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Abstract

We show that the concepts of strong and uniform equivalence of logic programs
can be generalized to an abstract algebraic setting of operators on complete lattices.
Our results imply characterizations of strong and uniform equivalence for several
nonmonotonic logics including logic programming with aggregates, defaultlogic
and a version of autoepistemic logic.

1 Introduction

In knowledge representation, as in programming in general,when building a knowl-
edge base for a large application domain one of the key methodological principles is
that ofmodularity. An application domain at hand is partitioned into smaller fragments
and each of these fragments is represented as a separate module. Sometimes it becomes
necessary to replace a module with another one, for instance, to optimize the perfor-
mance of reasoning algorithms. However, it is paramount that the replacement leaves
the overall meaning of the knowledge base unchanged. Thus, deciding when two mod-
ules areequivalent for substitutionemerges as a fundamental problem in studies of
knowledge representation formalisms.

In some cases, the answer is straightforward. If a knowledgebase is represented as
a theory in propositional logic, equivalence for substitution coincides with the standard
logical equivalence. Indeed, if two propositional theoriesP andQ are logically equiv-
alent then for every theory of the formT = P ∪R, the theoryT ′ = Q∪R, obtained by
replacingP with Q in T , is logically equivalent toT . The converse statement holds,
as well and so, theoriesP andQ are equivalent for substitution if and only if they are
logically equivalent.

∗This work was partially supported by the NSF grant IIS-0325063.
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For knowledge representation formalisms based on nonmonotonic logics, the sit-
uation is more complex. In logic programming with the semantics of stable models
[GL88], having the same stable models is too weak a requirement to guarantee equiv-
alence for substitution. For instance, the following two logic programs

P = {p} and Q = {p← not(q)}

have the same stable models (each program has{p} as itsonlystable model). However,
P ∪{q} andQ∪{q} havedifferentstable models. The only stable model ofP ∪{q} is
{p, q} and the only stable model ofQ ∪ {q} is {q}. Similarly,P ∪ {q ← not(p)} has
one stable model,{p}, andQ ∪ {q ← not(p)} has two stable models{p} and{q}.

Characterizing logic programs that are equivalent for substitution with respect to
the stable-model semantics was identified as an important research topic in [LPV01].
That paper used the termstrong equivalenceinstead ofequivalence for substitution.
Since the former is prevalent, we use it in our paper, too.

[LPV01] studied the problem of strong equivalence in the setting of logic programs
with nested expressions, also referred to asnested logic programs[LTT99]. Nested
logic programming generalizes disjunctive logic programming with the semantics of
answer sets [GL91] and, therefore, also normal logic programming with the semantics
of stable models.

[LPV01] presented a characterization of strong equivalence of nested logic pro-
grams by exploiting properties of the logichere-and-there[Hey30]. [Tur01, Lin02,
Tur03] continued these studies and obtained simple characterizations of strong equiv-
alence without explicit references to the logichere-and-there. In particular, [Tur01,
Tur03] introduced the notion of anse-model, defined as a certain pair of sets of liter-
als, and proved that two nested logic programs are strongly equivalent if and only if
they have the same se-models. In addition, [Tur01] demonstrated that the approach of
se-models extends to the case of (nested) default theories.

[EF03] introduced one more notion of equivalence, theuniform equivalenceof
disjunctive logic programs with answer-set semantics. Twodisjunctive logic programs
P andQ areuniformly equivalentif for every setR of facts, P ∪R andQ∪R have the
same answer sets. [EF03] presented a characterization ofuniform equivalencein terms
of se-models and, for finite programs, in terms ofue-models, which are se-models with
some additional properties.

A comprehensive discussion of strong and uniform equivalence of disjunctive logic
programs, including recent extensions of the two concepts to the setting relativized with
respect to a fixed set of atoms can be found in [EFW06].

Results from [LPV01, Tur01, Lin02, Tur03, EF03] and their proofs exhibit common
themes and similarities. To a large degree, it is due to the fact that all characterizations
of strong and uniform equivalence developed there are rooted, if not directly then im-
plicitly, in the logichere-and-there. In this paper we point out to an additional reason
behind these similarities, related to the fact that semantics of many nonmonotonic log-
ics can be introduced in abstract algebraic terms. Our main contribution is an algebraic
account of strong and uniform equivalence in terms of operators on complete lattices.
Specifically, in the paper we:

1. extend the definitions of strong and uniform equivalence of logic programs to the
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abstract case of operators on lattices.

2. establish characterizations of strong and uniform equivalence of operators in
terms ofse-pairs— objects that generalize se-models to the setting of lattices.

3. demonstrate that these characterizations yield, as corollaries, characterizations of
strong and uniform equivalence for those nonmonotonic logics whose semantics
can be defined in terms of fixpoints of operators on lattices1.

Our tool is the approximation theory, which deals with properties of fixpoints of
operators on complete lattices [DMT00]. It provides an algebraic account of sev-
eral nonmonotonic logics including (normal) logic programming, default logic and
autoepistemic logic, and allows one to state and prove properties of these logics in
a uniform, general and abstract way [DMT03]. Recent applications of the approxima-
tion theory include the development of semantics of logic programs with aggregates
[Pel04, PDBn04] and an abstract account of splitting theorems [VGD04b, VGD04a].

2 Preliminaries

We start with an overview of elements of the approximation theory [DMT00]. We as-
sume familiarity with the concepts of a lattice, lattice ordering≤, and lattice operations
∧ and∨. A latticeL is completeif every subset ofL has both least upper and greatest
lower bounds. In particular, a complete lattice has a least element, denoted by⊥, and
a greatest element, denoted by⊤.

An operatoron a latticeL is any function fromL to L. An operatorO on L is
monotoneif for every x, y ∈ L such thatx ≤ y we haveO(x) ≤ O(y). Similarly,
an operatorO on L is antimonotoneif for every x, y ∈ L such thatx ≤ y we have
O(y) ≤ O(x). Constantoperators are both monotone and antimonotone.

Let O be an operator on a latticeL. An elementx ∈ L is aprefixpoint(a fixpoint,
respectively) ofO if O(x) ≤ x (O(x) = x, respectively). If an operatorO has a
least fixpoint, we denote this fixpoint bylfp(O). The following theorem by Tarski and
Knaster establishes a fundamental property of monotone operators on complete lattices
[Tar55].

Theorem 1 Let O be a monotone operator on a complete latticeL. Then,O has a
least fixpoint and this least fixpoint is also the least prefixpoint ofO.

The approximation theory [DMT00] is concerned with operators on lattices and
mappings fromL2 to L. We emphasize that we consistently use the termmappingfor
functions fromL2 to L, and reserve the termoperator for functions whose domains
and co-domains coincide.

Definition 1 LetL be a complete lattice. A mappingA : L2 → L is anapproximating
mappingif for everyx ∈ L, the operatorA(·, x) is monotone and the operatorA(x, ·)
is antimonotone2.

