-shelf SAT solvers
such as zchaff [Lin and Zhao 2002]. Cmodels and assat are noteworthy as they point
to connections with SAT and open a possibility to take advantage in ASP of recent
dramatic advances in the SAT area. Both programs have, however, some limita-
tions. The translations to SAT instances, which cmodels and assat use, for some
programs lead to very large SAT instances (exponential in the size of the original
program). Moreover in order to use SAT solvers, both programs have first to com-
pile away aggregate constraints, that is, replace them with equivalent propositional
theories. Consequently, theories get bigger and performance often degrades.

The notion of the answer-set programming paradigm first appeared explicitly
in the context of logic programming with the semantics of answer sets (originally,
as we mentioned, under the restriction to normal programs and the semantics of
stable models). However, it is clear that its general principle of models representing
solutions applies to any logic system where the concept of a model is well defined.
Our goal in this paper is to provide arguments for this more general view of the
ASP paradigm. To this end, we show that predicate logic with the semantics given
by Herbrand models, together with SAT solvers as processing engines, leads to an
effective implementations of the (broadened) ASP paradigm. A specific logic we
propose to this end is a modification of the logic of propositional schemata, which
was developed as a language to encode planning problems [Kautz et al. 1996]. The
key concept of our approach is that of a data-program pair (D,P), which represents
a search problem Π by the program (collection of rules) P , and a concrete instance
of Π by the data (collection of ground atoms) D. To define the semantics of data-
program pairs, we restrict the class of Herbrand models of the theory D ∪ P to
those Herbrand models that satisfy a version of Reiter’s Closed-World Assumption.
We refer to our logic as the logic of propositional schemata with Closed-World
Assumption or, simply, as the logic of propositional schemata. We denote this logic
by PS .

Through grounding, the semantics of theories in the logic PS and, in particular,
of data-program pairs reduces to the standard propositional semantics. That makes
it straightforward to extend both the language and the semantics of the logic PS to

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

4 · Deborah East and Miros law Truszczyński

provide direct means for modeling constraints that do not have simple propositional
encodings. In particular, we extend the logic PS with constructs to support direct
representation of constraints involving cardinalities. Examples of such constraints
are: ”at least k elements from the list must be in the model” or ”exactly k elements
from the list must be in the model”. In that we are similar to smodels and dlv that
also support concise encodings of cardinality constraints (as well as some other
aggregates) [Simons et al. 2002; Dell’Armi et al. 2003].

We also consider an extension of the logic PS by definite Horn rules to support
concise ways to model closures of ground facts under inference rules (in particular,
to represent the transitive closure of binary relations). This task is simple in logic
programming formalisms but not in predicate calculus. Consequently, the semantics
of this extension of the logic PS gets more complex. Models have to satisfy an
additional postcondition. However, it is still simpler than the fixpoint condition
that appears in the definition of stable models and answer-sets. We refer to these
extensions of our logic as extended logic of propositional schemata (with Closed-
World Assumption) and denote it by PS+. An important point to make here is
that the semantics of the logic PS+ is a direct generalization of the semantics of
the logic PS .

In the paper we study basic properties of the logic PS and observe that they
extend to the logic PS+, as well. We show that the logic PS is nonmonotonic,
identify sources of nonmonotonicity and its implications. We demonstrate the use
of the logic PS as a representation language by developing programs for several
search problems. We characterize the class of problems that can be solved by
programs in the logic PS . To this end, we define a formal setting for the study of
the expressive power of ASP formalisms. We establish that the expressive power
of the logic PS is equal to the class NPMV [Selman 1994]. In particular, it is the
same as the expressive power of SLP.

As we pointed out, when using the logics PS and PS+ to solve a problem for a
particular instance, we represent the problem and the instance by a data-program
pair so that Herbrand models of the data-program pair correspond to problem so-
lutions. Consequently, the basic computational task is that of computing Herbrand
models. Since these Herbrand models are precisely the models of propositional
theories obtained by grounding data-program pairs (computing their equivalent
propositional representation), the task can be accomplished in a similar two-step
process to that used to compute answer sets. Given a finite data-program pair, we
first ground it and then find models of the ground theory obtained.

For grounding (the first step), we implemented a program, psgrnd that, given a
data-program pair, produces an equivalent theory in the propositional fragment of
the logic PS+, in which cardinality constraints (and Horn rules, if they are allowed
in the language) have explicit representations. To compute models of theories
produced by psgrnd, we developed a satisfiability solver program, aspps. It is
designed along the same lines as most satisfiability solvers implementing the Davis-
Putnam algorithm but it takes advantage of the cardinality and closure constraints
present in the language.

For data-program pairs that do not involve Horn rules there are alternatives to
aspps. If the input data-program pair is in the language of the basic logic PS

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

Predicate-calculus based logics for modeling and solving search problems · 5

(no cardinality constraints and no Horn rules), the result of the grounding step
is simply a (standard) propositional theory. In fact, one of the options of psgrnd
outputs the result as a CNF theory in the DIMACS format. If the input data-
program pair contains cardinality constraints (but still no Horn rules), the result
of grounding is a theory in a logic that is closely related to the propositional logic
with pseudo-boolean constraints, which received much attention in the satisfiability
and constraint satisfaction communities [Benhamou et al. 1994; Barth 1995; Walser
1997; Aloul et al. 2002; Dixon and Ginsberg 2002; Prestwich 2002], Pseudo-boolean
constraints are essentially linear inequalities with integer coefficients and with do-
mains of all variables restricted to 0 and 1. They generalize constraints specified
by propositional clauses but can also express concisely more complex constraints
involving aggregates such as cardinality of a set or sum of (integer) weights of
elements in the set.

There are simple translations of theories in the propositional logic PS+ into the
syntax of pseudo-boolean propositional logic that in most cases do not lead to any
significant growth in the theory size. It follows that in the second phase of the
process to compute models of PS+ theories without Horn rules, one can use “off-
the-shelf” SAT solvers and solvers for sets of pseudo-boolean constraints (SAT(PB)
solvers, for short). In this way, our logic PS+ and our program psgrnd provide a
uniform programming front-end for SAT and SAT(PB) solvers and facilitate their
use.

Experimental results on the performance of the overall approach are encouraging.
They show that the logic PS+ can be an effective tool to model search problems
and can serve as a programming front-end for a broad range of processing back-
ends, including SAT and SAT(PB) solvers, as well as native PS+ solvers such as
aspps. They demonstrate that our solver aspps is competitive with current ASP
solvers such as smodels, with complete SAT solvers such as zchaff and satz and
with a SAT(PB) solver PBS. In fact, in several instances we considered, aspps was
faster. Our experiments also provide further evidence that building propositional
solvers capable of processing high-level constraints is a promising research direction
for both propositional satisfiability and constraint satisfaction communities.

Several interrelated factors motivate us in this work. Our first goal was to broaden
the scope of the ASP paradigm. Its roots are in the formalism of logic programming
and in knowledge representation as the intended application area. However, the
basic tenet of the ASP paradigm applies to any logic with well-defined notion of a
model. Its scope of applicability goes beyond knowledge representation and is best
described in terms of classes of search problems or, equivalently, partial multivalued
functions [Selman 1994; Marek and Remmel 2003]. Our logics PS and PS+, the
corresponding programs psgrnd and aspps, and their performance substantiate this
more general view of ASP.

Second, we aimed at the development of an effective programming front-end
that would capitalize on dramatic improvements in the performance of SAT and
SAT(PB) solvers and would facilitate their use as computational tools. In recent
years, researchers have developed several fast implementations of the basic Davis-
Putnam method such as satz [Li and Anbulagan 1997], relsat [Bayardo, Jr and
Schrag 1997] and, most recently, zchaff [Moskewicz et al. 2001a; 2001b]. A renewed

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

6 · Deborah East and Miros law Truszczyński

interest in local-search techniques resulted in highly effective (albeit incomplete)
satisfiability checkers such as WALKSAT [Selman et al. 1994], capable of handling
large CNF theories, consisting of millions of clauses. Similarly, the research in
pseudo-boolean satisfiability resulted in several effective complete and local-search
solvers building both on artificial intelligence search and on operations research
techniques [Barth 1995; Walser 1997; Dixon and Ginsberg 2002; Prestwich 2002;
Liu and Truszczyński 2003]. With the focus on the design of fast solvers, the issue
of modeling tools has received relatively little attention. Our logic PS+, providing
a programming front-end to programs computing models of propositional theories
and collections of pseudo-boolean constraints, is a way to address the matter.

Third, the semantics of our logics, given by a class of Herbrand models, is es-
sentially the semantics of propositional logic and, consequently, results in a system
that is, we believe, simpler than those based on logic programming with the stable-
model or answer-set semantics. While this claim is by its very nature subjective,
there is an argument to support it. In all formalisms we discussed, be it our logics
or systems based on logic programming, the semantics of programs with variables
is lifted, through grounding, from the semantics in the corresponding propositional
case. In logic-programming based approaches, the semantics of propositional pro-
grams is already non-standard (in particular, non-monotonic) and requires concepts
such as the reduct, least model computation (or minimality with respect to closure
under the reduct rules) and, ultimately, some fixpoint condition. In our case, the
semantics in the propositional case that we lift up through grounding is exactly the
propositional semantics. The only difficulty that remains for the programmer is to
understand the process of grounding. In contrast, in logic-programming approaches
the programmer needs to understand intricacies of the semantics at the ground level
in addition to understanding how the grounding works.

Our paper is organized as follows. In the next section we introduce the syntax
and the semantics of the logic PS . We describe there also the process of grounding.
Section 3 presents an extension of our basic logic by the equality and arithmetic
operations and relations. We define the key concept of data-program pairs in Sec-
tion 4. The following section presents several examples illustrating the use of the
logic PS and of data-program pairs in representing some well-known constraint
satisfaction problems. We study the expressive power of the logic PS in Section 6.
In Section 7, we discuss extensions of the logic PS by syntactic constructs to repre-
sent cardinality and closure constraints. Section 8 provides a brief overview of the
program psgrnd that we designed as a tool to ground PS+ data-program pairs. It
also describes the program aspps, a tool we designed to compute models of ground
PS+ theories. We present and discuss experimental results on the performance of
of the overall approach in Section 9. They include comparisons of aspps with SAT
and SAT(PB) solvers, as well as with smodels, an ASP solver based on the syntax
of logic programming. The last section discusses the results of the paper, as well
as some related work. It also outlines several directions for future research.

2. BASIC LOGIC PS

In this section, we introduce the logic PS that provides a theoretical basis for a
declarative programming front-end to satisfiability solvers and facilitates their use.

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

Predicate-calculus based logics for modeling and solving search problems · 7

2.1 Syntax

Syntactically, the logic PS is a fragment of first-order logic without function symbols
(or, in other words, predicate logic). Specifically, the language of the logic PS
consists of:

(1) infinite denumerable sets R, C and V of relation, constant and variable symbols

(2) symbols ⊥ and ⊤ (later interpreted always as falsity and truth)

(3) boolean connectives ∧, ∨ and →, the quantifiers ∃ and ∀, and punctuation
symbols ‘(’, ‘)’ and ‘,’.

In the paper, following the example of logic programming, we adopt the convention
that upper-case letters denote variables and lower-case letters stand for constants.

Constant and variable symbols are the only terms of the language. Constants
are the only ground terms and they form the Herbrand universe of the language.
Atoms are expressions of the form p(t1, . . . , tn), where p is an n-ary relation symbol
from R and ti, 1 ≤ i ≤ n, are terms. An atom p(t1, . . . , tn) is ground if all its terms
are ground. The set of all ground atoms forms the Herbrand base of the language.

In the logic PS , we restrict the use of existential quantifiers. Let us consider a
tuple of terms (t1, . . . , tn) and letX1, . . . ,Xk be pairwise distinct variables such that
each Xi, 1 ≤ i ≤ k, appears in the tuple (t1, . . . , tn) exactly once. An expression of
the form

∃X1, . . . ,Xk p(t1, . . . , tn)

is an e-atom. For instance, the expression ∃X,Z p(X,Y,Z, c) is an e-atom while
the expression ∃X,Z p(X,X,Z, c) is not. In the logic PS , existential quantifiers
appear exclusively in e-atoms.

The requirement that each Xi, 1 ≤ i ≤ k, appears in the tuple (t1, . . . , tn) exactly
once is not essential and can be lifted (we show one way how to do it in Section 7).
We adopt it here as it allows us to simplify the notation for e-atoms. Namely, we
write an e-atom

∃X1, . . . ,Xk p(t1, . . . , tn)

as

p(t′1, . . . , t
′

n),

where t′i = ti, if ti is not one of the variables X1, . . . ,Xk, and ti = ‘ ’ (underscore),
otherwise. For instance, we write an e-atom ∃X,Z p(X,Y,Z, c) as p(, Y, , c). We
emphasize that e-atoms are not atoms in the standard sense. They are formulas of
a particular syntactic structure. We chose the term e-atom to reflect our simplified
notation in which we commonly write them.

The only formulas we allow in the logic PS are rules, that is, formulas

∀X1, . . . ,Xk(A1 ∧ . . . ∧Am → B1 ∨ . . . ∨Bn),

where all Ai, 1 ≤ i ≤ m, and Bj , 1 ≤ j ≤ n, are either atoms or e-atoms, none of
Ai’s is an e-atom (in other words, e-atoms do not appear in the antecedents of rules)
and X1, . . . ,Xk are the free variables appearing in A1 . . . , Am and B1, . . . , Bn. If
m = 0, we replace the conjunct in the antecedent of the rule with the symbol ⊤. If

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

8 · Deborah East and Miros law Truszczyński

n = 0, we replace the empty disjunct in the consequent of the rule with the symbol
⊥.

As usual, we drop the universal quantifiers from the rule notation. For instance,
to denote the rule

∀X,Y,Z(p(X,Y) ∧ p(Y,Z)→ q(,X) ∨ q(Y,) ∨ r(Z)),

which is already a shorthand for

∀X,Y,Z(p(X,Y) ∧ p(Y,Z)→ ∃W q(W,X) ∨ ∃W q(Y,W) ∨ r(Z)),

we write

p(X,Y) ∧ p(Y,Z)→ q(,X) ∨ q(Y,) ∨ r(Z).

This notation is reminiscent of that commonly used for clauses in predicate logic.
There is a key difference, though. Some of the atoms in the consequent of a rule
may be e-atoms (as it is the case in the example just given). Thus, unlike in the
case of clauses, a rule of the logic PS may contain the existential quantifier in the
consequent.

The last syntactic notion we need is that of a theory. A theory in the logic PS (or,
a PS theory) is any finite collection of rules that contains at least one occurrence
of a constant symbol.

To recap the discussion of the syntax of the logic PS , it is essentially a fragment
of first-order logic with the following restrictions and caveats: (1) function symbols
are not allowed, (2) rules are the only formulas, (3) theories are finite and contain
at least one constant symbol, and (4) through the use of notational conventions,
the quantifiers are only implicitly present in the language.

2.2 Semantics

The difference between the logic PS and the corresponding fragment of the first-
order logic is in the way we interpret theories. Namely, we view a theory T as
a representation of a certain class of models of T and not as a representation of
logical consequences of T . In fact, due to the way we use the logic PS , the concept
of provability plays virtually no role in logic PS . This is an essential departure
from the classical first-order logic perspective.