1In this paper, we mention only applications to logic programming and default logic.
2The setL2 with the precisionordering is a complete lattice [Gin88, Fit02]. [DMT00] developed the

approximation theory in terms of the so-called approximatingoperatorson the latticeL2. Approximating
mappingslead to a simpler notation and so, we chose to use them in this paper.
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If O is an operator onL such thatO(x) = A(x, x), thenA is an approximating
mapping forO.

If x, y, z ∈ L satisfyx ≤ z ≤ y, then we say that the pair(x, y) is anapproxima-
tion of z. If A is an approximating mapping for an operatorO on L and(x, y) is an
approximation toz then

A(x, z) ≤ A(z, z) ≤ A(y, z)

and
A(z, y) ≤ A(z, z) ≤ A(z, x).

The first group of inequalities follows by the monotonicity of A(·, z), the other one by
the antimonotonicity ofA(z, ·). Consequently, we have

A(x, z) ≤ O(z) ≤ A(y, z)

and
A(z, y) ≤ O(z) ≤ A(z, x),

that is, pairs(A(x, z), A(y, z)) and(A(z, y), A(z, x)) approximateO(z). This prop-
erty motivates the name “approximating mapping” forA.

Every operatorO on a latticeL has an approximating mapping. Indeed, letA : L2 →
L be a mapping defined by:

A(x, y) =







⊥ if x < y
O(x) if x = y
⊤ otherwise.

Clearly, for everyx ∈ L, A(x, x) = O(x). Next, letx1, x2, y ∈ L and letx1 ≤ x2.
If x1 < y, A(x1, y) = ⊥. If it is not the case thatx2 ≤ y, A(x2, y) = ⊤. If neither
of these two cases holds,x1 = x2 = y. In all cases,A(x1, y) ≤ A(x2, y), that is, for
everyy ∈ L, A(·, y) is monotone. In a similar way we verify that for everyx ∈ L,
A(x, ·) is antimonotone. Thus,A is an approximating mapping forO.

In general, approximating mappings are not unique. For monotone and antimono-
tone operators we distinguish special approximating mappings. Namely, ifO is mono-
tone, we setCO(x, y) = O(x), for x, y ∈ L. If O is antimonotone, we setCO(x, y) =
O(y), for x, y ∈ L. In each case, one can verify thatCO is an approximating mapping
for O — we call itcanonical.

If A is an approximating mapping for some operatorO on a complete lattice, then
Theorem 1 ensures that for everyy ∈ L, lfp(A(·, y)) is well defined (asA(·, y) is a
monotone operator onL). This property makes the following definition sound.

Definition 2 [DMT00] Let O be an operator on a complete latticeL and letA be an
approximating mapping forO. AnA-stableoperator forO onL is an operatorSA on
L such that for everyy ∈ L:

SA(y) = lfp(A(·, y)).

An elementx ∈ L is an A-stable fixpoint ofO if x = SA(x). We denote the set of
A-stable fixpoints ofO bySt(O,A).
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We will now discuss the relevance of the approximation theory to nonmonotonic
logics. We focus on logic programming, consider the propositional case only, and as-
sume that an underlying language is generated by a setAt of propositional variables.
We represent 2-valued interpretations ofAt as subsets ofAt . With the inclusion rela-
tion as an ordering relation, the set of 2-valued interpretations ofAt , denoted byLAt ,
forms a complete lattice〈LAt ,⊆〉. The set union operator∪ is the join operator in this
lattice.

Each logic programP determines a one-input one-step provability operatorTP on
the latticeLAt [vEK76]. Let I ⊆ At . We recall thatTP (I) is the set of the heads of all
rules inP whose body holds inI. Another operator associated withP is a two-input
one-step provability operatorΨP [Fit85, Fit91]. If I, J ⊆ At thenΨP (I, J) consists
of the heads of those rules whose positive body holds inI and negative body holds inJ .
One can check that for everyI ⊆ At , ΨP (·, I) is monotone,ΨP (I, ·) is antimonotone
andΨP (I, I) = TP (I). It follows thatΨP is an approximating mapping forTP . Thus,
as long as we view logic programming as a study of properties of TP andΨP , it is a
special case of the approximation theory.

The operatorsTP and ΨP are fundamental to the study of semantics of logic
programs. Fixpoints ofTP are precisely supported models ofP , and 4-valued sup-
ported models ofP (including the Kripke-Kleene model ofP ) are determined by
pairs (I, J) of interpretations such that(I, J) = (ΨP (I, J),ΨP (J, I)). Next, the
Gelfond-Lifschitz operatorGLP [GL88], satisfiesGLP (I) = lfp(ΨP (·, I)). Thus,
GLP is theΨP -stable operator forTP and so, stable models ofP coincide withΨP -
stable fixpoints ofTP . Since, 4-valued stable models (including the well-founded
model ofP ) can be characterized by pairs(I, J) of interpretations such that(I, J) =
(GLP (J), GLP (I)), it follows that all major 2-valued and 4-valued semantics of logic
programs can be expressed as fixpoints of operators related to TP andΨP . The key
point is that semantics of logic programs are special cases of a general algebraic theory
of operators and their fixpoints [DMT00].

3 Equivalence of lattice operators

Our goal is to show that the concepts of strong and uniform equivalence can be cast
in the abstract algebraic setting of the approximation theory. We start by defining the
concept of anextensionof an operator. LetP andR be operators on a latticeL. An
extensionof P with R is an operatorP ∨R defined onL by setting

(P ∨R)(x) = P (x) ∨R(x),

for everyx ∈ L. We callR anextendingoperator andP ∨R anextensionof P with R.
If we consider programs in terms of their one-step provability operators, the extension
of operators is a direct generalization of the union of two logic programs. Indeed, ifP
andR are logic programs, thenTP∪R = TP ∪ TR.

As in the case of logic programs, strong and uniform equivalence of operators con-
cerns stable fixpoints of their extensions. However, the notion of a stable fixpoint
depends on the choice of an approximating mapping. Thus, whenever we consider the
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equivalence of two operatorsP andQ, we select for each of them one of their approx-
imating mappings, sayAP andAQ respectively. In this way, we determine a specific
notion of stability for the operatorsP andQ.

The equivalence ofP andQ will depend on stable fixpoints of the operatorsP ∨R
andQ ∨ R. Informally, we will require thatP ∨ R andQ ∨ R have the same stable
fixpoints. However, the concept of stability becomes unambiguous only ifP ∨ R and
Q ∨ R are assigned some approximating mappings. These approximating mappings
should depend in some way on the approximating mappings ofP (Q, respectively) and
R, as otherwise there would be no connection between the concepts of stability forP
andP ∨R (Q andQ ∨R, respectively).

We will now consider this issue. LetP andR be operators on a latticeL, and letAP

andAR be approximating mappings forP andR, respectively. It is straightforward to
check that the operatorAP ∨AR is an approximating mapping for the operatorP ∨R.
Thus, when considering operatorsP ∨R andQ∨R, we will useAP ∨AR andAQ∨AR

as their approximating mappings. In particular, we will compare(AP ∨ AR)-stable
fixpoints ofP ∨R with (AQ ∨AR)-stable fixpoints ofQ ∨R.

Another point concerns operators to use to extendP andQ with. As in logic pro-
gramming, we impose no restrictions when defining strong equivalence. To properly
generalize the concept of uniform equivalence, we note thatlogic programs consisting
of facts (this class of programs was used to define the uniformequivalence in the case
of logic programming), have constant one-step provabilityoperators. Therefore, we
define uniform equivalence of operators with respect to extensions by constant opera-
tors only. Moreover, we consider them only together with their canonical approxima-
tions (we recall that constant operators are monotone and have canonical approximating
mappings). We formalize this discussion in the following definition.

Definition 3 Let P and Q be operators on a latticeL and letAP and AQ be their
approximating mappings, respectively.

1. P and Q are strongly equivalentwith respect to(AP , AQ), written P ≡s Q
mod (AP , AQ), if for every operatorR and for every approximating mapping
AR of R,

St(P ∨R,AP ∨AR) = St(Q ∨R,AQ ∨AR).

2. P andQ are uniformly equivalentwith respect to(AP , AQ), writtenP ≡u Q
mod (AP , AQ), if for everyconstantoperatorR

St(P ∨R,AP ∨ CR) = St(Q ∨R,AQ ∨ CR),

whereCR is the canonical approximating mapping forR (constant operators
are monotone and have canonical approximating mappings).

Thus, givenP andQ and their approximating mappingsAP andAQ, P andQ are
strongly equivalent with respect to(AP , AQ) if for an arbitrary operatorR and for an
arbitrary approximating mappingAR for R, extensionsP ∨ R andQ ∨ R of P and
Q have the same stable fixpoints —(AP ∨ AR)-stable fixpoints on the one side and
(AQ ∨ AR)-stable fixpoints on the other. Similarly,P andQ are uniformly equivalent
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with respect to(AP , AQ) if extensions ofP andQ with an arbitrary constant operator
R have the same stable fixpoints —(AP ∨ CR)-stable fixpoints in the case ofP ∨ R
and(AQ ∨ CR)-stable fixpoints in the case ofQ ∨R.

Let us consider these definitions from the perspective of normal logic programs.
Let P be a program. As we noted,P can be represented in algebraic terms by means of
the operatorTP and its approximating mappingΨP . Strong equivalence of programs
P andQ as defined in [LPV01] requires that for every programR stable models of
P ∪ R andQ ∪ R be the same. In the language of operators, that condition canbe
expressed as follows: for every programR, St(TP ∪ TR,ΨP ∪ ΨR) = St(TQ ∪
TR,ΨQ ∪ΨR). It is now clear that our definition of strong equivalence requires more,
namely it requires that we consider an arbitrary operatorR as an extending operator
and, in addition, an arbitrary approximating mappingAR for R, while in the case
of logic programming we only need to consider one approximating mapping —ΨP .
Nevertheless, later in the paper we will show that our definition of strong equivalence,
when applied to logic programs yields the same concept of thestrong equivalence as
the one defined in [LPV01].

As concerns the concept of uniform equivalence, the situation is simpler. Uniform
equivalence of two programsP andQ, as introduced by [EF03], requires that for every
setR of atoms, stable models ofP ∪ R coincide with stable models ofQ ∪ R. In the
language of operators, this defining condition can be expressed as follows: for every set
of factsR, St(TP ∪ TR,ΨP ∪ΨR) = St(TQ ∪ TR,ΨQ ∪ΨR). We now note that ifR
is a set of facts,TR is a constant operator andΨR(X,Y ) = TR(X). Thus,ΨR = CR.
Consequently, our definition of uniform equivalence is a direct generalization of the
definition in [EF03].

4 Se-pairs

In this section, we generalize the notion of an se-model [Tur01, Tur03] to the case of
operators.

A pair (x, y) ∈ L2 is anse-pairfor P with respect to an approximating mapping
AP for P if

(SE1) x ≤ y

(SE2) P (y) ≤ y

(SE3) AP (x, y) ≤ x

We will denote the set ofse-pairfor P with respect toAP by SE (P,AP ).
Let us consider this definition from the logic programming perspective. LetP be a

logic program. We observed earlier that semantics ofP are captured by the operators
TP andΨP . The following two properties are well known: a set of atomsY is a model
of a programP if and only if TP (Y ) ⊆ Y ; and a set of atomsX is a model of the
programPY if and only if ΨP (X,Y ) ⊆ X.

We now recall that an se-model of a programP is a pair(X,Y ) of sets of atoms
(interpretations) such thatX ⊆ Y , Y is a model ofP andX is a model ofPY [Tur01].
Thus, our comments above imply that a pair(X,Y ) is an se-model according to [Tur01]
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if and only if (X,Y ) is an se-pair forTP with respect toΨP . Consequently, se-pairs
generalize se-models.

In the next two sections we will develop characterizations of strong and uniform
equivalence in terms of se-pairs and we will show that our characterizations generalize
the results from [Tur01] and [EF03].

5 Strong equivalence

In this section we study the case of strong equivalence, obtain a characterization of this
concept, and show that one can substantially weaken the defining condition of strong
equivalence.

Theorem 2 Let P andQ be operators on a latticeL and letAP andAQ be approxi-
mating mapping forP andQ respectively. IfSE (P,AP ) = SE (Q,AQ) thenP ≡s Q
mod (AP , AQ).

To prove Theorem 2 we will first state and prove some auxiliaryresults.

Lemma 1 Let P be an operator on a latticeL and let AP be an approximating
mapping forP . If P (y) ≤ y then (y, y) ∈ SE (P,AP ) and (lfp(AP (·, y)), y) ∈
SE (P,AP ).

Proof: The pair(y, y) satisfies the conditions (SE1) and (SE2). SinceAP is an approx-
imating mapping forP , AP (y, y) = P (y). Thus, the pair(y, y) satisfies the condition
(SE3), as well. It follows that(y, y) ∈ SE (P,AP ).

Let us denotey′ = lfp(AP (·, y)) (we recall thatAP (·, y) is monotone and so, it
has a least fixpoint). SinceAP (y, y) = P (y) ≤ y, y is a prefixpoint of the operator
AP (·, y). By Theorem 1,y′ is also the least prefixpoint ofAP (·, y). Thus,y′ ≤ y
and the pair(y′, y) satisfies the condition (SE1). The condition (SE2) holds by the
assumption. Finally, sincey′ is a fixpoint ofAP (·, y), we haveAP (y′, y) = y′. Thus,
the condition (SE3) holds for(y′, y), as well. Consequently,(y′, y) ∈ SE (P,AP ). 2

Lemma 2 Let P and Q be operators on a latticeL and letAP and AQ be approx-
imating mapping forP and Q, respectively. IfSE (P,AP ) = SE (Q,AQ), then
St(P,AP ) = St(Q,AQ).