Specifically, we assign to a PS theory T a collection of its Herbrand models. The
concepts of an Herbrand interpretation, of truth in an interpretation and of an
Herbrand model, which we use in the paper, are standard (for details, we refer
to any text in logic, for instance, [Nerode and Shore 1993]). Here we will only
introduce some necessary notation. Let T be a PS theory. We denote by HU (T)
the Herbrand universe of T , that is, in our case, the set of all constants that appear
in T . By the definition of a PS theory, this set is finite and non-empty. We denote
by HB(T) the Herbrand base of T , that is, the collection of all ground atoms
p(c1, . . . , cn), where p is an n-ary relation symbol appearing in T and ci ∈ HU (T),
1 ≤ i ≤ n. Following a standard practice, we identify Herbrand interpretations of
T with subsets of HB(T).

The restriction to Herbrand interpretations is important. In particular, it implies
that the logic PS is nonmonotonic. Indeed, if T1 ⊆ T2 are two PS theories, it is
not necessary that every Herbrand model of T2 is a Herbrand model of T1. For

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

Predicate-calculus based logics for modeling and solving search problems · 9

example, let T1 = {⊤ → p(), p(a) → ⊥}, and let T2 = T1 ∪ {⊤ → p(b)}. It
is easy to see that M = {p(b)} is a Herbrand model of T2 and that T1 has no
Herbrand models. Indeed, HU (T1) = {a} and the only Herbrand model satisfying
the first rule is M ′ = {p(a)}. This model, however, does not satisfy the second
rule. In contrast, classical first-order logic is monotone: for every two collections
of sentences T1 ⊆ T2, if M is a model of T2 then it is a model of T1, as well. In
the example discussed above, the Herbrand model specified by the subset {p(b)} of
HB(T2) is a model of T1 but not a Herbrand model of T1.

The nonmonotonicity of the logic PS is not surprising and properties such as the
one discussed above are not limited to the logic PS only. Restricting the semantics
of first-order logic to special classes of models is a well-known general mechanism
to specify nonmonotonic logics. For instance, considering only minimal models
yields circumscription [McCarthy 1980], one of the most influential nonmonotonic
logics. Similarly, in logic programming, building the semantics on the class of stable
models rather than on the class of all models, leads to stable logic programming, an
extensively studied nonmonotonic system [Gelfond and Lifschitz 1988; Marek and
Truszczyński 1993; Baral 2003] with wide applications in knowledge representation.
It is somewhat surprising that, despite its simplicity, the logic PS was overlooked by
the nonmonotonic-logic community and, apparently, has not received any attention
so far.

2.3 Models of PS theories, grounding and propositional satisfiability

The restriction to Herbrand models is not only responsible for the nonmonotonicity
of the logic PS . It also allows us to develop algorithms to compute models of PS
theories. Namely, as in the case of stable logic programming, models of a PS theory
T (these models are, by definition, Herbrand models) can be computed in two steps.
First, we ground T to a propositional theory that has the same Herbrand models as
T . Next, we compute models of T by computing models of the ground theory. This
latter task can be accomplished by off-the-shelf propositional satisfiability solvers.

The concept of grounding is similar to that used in the context of universal the-
ories in first-order logic or programs in logic programming. The only difference
comes from the fact that rules in PS theories may include e-atoms in the conse-
quents. We will now discuss the task of grounding in detail. Let t be a term tuple
(some of its components may be the underscore symbols ‘ ’) and let ϑ be a ground
variable substitution that contains in its domain all variables appearing in t. By tϑ
we denote a term tuple t′ obtained from t by replacing each variable X appearing
in t with the constant assigned to X by ϑ. Next, we define p(t)ϑ as the disjunc-
tion of all ground atoms of the form p(t′), where t′ is obtained from t by replacing
all occurrences of the underscore symbol ‘ ’ in t with constants from HU (T), that
is, constants that appear in T . We note that p(t)ϑ depends on T . We also note
that if t contains no occurrences of the underscore symbol, then p(t)ϑ = p(tϑ) (no
disjunction).

Further, for a rule r ∈ T , where

r = A1 ∧ . . . Am → B1 ∨ . . . ∨Bn,

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

10 · Deborah East and Miros law Truszczyński

we define

rϑ = A1ϑ ∧ . . . Amϑ→ B1ϑ ∨ . . . ∨Bnϑ.

We note that atoms Ai are not e-atoms. Thus, Aiϑ, 1 ≤ i ≤ m, is a single ground
atom (grounding does not introduce disjunctions in the antecedents of the rules).
We also note that Bis may be e-atoms and Biϑ may, in fact, be a disjunction of
ground atoms.

Finally, we define gr(T) to consist of all rules rϑ, where r ∈ T and ϑ is a ground
substitution containing all variables in r in its domain.

We will illustrate the concepts we introduced with an example. Let T be a PS
theory that consists of the following two rules:

C1 = q(b, c)→ p(a)
C2 = p(X)→ q(X,).

To compute gr(T) we need to compute all ground instances of C2 (C1 is already
in the ground form). Since there are only three constants in the theory (a, b and
c) and only one variable X in C2, there are three ground variable substitutions to
consider: ϑ1 = {X/a}, ϑ2 = {X/b} and ϑ3 = {X/c}. Clearly, (X,)ϑ1 = (a,) and
q(X,)ϑ1 = q(a, a) ∨ q(a, b) ∨ q(a, c). Thus,

C2ϑ1 = p(a)→ q(a, a) ∨ q(a, b) ∨ q(a, c).

The effects of applying ϑ2 and ϑ3 are similar. It follows that gr(T) consists of C1

together with the following ground rules:

p(a)→ q(a, a) ∨ q(a, b) ∨ q(a, c)
p(b)→ q(b, a) ∨ q(b, b) ∨ q(b, c)
p(c)→ q(c, a) ∨ q(c, b) ∨ q(c, c).

The following proposition establishes the adequacy of the concept of grounding
in the study of models of PS theories. The proof of the proposition is simple and
reflects closely the corresponding argument in the first-order case. Thus, we omit
it.

Proposition 2.1. Let T be a PS theory. A set M ⊆ HB(T) is a Herbrand
model of T if and only if M is a propositional model of gr(T).

This property is the basis for algorithms to compute models of PS theories that
we develop later in the paper. The idea is that given a PS theory T , we first
compute the propositional theory gr(T) and, then, compute models of gr(T) (for
instance, by means of satisfiability provers). From that perspective, it is important
to understand how the size (the total number of atom occurrences) of gr(T) depends
on the size of T . Let us assume that T is a PS theory of size s(T). Let us
also assume that T contains n constant symbols, that the arity of each predicate
symbol appearing in T is at most k, and that each rule in T contains at most l
different variables. Let r be a rule in T consisting of p atoms and let ϑ be a ground
substitution containing in its domain all variables of r. Clearly, rϑ consists of at
most pnk ground atoms (grounding may expand each atom in the head of r into
a disjunction of nk atoms). Since there are nl different ways to ground variables
appearing in r, the total size of all ground instantiations rϑ of r is pnk+l. It follows

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

Predicate-calculus based logics for modeling and solving search problems · 11

that the size of gr(T) is bounded by s(T)nk+l. In particular, if we fix k and l
(theories we encounter when using our logic in programming are always of this
type), the size of gr(T) is polynomial in the size of T .

3. EQUALITY AND ARITHMETIC IN THE LOGIC PS

In the following sections, we will often consider a version of the logic PS , in which
some relation symbols are given a prespecified interpretation. They are equality,
inequality and basic arithmetic relations such as ≤, <, ≥, >, +, ∗, −, /, etc.
Inclusion of these relation symbols in the language is important as they facilitate
the task of programming (modeling knowledge, representing constraints as rules).
We will use standard symbols to represent them, as well as the standard infix
notation. In particular, we will write t1 = t2 rather than = (t1, t2), and t = t1 + tk
(or t1 + t2 = t) rather than +(t1, t2, t). We will denote the set of these relation
symbols by EA.

In this section, we will define the semantics for this variant of the logic PS . The
idea is to interpret all symbols in the set EA according to their intended meaning.
Specifically, let C be the set of constant symbols. We define a theory =C to consist
of all rules of the form

(1) ⊤ →= (t, t) (we will write them as ⊤ → (t = t)), for every t ∈ C, and

(2) = (s, t)→ ⊥ (we will write them as (s = t)→ ⊥), for every s, t ∈ C such that
s 6= t.

Next, we define a theory +C to consist of all rules of the form

(1) ⊤ → +(t, u, s) (we will write them as ⊤ → (s = t + u)), for every integers
s, t, u ∈ C such that s = t+ u, and

(2) +(t, u, s)→ ⊥ (we will write them as (s = t+u)→ ⊥), for every s, t, u ∈ C such
that at least one of s, t, u is not an integer, or s, t, u are integers and s 6= t+ u.

In the same way we define theories pC for other relation symbols in EA such as≤, −,
∗, etc. All these theories provide explicit intended definitions of the corresponding
relation symbols. We will often refer to the relation symbols in EA as predefined
since their interpretation is fixed.

Let T be a PS theory in the language containing distinguished relation symbols
from the set EA. Let C be the set of constants appearing in T (that is, C = HU (T)).
A set M of ground atoms in the language is a model of T if M is a model of the
theory T ∪

⋃
{pC : p ∈ EA} as defined above.

It is clear that, with the help of additional variables, we can express in the logic
PS arbitrary arithmetic expressions. For instance, we will write

q((X + Y) ∗ Z, a) ∧B → H

and interpret this expression as

(T1 = X + Y) ∧ (T2 = T1 ∗ Z) ∧ q(T2, a) ∧B → H

Similarly, we will interpret

B → q((X + Y) ∗ Z, a) ∨H

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

12 · Deborah East and Miros law Truszczyński

as the rule

B ∧ (T1 = X + Y) ∧ (T2 = T1 ∗ Z)→ q(T2, a) ∨H.

In each case, variables T1 and T2 are different from all other variables appearing in
the rules. In order to obtain uniqueness of the interpretation, when decomposing
arithmetic expressions, we follow the standard order in which they are evaluated.
Let us emphasize that arithmetic expressions are simply notational shortcuts and
not elements of the language.

In the remainder of the paper, we will always assume that the language contains
predefined relation symbols. Since their extensions are already fully specified, we
will omit the corresponding ground atoms when describing models of theories.

To illustrate these concepts, let us consider the following PS theory T :

T = {⊤ → p(1), ⊤ → p(2), p(X)→ q(X,X + 1)}.

This theory represents the following PS theory T ′:

T ′ = {⊤ → p(1), ⊤ → p(2), p(X) ∧ (Y = X + 1)→ q(X,Y)}.

The theory gr(T ′) consists of the first two rules (they are already ground) and the
following four instantiations of the third rule:

p(1) ∧ (1 = 1 + 1)→ q(1, 1)
p(1) ∧ (2 = 1 + 1)→ q(1, 2)
p(2) ∧ (1 = 2 + 1)→ q(2, 1)
p(2) ∧ (2 = 2 + 2)→ q(2, 2).

Models of this theory are (by the definition) models of the theory T . For instance,
{p(1), p(2), q(1, 2)} is a model of T . We point out that, according to our convention,
we omitted from the model description the atom 2 = 1 + 1 (or, more formally, the
atom = (1, 1, 2)).

4. DATA-PROGRAM PAIRS AND THEIR SEMANTICS

The logic PS , described in the previous section, can be used as a basis for a declar-
ative programming formalism based on the paradigm of answer-set programming
[Marek and Truszczyński 1999]. To fully develop it, we need to introduce the con-
cepts of input data and a program. We follow the approach proposed and studied in
the area of relational databases [Ullman 1988]. A relational database can be viewed
as a collection of ground atoms of some logic language. We often use (for instance,
in the context of DATALOG and its variants) the term extensional database to
refer to a collection of ground atoms specifying a relational database. Queries are
finite theories, often of special form, in this logic language (for instance, definite
Horn theories without function symbols serve as queries in the case of DATALOG).
Queries define new properties (relations) in terms of those relations that are explic-
itly specified by the underlying (extensional) database.

Guided by these intuitions, we define a data-program pair to be a pair (D,P),
where D is a finite set of ground atoms in a language of the logic PS and P is
a finite collection of PS rules. We use data-program pairs to represent specific
computational problem instances. We view D as an encoding of relevant input
data and P as a declarative specification of the computational task in question.

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

Predicate-calculus based logics for modeling and solving search problems · 13

Accordingly, given a data-program pair (D,P), we refer to D as a data set and to
P as a program. We use the term data predicate for all relation symbols appearing in
atoms in D. We use the term program predicate to refer to all relation symbols that
appear in P and are neither data predicates nor predefined predicates from EA.
Intuitively, D is a counterpart of an extensional database and P is a counterpart
of a database query.

We will now introduce a semantics for data-program pairs. To this end, we will
encode a data-program pair (D,P) as a theory in the logic PS . Since D is a set
of ground atoms representing the problem instance (input data), we assume that
D provides a complete specification of the input. That is, we assume that no other
ground atoms built of predicates appearing in D are true. Since the only formulas
in the logic PS are rules, we encode the information specified by D as a set of rules
cl(D) defined as follows. For every relation symbol p appearing in D and for every
ground tuple t (with constants from the Herbrand universe of D∪P) of appropriate
arity, if p(t) ∈ D, we include in cl(D) the rule

⊤ → p(t).

Otherwise, if p(t) /∈ D, we include in cl(D) the rule

p(t)→ ⊥.

It is clear that the set cl(D) can be regarded as the result of applying Reiter’s
Closed-World Assumption to D.

We represent a data-program pair (D,P) by a PS theory cl(D) ∪ P . We say
that a set M of ground atoms, M ⊆ HB(cl(D) ∪ P), is a model of a data-program
pair (D,P) if it is a model of cl(D) ∪ P . We denote the set of all models of a
data-program pair (D,P) by Mod(D,P).

In separating data and program predicates and in adopting the closed-world
assumption for the treatment of data atoms we are guided by the intuition that
data predicates are intended to represent input data. Their extensions should not
be affected by the computation. The effects of the computation should be reflected
in the extensions of program predicates only.

5. PROGRAMMING WITH LOGIC PS

We designed the logic PS and introduced the concept of a data-program pair to
model computational problems. To illustrate this use of our formalism, we show how
to encode several well-known search problems by means of data-program pairs. We
assume that the language contains predefined relation symbols to represent equality
and arithmetic relations.

We start with the graph k-colorability problem: given an undirected graph
and a set of k colors, the objective is to find an assignment of colors to vertices so
that no two identically colored vertices are joined with an edge (or to determine
that no such coloring exists).

We set

Dgcl(G, k) = {vtx (v): v ∈ V } ∪ {edge(v, w): {v, w} ∈ E} ∪ {color(i): 1 ≤ i ≤ k}.

The set of atomsDgcl represents an instance of the coloring problem. The predicates
vtx , edge and color are data predicates. Their extensions define vertices and edges

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

14 · Deborah East and Miros law Truszczyński

of an input graph, and the set of available colors.
Next, we construct a program, Pgcl , encoding the constraints of the problem. It

involves predicates vtx , edge and color , specified in the data part, and defines a
new relation clrd that models assignments of colors to vertices.

C1: clrd(X,C)→ vtx (X)
C2: clrd(X,C)→ color(C)
C3: vtx (X)→ clrd(X,)
C4: clrd(X,C) ∧ clrd(X,D)→ (C = D)
C5: edge(X,Y) ∧ clrd(X,C) ∧ clrd(Y,C)→ ⊥.