Proof: Lety ∈ St(P,AP ). By the definition, we havey = lfp(AP (·, y)). It follows
that AP (y, y) = y and so,P (y) = AP (y, y) = y. Thus, by Lemma 1,(y, y) ∈
SE (P,AP ) and so,(y, y) ∈ SE (Q,AQ). In particular, it follows thatQ(y) ≤ y.

Lety′ = lfp(AQ(·, y)). SinceQ(y) ≤ y, Lemma 1 implies that(y′, y) ∈ SE (Q,AQ).
Thus,(y′, y) ∈ SE (P,AP ) and, by (SE3),y′ is a prefixpoint of the operatorAP (·, y).
Consequently,y ≤ y′ (by Theorem 1, being the least fixpoint ofAP (·, y), y is also the
least prefixpoint ofAP (·, y)).

Since(y′, y) ∈ SE (Q,AQ), y′ ≤ y. Consequently,y = y′ and so,y = lfp(AQ(·, y)).
Therefore,y ∈ St(Q,AQ). It follows thatSt(P,AP ) ⊆ St(Q,AQ). The converse in-
clusion follows by the symmetry. 2
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Lemma 3 LetP be an operator on a complete latticeL and letAP be an approximat-
ing mapping forP . For every operatorR on L and for every approximating mapping
AR for R,

SE (P ∨R,AP ∨AR) = SE (P,AP ) ∩ SE (R,AR).

Proof: If (x, y) ∈ SE (P ∨ R,AP ∨ AR) or (x, y) ∈ SE (P,AP ) ∩ SE (R,AR) then
x ≤ y. Moreover,(P ∨ R)(y) ≤ y if and only if P (y) ≤ y andR(y) ≤ y. Finally,
(AP ∨ AR)(x, y) ≤ x if and only if AP (x, y) ≤ x andAR(x, y) ≤ x. Thus,(x, y) ∈
SE (P ∨R,AP ∨AR) if and only if (x, y) ∈ SE (P,AP ) ∩ SE (R,AR). 2

Proof of Theorem 2. Let R be an operator onL and letAR be an approximating
mapping forR. SinceSE (P,AP ) = SE (Q,AQ), by Lemma 3 it follows thatSE (P ∨
R,AP ∨AR) = SE (Q ∨R,AQ ∨AR). Thus, by Lemma 2,St(P ∨R,AP ∨AR) =
St(Q ∨R,AQ ∨AR), and the assertion follows. 2

We will now prove the converse statement to Theorem 2. In fact, we will prove
a stronger statement by restricting the class of operators one needs to consider as ex-
panding operators.

An operatorR on a complete latticeL is simpleif for somex, y ∈ L such that
x ≤ y, we have

R(z) =

{

x if z ≤ x
y otherwise

for everyz ∈ L.
We note that constant operators are simple. Indeed, ifw is the only value taken by

an operatorR, R is simple withx = y = w.
Moreover, every simple operatorR is monotone. Indeed, letx ≤ y be two elements

in L that defineR (according to the formula given above). Ifz1 ≤ z2 andR(z2) = y,
thenR(z1) ≤ R(z2) (asR(z1) = x or y, andx ≤ y). If, on the other hand,R(z2) = x
thenz2 ≤ x. Thus,z1 ≤ x, too, andR(z1) = x. In each case,R(z1) ≤ R(z2).

In particular,R has thecanonicalapproximating mappingCR which, we recall,
satisfiesCR(x, y) = R(x).

Theorem 3 LetP andQ be operators on a complete latticeL and letAP andAQ be
approximating mappings forP andQ, respectively. If for every simple operatorR onL
we haveSt(P ∨R,AP ∨CR) = St(Q∨R,AQ∨CR), thenSE (P,AP ) = SE (Q,AQ).

As before, we will first state and prove an auxiliary result.

Lemma 4 If for every constant operatorR on a complete latticeL we haveSt(P ∨
R,AP ∨ CR) = St(Q ∨ R,AQ ∨ CR), then for everyy ∈ L, P (y) ≤ y if and only if
Q(y) ≤ y.

Proof: Lety ∈ L and let us assume thatP (y) ≤ y. We defineR by settingR(z) = y,
for everyz ∈ L. Thus,R is a constant operator onL.

We note thatAP (y, y) = P (y) ≤ y. Moreover,CR(y, y) = R(y) = y. Thus,
y = AP (y, y) ∨ CR(y, y) or, in other words,y is a fixpoint ofAP (·, y) ∨ CR(·, y).
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Let z ∈ L be an arbitrary fixpoint ofAP (·, y) ∨ CR(·, y). Then

z = AP (z, y) ∨ CR(z, y) = AP (z, y) ∨R(z)

= AP (z, y) ∨ y ≥ y.

It follows thaty = lfp(AP (·, y) ∨CR(·, y)) and so,y ∈ St(P ∨R,AP ∨CR). By the
assumption of Lemma 4,y ∈ St(Q∨R,AQ∨CR), that is,y = lfp(AQ(·, y)∨CR(·, y)).
In particular, it follows thaty = AQ(y, y) ∨ CR(y, y) = Q(y) ∨ y. Thus,Q(y) ≤ y.
The converse implication follows by the symmetry argument. 2

Proof of Theorem 3. Let (x, y) ∈ SE (P,AP ). It follows thatx ≤ y andP (y) ≤ y.
By Lemma 4,Q(y) ≤ y.

If x = y then, by Lemma 1,(x, y) ∈ SE (Q,AQ). So, let us assume thatx < y.
Let R be a simple operator onL given by

R(z) =

{

x if z ≤ x
y otherwise.

We recall that sinceR is simple, it is monotone. Thus, it has the canonical approximat-
ing mappingCR, and for everyz, y ∈ L, CR(z, y) = R(z).

We now observe thatAQ(y, y) = Q(y) ≤ y and, asx < y, that CR(y, y) =
R(y) = y. It follows that

y = AQ(y, y) ∨ CR(y, y).

That is,y is a fixpoint of the operatorAQ(·, y) ∨ CR(·, y).
Let z be an arbitrary fixpoint ofAQ(·, y) ∨ CR(·, y), that is,

z = AQ(z, y) ∨ CR(z, y). (1)

By our assumption,x < y and sox ≤ R(z). SinceCR(z, y) = R(z), x ≤ CR(z, y).
By (1) CR(z, y) ≤ z. Thus, we have

x ≤ CR(z, y) ≤ z. (2)

Let us assume thatx < z. By the definition ofR, R(z) = y and so,

y = R(z) = CR(z, y) ≤ z.

Thus,y = lfp(AQ(·, y)∨CR(·, y)) and so,y ∈ St(Q∨R,AQ ∨CR). By the assump-
tion, y ∈ St(P ∨R,AP ∨ CR) and so,y = lfp(AP (·, y) ∨ CR(·, y)).

Since(x, y) ∈ SE (P,AP ), AP (x, y) ≤ x. Moreover,CR(x, y) = R(x) = x.
Thus,

AP (x, y) ∨ CR(x, y) = x.

It follows that x is a fixpoint ofAP (·, y) ∨ CR(·, y). Sincey is the least fixpoint of
AP (·, y)∨CR(·, y), y ≤ x, a contradiction. Consequently, it is not the case thatx < z.

Since by (2) we havex ≤ z, it follows thatx = z. Thus, by (1),AQ(x, y) ≤ x
and so,(x, y) ∈ SE (Q,AQ). Consequently,SE (P,AP ) ⊆ SE (Q,AQ). The converse
inclusion follows by the symmetry argument. 2

Theorems 2 and 3 yield a complete characterization of the strong equivalence of
operators.
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Corollary 4 Let P andQ be operators on a latticeL and letAP andAQ be approx-
imating mappings forP and Q respectively. ThenP ≡s Q mod (AP , AQ) if and
only if SE (P,AP ) = SE (Q,AQ).

Theorems 2 and 3 also imply a result stating that when establishing strong equiv-
alence it suffices to consider extensions by simple operators, and for each simple op-
erator — to consider its canonical approximating mapping only. Thus, the defining
condition of strong equivalence can be weakened significantly.

Theorem 5 Let P andQ be operators on a latticeL and letAP andAQ be approx-
imating mappings forP and Q respectively. ThenP ≡s Q mod (AP , AQ) if and
only if for every simple operatorR, St(P ∨R,AP ∨ CR) = St(Q ∨R,AQ ∨ CR).

We will now show formally that in the case of normal logic programs our approach
to strong equivalence generalizes the one developed in [LPV01].

Theorem 6 Normal logic programsP andQ are strongly equivalent in the sense of
[LPV01] if and only if the operatorsTP andTQ are strongly equivalent with respect to
(ΨP ,ΨQ) according to Definition 3.

Proof: The lattice of interest here is〈LAt ,⊆〉, in which the join operator is∪.
(⇐) Let R be an arbitrary logic program. SinceP and Q are strongly equivalent
according to Definition 3,

St(TP ∪ TR,ΨP ∪ΨR) = St(TQ ∪ TR,ΨQ ∪ΨR).

As we noted earlier, the sets of stable models ofP ∪ R andQ ∪ R are given by the
left-hand side and the right-hand side, respectively, of the equality above. Thus,P and
Q are strongly equivalent according to the definition in [LPV01].
(⇒) Let S be an arbitrary simple operator on the latticeLAt . Then there are sets
X,Y ⊆ At such thatX ⊆ Y and, for everyZ ⊆ At ,

S(Z) =

{

X if Z ⊆ X
Y otherwise.

Let R be a logic program defined as follows:

R = X ∪ {a← b : a ∈ Y, b ∈ At \X}.

It is easy to check thatS = TR.
SinceP andQ are strongly equivalent in the sense of [LPV01],P ∪R andQ ∪R

have the same stable models. In the language of operators, itmeans thatSt(TP ∪
TR,ΨP ∪ΨR) = St(TQ ∪ TR,ΨQ ∪ΨR). The programR is a Horn program. Thus,
ΨR(V,W ) = ΨR(V, V ) = TR(V ) = S(V ) = CS(V,W ). It follows thatSt(TP ∪
S,ΨP ∪CS) = St(TQ∪S,ΨQ∪CS). By Theorem 5,P andQ are strongly equivalent
according to Definition 3. 2
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6 Uniform equivalence

Se-pairs can also be used to characterize uniform equivalence. We have the following
theorem.

Theorem 7 LetP andQ be operators on a complete latticeL and letAP andAQ be
approximating mappings forP andQ respectively. ThenP ≡u Q mod (AP , AQ) if
and only if

1. for everyy ∈ L, P (y) ≤ y if and only ifQ(y) ≤ y

2. for everyx, y ∈ L such thatx < y and(x, y) ∈ SE (P,AP ), there isu ∈ L such
thatx ≤ u < y and(u, y) ∈ SE (Q,AQ)

3. for everyx, y ∈ L such thatx < y and (x, y) ∈ SE (Q,AQ), there isu ∈ L
such thatx ≤ u < y and(u, y) ∈ SE (P,AP )

Proof: (⇐) Let R be a constant operator. Then there isx ∈ L such that for everyz ∈ L
we haveR(z) = x. Let y ∈ St(P ∨R,AP ∨CR). Theny = lfp(AP (·, y)∨CR(·, y)).
It follows that

CR(y, y) ≤ y and P (y) = AP (y, y) ≤ y.

SinceP (y) ≤ y, the condition (1) implies thatQ(y) ≤ y. Thus,AQ(y, y) = Q(y) ≤
y. SinceCR(y, y) ≤ y, we obtain thaty is a prefixpoint ofAQ(·, y) ∨ CR(·, y).

Let y′ = lfp(AQ(·, y) ∨ CR(·, y)). Therefore, we have

y′ ≤ y

and
x = R(y′) = CR(y′, y) ≤ y′.

Let us assume thaty′ < y. Sincey′ = AQ(y′, y) ∨ CR(y′, y), AQ(y′, y) ≤ y′.
Thus, (y′, y) ∈ SE (Q,AQ) (we already proved thaty′ ≤ y and Q(y) ≤ y). By
the condition (3), there isy′′ such thaty′ ≤ y′′ < y and(y′′, y) ∈ SE (P,AP ). In
particular,AP (y′′, y) ≤ y′′. In addition, we have

CR(y′′, y) = R(y′′) = x ≤ y′ ≤ y′′.

It follows thaty′′ is a prefixpoint of the operatorAP (·, y) ∨ CR(·, y). Sincey is the
least fixpoint ofAP (·, y) ∨ CR(·, y), y ≤ y′′, a contradiction.

Thus,y′ = y and so,y = lfp(AQ(·, y) ∨ CR(·, y)). It follows thaty ∈ St(Q ∨
R,AQ∨CR). We conclude thatSt(P ∨R,AP ∨CR) ⊆ St(Q∨R,AQ∨AR). The con-
verse inclusion follows by the symmetry argument. Thus,P ≡u Q mod (AP , AQ).

(⇒) The condition (1) follows from Lemma 4. We will now show that the condition (2)
holds. Letx, y ∈ L be such thatx < y and(x, y) ∈ SE (P,AP ). The latter assumption
implies thatP (y) ≤ y. By the condition (1),Q(y) ≤ y.

Let R be an operator onL such that for everyz ∈ L, R(z) = x. Let y′ =
lfp(AQ(·, y)∨CR(·, y)). SinceAQ(y, y) = Q(y) ≤ y andCR(y, y) = R(y) = x < y,
AQ(y, y)∨CR(y, y) ≤ y. Thus,y is a prefixpoint ofAQ(·, y)∨CR(·, y) and so,y′ ≤ y.
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If y′ = y then,y = lfp(AQ(·, y)∨CR(·, y)) and, consequently,y = lfp(AP (·, y)∨
CR(·, y)). Since(x, y) ∈ SE (P,AP ), AP (x, y) ≤ x and so,AP (x, y)∨CR(x, y) ≤ x
(asCR(x, y) = R(x) = x). Thus,x is a prefixpoint ofAP (·, y) ∨ CR(·, y). Conse-
quently,y ≤ x, a contradiction. Thus,y′ < y.