The condition (C1) states that the only objects that get colored are vertices.
Indeed, by the definition, a model of the theory (Dgcl(G, k), Pgcl) contains an atom
vtx (x) if and only if x is a vertex of an input graph. Thus, if clrd(v, c) belongs
to a model of (Dgcl(G, k), Pgcl), then vtx (v) belongs to the model and, so, v is a
vertex. Similarly, (C2) states that the only objects assigned by the predicate clrd
to a vertex are colors. (C3) states that each vertex X gets assigned at least one
color. (C4) enforces that each vertex is assigned at most one color. (C5) ensures
that two vertices connected by an edge are assigned different colors. These rules
correctly capture the constraints of the coloring problem.

Proposition 5.1. Let G = (V,E) be an undirected graph and let k be a posi-
tive integer. If an assignment f :V → {1, . . . , k} is a k-coloring of G then M =
Dgcl(G, k)∪ {clrd(v, f(v)): v ∈ V } is a model of the data-program pair (Dgcl(G, k),
Pgcl). Conversely, if M is a model of the data-program pair (Dgcl(G, k), Pgcl) then
M = Dgcl(G, k) ∪ {clrd(v, f(v)): v ∈ V }, for some k-coloring f :V → {1, . . . , k} of
G.

Proof: (⇒) Let us assume that f :V → {1, . . . , k} is a k-coloring of G. We will
show that M = Dgcl(G, k) ∪ {clrd(v, f(v)): v ∈ V } is a model of (Dgcl , Pgcl), that
is, it is a model of gr(cl(Dgcl(G, k)) ∪ Pgcl). From the definition of M it follows
that M satisfies all rules in cl(Dgcl(G, k)). We will now show that M satisfies all
rules in gr(cl(Dgcl(G, k)) ∪ Pgcl) that are obtained by grounding rules in Pgcl .

First, we consider an arbitrary ground instance of rule (C1), say, clrd(x, c) →
vtx (x), where x and c are two constants of the language. It is clear from the
definition of M that if clrd(x, c) ∈ M , then x ∈ V and, consequently, vtx (x) ∈ M .
Thus all ground instances of (C1) are satisfied by M .

Next, we consider a ground instance r of rule (C3), say,

r = vtx (x)→
∨
{clrd(x, c): c ∈ V ∪ {1, . . . , k}},

where x ∈ V ∪ {1, . . . , k}. If vtx (x) ∈M , then x ∈ V . Since f(x) ∈ {1, . . . , k}, and
clrd(x, f(x)) ∈ M , it follows that r is satisfied by M . All other rules can be dealt
with in a similar way.
(⇐) We will now assume that M is a model of (Dgcl , Pgcl). By the definition of a
model, we have (1) vtx (x) ∈M if and only if x ∈ V , (2) edge(x, y) ∈M if and only
if {x, y} ∈ E, and (3) color(i) ∈M if and only if i ∈ {1, . . . , k}.

Now, we observe that since M satisfies all ground instances of (C1), if clrd(x, c) ∈
M , then x ∈ V . Similarly, since M satisfies all ground instances of (C3), for ev-
ery x ∈ V there is at least one constant c such that clrd(x, c) ∈ M . On the

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

Predicate-calculus based logics for modeling and solving search problems · 15

other hand, since M satisfies all ground instances of (C2), for each such constant c,
c ∈ {1, . . . , k}. Next, we have that M satisfies all ground instances of (C4). Conse-
quently, for every x ∈ V there is exactly one c ∈ {1, . . . , k} such that clrd(x, c) ∈M .
Let us denote by f the function that assigns to each x ∈ V the unique c ∈ {1, . . . , k}
such that clrd(x, c) ∈M . It follows that M = D ∪ {clr(v, f(v)): v ∈ V }. Moreover,
as M satisfies all ground instances of (C5), f is a k-coloring of G. 2

Let us note that the proof of Proposition 5.1 implies, in fact, that the correspon-
dence between models and colorings is a bijection.

Next, we will describe a data-program pair encoding an instance of the vertex-

cover problem for graphs. Let G = (V,E) be a graph. A set W ⊆ V is a vertex
cover of G if for every edge {x, y} ∈ E, x or y (or both) are in W . The vertex-cover
problem is defined as follows: given a graph G = (V,E) and an integer k, k ≤ |V |,
decide whether G has a vertex cover with no more than k vertices.

For the vertex-cover problem the input data is described by the following set of
ground atoms:

Dvc(G, k) = {vtx (v): v ∈ V } ∪ {edge(v, w): {v, w} ∈ E} ∪ {index (i): i = 1, . . . , k}.

This set of atoms specifies the set of vertices and the set of edges of an input graph.
It also provides a set of k indices which we will use to select a subset of no more
than k vertices in the graph, a candidate for a vertex cover of cardinality at most
k.

The vertex cover problem itself is described by the program Pvc . It introduces a
new relation symbol vc. Intuitively, we use vc to represent the fact that a vertex
has been selected to a candidate set.

VC1: vc(I,X)→ vtx (X)
VC2: vc(I,X)→ index (I)
VC3: index (I)→ vc(I,)
VC4: vc(I,X) ∧ vc(I, Y)→ X = Y
VC5: edge(X,Y)→ vc(,X) ∨ vc(, Y).

(VC1) and (VC2) ensure that vc(i, x) is false if i is not an integer from the set
{1, . . . , k} or if x is not a vertex (that is, if vc(i, x) is true, i ∈ {1, . . . , k} and
x ∈ V). The rules (VC3) and (VC4) together impose the requirement that every
index i has exactly one vertex assigned to it. It follows that the set of ground atoms
vc(i, x) that are true in a model of the data-program pair (Dvc(G, k), Pvc) defines a
subset of V with cardinality at most k. Finally, (VC5) ensures that each edge has
at least one end vertex assigned by vc to an index from {1, . . . , k} (in other words,
that vertices assigned to indices 1, . . . , k form a vertex cover). The correctness of
this encoding is formally established in the following result. Its proof is similar to
that of Proposition 5.1 and we omit it.

Proposition 5.2. Let G = (V,E) be an undirected graph and let k be a pos-
itive integer. If W ⊆ V is a vertex cover of G and |W | ≤ k, then for every se-
quence w1, . . . , wk that enumerates all elements in W (possibly with repetitions),
M = Dvc(G, k) ∪ {vc(i, wi): i = 1, . . . , k} is a model of the data-program pair
(Dvc(G, k), Pvc). Conversely, if M is a model of (Dvc(G, k), Pvc) then the set
W = {w ∈ V : vc(i, w) ∈ M, for some i = 1, . . . , k} is a vertex cover of G with
|W | ≤ k.

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

16 · Deborah East and Miros law Truszczyński

In this case, we do not have a one-to-one correspondence between models and
vertex covers of cardinality at most k. This is because we represent sets by means
of sequences.

Next, we will consider the Hamiltonian-cycle problem in a directed graph.
To represent an input graph G = (V,E) we use the following set of ground atoms:

Dhc(G) = {vtx (x):x ∈ V } ∪ {edge(x, y): (x, y) ∈ E} ∪ {index (i): i = 1, . . . , |V |}.

The set of indices is introduced as part of input because we will represent a Hamil-
tonian cycle by a bijective sequence of vertices such that every two consecutive
vertices in the sequence. as well as the last and the first, are connected with an
edge. To represent such sequences we use a relations symbol hc perm. The pro-
gram, Phc , defining “Hamiltonian” sequences hc perm(i, x) looks as follows. In
this example we assume that ⊕ denotes a predefined relation of addition modulo n
defined on the set of integers {1, . . . , n} (thus, in particular, n⊕ 1 = 1).

HC1: hc perm(I,X)→ index (I)
HC2: hc perm(I,X)→ vtx (X)
HC3: index (I)→ hc perm(I,)
HC4: vtx (X)→ hc perm(,X)
HC5: hc perm(I,X) ∧ hc perm(I, Y)→ X = Y
HC6: hc perm(I,X) ∧ hc perm(J,X)→ I = J
HC7: hc perm(I,X) ∧ hc perm(I ⊕ 1, Y)→ edge(X,Y)
HC8: hc perm(1, 1).

The first two rules ensure that if hc perm(i, x) is true in a model of (Dhc , Phc) then i
is an integer from the set {1, . . . , |V |} and x ∈ V . The rules (HC3) - (HC6) together
enforce the constraint that hc perm defines a permutation of vertices. We note that
each of the rules (HC3) and (HC6) is redundant as it is implied by the three others.
However, our experiments show that having all four rules represented explicitly in
the program results in better computational properties. The rule (HC7) imposes
the Hamiltonicity constraint that from every vertex in the sequence to the next one
(and from the last one to the first one, too) there is an edge in the graph. Finally,
the last rule functions as a symmetry breaker. Without loss of generality, we may
assume that the cycle represented by the predicate hc perm starts with the vertex
1 and that fact is enforced by the rule (HC8). Clearly, that rule is not necessary
for the correctness of the encoding but it significantly reduces the size of the search
space. Formally, we have the following result.

Proposition 5.3. Let G = (V,E) be a directed graph with n vertices. If a
permutation v1, . . . , vn of V is a Hamiltonian cycle of G and v1 = 1, then M =
Dhc(G)∪{hc perm(i, vi): i = 1, . . . , n} is a model of the data-program pair (Dhc(G),
Phc). Conversely, if M is a model of the data-program pair (Dhc(G), Phc), then
M = Dhc(G)∪ {hc perm(i, vi): i = 1, . . . , n}, for some permutation v1, . . . , vn of V
forming a Hamiltonian cycle of G and such that v1 = 1.

We will next consider the n-queens problem, that is, the problem of placing n
queens on a n×n chess board so that no queen attacks another. The representation
of input data specifies the set of row and column indices:

Dnq(n) = {index (i): i = 1, . . . , n}.

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

Predicate-calculus based logics for modeling and solving search problems · 17

The problem itself is described by the program Pnq . The predicate q describes a
distribution of queens on the board: q(x, y) is true precisely when there is a queen
in the position (x, y).

nQ1: q(R,C)→ index (R)
nQ2: q(R,C)→ index (C)
nQ3: index (R)→ q(R,)
nQ4: q(R,C1) ∧ q(R,C2)→ (C1 = C2)
nQ5: q(R1, C) ∧ q(R2, C)→ (R1 = R2)
nQ6: q(R,C) ∧ q(R+ I, C + I)→ ⊥
nQ7: q(R,C) ∧ q(R+ I, C − I)→ ⊥

The first two rules ensure that if q(r, c) is true in a model of (Dnq , Pnq) then
r and c are integers from the set {1, . . . , n}. The rules (nQ3) - (nQ5) together
enforce the constraint that each row and each column contains exactly one queen.
Finally, the last two rules guarantee that no two queens are placed on the same
diagonal. We note that, as in the case of the hamiltonian cycle problem, there are
symmetries in the n-queens problem that could be exploited to reduce the size of
the search space. The structure of these symmetries is slightly more complex and,
for simplicity of the presentation, we decided not to model them. As in the other
cases, we can formally state and prove the correctness of our encoding. The proof
is again quite similar to that of Proposition 5.1 and so we we omit it.

Proposition 5.4. Let n be a positive integer. If a set {(ri, ci): i = 1, 2, . . . , n}
of n points on an n × n board is a solution to the n-queens problem then the
set M = Dnq(n) ∪ {q(ri, ci): i = 1, 2, . . . , n} is a model of the data-program pair
(Dnq(n), Pnq). Conversely, if M is a model of the data-program pair (Dnq(n), Pnq)
then M = Dnq(n) ∪ {q(ri, ci): i = 1, 2, . . . , n}, for some solution {(ri, ci): i =
1, 2, . . . , n} to the n-queens problem.

As in the case of the graph-coloring problem, the correspondence between models
and valid arrangements of queens on the board is a bijection.

For the last example in this section, we consider computing the transitive clo-

sure of a finite directed graph G = (V,E), where V is a set of vertices and E is
a set of directed edges (we will assume that G has no loops). We recall that the
transitive closure of the graph G = (V,E) is the directed graph (V,E′) such that
an edge (x, y) belongs to E′ if and only if there is in G a directed path from x to
y of length at least 1.

We will now describe the representation of data instances and give a PS program
solving the transitive closure problem. The data instance consists of a specification
of an input graph (V,E) and of a collection of integers, {1, 2, . . . , |V |} that will
allow us to count edges in the paths. Thus, we set

Dtc(G) = {vtx (v): v ∈ V } ∪ {edge(v, w): {v, w} ∈ E} ∪ {index (i): 1 ≤ i ≤ n},

where n = |V | − 1.
Next, we construct a program, Ptc , encoding the constraints of the problem. Our

encoding uses an auxiliary 4-ary relation symbol path. The intended meaning of
path(X,Y,Z, I) is that it is true precisely when there is a directed path from X to
Y such that Z is the immediate predecessor of Y on the path and the path length

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

18 · Deborah East and Miros law Truszczyński

is at most I. In Ptc we define the relation path and use it to specify the relation tc
that represents the transitive closure of the input graph.

TC1: path(X,Y,Z, I)→ vtx (X)
TC2: path(X,Y,Z, I)→ vtx (Y)
TC3: path(X,Y,Z, I)→ vtx (Z)
TC4: path(X,Y,Z, I)→ index (I)
TC5: tc(X,Y)→ vtx (X)
TC6: tc(X,Y)→ vtx (Y)
TC7: path(X,Y,X, 1)→ edge(X,Y)
TC8: edge(X,Y)→ path(X,Y,X, 1)
TC9: path(X,Y,Z, 1)→ X = Z
TC10: path(X,Y,Z, I + 1)→ path(X,Z, , I)
TC11: path(X,Y,Z, I + 1)→ edge(Z, Y)
TC12: index (I + 1)∧ path(X,Z,W, I)∧ edge(Z, Y)→ path(X,Y,Z, I + 1)|X = Y
TC13: tc(X,Y)→ path(X,Y, ,)
TC14: path(X,Y,Z, I)→ tc(X,Y)
TC15: path(X,X,Z, I)→ ⊥.

The first four rules enforce that if an atom path(x, y, z, i) is in a model of the
data-program pair (Dtc(G), Ptc) then x, y and z are vertices (vtx (x), vtx (y) and
vtx (z) hold) and i is an index (index (i) holds). The effect of the next two rules is
similar but they concern the relation symbol tc. The rules (TC7) - (TC9) enforce
conditions that atoms path(x, y, z, 1) must satisfy to be in a model. The rules
(TC10) - (TC12) enforce recursive conditions that atoms path(x, y, z, i), i ≥ 2,
must satisfy in order to be in the model. The rules (TC13) - (TC14) define the
relation symbol tc in terms of the relation path. Finally, the rule (TC15) guarantees
that the relation tc has no loops by disallowing paths that start and end in the same
vertex.

The following result can now be proved by an easy induction.

Proposition 5.5. Let G be a directed graph. Then, the data-program pair
(Dtc(G), Ptc) has a unique model that consists of (1) all atoms in Dtc(G), (2)
all atoms path(x, y, z, i), where x 6= y, such that there is a path in G from x to y of
length i and with z being the last but one vertex on this path, and (3) of all atoms
tc(x, y), where x 6= y such that there is a directed path of positive length from x to
y in G.

We have chosen to discuss in detail the question of the transitive closure since it
is well known that this property is not definable in first-order logic [Abiteboul and
Vianu 1991]. We can define it in our logic PS because our notion of definability is
different: data-program pairs define concepts as special Herbrand models. A more
detailed discussion of these issues follows in the next section.