By the definition ofy′, AQ(y′, y) ≤ y′. Thus,(y′, y) ∈ SE (Q,AQ). The definition
of y′ also implies thatx = R(y′) = CR(y′, y) ≤ y′. Thus, the condition (2) holds (for
u = y′). The condition (3) follows by the symmetry argument. 2

In the case, when a latticeL has the property that its every nonempty subset has
maximal elements (in particular, every finite lattice has this property) we have a more
elegant characterization of uniform equivalence.

An se-pair(x, y) ∈ SE (P,AP ) is aue-pair for P with respect toAP if for every
(x′, y) ∈ SE (P,AP ) such thatx < x′, we havex′ = y. We writeUE(P,AP ) for the
set of all ue-pairs forP with respect toAP .

Theorem 8 LetL be a complete lattice with the property that its every nonempty sub-
set has a maximal element. LetP and Q be operators onL and letAP and AQ be
approximating mappings forP andQ respectively. ThenP ≡u Q mod (AP , AQ) if
and only ifUE(P,AP ) = UE(Q,AQ).

Proof: (⇒) First, it is easy to show that(y, y) ∈ UE(P,AP ) if and only if (y, y) ∈
UE(Q,AQ).

Let us assume thatUE(P,AP ) 6= UE(Q,AQ), that is,

U = (UE(P,AP ) \ UE(Q,AQ))

∪(UE(P,AP ) \ UE(Q,AQ)) 6= ∅.

Let X consist of all elementsx ∈ L such that for somey ∈ L, (x, y) ∈ U . SinceX 6=
∅, X has a maximal element, sayx0. Let y0 be an element ofL such that(x0, y0) ∈
U . Without the loss of generality, we may assume that(x0, y0) ∈ UE(P,AP ) \
UE(Q,AQ). By our observation above,x0 6= y0 and so,x0 < y0.

SinceP ≡u Q mod (AP , AQ) and since(x0, y0) ∈ UE (P,AP ) ⊆ SE (P,AP ),
by Theorem 7 there isu ∈ L such thatx0 ≤ u < y0 and(u, y0) ∈ SE (Q,AQ). Let
u′ be a maximal such elementu (its existence follows from our assumption about the
lattice L). Then(u′, y0) ∈ UE (Q,AQ). Since(x0, y0) /∈ UE (Q,AQ), u′ 6= x0.
Thus,x0 < u′. From the way we chosex0 it follows that(u′, y0) ∈ UE (P,AP ) and
so(u′, y0) ∈ SE (P,AP ). Sincex0 < u′ < y0, this is a contradiction with the property
that(x0, y0) ∈ UE (P,AP ).

(⇐) We first show that the condition (1) of Theorem 7 holds. IfP (y) ≤ y then,
by Lemma 1,(y, y) ∈ SE (P,AP ). It follows that (y, y) ∈ UE (P,AP ) and so,
(y, y) ∈ UE (Q,AQ). In particular, we have thatQ(y) ≤ y. The proof of the con-
verse implication is symmetric.

To prove the condition (2) of Theorem 7, let us consider(x, y) ∈ SE (P,AP )
and such thatx < y. Let y′ be a maximal element such that(y′, y) ∈ SE (P,AP )
and x ≤ y′ < y. It follows that (y′, y) ∈ UE (P,AP ). Consequently,(y′, y) ∈
UE (Q,AQ) ⊆ SE (Q,AQ).
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The condition (3) of Theorem 7 follows by symmetry. Thus, by Theorem 7,P ≡u

Q mod (AP , AQ). 2

We conclude this section by a result showing that in the case of normal logic pro-
grams, our notion of uniform equivalence generalizes that of [EF03]. The result follows
directly from the two corresponding definitions, when we (1)connect programs with
their one-step provability operators, (2) take into account that every constant operator
S on the latticeLAt is of the formTR, whereR is a set of atoms (facts) fromAt , and
(3) observe thatΨR = CS .

Theorem 9 Normal logic programsP andQ are uniformly equivalent in the sense of
[EF03] if and only if the operatorsTP andTQ are uniformly equivalent with respect
to (ΨP ,ΨQ) according to Definition 3.

7 Other results

In this section, we present results on strong and uniform equivalence of monotone
and antimonotone operators. We start with a lemma that characterizes se-pairs of a
monotone operator with respect to its canonical approximating mapping.

Lemma 5 LetP be a monotone operator on a complete latticeL. ThenSE (P,CP ) =
{(x, y) ∈ L2 : x ≤ y, P (y) ≤ y, andP (x) ≤ x}.

Proof. By the definition,

SE (P,CP ) = {(x, y) ∈ L2 : x ≤ y, P (y) ≤ y, andCP (x, y) ≤ x}.

We haveCP (x, y) = P (x). Thus, the assertion follows. 2

Theorem 10 Let P and Q be monotone operators on latticeL. ThenP ≡s Q
mod (CP , CQ) if and only ifP andQ have the same prefixpoints.

Proof: From Lemma 5 it follows that ifP and Q have the same prefixpoints then
SE (P,CP ) = SE (Q,CQ) and so,P ≡s Q mod (CP , CQ).

For the converse implication, let us assume thatP ≡s Q mod (CP , CQ). It fol-
lows thatSE (P,CP ) = SE (Q,CQ). Since(y, y) ∈ SE (P,CP ) ((y, y) ∈ SE (Q,CQ),
respectively) if and only ifP (y) ≤ y (Q(y) ≤ y, respectively), the assertion follows.
2

Corollary 11 Let P and Q be monotone operators on a complete latticeL. Then
P ≡u Q mod (CP , CQ) if and only ifP ≡s Q mod (CP , CQ).

Proof: Strong equivalence implies uniform equivalence. Thus, let us assume that
P ≡u Q mod (CP , CQ). By Theorem 7, for everyz ∈ L, P (z) ≤ z if and only if
Q(z) ≤ z. That is,P andQ have the same prefixpoints. By Theorem 10,P ≡s Q
mod (CP , CQ). 2

If P is a Horn program thenTP is monotone andΨP = CP . Moreover, prefixpoints
if TP are precisely models ofP . Thus, Theorem 10 and Corollary 11 imply results on
strong and uniform equivalence of Horn programs (cf. [EFW06]).
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Corollary 12 Let P and Q be Horn programs. Then the following conditions are
equivalent:

1. P andQ are strongly equivalent

2. P andQ are uniformly equivalent

3. P andQ have the same models.

For antimonotone operators we only have a simple characterization of strong equiv-
alence.

Theorem 13 Let P andQ be antimonotone operators on a complete latticeL. Then
P ≡s Q mod (CP , CQ) if and only ifP andQ have the same prefixpoints and for
every prefixpointy of bothP andQ, P (y) = Q(y).

Proof: (⇒) Let P (y) ≤ y. SinceCP (P (y), y) = P (y), (P (y), y) ∈ SE (P,AP ).
Thus,(P (y), y) ∈ SE (Q,CQ). That is,Q(y) = CQ(P (y), y) ≤ P (y) ≤ y. It follows
that y is a prefixpoint ofQ and thatQ(y) ≤ P (y). By the symmetry argument, if
Q(y) ≤ y, thenP (y) ≤ y andP (y) ≤ Q(y). Thus, the assertion follows.

(⇐) We have that(x, y) ∈ SE (P,CP ) if and only if P (y) ≤ x ≤ y. This is equiv-
alent toQ(y) ≤ x ≤ y and, further, to(x, y) ∈ SE (Q,CQ). Thus,SE (P,CP ) =
SE (Q,CQ) and so,P andQ are strongly equivalent. 2

This result implies a corollary for logic programs that are purely negative (no rule
has a positive literal in the body).

Corollary 14 Let P and Q be purely negative logic programs. ThenP and Q are
strongly equivalent if and only ifP andQ have the same models and for every model
M of bothP andQ, the sets of heads ofM -applicable rules inP andQ are the same.

8 Default logic

We will now apply the results of this paper to default logic [Rei80]. LetAt be a set of
propositional variables. ByFAt we denote the set of all propositional formulas over
At and byP(FAt) — the family of all subsets ofFAt . Together with the inclusion
relation,P(FAt) forms a complete lattice. The operator∪ is the join in this lattice.

In our presentation, we will assume familiarity with basic concepts of default logic
and refer to [MT93] for details. We recall that adefaultis an expressiond of the form

d =
α : β1, . . . , βn

γ
,

whereα, βi, 1 ≤ i ≤ n, andγ are formulas fromFAt called theprerequisite, the
justificationsand theconsequentof d, respectively. We setpre(d) = α, just(d) =
{β1, . . . , βn} andcons(d) = γ.

A default theoryis a pair(D,W ), whereD is a set of defaults andW ⊆ FAt . A
key notion associated with default theories is that of anextension[Rei80]. We will now
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present a definition of an extension. It is a reformulation ofthe original definition to
make it better aligned with the abstract theory of equivalence.

Let U, V ⊆ FAt and letd be a default. We say that(U, V ) enablesd, written
(U, V ) � d, if U |= pre(d) and, for everyβ ∈ just(d), V 6|= ¬β. Let ∆ = (D,W ) be
a default theory. We now define a2-input one-step provabilitymapping

Ψ∆ : P(FAt)× P(FAt)→ P(FAt)

by setting for every pair of setsU, V ∈ P(FAt)

Ψ∆(U, V ) = W ∪ {cons(d) : d ∈ D, (U, V ) � d}.

It is easy to check that the operatorΨ∆(·, V ) is monotone. Thus, it has a least fixpoint
and we define

Γ∆(V ) = Cn(lfp(Ψ∆(·, V ))).

The choice of the notation is not accidental. The operatorΓ∆ is indeed the operatorΓ
introduced in [Rei80]. We call a setE ∈ P(FAt) anextensionof ∆ if

E = Γ∆(E).

Given extensions as basic semantic objects, we now define theconcepts of strong
and uniform equivalence of default theories (the notion of strong equivalence was intro-
duced in [Tur01], in a slightly more general setting of nested default theories). We will
use the following notation: for default theories∆′ = (D′,W ′) and∆′′ = (D′′,W ′′),
we will write ∆′ ∪∆′′ for the default theory(D′ ∪D′′,W ′ ∪W ′′).

Definition 4 Let∆′ and∆′′ be default theories.

1. ∆′ and ∆′′ are strongly equivalentif for every default theory∆, the default
theories∆′ ∪∆ and∆′′ ∪∆ have the same extensions

2. ∆′ and∆′′ areuniformly equivalentif for every default theory∆ = (∅,W ), the
default theories∆′ ∪∆ and∆′′ ∪∆ have the same extensions.

We will now show that these two concepts fall into the generalalgebraic scheme
discussed in the paper.

We observed earlier that for everyV ∈ P(FAt), the operatorΨ∆(·, V ) is mono-
tone. It is also easy to see that for everyU ∈ P(FAt), the operatorΨ∆(U, ·) is an-
timonotone. It follows thatΨ∆ is an approximating mapping for the operatorG∆ on
P(FAt) such that for everyU ∈ P(FAt),

G∆(U) = Ψ∆(U,U).

The following property of extensions is a direct consequence of the corresponding
definitions.

Theorem 15 Let ∆ = (D,W ) be a default theory. Then a setE ∈ P(FAt) is an
extension of∆ if and only if there isV ∈ P(FAt) such thatV is aΨ∆-stable fixpoint
of G∆ (that is,V = lfp(Ψ∆(·, V ))) andE = Cn(V ).
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Proof: (⇒) Let E be an extension of∆, that is,

E = Γ∆(E) = Cn(lfp(Ψ∆(·, E))).

Let us defineV = lfp(Ψ∆(·, E)). It follows that E = Cn(V ). Moreover, since
E = Cn(V ), for everyU ∈ P(FAt), we haveΨ∆(U, V ) = Ψ∆(U,E). Consequently,
V = lfp(Ψ∆(·, V )).
(⇐) If E = Cn(V ) then for everyU ∈ P(FAt) we haveΨ∆(U, V ) = Ψ∆(U,E).
Thus,

E = Cn(V ) = Cn(lfp(Ψ∆(·, V ))) = Cn(lfp(Ψ∆(·, E))) = Γ∆(E).

Thus,E is an extension of∆. 2

Theorem 15 implies that extensions of a default theory∆ are precisely the closures
under propositional consequence ofΨ∆-stable fixpoints ofG∆. Consequently, we have
the following result establishing a connection between strong (uniform) equivalence of
default theories∆′ and∆′′, and strong (uniform) equivalence of operatorsG∆′ and
G∆′′ .

Theorem 16 Let ∆′ and ∆′′ be default theories. Then∆′ and ∆′′ are strongly (re-
spectively, uniformly) equivalent if and only if the operatorsG∆′ andG∆′′ are strongly
(respectively, uniformly) equivalent with respect to(Ψ∆′ ,Ψ∆′′).

Proof: We recall that the lattice of interest here is the lattice 〈P(FAt),⊆〉, and that the
corresponding join operator is∪. We also note that for every two default theories∆′

and∆′′, we have
G∆′∪∆′′ = G∆′ ∪G∆′′ ,

and
Ψ∆′∪∆′′ = Ψ∆′ ∪Ψ∆′′ .