6. EXPRESSIVE POWER OF THE LOGIC PS

Our discussion in the previous sections demonstrated the use of the logic PS as a
tool to represent computational problems. In this section, we will study the expres-
sive power of the logic PS . It is common to measure the expressive power of formal
systems in terms of complexity classes, that is classes of decision problems. We

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

Predicate-calculus based logics for modeling and solving search problems · 19

develop the logic PS as a tool to specify search problems or, equivalently, partial
multivalued functions. Thus, following [Selman 1994], we will measure the expres-
sive power of the logic PS in terms of classes of search problems. Specifically, we will
show that the class of computational problems that can be represented by means
of finite PS programs is the class NPMV, that is, the class of all search problems
recognized by polynomial-time nondeterministic Turing transducers [Selman 1994].

We first recall some database terminology [Ullman 1988]. Let Dom be a fixed
infinite set (for instance, the set of all natural numbers). A relational schema over
a domain Dom is a nonempty sequence R = (r1, . . . , rk) of relation symbols. Each
relation symbol ri comes with integer arity ai > 0. An instance of a relation schema
R is a nonempty and finite set of ground atoms, each of the form ri(u1, . . . , uai

),
where 1 ≤ i ≤ k and u1, . . . , uai

∈ Dom. By I(R) we denote the set of all instances
of a relational schema R. Since Dom is fixed, from now on we will not explicitly
mention it. We also emphasize that, unlike in standard presentations, we require
that instances of a relation schema be nonempty.

Relational schemas provide a framework for a precise definition to a class of
computational problems known as search problems. Let R and S be two disjoint
relational schemas. A search problem (over relational schemas R and S) is a recur-
sive relation Π ⊆ I(R) × I(S). The set I(R) is the set of instances of Π. Given
an instance I ∈ I(R), the set {J ∈ I(S) : (I, J) ∈ Π} is the set of solutions to
Π for the instance I. In [Selman 1994], search problems are referred to as partial
multivalued functions. It is also worth noting that decision problems can be cast
as (special) search problems.

It is clear that the graph problems and the n-queens problem considered ear-
lier in the paper are examples of search problems. More generally, all constraint
satisfaction problems over discrete domains, including such basic AI problems as
planning, scheduling and product configuration, can be cast as search problems.

A search language or language, for short, is a set L of expressions and a function
µ such that for every expression e ∈ L, µ(e) is a search problem. We call µ the
interpretation function for L. By the expressive power of a language L we mean
the class of search problems defined by expressions from L: {µ(e): e ∈ L}.

We note that the concept of a search problem extends that of a database query
[Vardi 1982], which is defined as a partial recursive function from I(R) to I(S).
Consequently, fragments of search languages consisting of those expressions that
define partial functions are, in particular, database query languages. In fact, one
can regard a search problem as a second-order query — a mapping from the set
of instances of some relational schema R into the power set of the set of instances
of another (disjoint) relational schema S. Pushing the analogy further, a search
language can be viewed as a second-order database query language. An expression
in such a language defines, given an instance of a relational schema R, a collection
of instances of a relation schema S, rather than a single instance.

Our goal in this section is to show that the logic PS also gives rise to a search
language and to establish the expressive power of that language. An expression is
a triple (P,R, S), where P is a PS program, and R and S are disjoint nonempty
sets of relation symbols in P . We will show that (P,R, S) can be viewed as a
specification of a search problem over relational schemas R and S. Namely, let

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

20 · Deborah East and Miros law Truszczyński

D ∈ I(R). For every set M ⊆ HB(D ∪ P), by M [S] we denote the set of all those
atoms in M that are built by means of relation symbols from S. We define the
interpretation function µ as follows:

µ(P,R, S) = {(D,F):D ∈ I(R) and F = M [S], where M ∈ Mod(D,P)}.

It is clear that µ(P,R, S) ⊆ I(R)× I(S). Consequently, the set of PS expressions
together with the function µ is a search language.

In a similar way we can view as a search language the language of DATALOG¬

(logic programming without function symbols) with the semantics of Herbrand
models, supported models [Clark 1978; Apt 1990] or stable models [Gelfond and
Lifschitz 1988]. Since the expressive power of DATALOG¬ with the supported-
model semantics will play a role in our considerations, we will recall relevant notions
and results2.

Let L be a language of predicate logic. A DATALOG¬ clause is an expression r
of the form

r = p(X)← q1(X1), . . . , qm(Xm),¬qm+1(Xm+1), . . . ,¬qm+n(Xm+n),

where p, q1, . . . , qm+n are relation symbols and X,X1, . . . ,Xm+n are tuples of con-
stant and variable symbols with arities matching the arities of the corresponding
relation symbols. We call the atom p(X) the head of the clause r and denote it by
h(r). If a clause has empty body, we represent it by its head (thus, atoms can be
regarded as clauses). For a clause r we also set

B(r) = q1(X1) ∧ . . . ∧ qm(Xm) ∧ ¬qm+1(Xm+1) ∧ . . . ∧ ¬qn(Xn).

A DATALOG¬ program is a collection of DATALOG¬ clauses. Let P be a
DATALOG¬ program. As usual, we call relation symbols that appear in the heads
of clauses in P intentional. We refer to all other relation symbols in P as ex-
tensional. We denote the sets of intentional and extensional relation symbols of
a DATALOG¬ program P by I(P) and E(P), respectively. Next, for a relation
symbol p that appears in P , we denote by Def (p) the set of all clauses in P whose
head is of the form p(t), for some tuple t of constant and variable symbols. In other
words, Def (p) consists of all clauses that define p.

In the paper we restrict our attention to DATALOG¬ programs of special form,
called I/O programs, providing a clear separation of data facts (ground atoms
representing data) from clauses (definitions of intentional relation symbols). To
this end, we define first a class of pure programs. We say that a DATALOG¬

program P is pure if

(1) for every relation symbol p ∈ I(P), all clauses in Def (p) have the same head
of the form p(X), where X is a tuple of distinct variables

(2) P contains no occurrences of constant symbols

(3) E(P) 6= ∅.

2All concepts related to DATALOG¬ that we mention here can be defined in a more general
setting of logic programming languages that include function symbols. For an in-depth discussion

of logic programming, we refer the reader to [Apt 1990].

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

Predicate-calculus based logics for modeling and solving search problems · 21

Pure programs are, in particular, in the so-called normal form as they satisfy condi-
tion (1) [Apt 1990]. An I/O program is a DATALOG¬ program of the form D∪P ,
where P is a pure program and D ∈ I(E(P)) (that is, D is a nonempty and finite
set of ground atoms built of relation symbols in E(P)). To simplify the discussion,
we define supported models for I/O programs only. It does not cause any loss of
generality. Indeed, one can show that for every logic program containing at least
one constant symbol there is an I/O program with the same intentional relation
symbols and such that supported models of both programs, when restricted to in-
tentional ground atoms, coincide (that is, under the semantics of supported models,
both programs define the same relations).

Let P be a pure program and let D ∈ I(E(P)). For a predicate p from I(P), we
define its (Clark’s) completion cc(p) as

cc(p) = p(X)⇔
∨
{∃Yr B(r): r ∈ Def (p)},

where X is a tuple of variables and Yr is the tuple of distinct variables occurring
in the body of r but not in the head of r (we exploit the normal form of P here)
[Clark 1978]. We define the (Clark’s) completion of P , CC (P), by setting

CC (P) = {cc(p): p ∈ Pr}.

Finally, we define a set of ground atoms M ⊆ HB(D ∪ P) to be a supported model
of an I/O program D∪P if it is a Herbrand model of cl(D)∪CC (P), where cl(D)
is defined as in Section 2. We denote by Supp(D∪P) the collection of all supported
models of D ∪ P .

Let P be a pure program and let S ⊆ I(P). We define

ν(P, S) = {(D,F): D ∈ I(E(P)), and F = M [S],

where D 6= ∅ and M ∈ Supp(D ∪ P)}.

Since E(P), I(P) and S can be regarded as relational schemas, ν(P, S) is a search
problem. Thus, the set of expressions (P, S), where P is a pure program and S is
a subset of I(P), together with the function ν form a search language.

The expressive power of this language is known. A search problem Π over re-
lational schemas R and S is in the class NPMV if there is a nondeterministic
polynomial-time transducer (a Turing machine with the designated read-only input
tape and the write-only output tape) computing Π [Selman 1994]. That is, for ev-
ery instance I of the schema R (input instance of Π) placed on the input tape, the
set of strings left on the output tape by accepting computations for I is precisely
the set {J ∈ I(S): (I, J) ∈ Π}, that is, the set of solutions to Π for the input I.

The class NPMV is precisely the class of search problems captured by finite
DATALOG¬ programs with the supported-model semantics.

Theorem 6.1 [Marek and Remmel 2003]. For every finite pure program P
and every S ⊆ I(P), ν(P, S) is a search problem in the class NPMV. Conversely, for
every problem Π in the class NPMV there is a pure program P and a set S ⊆ I(P)
such that ν(P, S) = Π.

We will now show that the expressive powers of PS and of DATALOG¬ with
supported model semantics are the same. Namely, we will prove the following
result.

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

22 · Deborah East and Miros law Truszczyński

Theorem 6.2. For every finite pure program P and every set S ⊆ I(P), there
is a finite PS program P ′ such that E(P) ∪ I(P) are among the relation symbols
appearing in P ′ and ν(P, S) = µ(P ′, E(P), S). Conversely, for every finite PS
program P ′ and every nonempty and disjoint sets R and S of relation symbols
appearing in P ′, there is a finite pure program P such that R = E(P), S ⊆ I(P)
and µ(P ′, R, S) = ν(P, S).

Proof: Let P be a pure program. We will consider the completion CC (P) of P
and construct its equivalent representation in terms of PS rules (we recall that PS
rules are just special formulas from the language of predicate logic).

We build this representation of CC (P) as follows. Let p be a predicate symbol
in I(P). Let us assume that p(X), where X is a tuple of distinct variables, is the
common head of all clauses in Def (p). Let us consider a clause r ∈ Def (p), say

r = p(X)← q1(X1), . . . , qm(Xm),¬qm+1(Xm+1), . . . ,¬qn(Xn),

and let Yr be a tuple of distinct variables that appear in the body of r but not in
its head. We introduce a new predicate symbol dr, of the arity |X|+ |Yr| and define
the following PS rules

ψi(r) = dr(X,Yr)→ qi(Xi), i = 1, . . . ,m
ψi(r) = dr(X,Yr) ∧ qi(Xi)→ ⊥, i = m+ 1, . . . , n
ψ0(r) = q1(X1)∧. . .∧qm(Xm)→ dr(X,Yr)∨qm+1(Xm+1)∨. . .∨qn(Xn).

We define Ψ(r) = {ψ0(r), ψ1(r), . . . , ψn(r)}. It is clear that Ψ(r) entails (in the
first-order logic) the universal sentence dr(X,Yr)↔ B(r) (intuitively, Ψ(r) specifies
dr(X,Yr) so that it can be regarded as an abbreviation for B(r)).

We will now use atoms dr(X,Yr) to define PS rules that form an equivalent
representation to the formula cc(p). Let us recall that

cc(p) = p(X)⇔
∨
{∃Yr B(r): r ∈ Def (p)}.

Thus, we define the following PS rules:

cc′r(p) = dr(X,Yr)→ p(X), r ∈ Def (p)
cc′(p) = p(X)→

∨
{∃Yrdr(X,Yr): r ∈ Def (p)}.

It is clear (by first-order logic tautologies) that

Φ(p) = {Ψ(r): r ∈ Def (p)} ∪ {cc′r(p): r ∈ Def (p)} ∪ {cc′(p)}

and cc(p) have the same first-order models (modulo new relation symbols dr).
Let us define P ′ =

⋃
{Φ(p): p ∈ I(P)}. Clearly, P ′ is a PS program and every

relation symbol in E(P) ∪ I(P) is in P ′. Moreover, by the comment made above,
for every instance D of the schema E(P), cl(D)∪P and cl(D)∪P ′ have the same
models and, in particular, the same Herbrand models (again modulo new relation
symbols). Thus, ν(P, S) = µ(P,E(P), S).

We will now prove the second part of the assertion. Let P ′ be a PS program
and let R and S be nonempty and disjoint sets of relation symbols appearing in P ′.
By Theorem 6.1, it is enough to show that the search problem µ(P ′, R, S) belongs
to the class NPMV. This is, however, straightforward. A nondeterministic Turing
transducer M for solving µ(P ′, R, S) can be described as follows:

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

Predicate-calculus based logics for modeling and solving search problems · 23

(1) An instance D ∈ I(R) forms the initial content of the input tape.

(2) M grounds (in a deterministic way) the data-program pair (D,P ′) (the design of
M depends on P ′ in a way that supports that task). Since the data complexity
of grounding is in the class P, the task can be accomplished in polynomial time
with respect to the size of D (measured as the total number of symbols in D).

(3) M generates in a nondeterministic fashion (using its guessing module) a subset
of the Herbrand base. This task involves a number of guesses that is not greater
than |HB(D ∪ P ′)|, again a polynomial in the size of D.

(4) Next, M checks (deterministically) that the subset that was guessed is a model
of the ground theory. This task can be accomplished in time that is polynomial
in the size of the grounding of the data-program pair (D,P) which, as we
already pointed out, is polynomial in the size of D.

(5) If the subset that was guessed is not a model, M moves to halting state NO
(non-accepting). Otherwise, M scans the model and writes onto the the output
tape all atoms in the model that are built of relation symbols in S. Upon
completion of the task, M moves to halting state YES (accepting).

It is clear that tape contents for accepting computations are precisely projections
of models of the data-program pair (D,P) onto S. That is, M computes the search
problem Π nondeterministically in polynomial time. It follows that µ(P ′, R, S) is
in the class NPMV. 2

Corollary 6.3. A search problem Π is in the class NPMV if and only if there
is a finite PS program P and nonempty disjoint sets R and S of relation symbols
appearing in P such that Π = µ(P,R, S).

Decision problems can be viewed as special search problems. Thus, in particular,
every decision problem in the class NPMV (these problems form the class NP) can
be expressed by means of a finite PS program (and two nonempty disjoint sets of
relation symbols appearing in it). This observation is a counterpart to a result by
Schlipf concerning DATALOG¬ [Schlipf 1995].

Corollary 6.4. A decision problem Π is in the class NP if and only if there
is a finite PS program P and nonempty disjoint sets R and S of relation symbols
appearing in P such that Π = µ(P,R, S).

We conclude this section by noting that the existential fragment of the second-
order logic (the logic ESO) [Fagin 1974; Gottlob et al. 2000] is also a search language
and it is closely related to our approach. The only difference is that of a perspective
— we work within the first-order framework, while the logic ESO is concerned with
theories in the second-order logic. [Fagin 1974] established the expressive power of
the logic ESO in terms of classes of decision problems and showed it to be that of the
class NP. One could generalize that result to the setting, where the expressive power
is measured by classes of search problems, and derive the main result of this section
through the connection to the logic ESO. We provided a different proof to exhibit an
explicit uniform translation of logic programs with the supported-model semantics
to our formalism, which generalizes similar translations at the propositional level
that are behind the system cmodels [Babovich and Lifschitz 2002]). That encoding
is important, as it shows that at least in some cases (for instance, when supported

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

24 · Deborah East and Miros law Truszczyński

and stable models coincide), the negation as failure available in logic programming
can be uniformly compiled away (and exhibits a way to do it).

7. EXTENSIONS OF THE LOGIC PS

From the programming point of view, the logic PS provides a limited repertoire
of modeling means: constraints must be represented as rules (essentially, standard
clauses of predicate logic). We will now present ways to enhance the effectiveness of
logic PS as a programming formalism. Namely, we will introduce extensions to the
basic formalism of the logic PS to provide direct support representations of some
common “higher-level” constraints. We denote this extended logic PS by PS+.

7.1 Adding cardinality atoms

When considering the PS theories developed for the n-queens and vertex-cover
problems one observes that these theories could be simplified if the language of
the logic PS contained direct means to capture constraints such as: “exactly one
element is selected” or “at most k elements are selected”.

We already noted earlier that extensions of the language of DATALOG¬ with
explicit constructs to model such constraints and the corresponding modifications
in the algorithms to compute stable models resulted in significant performance
improvements. These gains can be attributed to the fact that programs in the
extended language are usually much more concise, their ground versions often use
fewer ground atoms and have smaller sizes. Thus, the search space of candidate
models typically is also smaller.

It is natural to expect that similar gains are also possible in the case of our
formalism. With this motivation in mind, we extend the language of the logic PS
by cardinality atoms. We we first consider a propositional language specified by
a set of atoms At . By a propositional cardinality atom (propositional c-atom, for
short), we mean any expression of the form m{p1, . . . , pk}n (one of m and n, but
not both, may be missing), where m and n are non-negative integers and p1, . . . , pk

are atoms from At . The notion of a rule generalizes in an obvious way to the case
when propositional c-atoms are present in the language. Namely, a c-rule is an
expression of the form

C = A1 ∧ . . . ∧As → B1 ∨ . . . ∨Bt,

where all Ai and Bi are (propositional) atoms or c-atoms.
Let M ⊆ At be a set of atoms. We say that M satisfies a c-atom m{p1, . . . , pk}n

if

m ≤ |M ∩ {p1, . . . , pk}| ≤ n.

If m is missing, we only require that |M ∩ {p1, . . . , pk}| ≤ n. Similarly, when n is
missing, we only require that m ≤ |M ∩ {p1, . . . , pk}|. A set of atoms M satisfies a
c-rule C if M satisfies at least one atom Bj or does not satisfy at least one atom
Ai.

For example, if At = {a, b, c, d}, then the expression

a→ 2{a, c, d} ∨ d

is a rule. The set M = {a, c} is its model while M ′ = {a, b} is not.

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

Predicate-calculus based logics for modeling and solving search problems · 25

To generalize the idea of a cardinality atom to the language of predicate calculus,
we need syntax that will facilitate concise representations of sets. We define a
cardinality atom or c-atom, for short, to be any expression

l{S1;S2; . . . ;Sk}u,

where l and u are terms (constants or variables) and S1, S2, . . . , Sk are set defini-
tions. Intuitively, the meaning of a c-atom l{S1;S2; . . . ;Sk}u is that there are at
least l and no more than u atoms that are true in the union of the sets specified
by the set definitions S1, . . . , Sk. We will now make this intuition precise. Our
definitions are similar to those proposed in [Simons et al. 2002] in the context of
SLP.

A set definition is an expression of the form p(t)[L] : d1(s1)∧ . . .∧dm(sm), where
p is a program relation symbol, L is a list of variables, di, 1 ≤ i ≤ m, are data or
predefined relation symbols, and t, si, 1 ≤ i ≤ m, are tuples of terms. We require
that the underscore symbol does not occur in the term tuples si, 1 ≤ i ≤ m, but it
may appear in the term tuple t. We call the conjunction d1(s1) ∧ . . . ∧ dm(sm) the
condition of the set definition. We note that it is possible that L is empty (in such
case we omit it from the notation) and that m = 0 (in such case we may omit the
symbol ‘:’). We also note that the restriction to data and built-in predicates only
in the condition of a set definition could be relaxed. We adopt it as it simplifies
the definition of the semantics of c-atoms.

Variables that appear in the list L of a set definition S are bound (in S). Variables
appearing in S that are not bound are free.

We will now specify the meaning of a set definition. We will start with an
example. The expression S = p(X,Y)[Y] : d(X,Y) is a set definition (assuming
that d is a data predicate). The variable X is free in it and Y is bound. Intuitively,
designating X as free and Y as bound means that for every constant x, S stands
for the set of all atoms p(x, y), where y is a constant such that d(x, y) holds.

We will now make this intuition precise. Let S = p(t)[L] : d1(s1)∧. . .∧dm(sm) be
a set definition appearing in a c-rule (we give a definition below) of a data-program
pair T = (D,P). If there are underscore symbols in t, we replace each of them
by a new distinct variable and include all these new variables in the list L. From
now on, we assume that the underscore symbols have been removed from t. Let
ϑ be a ground substitution whose domain contains all free variables in S and does
not contain any variables that are bound in S (we note that the sets of free and
bound variables are disjoint). By Sϑ we denote the set of atoms of the form p(tϑϑ′),
where ϑ′ is a ground substitution with the domain consisting of all variables that
are bound in S such that for every i, 1 ≤ i ≤ m, di(siϑϑ

′) holds (we recall that data
and predefined relation symbols are fully specified by a data-program pair and this
latter condition can be verified efficiently). We note that if L is empty, Sϑ consists
of a single ground atom p(tϑ) (none of the variables appearing in p(t) is bound).

We can now make the definition of a c-atom precise. It is an expression of the form
l{S1;S2; . . . ;Sk}u, where l and u are terms (constants or variables), S1, S2, . . . , Sk

are set definitions, and l and u are not local in Si, 1 ≤ i ≤ k.
A c-rule is an expression of the form

C = A1 ∧ . . . ∧As → B1 ∨ . . . ∨Bt,

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

26 · Deborah East and Miros law Truszczyński

where all Ai and Bi are atoms, e-atoms or c-atoms. As before we do not allow
e-atoms to appear in the antecedent of the rule. To specify the meaning of a c-rule
C, we ground it and replace it with a set of propositional rules (with propositional
cardinality atoms). Let us now consider a c-atom A = l{S1; . . . ;Sk}u appearing in
C. We start by renaming all bound variables by new unique names different from
any other variable name in the rule (the renaming does not change the meaning of
any of the set definitions in A). In this way, the sets of bound and free variables
in C are disjoint. Let ϑ be a ground substitution whose domain contains all free
variables and none of the bound ones. A. We define Aϑ as follows:

(1) Aϑ = ⊥, if lϑ or uϑ are not integers appearing as constants in T

(2) Aϑ = lϑ{S1ϑ ∪ . . . ∪ Skϑ}uϑ, otherwise. In this case, lϑ and uϑ are integer
constants appearing in T , and S1ϑ ∪ . . . ∪ Skϑ is the set of ground atoms.

It is clear Aϑ is a propositional c-atom. Applying ϑ to all atoms in C produces
a c-rule Cϑ. This rule is, clearly, a propositional c-rule. Let T = (D,P) be a
data-program pair. We define gr(T) to consist of all propositional c-rules of the
form Cϑ, where C is a c-rule in P and ϑ is a ground substitution that contain in
its domain all free variables in C and none of C’s bound variables. We define a set
M of ground atoms to be a model of T if it is a model of gr(T).

We will now illustrate these definitions with an example. Let (D,P) be a data-
program pair (in the language extended with c-atoms). Let us assume that

D = {d1(1), d1(2), d1(3), d2(a), d2(b)}

and that

C = d1(X)→ X{p(X,Y)[Y]: d1(Y) ∧ Y ≥ X; q(X)[X]: d2(X)}

is a rule in P . We start by rewriting the rule as

C ′ = d1(X)→ X{p(X,Y)[Y]: d1(Y) ∧ Y ≥ X; q(Z)[Z]: d2(Z)}

s to ensure that the sets of bound and free variables are different. As a result, X is
free and Y and Z are bound.

There are five different ground substitutions ϑ for X (that do not have Y nor Z
in their domain). If ϑ replaces X with a or b, the head of the rule grounds to ⊥
(by the first rule of the definition of Aϑ). If ϑ replaces X with, say, 2, we have

(p(X,Y)[Y]: d1(Y) ∧ Y ≥ X)ϑ = {p(2, 2), p(2, 3)},

as 2 and 3 are the only two substitutions for Y that satisfy the conditions d1(Y) ∧
Y ≥ 2 (we recall that ϑ assigns 2 to X). The situation is similar if X is replaced
with 1 and 3.

Clearly, we also have

(q(Z)[Z]: d2(Z))ϑ = {q(a), q(b)}.

(In fact, that identity holds no matter what constant X is replaced with). Thus,
gr(D,P) consists of the following five rules:

d1(1)→ 1{p(1, 1), p(1, 2), p(1, 3), q(a), q(b)}
d1(2)→ 2{p(2, 2), p(2, 3), q(a), q(b)}

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

Predicate-calculus based logics for modeling and solving search problems · 27

d1(3)→ 3{p(3, 3), q(a), q(b)}
d1(a)→ ⊥
d1(b)→ ⊥.

The last two of these rules are immaterial (d1(a) and d1(b) are both interpreted as
false). The third rule implies that the atoms p(3, 3), q(a) and q(b) must be true in
every model of (D,P).

In the extended logic one can express formulas ∃X1, . . . ,Xkp(t), in which vari-
ables Xi are not necessarily distinct. We recall that in Section 2, when introduc-
ing the logic PS , we imposed the requirement that variables that are existentially
quantified be pairwise distinct. However, we stated there that it can be lifted. We
illustrate one way to do it in the logic PS+ with an example. Let us consider a
formula ∃Xp(X,X). We express this formula in the logic plcp with the c-atom
1{p(X,X)[X]}.

In the extended logic PS+ we can encode the vertex cover problem in a more
straightforward and more concise way. Namely, there is no the need for integers to
represent indices as sets are represented directly and not in terms of sequences! In
this new representation (D′

vc(G, k), P
′

vc), D
′

vc(G, k) is given by

D′

vc(G, k) = {vtx (v): v ∈ V } ∪ {edge(v, w): {v, w} ∈ E} ∪ {size(k)},

and P ′

vc consists of the rules:

VC′1: invc(X)→ vtx (X)
VC′2: size(K)→ {invc(X)[X]: vtx (X)}K
VC′3: edge(X,Y)→ invc(X) ∨ invc(Y).

Atoms invc(x) that are true in a model of the PS theory (D′

vc , P
′

vc) define a set
of vertices that is a candidate for a vertex cover. (VC′2) guarantees that no more
than k vertices are included. (VC′3) enforces the vertex-cover constraint.

Cardinality atoms also yield alternative encodings to the graph-coloring and n-
queens problems. In both cases, we use the same representation of input data and
modify the program component only. In the case of the graph-coloring problem, a
single rule, (C′3), directly stating that every vertex is assigned exactly one color,
replaces two old rules (C3) and (C4).

C′1: clrd(X,C)→ vtx (X)
C′2: clrd(X,C)→ color(C)
C′3: 1{clrd(X,C)[C]: color(C)}1
C′4: edge(X,Y) ∧ clrd(X,C) ∧ clrd(Y,C)→ ⊥.

In the case of the n-queens problem the change is similar. The rules (nQ3) and
(nQ4) are replaced with a single rule (nQ′3) and the rules (nQ5) and (nQ6) with a
single rule (nQ′4).

nQ′1: q(R,C)→ index (R)
nQ′2: q(R,C)→ index (C)
nQ′3: 1{q(R,C)[C]: index (C)}1
nQ′4: 1{q(R,C)[R]: index (R)}1
nQ′5: {q(R+ I − 1, I)[I] : index (I)}1
nQ′6: {q(I, C + I − 1)[I] : index (I)}1
nQ′7: {q(R− I + 1, I)[I] : index (I)}1

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

28 · Deborah East and Miros law Truszczyński

nQ′8: {q(n− I + 1, C + I − 1)[I] : index (I)}1.

The rule (nQ′5) enforces the condition that the main ascending diagonal and all
ascending diagonals above it contain at most one queen. The rule (nQ′6) enforces
the same condition for the ascending main diagonal and all ascending diagonals
below it. Finally, the rules (nQ′7) and (nQ′8) enforce the same condition for de-
scending diagonals. In the original encoding we used only two rules to represent
these conditions. We could use them here again. However, the four rules that we
propose here, and that are possible thanks to the availability of c-atoms, result in
significantly smaller ground theories. We address this issue in detail in Section 8.

7.2 Adding closure computation to logic PS+

In Section 5, we presented programs capturing the concepts of reachability in graphs
and of transitive closure of binary relations. These representations are less elegant
and, more importantly, less concise than representations possible in SLP. For in-
stance, the transitive closure of a binary relation r can be computed by the following
DATALOG program:

TC′1: tc(X,Y)← r(X,Y)
TC′2: tc(X,Y)← r(X,Z), tc(Z, Y).

This encoding capitalizes on the minimality that is inherent in the stable-model se-
mantics (in this case, the program, being a definite Horn program, has a unique least
model). Moreover, the grounding of this program has size linear in the cardinality
of the relation r.

Constraints involving reachability, transitive closure and other related concepts
are quite common. In the problem of existence of a Hamiltonian cycle in a directed
graph, we may first constrain candidate sets of edges to those that span collections
of disjoint cycles covering all vertices in the graph (for instance, by imposing the
restriction that in each vertex exactly one edge from the candidate set starts and
exactly one edge from the candidate set ends). Clearly, such a candidate set is a
Hamiltonian cycle if and only if it is connected. This requirement can be enforced
by the constraint that all graph vertices be reachable, by edges in the candidate set,
from some (arbitrary) vertex in the graph.

With this motivation in mind, we will now introduce yet another extension of the
basic logic providing, in particular, means to express constraints involving reach-
ability, connectivity, transitive closure and similar related concepts in a way they
are used in SLP. To this end, we extend both the syntax and the semantics of the
logic PS+.

As it is standard, by a definite Horn rule we mean a PS rule (a rule without
cardinality atoms) whose consequent is a single regular atom (that is, not an e-atom
as, we recall, e-atoms are formulas representing disjunctions of atoms). Definite
Horn rules play a key role in this extension of the logic. The idea is to split the
program component in a data-program pair into three parts. Intuitively, the first
of them will describe initial constraints on the space of candidate solutions. The
second, consisting of definite Horn rules, will “close” each candidate generated by
the first part. The third component will provide additional constraints that have
to be satisfied by the closure.

Formally, by an extended program we mean a triple (G,H, V) such that

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

Predicate-calculus based logics for modeling and solving search problems · 29

(1) G and V are collections of (arbitrary) PS+ rules, called generating and verifying
rules, respectively, and H is a collection of definite Horn rules

(2) No relation symbol appearing in the consequent of a rule in H appears in rules
from G.

An extended data-program pair is a pair (D,P), where D is a set of ground atoms
(data) and P is an extended program. When listing an extended program, we use
the following convention. We write Horn rules as in logic programming, starting
at the left with the head, followed by the (reversed) arrow ← as the implication
connective and, finally, followed by the conjunction of the atoms of the body. There
is no need to explicitly distinguish between rules in G and V as the partition
is implicitly defined by H. Namely, non-Horn rules involving relation symbols
appearing in the consequents of Horn rules form the set V . All other non-Horn
rules form the set G.

Let (D,P) be an extended data-program pair, where P = (G,H, V). A set of
ground atoms from the Herbrand base of (D,G) is a model of (D,P) if

(1) M is a model of (D,G)

(2) the closure of M under H, that is, the least Herbrand model of the definite
Horn theory M ∪H, satisfies all ground instances of rules in V .