We will now deal with the case of strong equivalence.
(⇐) Let ∆ be an arbitrary default theory. SinceG∆′ andG∆′′ are strongly equivalent
with respect to(Ψ∆′ ,Ψ∆′′), (Ψ∆′ ∪Ψ∆)-stable fixpoints ofG∆′ ∪G∆ are the same as
(Ψ∆′′ ∪Ψ∆)-stable fixpoints ofG∆′′ ∪G∆. By our observations above,Ψ∆′∪∆-stable
fixpoints ofG∆′∪∆ are the same asΨ∆′′∪∆-stable fixpoints ofG∆′′∪∆. By Theorem
15, ∆′ ∪ ∆ and∆′′ ∪ ∆ have the same extensions and so,∆′ and∆′′ are strongly
equivalent.
(⇒) Let S be an arbitrary simple operator on the latticeP(FAt) (with the inclusion as
the ordering relation). Then, there are setsX,Y ∈ P(FAt) such thatX ⊆ Y and

S(Z) =

{

X if Z ⊆ X
Y otherwise

for everyZ ∈ P(FAt). Let us define

D = {
β :

α
: α ∈ Y, β ∈ FAt \X}

and set∆ = (D,X). Clearly,G∆ = S.
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Since∆′ and ∆′′ are strongly equivalent,∆′ ∪ ∆ and ∆′′ ∪ ∆ have the same
extensions. In the language of operators, it means thatSt(G∆′ ∪ G∆,Ψ∆′ ∪ Ψ∆) =
St(G∆′′ ∪ G∆,Ψ∆′′ ∪ Ψ∆). As all defaults of∆ are justification-free,Ψ∆(U, V ) =
Ψ∆(U,U) = G∆(U) = S(U) = CS(U, V ). It follows thatSt(G∆′ ∪S,Ψ∆′ ∪CS) =
St(G∆′′ ∪ S,Ψ∆′′ ∪ CS). By Theorem 5,G∆′ andG∆′′ are strongly equivalent with
respect to(Ψ∆′ ,Ψ∆′′).

For the case of uniform equivalence the argument is similar but it requires an obser-
vation that constant operators onP(FAt) are precisely the operators of the formG∆,
for some default theory∆ = (∅,W ). 2

Theorem 16 allows us to apply the results of this paper to characterize the strong
and uniform equivalence of default theories.

A pair (U, V ), whereU, V ∈ P(FAt) is adefault se-pair(or,dse-pair) for a default
theory∆ = (D,W ) if

(SE-DL1) W ⊆ U ⊆ V

(SE-DL2) for every defaultd ∈ D, if (V, V ) � d thencons(d) ∈ V

(SE-DL3) for every defaultd ∈ D, if (U, V ) � d, thencons(d) ∈ U .

One can check that(U, V ) is a dse-pair for a default theory∆ if and only if (U, V )
is anse-pair for the operatorG∆ with respect toΨ∆. Thus, Corollary 4 implies the
following result.

Theorem 17 Default theories∆′ and ∆′′ are strongly equivalent if and only if they
have the same dse-pairs.

This result in turn has a corollary, which allows one to restrict the class of se-pairs
that one needs to inspect when testing strong equivalence.

Corollary 18 Default theories∆′ and∆′′ are strongly equivalent if and only if they
have the same dse-pairs(U, V ), whereU, V ⊆W ′ ∪W ′′ ∪ {cons(d) : d ∈ D′ ∪D′′}.

Our general results also imply characterizations of the uniform equivalence of de-
fault theories. We say that a setV ⊆ FAt is closedunder a setD of defaults if for
everyd ∈ ∆ such that(V, V ) � d, cons(d) ∈ V .

Theorem 19 Default theories∆′ and∆′′ are uniformly equivalent if and only if

1. for everyV ⊆ FAt , V is closed underD′ if and only ifV is closed underD′′,
whereD′ andD′′ are the sets of defaults of∆′ and∆′′, respectively

2. for every dse-pair(U, V ) for ∆′, if U  V then there isU ′ such thatU ⊆ U ′  

V and(U ′, V ) is a dse-pair for∆′′

3. for every dse-pair(U, V ) for ∆′′, if U  V then there isU ′ such thatU ⊆ U ′  

V and(U ′, V ) is a dse-pair for∆′.
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In the case of finite default theories, the characterizationcan be restated in terms of
default ue-pairs. A default se-pair for a default theory∆, say(U, V ), is adefault ue-
pair (or, due-pair) for ∆ if for every default se-pair(U ′, V ) for ∆ such thatU  U ′,
we haveU ′ = V .

Theorem 20 Let∆′ and∆′′ be finite default theories. Then∆′ and∆′′ are uniformly
equivalent if and only if they have the same due-pairs.

9 Discussion

We showed in the paper that our approach yields as corollaries results on strong and
uniform equivalence of logic programs and default theories. In a similar way, we
can characterize strong and uniform equivalence of logic programs with aggregates
as studied in [Pel04, PDBn04], and of modal theories with thesemantics of exten-
sions [DMT00], which yields a version of autoepistemic logic forming a precise modal
match to the default logic. The reason is that in each case thesemantics (stable models,
extensions) is given in terms of an operator on a complete lattice and its approximating
mapping.

Our approach, as presented here, it does not apply to nested logic programs and
nested default theories. We conjecture that it can be extended to cover these formalisms
by building on the algebraic approach to disjunctive logic programming proposed in
[PT04]. This is a topic of our ongoing research.

A fundamental research question is whether there are other versions of equivalence
of operators on complete lattices. [PV04] argued that in thecontext of answer-set
programming strong and uniform equivalence are the only twoconcepts of this type.
Our results suggest that the two concepts are close to each other also in a more gen-
eral algebraic setting we considered here. Namely, as long as we define equivalence
in terms of extending operators defined non-trivially on theentire lattice L, they es-
sentially exhaust all possibilities. Considering constant operators (with their canonical
approximations) as extending operators characterizes uniform equivalence. Consider-
ing just a slightly larger class of simple operators (moreover, also with their canonical
approximations only) already yields the notion of strong equivalence.

To get a new notion of equivalence, we would need a class of operators containing
constant operators but not simple ones. One candidate is theclass of antimonotone
operators. This class, however, does not seem to correspondto any situations of practi-
cal relevance. Another possibility is to consider constantoperators only, as in uniform
equivalence, but allow arbitrary approximating mappings.We note however, that in the
context of logic programming (and most likely also other nonmonotonic logics) this is
not a promising direction. The reason is that if a programP is a set of facts, no natural
approximating mappings emerged forTP other than the two-input operatorΨP .

On the other hand, an interesting and important extension ofstrong and uniform
equivalence of programs can be obtained by restricting the class of extending programs
to those built only of atoms from some fixed setA ⊆ At [EFW06]. This approach
results in strong and uniform equivalence of programsrelativizedwith respect toA.
We observe that the relativized equivalence can be considered in our algebraic setting.
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Let L be a complete lattice and lety ∈ L. An operatorR onL is ay-operatorif (1) for
everyz ∈ L, R(z) ≤ y, and (2) for everyz1, z2 ∈ L, R(z1∧y) = R(z2∧y); that is, ifR
is determined by an operator on the complete lattice{x ∈ L : x ≤ y}. By allowing only
y-operators as extending operators, we obtain strong and uniformy-equivalence, which
generalizes the corresponding notions from [EFW06] proposed there for programs. We
are presently studying algebraic properties of strong and uniform y-equivalence.
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