The first condition enforces that models of (D,P) satisfy all constraints specified
by G. Thus, G can be regarded as a generator of the search space, as there are still
additional constraints to be satisfied. The second condition eliminates all these
models generated by G whose closure under H violates some of the constraints
given by V . In other words, H computes the closure and V verifies whether the
closure has all of the desired properties.

As an illustration of the way this extension of logic PS+ can be used we will pro-
vide a formal representation of the Hamiltonian-cycle problem, capturing intuitions
described above. Let G = (V,E) be a directed graph and let v0 be an arbitrary
vertex in V . To represent this data we set

D′

hc(G, v0) = {vtx (v): v ∈ V } ∪ {edge(v, w): {v, w} ∈ E} ∪ {start(v0)}.

Formally speaking, for the Hamiltonian-cycle problem, there is no need to include
v0 in the data set. We do it, as our encoding involves the notion of reachability,
for which some arbitrary “starting” point is needed. The (extended) program part,
P ′

hc , consists of the following six rules.

HC′1: hc edge(X,Y)→ edge(X,Y).
HC′2: 1{hc edge(Y,X)[Y]: vtx (Y)}1.
HC′3: 1{hc edge(X,Y)[Y]: vtx (Y)}1.
HC′4: visit(Y)← visit(X) ∧ hc edge(X,Y).
HC′5: visit(Y)← start(X).
HC′6: visit(X).

We note the use of our notational convention. Clearly, the rules (HC′4) and
(HC′5) form the Horn part (it is indicated by the way they are written). It fol-
lows that the rules (HC′1)-(HC′3) are generating and the rule (HC′6) is verifying.
Intuitively, the rule (HC′1) guarantees that if an atom hc edge(x, y) is true then,
(x, y) is an edge (in other words, only edges of the graph can be chosen to form a

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

30 · Deborah East and Miros law Truszczyński

Hamiltonian cycle). Rule (HC′2) captures the constraint that for every vertex x
there is exactly one selected edge that ends in x. Similarly, the rule (HC′3) captures
the constraint that for every vertex x there is exactly one selected edge that starts
in x. Thus, every model of the data-program pair consisting of Dhc(G, v0) and
the rules (HC′1)-(HC′3) contains Dhc(G, v0) and a set of atoms hc edge(x, y) that
describe a particular selection of edges and that span in G disjoint cycles covering
all its vertices. Rules (HC′4) and (HC′5) define the relation visit that describes all
vertices in G reachable from v0 by means of selected edges. Finally, the last rule
verifies that all vertices are reached, that is, that selected edges form, in fact, a
Hamiltonian cycle.

7.3 Expressive power of extended logics

We close this section with an observation on the expressive power of the logic PS+.
Since it is a generalization of the logic PS , it can express all problems that are
in the class NPMV. On the other hand, the search problem of computing models
of a data-program pair (D,P), where P is a fixed PS+ program, is an NPMV
problem (a simple modification of the proof of the second assertion of Theorem
6.2 demonstrates that). Thus, it follows that the expressive power of the logics
PS+ does not extend beyond the class NPMV. In other words, the logic PS+ also
captures the class NPMV.

8. COMPUTING WITH PS+ THEORIES

In the preceding sections, we focused on the use of the logic PS+ as a language
for encoding (programming) search problems and established its expressive power.
In order to use the logic PS+ as a computational problem solving tool we need
algorithmic methods for processing data-program pairs and finding their models.

Let us recall that a set M of ground atoms is a model of a data-program pair
(D,P) if and only if M is a model of the theory gr(cl(D)∪P)). Thus, to compute
models one could proceed in two steps: (1) compute gr(cl(D) ∪ P)), and (2) find
models of the ground theory. We refer to these steps as grounding and solving,
respectively. This two-step approach is used successfully by all current implemen-
tations of SLP, including smodels and dlv. We will adhere to it, as well.

8.1 Grounding PS+ theories

It is easy to see that the data complexity of grounding is in the class P. That is, there
is an algorithm that for every data-program pair (D,P) computes gr(cl(D) ∪ P))
and, assuming that P is fixed, works in time that is polynomial in the size of D. For
instance, a straightforward enumeration of all substitutions of appropriate arities
(determined by the numbers of free variables in program rules) can be adapted to
yield a polynomial-time algorithm for grounding (we provided additional relevant
comments at the end of Subsection 2.3).

This straightforward approach can be improved. The size of grounding (although
polynomial in the size of the data part) is often too large to be computed in practice.
To address this potential problem, we note that to compute the models it is not
necessary to use gr(cl(D) ∪ P)). Any propositional theory, which has the same

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

Predicate-calculus based logics for modeling and solving search problems · 31

models as gr(cl(D)∪P)) can be used instead. In this context, let us note that the
truth values of all ground atoms appearing in gr(cl(D)∪P)), which are built of data
relation symbols can be computed efficiently by testing whether they are present
in D. Similarly, we can effectively evaluate truth values of all ground atoms built
of predefined relation symbols by, depending on the relation, checking whether two
constants are identical, different or, in the case of integer constants, whether one is
the sum, product, etc. of two other integer constants.

Thus, the theory gr(cl(D) ∪ P)) can be simplified by taking into account the
truth values of ground atoms built of data and predefined relation symbols. Let A
be such a ground atom.

(1) If A appears in the consequent of the clause and is true, we eliminate this clause

(2) If A appears in the consequent of the clause and is false, we eliminate A from
the consequent of the clause

(3) If A appears in the body of a clause and is true, we eliminate A from the body

(4) If A appears in the body of the clause and is false, we eliminate this clause.

These simplifications may reveal other atoms with forced truth values and the
process continues, much in the spirit of the unit propagation used in satisfiability
solvers. For instance, if we obtain a rule consisting of a single (regular) atom and
this atom appears in the consequent of the rule, the atom must be true. If, on
the other hand, this single atom appears in the body of the rule, it must be false.
Furthermore, if a cardinality atom of the form m{p1, . . . , pk}n, is forced to be true
and the number of atoms pi that have been already assigned value true is n, then
all the unassigned atoms pi must be false. In addition, if the number of atoms pi

that have been already assigned value false is k − m, then all unassigned atoms
must be true. Similar propagation rules exist for the case when a c-atom is forced
to be false.

We continue the process of simplifying the theory as long as new atoms with
forced truth values are discovered. We call the theory that results when no more
simplifications are possible the ground core of a data-program pair (D,P). We
denote it by core(D,P).

We have the following straightforward result (as in the other cases before, we do
not explicitly mention ground predefined atoms when specifying models).

Proposition 8.1. Let (D,P) be a data-program pair. A set M of ground atoms
is a model of (D,P) if and only if M = D ∪ T ∪M ′, where T is the set of atoms
that are forced to be true and M ′ is a model of core(D,P).

Proposition 8.1 suggests that for the grounding step, it is enough to compute
core(D,P) rather than gr(cl(D) ∪ P)). It is an important observation. The size
of the theory core(D,P), measured as the total number of symbol occurrences, is
usually much smaller when compared to that of gr(cl(D) ∪ P)). Following this
general idea, we designed and implemented a program, psgrnd that, given a data-
program pair (D,P), computes its ground equivalent core(D,P).

8.2 Solving propositional PS+ theories

We will now focus on the second step — searching for models of a propositional
PS+ theory. First, we will consider the class of theories that are obtained by

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

32 · Deborah East and Miros law Truszczyński

grounding data-program pairs whose program component does not contain c-atoms.
In this case, the ground core of a data-program pair is a collection of standard
propositional clauses (written as implications). The program psgrnd provides an
option that, in such case, produces the ground core of the input data-program
pair in the DIMACS format. Consequently, most of the current implementations of
propositional satisfiability (SAT) solvers can be used in the solving step to compute
models. Thus, we can view the logic PS as a programming tool for modeling
problems in terms of propositional constraints and regard psgrnd as a front-end
facilitating the use of SAT solvers.

If c-atoms and Horn rules are present in a program, the theory after grounding
and simplification is a propositional PS+ theory that contains, in general, (propo-
sitional) c-atoms and propositional definite Horn rules. Thus, SAT solvers are not
directly applicable. One approach in such case is to represent c-atoms and closure
rules by means of equivalent (standard) propositional theories. It is possible since,
as we noted earlier, logics PS and PS+ have the same expressive power.

We argue, however, that a more promising approach to compute models of data-
program pairs is to design solvers for propositional PS+ theories that are direct
outcomes of the grounding process and, in general, may contain c-atoms. The
reason is that using high-level constraints results in programs whose ground repre-
sentations are often more concise then those obtained by corresponding programs
that do not involve such constraints. We will illustrate this point using programs
developed earlier in the paper.

We start with the vertex-cover problem. Let G be an input graph with n vertices
and m edges, and let k be an integer specifying the cardinality of a vertex cover. In
the case of the program consisting of rules (VC1) - (VC5), our grounding algorithm
results in a propositional theory with kn atoms of the form vc(i, x) and with Θ(kn2)
rules of total size (measured by the number of atom occurrences) also Θ(kn2).
On the other hand, grounding of the program consisting of rules (VC′1) - (VC′3)
yields a theory with n atoms of the form invc(x) and with Θ(m) rules of total
size Θ(n + m). Thus, this latter encoding involves fewer atoms (if k ≥ 2) and is
asymptotically smaller in size, especially in view of the fact that k is often as large
as a positive fraction of the number of vertices in the graph.

Next, we will consider the Hamiltonian-cycle problem. Our first encoding (rules
(HC1) - (HC8)) grounds to a theory with n2 atoms and with total size Θ(n2 +
n(n2 − m)). Our second encoding, involving definite Horn rules (rules (HC′1) -
(HC′6)), grounds to a theory with n2 + n atoms and the total size of Θ(n2). Thus,
even though this theory uses slightly more atoms, it has significantly smaller total
size. In fact, the total size is one order of magnitude smaller, unless a graph is
“almost complete”, that is, the number of “missing” edges is o(n2).

For the original encoding of the n-queens program, psgrnd produces a proposi-
tional theory of size Θ(n3). On the other hand, it is easy to see that grounding of
the the second encoding (the one involving cardinality atoms), has size Θ(n2) — a
gain of an order of magnitude.

In the case of the encodings for the graph-coloring problems, we also obtain
more concise theories by grounding programs designed with the use of c-atoms.
Indeed, the rule (C′3) grounds to a smaller theory than rules (C3) and (C4). The

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

Predicate-calculus based logics for modeling and solving search problems · 33

improvement is, in general, by a constant factor and so, it is not asymptotically
better.

Since encodings involving c-atoms are usually smaller and define smaller search
spaces, it is important to design solvers that can take direct advantage of these
small representations. We developed a solver, aspps (short for “answer-set pro-
gramming with propositional schemata”), that can directly handle c-atoms and
closure rules. The aspps solver is an adaptation of the Davis-Putnam algorithm
for computing models of propositional CNF theories. That is, it is a backtracking
search algorithm whose two key components are unit propagation and branching.
Unit propagation “propagates” through the theory truth values established so far.
If there is a rule with all atoms in the antecedent assigned value true and all but
one atom in the consequent assigned value false, then the remaining “unassigned”
atom in the consequent must be true for the rule to hold. Similarly, if all atoms in
the consequent of a rule are false and if all but one atom in the antecedent are true,
the only “unassigned” atom in the antecedent must be false. In this way any partial
assignment of truth values to atoms forces truth assignments on some additional
atoms. When a contradiction is derived in this process (two contradictory truth
assignments to an atom are forced), the program backtracks. When no more atoms
can be forced and no contradiction has been discovered, the second component,
branching, selects an unassigned atom to split the search space and continue.

A key difference between aspps and satisfiability algorithms is in how branching
is implemented. In satisfiability solvers, in order to branch, we pick an atom, say
a, and split the search space into two parts. In one of them we assume that the
atom a is true. In the other one we assume that a is false. In either case, once the
assignment of a truth value to a is made, it is propagated in the way we described
above.

Propositional PS+ theories may, in general, contain c-atoms and aspps considers
them too when selecting a way to branch. To explain the method that aspps uses,
let us observe that the unit propagation may, in particular, force a truth value onto
a c-atom appearing in the theory. That constrains possible truth assignments to
unassigned atoms that appear in the c-atom.

For example, let us consider a propositional c-atom C = 1 {a, b, c, d} 1 that has
been forced to be true. Let us assume that d has already been assigned value false
and that a, b and c are still unassigned. There are exactly three ways in which
atoms a, b and c can be assigned truth values consistent with C being true:

a = t, b = f , c = f

a = f , b = t, c = f

a = f , b = f , c = t.

It follows that if there are c-atoms whose truth values have been forced, we have
additional ways to split the search. Namely, we can consider in turn each truth
assignment to unassigned atoms appearing in C, which is consistent with the truth
value of C. In our example, if C is true, we could split the search space into three
subspaces by setting (1) a = t, b = f and c = f , (2) a = f , b = t and c = f , and (3)
a = f , b = f and c = t, respectively.

The heuristics used in the branch selection are of vital importance for the overall
performance of a solver. We will now describe the method that we implemented

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

34 · Deborah East and Miros law Truszczyński

in aspps. The idea is to approximate the degree to which an atom (or c-atom) is
constrained and to select one that is constrained the most. To this end, for each
rule r we define its weight W (r) by

W (r) = km−l.

In the formula, k is a constant, determined empirically, and in the current imple-
mentation set to 13, m = min(L, 10), where L is the maximum length of a rule
in the (ground) theory, and l is the length of the rule r. It follows that shorter
the rule, the greater its weight. We also note that the value of m for all theories
with the maximum length of a rule at least 10 is the same (the choice of 10 as the
threshold value was also determined through experiments).

The weight of a propositional atom is defined as the sum of the weights of all rules
in which it appears (whether within a c-atom or not). The weight of a cardinality
atom is the sum of the weights of unassigned propositional atoms which appear in
it.

When looking for a way to branch, the aspps program considers all propositional
atoms that have not been assigned a truth value yet. It also considers some of
the c-atoms that have been forced true by earlier truth-value assignments. Let C
be such a c-atom and let A be the set of unassigned atoms appearing in C. The
atom C is considered as a basis for branching if the number of truth assignments to
atoms in A consistent with the fact that C is true (that is, the number of branches
that C defines) is less than or equal to |A|.

If there are c-atoms satisfying these conditions, aspps will select one with the
maximum weight. It will then generate all truth assignments to unassigned atoms
in C that are consistent with C being true, and will use these truth assignments
to split the search space. Otherwise, aspps will branch on a propositional atom
with the maximum weight and will split the search space into two parts. If a
propositional PS+ theory contains Horn clauses, they play no role in the process
of selection of the next atom for branching. They do, however, participate in the
propagation step.

The source codes, information on the implementation details for programs psgrnd
and aspps and on their use is available at http://www.cs.uky.edu/ai/aspps/.

9. EXPERIMENTAL RESULTS

Several data-program pairs that we presented in the paper (both with and without
c-atoms and Horn rules) show that the logics PS and PS+ are effective as for-
malisms for modeling search problems. In this section we will provide evidence for
the computational effectiveness of our programs psgrnd and aspps.

On one hand, we demonstrate that psgrnd facilitates the use of SAT and SAT(PB)
solvers as processing engines for computing solutions to search problems. Indeed,
whenever we use these solvers in our tests, they are run on theories generated by
psgrnd from data-program pairs in the logic PS encoding search problems and their
specific instances.

On the other hand, we demonstrate results showing good performance of our
solver program aspps. In our tests we focus on problems that we use as examples
throughout the paper: the vertex-cover, n-queens, graph-coloring, and Hamilto-
nian cycle problems. The first three of these problems have encodings that involve

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

Predicate-calculus based logics for modeling and solving search problems · 35

c-atoms but not Horn rules. Ground theories produced by psgrnd from the cor-
responding data-program pairs are (after some trivial syntactic modifications) in
the format of pseudo-boolean constraints. For these problems, we compare aspps
with PBS, a recently developed program for computing models of collections of
pseudo-boolean constraints [Aloul et al. 2002].

For all four problems that we considered, the encodings as PS+ data-program
pairs, which we presented in the paper, can be rewritten in a straightforward way
into logic programs with cardinality constraints. That direct correspondence be-
tween PS+ data-program pairs we gave and logic programs allowed us to compare
the performance of aspps with smodels, at present one of the most advanced imple-
mentations of answer-set programming paradigm based on logic programming with
cardinality constraints.

Finally, all four problems have also encodings as data-program pairs in the logic
PS . When grounded with psgrnd, these data-program pairs result in propositional
theories. Consequently, we also compared the performance of aspps directly with
SAT solvers.

The results show that aspps performs very well. However, we stress that our
experiments did not aim at demonstrating superiority of one solver over another.
That would require a much more comprehensive and careful experimental study.
Our objective was rather simply to demonstrate the feasibility of the overall ap-
proach and to point to the effectiveness of aspps on several diverse problems.

In the experiments we used the following versions of these programs:

(1) zchaff.2003.7.23 [Moskewicz et al. 2001b]

(2) satz215.2 [Li 1997]

(3) PBSv2.1 linux [Aloul et al. 2003]

(4) lparse-1.0.13 and smodels-2.27 [Niemelä et al. 1997]

(5) aspps.2003.06.04 and psgrnd.2003.06.04, for both aspps and as a front-end for
satisfiability solvers [East and Truszczyński 2001].

All our experiments were performed on a Pentium IV 3.2 GHz machine with 1GB
of memory and running GNU Linux version 2.4.22.

In the case of vertex cover, for each n = 50, 60, 70, 80 we randomly generated 100
graphs with n vertices and 2n edges. For each graph G, we computed the minimum
size kG for which the vertex cover can be found. We then tested aspps, PBS and
smodels on all the instances (G, kG). encoded by data-program pairs (D′

vc , P
′

vc)
(we recall that P ′

vc consists of rules (VC′1) - (VC′3)). In the case of smodels, we
rewrote the rules in P ′

vc into the syntax of logic program rules with cardinality
constraints. We then grounded the data-program pairs using psgrnd (lparse, in the
case of smodels) and used aspps, PBS and smodels on the resulting propositional
theories and programs as solvers.

We also tested satz, zchaff and aspps on the instances (G, kG), this time encoded
by data-program pairs (Dvc , Pvc) (we recall that Pvc consists of rules (VC1) - (VC5),
which do not contain c-atoms). We grounded these data-program pairs using psgrnd
and used zchaff, satz and aspps as solvers on the resulting propositional theories.

In all cases, if a solver timed out for a set of instances of a given size, we did
not test it on the set of instances of larger sizes. The results of the experiments

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

36 · Deborah East and Miros law Truszczyński

are gathered in Figure 1. They show the average execution times. Overall, solvers
that take advantage of c-atoms (first three lines in the table) perform much better
than those that have to work with pure (no c-atoms) propositional theories. As we
observed, the size of the encoding (VC′1) - (VC′3) is, in general, asymptotically
smaller than that of (VC1) - (VC5). Thus, satisfiability solvers had to deal with
much larger theories (hundreds of thousands of clauses for graphs with 80 vertices
as opposed to a few hundred when c-atoms are used). Consequently, neither the
SAT solvers nor aspps could handle regular propositional theories encoding instances
involving even the smallest graphs we tried (n = 50). Among the solvers for theories
(programs) with c-atoms, aspps performed several times faster than smodels (except
for n = 60) and the difference seemed to grow with n. PBS performed worse. It
could handle instances for n = 50 but timed out in other cases.

n 50 60 70 80

aspps 0.007 0.040 0.246 0.938

PBS 61.846 ** ** **

smodels 0.035 0.016 0.901 4.289

aspps (CNF encoding) ** ** ** **

satz ** ** ** **

zchaff ** ** ** **

Fig. 1. Timing results (in seconds) for the vertex-cover problem. Average time for each
set of 100 random generated graphs. ** timed out or halted after 10 minutes for a single
instance.

For the n-queens problem, we ran a similar collection of tests. We tried aspps,
PBS and smodels on theories and programs derived from the encoding (nQ′1) -
(nQ′8), and we tested satz, zchaff and aspps on theories derived from the encoding
(nQ1) - (nQ7). Aspps, performed exceptionally well and found solutions in all
cases (in each case in a fraction of a second). PBS successfully dealt with the
case of n = 40 but timed out in all other cases. Smodels timed out in all cases.
Working with theories without c-atoms, aspps was also the best. Satz was able to
find solutions for n = 40 and 50 but it timed out for n = 60, 70 and 80. Zchaff
timed out in all the cases we tried. Aspps, when run on theories with c-atoms was
several times faster than when run on theories without c-atoms. Thus, cardinality
constraints again seem to play a crucial role. Grounding the program (nQ′1) -
(nQ′8) for n = 70 leads to a theory with 4900 atoms and 416 rules. In contrast,
theories obtained by grounding the program (nQ1) - (nQ7) are much larger. The
theory in the case of n = 70 consists of 4900 atoms and 562030 rules. Figure 2
summarizes these results.

In the case of the graph colorability problem, as we observed in the previous
section, c-atoms do not give rise to significant gains in the size of the ground theory.
Given the amount of research devoted to satisfiability solvers and still relatively few
efforts to develop fast solvers for logics involving cardinality constraints, it is not
surprising that satisfiability solvers outperform here aspps PBS and smodels. Our
results also show satz outperforming zchaff, which may be attributed to the fact
that our test graphs were randomly generated and did not have any significant

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

Predicate-calculus based logics for modeling and solving search problems · 37

of queens 40 50 60 70 80

aspps 0.03 0.03 0.33 0.04 0.00

PBS 7.11 ** ** ** **

smodels ** ** ** ** **

aspps (CNF encoding) 0.17 0.42 0.97 1.63 2.89

satz 3.63 26.60 ** ** **

zchaff ** ** ** ** **

Fig. 2. Timing results (in seconds) for the n-queen problem. ** timed out or halted after
10 minutes for a single instance.

internal structure that could be capitalized on by zchaff. On theories without c-
atoms, aspps is outperformed both by satz and by zchaff. This is an indication that
search heuristics for aspps can be further improved.

As concerns theories with c-atoms, aspps and smodels show essentially the same
performance and outperform PBS, which times out for n = 200 and n = 300.
We summarize the relevant results in Figure 3. The graphs for the 3-colorability
problem were generated randomly with vertex/edge ratios such that approximately
1/2 of the graphs were 3-colorable. For each value n = 100, 200 and 300, we
generated a set of 1000 graphs. The values that we report are the average execution
times.

n 100 200 300

aspps 0.000 0.116 4.558

PBS 0.059 ** **

smodels 0.037 0.263 5.761

aspps (CNF encoding) 0.020 2.530 **

satz 0.005 0.036 0.642

zchaff 0.002 0.064 4.646

Fig. 3. Timing results (in seconds) for the graph 3-coloring problem. ** timed out or
halted after 10 minutes for a single instance.

Our last experiment concerned the problem of computing Hamiltonian cycles.
In the tests, we considered graphs with n = 20, 40, 60, 80 and 100 vertices with
the number m of edges chosen so that the likelihood of the existence of a Hamil-
tonian cycle be close to 0.5. For each set of parameters, we generated a family
of 1000 instances and the corresponding collection of theories (programs) based
on the encoding (HC′1) - (HC′6). The results show aspps performing much faster
than smodels. We also considered CNF theories based on the encoding (HC1) -
(HC8) and tested the performance of aspps, PBS, and the two SAT solvers satz and
zchaff on these CNF encodings. All these programs could only handle the family of
smallest instances (n = 20, m = 75) and timed out in all other cases. In the case
20/75, zchaff outperformed satz. As in other cases additional constraints (c-atoms
and transitive closure computation, in this case) result in much smaller theories,
which seems to make all the difference. The average execution times collected in
the experiments are given in Figure 4.

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

38 · Deborah East and Miros law Truszczyński

V/E 20/75 40/180 60/300 80/425 100/550

aspps 0.000 0.000 0.001 0.001 0.002

smodels 0.023 0.083 0.204 0.401 0.665

aspps (CNF encoding) 10.569 ** ** ** **

PBS (CNF encoding) 2.879 ** ** ** **

satz 0.130 ** ** ** **

zchaff 0.071 ** ** ** **

Fig. 4. Timing results (in seconds) for the determining presence of a Hamilton cycle in a
graph. ** timed out or halted after 10 minutes for a single instance.

These experiments validate the overall approach proposed in the paper. They
show that psgrnd can be used effectively as a grounder not only with aspps but
also with off-the-shelf SAT and SAT(PB) solvers. Further, the test results show
that solvers taking advantage of complex constraints such as cardinality and closure
constraints solve instances of search problems faster than SAT solvers can. To a
large degree that is related to the fact that encodings of search problems involving
cardinality and closure constraints are typically much smaller in size than standard
propositional logic encodings. Importantly, the test results also show that among
the three solvers capable of handling complex constraints, when run on theories
considered in the paper, aspps outperformed both smodels and PBS. Direct com-
parisons of aspps with SAT solvers on CNF encodings are certainly inconclusive
as in many cases all solvers timed out. However, for the n-queen problem, aspps
outperformed satz and zchaff, while for the graph coloring problem and the smallest
instances of the Hamiltonian cycle problem, SAT solvers outperformed assps. The
results suggest that further improvements in the implementation of aspps, exploit-
ing recent advances in SAT solver design, are possible.

10. DISCUSSION

The main contributions of our work are as follows. First, we developed two logics,
PS and PS+, based on predicate calculus, that can serve as a high-level language
to specify search problems. The task of computing models for theories in this
logic reduces to the task of propositional or pseudo-boolean satisfiability and we
developed a program, psgrnd, to support appropriate reductions. Consequently,
our logics can serve as programming front-ends for SAT and SAT(PB) solvers.

Second, as we pointed out in Section 8, in some cases the results of psgrnd need
to be further processed before SAT(PB) solvers can be used. Modifications that are
required introduce new propositional variables, which may cause the performance of
these solvers to degrade. Moreover, SAT(PB) solvers can be used only for programs
without Horn rules. Therefore, we developed our own solver, called aspps, for
computing models of theories produced by psgrnd. Aspps is better attuned to the
syntax of the logic PS+ and, as our experiments demonstrate, it often outperforms
other solvers that we considered.

Third, our results show that the answer-set programming paradigm extends be-
yond formalisms based on logic programming with answer-set semantics. The logic
PS+, through, the notion of a data-program pair, is capable of modeling search
problems in the class NPMV. Programs such as aspps, as well as SAT and SAT(PB)

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

Predicate-calculus based logics for modeling and solving search problems · 39

solvers, are competitive with smodels — a state-of-the art ASP system based on
the syntax of logic programming and the semantics of stable models.

There are connections between our work and development of languages for de-
scribing and solving constraint satisfaction problems. Examples of such languages
include AMPL [Fourer et al. 1993], OPL [van Hentenryck 1999] and ECLiPSe [Wal-
lace et al. 1997]. Our approach is different in several aspects. First, none of the
languages we mentioned supports directly SAT or SAT(PB) solvers as processing
back-ends. Intended processing engines for these languages are constraint solvers
developed for problems with non-binary domains. One can specify in these lan-
guages instances of mixed integer programming problems (that generalizes the
class of pseudo-boolean constraint problems), but additional processing is neces-
sary before SAT and SAT(PB) solvers can be used. Our specifications in the logic
PS+ have explicit representations in formats required by those solvers. Second,
constraint modeling languages depart in the significant way from the paradigm of
declarativeness in that they mix data and problem specifications with the control
of search. Consequently, problem specifications expressed in these languages are
difficult to reason on. Our data-program pairs have a clear meaning in terms of
PS+ theories and their semantics. That provides a framework where one can rea-
son about problem specification independently of problem instances or processing
methods.

In the area of propositional satisfiability, the need for developing programming
environments is well recognized (cf. Grand Challenge 4 in [Walsh 2003]). While
there have been dramatic improvements in the performance of SAT and SAT(PB)
solvers, the issue of modeling tools has received relatively little attention. As we
mentioned already, one can use logic programming syntax to construct SLP repre-
sentations of search problems and then use cmodels [Babovich and Lifschitz 2002] or
assat [Lin and Zhao 2002] to translate them into SAT instances. Another possibility
is to use the language NP-SPEC [Cadoli and Palipoli 1998], built as an extension
of DATALOG, as also for NP-SPEC theories there are techniques to compile them
into SAT instances [Cadoli and Schaerf 2001]. However, in each of these three cases,
the syntax and the semantics of the modeling front-end is quite distinct from propo-
sitional logic. Other than the logic PS+, the only other language to describe SAT
instances that is based on predicate calculus and that we are aware of is QPROP
(quantified propositional logic) [Ginsberg and Parkes 2000; Parkes 1999]. However,
QPROP is designed more as a data structure to represent large propositional the-
ories in SAT solvers rather than as a specification language. At present, it lacks
features to describe directly set definitions and c-atoms.

Recently, researchers proposed the logic ESO (the existential fragment of the
second order logic) [Fagin 1974; Gottlob et al. 2000] as another possible candidate
for a high-level language to specify search problems [Cadoli and Mancini 2002].
The emergence of the logic ESO in this context is not surprising as formulas of that
logic specify relations (or partial multivalued functions). The approach proposed
in [Cadoli and Mancini 2002] is similar to the one presented here and there is
a straightforward way to compile ESO theories into SAT instances. The main
difference is that we develop our logic as a first-order formalism with a simple
semantics given by a class of Herbrand models, rather than as a second-order logic.

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

40 · Deborah East and Miros law Truszczyński

Our work points to several specific research directions related to the logic PS+.
First, the class of aggregate constraints supported by this logic can be extended.
For instance, the notion of a cardinality atom can be generalized to cover all pseudo-
boolean constraints. One can also consider constructs to impose conditions on set
cardinalities other than simple lower and upper bounds that we considered here. An
example of such a constraint is the parity constraint. Similarly, there is much room
for improvement in the area of solvers for the propositional logic PS+. We believe
the notion of branching on cardinality atoms is to a large degree responsible for a
good performance of aspps and deserves further attention. There is also a potential
for developing good local search techniques for the logic PS+. Recent work [Liu
and Truszczyński 2003] substantiates that claim. In contrast, finding successful
local-search for logic programming systems turned out to be hard [Dimopoulos and
Sideris 2002].

Another question is related to the problem of the expressive power and concerns
auxiliary data predicates specifying ranges of integers. In our encoding of the tran-
sitive closure problem, the data set contains a collection of ground atoms index (i),
1 ≤ i ≤ n, where n is the number of vertices in the input graph. This set is not an
inherent element of the input specification, which consists only of vertices and edges
of the graph. We do not know whether there are uniform encodings of the transitive
closure problem in the logic PS+, which do not require any auxiliary index ranges
being included as data. More generally, we do not know whether disallowing such
auxiliary ranges of integers has any effect on the expressive power of our formalism.

The next open research direction concerns comparisons of the logic PS+ to logic
programming with the answer-set semantics and, specifically, the matter of suit-
ability of the logic PS+ as a knowledge representation formalism. The language of
our logic lacks default negation. That raises questions whether the logic PS+ can
succinctly model frame axioms, normative statements and incomplete information,
and whether one can build representations in the logic PS+ that are are elabo-
ration tolerant. We believe that, to some degree, the lack of the default negation
can be circumvented. First, for broad classes of logic programs (for instance, for
programs encoding planning problems and many aspects of reasoning about action)
default negation can be compiled away in a systematic way into propositional rep-
resentations without any essential growth in the size of the theory. The approach
is based on Fages lemma and its generalizations [Erdem and Lifschitz 2003], and
on the concept of the Clark’s completion [Clark 1978; Apt 1990], and led to the
development of cmodels [Babovich and Lifschitz 2002]. These results suggest that,
at least for some broad classes of applications, default negation can be effectively
modeled within the logic PS+. Second, we showed that the expressive power of the
logic PS+ is the same as that of the stable logic programming. That provides an
“existential” argument for the fact that default negation can be simulated within
the logic PS+ (albeit, perhaps in a non-modular way). Third, the logic PS+ is
nonmonotonic. This nonmonotonicity seems to be weaker than that of logic pro-
gramming with answer-set semantics. However, its properties and potential for
capturing knowledge representation properties have not yet been studied and are
not fully understood.

Finally, our work brings up a general question of the scope of the ASP paradigm.

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

Predicate-calculus based logics for modeling and solving search problems · 41

In the paper we demonstrated that predicate logic and its extensions provide a
foundation for effective declarative programming systems, in which problems are
encoded as theories so that their models represent solutions. This way of problem
solving is closely reminiscent to that followed by ASP systems and our work brings
up an important issue of the scope of the ASP paradigm. It is most commonly
associated with formalisms based on logic programming with the stable-model se-
mantics and disjunctive logic programming with the answer-set programming. In
fact, the term ASP is often considered synonymous with these logic programming
systems. We argue that the scope of the ASP paradigm should be extended beyond
logic programming.

There are several reasons to do so. First, the fundamental shift that led from
Prolog-type logic programming to logic programming with the answer-set semantics
(the original understanding of the ASP), consists of moving the focus from proofs to
models and that is where it main contribution lies. However, once that is said, there
is no reason to confine that computational paradigm to logic programming with the
answer-set semantics. Logics where models can be represented as sets abound and,
as demonstrated by our logics PS and PS+ that are based on predicate calculus
with Herbrand models, they can lead to to expressive and computationally effective
declarative programming systems.

Second, broadening the scope of ASP provides a direct linkage to SAT and, more
generally, constraint satisfaction. Research in these areas resulted in a broad range
of fast algorithms for testing satisfiability of propositional formulas and collections
of pseudo-boolean constraints. These algorithms are based on advances in search
techniques and constraint propagation, as well as methods developed in the area
of integer programming. Arguably, they are currently more advanced than the
present generation of tools to compute answer sets of logic programs. Extending
the ASP paradigm to logics such as PS and PS+, where model finding reduces
directly to propositional satisfiability and pseudo-boolean satisfiability, provides a
direct way to tap into recent dramatic advances in solver performance achieved by
the constraint satisfaction research.

We view making this emerging connection between ASP and constraint satisfac-
tion explicit and broadly understood an important objective. SAT and SAT(PB)
communities focused on the development of fast satisfiability solvers and to a large
degree neglected the issue of modeling languages. In most cases, they are restricted
in their syntactic constructs and geared towards specific solvers. On the other hand,
ASP focused much of its effort on the development of modeling languages being
driven by knowledge representation applications where, at least initially, the focus
was on modeling and not on computing. Thus, bringing the two areas together will
benefit both. It will provide SAT and SAT(PB) areas with effective programming
front-ends for their solvers and will provide fast processing back-ends for use with
ASP languages.

ACKNOWLEDGMENTS

This material is based upon work supported by the National Science Foundation
under Grants No. 9874764, 0097278 and 0325063. The authors wish to thank
anonymous referees for their valuable comments and useful pointers to work related

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

42 · Deborah East and Miros law Truszczyński

to ours.

REFERENCES

Abiteboul, S. and Vianu, V. 1991. Datalog extensions for database queries and updates. J.
Comput. Syst. Sci. 43, 1, 62–124.

Aloul, F., Ramani, A., Markov, I., and Sakallah, K. 2002. PBS: a backtrack-search pseudo-

boolean solver and optimizer. In Proceedings of the 5th International Symposium on Theory
and Applications of Satisfiability. 346 – 353.

Aloul, F., Ramani, A., Markov, I., and Sakallah, K. 2003. PBS v0.2, incremental pseudo-
boolean backtrack search SAT solver and optimizer. http://www.eecs.umich.edu/~faloul/

Tools/pbs/.

Apt, K. 1990. Logic programming. In Handbook of theoretical computer science, J. van Leeuven,
Ed. Elsevier, Amsterdam, 493–574.

Babovich, Y. and Lifschitz, V. 2002. Cmodels package. http://www.cs.utexas.edu/users/

tag/cmodels.html.

Baral, C. 2003. Knowledge representation, reasoning and declarative problem solving. Cambridge
University Press.

Barth, P. 1995. A Davis-Putnam based elimination algorithm for linear pseudo-boolean opti-

mization. Tech. rep., Max-Planck-Institut für Informatik. MPI-I-95-2-003.

Bayardo, Jr, R. and Schrag, R. 1997. Using CSP look-back techniques to solve real-world SAT
instances. In Proceedings of the 14th National Conference on Artificial Intelligence (AAAI-
1997). AAAI Press, 203–208.

Benhamou, B., Sais, L., , and Siegel, P. 1994. Two proof procedures for a cardinality based
language in propositional calculus. In Proceedings of the 11th Annual Symposium on Theoretical
Aspects of Computer Science (STACS-1994). LNCS, vol. 775. Springer, 71–82.

Cadoli, M. and Mancini, T. 2002. Combining Relational Algebra, SQL, and Constraint Pro-

gramming. In Proceeding of the 4th International Workshop on Frontiers of Combining Systems
(FroCoS-2002). LNAI, vol. 2309. Springer, 147–161.

Cadoli, M. and Palipoli, L. 1998. Circumscribing datalog: expressive power and complexity.
Theor. Comput. Sci. 193, 215–244.

Cadoli, M. and Schaerf, A. 2001. Compiling problem specifications into SAT. In Proceedings of
the European Symposium On Programming (ESOP-2001). LNAI, vol. 2028. Springer, 387–401.

Clark, K. 1978. Negation as failure. In Logic and data bases, H. Gallaire and J. Minker, Eds.
Plenum Press, New York-London, 293–322.

Colmerauer, A., Kanoui, H., Pasero, R., and Roussel, P. 1973. Un systeme de communication
homme-machine en francais. Tech. rep., University of Marseille.

Dell’Armi, T., Faber, W., Ielpa, G., Leone, N., and Pfeifer, G. 2003. Aggregate functions
in disjunctive logic programming: semantics, complexity, and implementation in DLV. In Pro-

ceedings of the 18th International Joint Conference on Artificial Intelligence (IJCAI-2003).
Morgan Kaufmann, 847–852.

Dimopoulos, Y. and Sideris, A. 2002. Towards local search for answer sets. In Proceedings of
the 18th International Conference on Logic Programming. LNCS, vol. 2401. Springer, 363 –

367.

Dixon, H. and Ginsberg, M. 2002. Inference methods for a pseudo-boolean satisfiability solver.
In The 18th National Conference on Artificial Intelligence (AAAI-2002). AAAI Press, 635–640.

East, D. and Truszczyński, M. 2000. Datalog with constraints. In Proccedings of the 17th

National Conference on Artificial Intelligence (AAAI-2000). AAAI Press, 163–168.

East, D. and Truszczyński, M. 2001. ASP solver aspps. http://www.cs.uky.edu/aspps/.

East, D. and Truszczyński, M. 2001. Propositional satisfiability in answer-set programming. In
Proceedings of Joint German/Austrian Conference on Artificial Intelligence (KI-2001). LNAI,

vol. 2174. Springer, 138–153.

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

Predicate-calculus based logics for modeling and solving search problems · 43

Eiter, T., Leone, N., Mateis, C., Pfeifer, G., and Scarcello, F. 1998. A KR system dlv:

Progress report, comparisons and benchmarks. In Proceeding of the 6th International Confer-
ence on Knowledge Representation and Reasoning (KR-1998). Morgan Kaufmann, 406–417.

Erdem, E. and Lifschitz, V. 2003. Tight logic programs. Theory and Practice of Logic Pro-
gramming 3, 4-5, 499–518.

Fagin, R. 1974. Generalized first-order spectra and polynomial-time recognizable sets. In Com-
plexity of Computation, R. Karp, Ed. AMS, 43–74.

Fourer, R., Gay, D., and Kernigham, B. 1993. AMPL: A Modeling Language for Mathematical
Programming. International Thompson Publishing.

Gelfond, M. and Lifschitz, V. 1988. The stable semantics for logic programs. In Proceedings
of the 5th International Conference on Logic Programming. MIT Press, 1070–1080.

Gelfond, M. and Lifschitz, V. 1991. Classical negation in logic programs and disjunctive
databases. New Gen. Comput. 9, 365–385.

Ginsberg, M. and Parkes, A. 2000. Satisfiability algorithms and finite quantification. In Pro-
ceedings of the 7th International Conference on Principles of Knowledge Representation and
Reasoning, (KR-2000). Morgan Kaufmann, 690–701.

Gottlob, G., Kolaitis, P., and Schwentick, T. 2000. Existential second-order logic over

graphs: Charting the tractability frontier. In Proceedings of the 41st Symposium on Foundations
of Computer Science (FOCS-2000). IEEE CS Press, 664–674.

Green, C. 1969. Application of theorem proving to problem solving. In Proceedings of the 1st
International Joint Conference on Artificial Intelligence (IJCAI-1969). Morgan Kaufmann,

741–747.

Kautz, H., McAllester, D., and Selman, B. 1996. Encoding plans in propositional logic. In
Proceedings of 5th International Conference on Principles of Knowledge Representation and
Reasoning (KR-1996). Morgan Kaufmann, 374–384.

Kowalski, R. 1974. Predicate logic as a programming language. In Proceedings of the Congress
of the International Federation for Information Processing (IFIP-1974). North Holland, Am-
sterdam, 569–574.

Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., and Scarcello, F.

2003. The dlv system for knowledge representation and reasoning. http://xxx.lanl.gov/abs/
cs.AI/0211004.

Li, C. 1997. SAT solver satz. http://www.laria.u-picardie.fr/~cli/EnglishPage.html.

Li, C. and Anbulagan, M. 1997. Look-ahead versus look-back for satisfiability problems. In

Proceedings of the 3rd International Conference on Principles and Practice of Constraint Pro-
gramming. LNCS, vol. 1330. Springer, 342–356.

Lin, F. and Zhao, Y. 2002. ASSAT: Computing answer sets of a logic program by SAT solvers.
In Proccedings of the 18th National Conference on Artificial Intelligence (AAAI-2002). AAAI

Press, 112–117.

Liu, L. and Truszczyński, M. 2003. Local-search techniques in propositional logic extended
with cardinality atoms. In Proceedings of the 9th International Conference on Principles and

Practice of Constraint Programming, CP-2003. LNCS, vol. 2833. Springer, 495–509.

Marek, V. and Remmel, J. 2003. On the expressibility of stable logic programming. Theory
and Practice of Logic Programming 3, 551–567.

Marek, V. and Truszczyński, M. 1999. Stable models and an alternative logic programming

paradigm. In The Logic Programming Paradigm: a 25-Year Perspective, K. Apt, W. Marek,
M. Truszczyński, and D. Warren, Eds. Springer, Berlin, 375–398.

Marek, W. and Truszczyński, M. 1993. Nonmonotonic Logic; Context-Dependent Reasoning.
Springer, Berlin.

McCarthy, J. 1980. Circumscription — a form of non-monotonic reasoning. Artificial Intelli-
gence 13, 1-2, 27–39.

Moskewicz, M., Madigan, C., Zhao, Y., Zhang, L., and Malik, S. 2001a. Chaff: engineering
an efficient SAT solver. In Proceedings of the 38th ACM IEEE Design Automation Conference.

ACM Press, 530–535.

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

44 · Deborah East and Miros law Truszczyński

Moskewicz, M., Madigan, C., Zhao, Y., Zhang, L., and Malik, S. 2001b. SAT solver chaff.

http://www.ee.princeton.edu/~chaff/.

Nerode, A. and Shore, R. 1993. Logic and logic programming. Springer, Berlin.

Niemelä, I. 1999. Logic programming with stable model semantics as a constraint programming
paradigm. Annals of Mathematics and Artificial Intelligence 25, 3-4, 241–273.

Niemelä, I. and Simons, P. 2000. Extending the smodels system with cardinality and weight
constraints. In Logic-Based Artificial Intelligence, J. Minker, Ed. Kluwer Academic Publishers,
491–521.

Niemelä, I., Simons, P., and Syrjänen, T. 1997. SLP solver smodels. http://www.tcs.hut.fi/
Software/smodels/.

Parkes, A. 1999. Lifted search engines for satisfiability. Ph.D. thesis, University of Oregon,
Department of Computer Science.

Prestwich, S. 2002. Randomised backtracking for linear pseudo-boolean constraint problems.
In Proceedings of the 4th International Workshop on Integration of AI and OR techniques in

Constraint Programming for Combinatorial Optimisation Problems, (CPAIOR-2002). 7–20.
http://www.emn.fr/x-info/cpaior/Proceedings/CPAIOR.pdf.

Robinson, J. 1965. A machine-oriented logic based on resolution principle. J. ACM 12, 23–41.

Saccà, D. 1997. The expressive powers of stable models for bound and unbound datalog queries.

J. Comput. Syst. Sci. 54, 3, 441–464.

Schlipf, J. 1995. The expressive powers of the logic programming semantics. J. Comput. Syst.

Sci. 51, 1, 64–86.

Selman, A. 1994. A taxonomy of complexity classes of functions. J. Comput. Syst. Sci. 48, 2,

357–381.

Selman, B., Kautz, H., and Cohen, B. 1994. Noise strategies for improving local search. In

Proceedings of the 12th National Conference on Artificial Intelligence (AAAI-1994). AAAI
Press, Seattle, USA, 337–343.

Simons, P., Niemelä, I., and Soininen, T. 2002. Extending and implementing the stable model
semantics. Artificial Intelligence 138, 181–234.

Ullman, J. 1988. Principles of Database and Knowledge-Base Systems. Computer Science Press,
Rockville, MD.

van Hentenryck, P. 1999. The OPL Optimization Programming Language. The MIT Press.

Vardi, M. 1982. The complexity of relational query languages. In Proceedings of the 14th ACM

Symposium on Theory of Computing (STOC-1982). ACM Press, 137–146.

Wallace, M., Novello, S., and Schimpf, J. 1997. Eclipse: A platform for constraint logic
programming. http://www.icparc.ic.ac.uk/eclipse/reports/eclipse.ps.gz.

Walser, J. 1997. Solving linear pseudo-boolean constraints with local search. In Proceedings of
the 11th National Conference on Artificial Intelligence (AAAI-97). AAAI Press, 269–274.

Walsh, T. 2003. Challenges in SAT (and QBF). Invited talk at 6th International Conference on
Theory and Applications of Satisfiability Testing. Slides available from http://4c.ucc.ie/ tw/

sat2003.ppt.

Received November 2002; revised December 2003; accepted March 2004

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

