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Abstract

In this paper, we focus on the problem of existence of and computing small
and large stable models. We show that for every fixed integer k, there
is a linear-time algorithm to decide the problem LSM (large stable models
problem): does a logic program P have a stable model of size at least |P|—k.
In contrast, we show that the problem SSM (small stable models problem)
to decide whether a logic program P has a stable model of size at most
k is much harder. We present two algorithms for this problem but their
running time is given by polynomials of order depending on k. We show
that the problem SSM is fized-parameter intractable by demonstrating that
it is W[2]-hard. This result implies that it is unlikely, an algorithm exists
to compute stable models of size at most k that would run in time O(n°),
where ¢ is a constant independent of k. We also provide an upper bound
on the fixed-parameter complexity of the problem SSM by showing that it
belongs to the class W3]

1 Introduction

The stable model semantics by Gelfond and Lifschitz [10] is one of the two
most widely studied semantics for normal logic programs, the other one be-
ing the well-founded semantics by Van Gelder, Ross and Schlipf [17]. Among
2-valued semantics, the stable model semantics is commonly regarded as the
one providing the correct meaning to the negation operator in logic pro-
gramming. It coincides with the least model semantics on the class of Horn
programs, and with the well-founded semantics and the perfect model se-
mantics on the class of stratified programs [1]. In addition, the stable model
semantics is closely related to the notion of a default extension by Reiter
[12, 4]. Logic programming with stable model semantics has applications
in knowledge representation, planning and reasoning about action. It was
also recently proposed as a computational paradigm especially well suited
for solving combinatorial optimization and constraint satisfaction problems
(14, 15].

The problem with the stable model semantics is that, even in the proposi-
tional case, reasoning with logic programs under the stable model semantics



is computationally hard. It is well-known that deciding whether a finite
propositional logic program has a stable model is NP-complete [13]. Conse-
quently, it is not at all clear that logic programming with the stable model
semantics can serve as a practical computational tool.

This issue can be resolved by implementing systems computing stable
models and by experimentally studying the performance of these systems.
Several such projects are now under way. Niemeld and Simons [16] developed
a system, smodels, for computing stable models of finite function symbol-
free logic programs and reported very promising performance results. For
some classes of programs, smodels decides the existence of a stable model in
a matter of seconds even if an input program consists of tens of thousands
of clauses. Encouraging results on using smodels to solve planning problems
are reported in [15]. Another well-advanced system is DeReS [6], designed
to compute extensions of arbitrary propositional default theories but being
especially effective for default theories encoding propositional logic programs
with good relaxed stratification. Finally, systems capable of reasoning with
disjunctive logic programs were described in [9] and [2].

However, faster implementations will ultimately depend on better under-
standing of the algorithmic aspects of reasoning with logic programs under
the stable model semantics. In this paper, we investigate the complexity of
deciding whether a finite propositional logic program has stable models of
some restricted sizes. Specifically, we study the following two problems (| P|
stands for the number of rules in a logic program P):

LSM (Large stable models) Given a finite propositional logic program P
and an integer k, decide whether there is a stable model of P of size
at least |P| — k.

SSM (Small stable models) Given a finite propositional logic program P
and an integer k, decide whether there is a stable model of P of size
no more than k.

Inputs to the problems LSM and SSM are pairs (P, k), where P is a
finite propositional logic program and k is a non-negative integer. Problems
of this type are referred to as parametrized decision problems. By fixing a
parameter, a parameterized decision problem gives rise to its fized-parameter
version. In the case of problems LSM and SSM, by fixing k we obtain the
following two fixed-parameter problems (k is now no longer a part of input):

LSM (k) Given a finite propositional logic program P, decide whether P
has a stable model of size at least |P| — k.

SSM (k) Given a finite propositional logic program P, decide whether P
has a stable model of size at most k.

The problems LSM and SSM are NP-complete. It follows directly from
the NP-completeness of the problem of existence of stable models [13]. But



fixing k£ makes a difference! Clearly, the fixed-parameter problems SSM (k)
and LSM (k) can be solved in polynomial time. Indeed, consider a finite
propositional logic program P with the set of atoms At(P). Then, there are
O(|At(P)|*) subsets of A#(P) of cardinality at most k. For each such subset
M, it can be checked in time linear in the size of P (the total number of
all occurrences of atoms in P; in the paper we will denote this number by
size(P)) whether M is a stable model of P. Thus, one can decide whether
P has a stable model of size at most k in time O(size(P) x |AH{P)[¥).

Similarly, there are only O(|P|*) subsets of P of size at least |P| — k.
Each such subset is a candidate for the set of generating rules of a stable
model of size at least |P| — k (and smaller subsets, clearly, are not). Given
such a subset R, one can check in time O(size(P)) whether R generates a
stable model for P. Thus, it follows that there is an algorithm that decides
in time O(size(P) x |P|*) whether a logic program P has a stable model of
size at least |P| — k.

While both algorithms are polynomial in the size of the program, their
asymptotic complexity is expressed by the product of the size of a program
and of a polynomial of order k in the number of atoms (or rules) of the
program. Even for small values of k, say for k > 4, the functions size(P) x
|At(P)|* and size(P) x |P|¥ grow very fast with size(P), |At(P)| and |P|,
and render the corresponding algorithms infeasible.

An important question is whether algorithms for problems SSM (k) and
LSM (k) exist whose order is significantly lower than k, preferably, a con-
stant independent of k. The study of this question is the main goal of our
paper. A general framework for such investigations was proposed by Downey
and Fellows [7, 8]. They introduced the concepts of fized-parameter tractabil-
ity and fized-parameter intractability that are defined in terms of a certain
hierarchy of complexity classes known as the W hierarchy.

In the paper, we show that the problem LSM is fixed-parameter tractable
and demonstrate an algorithm that for every fixed k decides the problem
LSM (k) in linear time — a significant improvement over the straightfor-
ward algorithm presented earlier.

On the other hand, we demonstrate that the problem SSM is much
harder. We outline an algorithm to decide the problems SSM(k), k >
1, that is asymptotically faster than the simple algorithm described above
but the improvement is rather insignificant. Our algorithm runs in time
O(size(P) x |At(P)|¥~1), an improvement only by the factor of |At(P)|. The
difficulty in finding a substantially better algorithm is not coincidental. We
provide evidence that the problem SSM is fized-parameter intractable and,
thus, it is unlikely that there is an algorithm to decide the problems SSM (k)
whose running time would be given by a polynomial of order independent of
k.

The study of fixed-parameter tractability of problems occuring in the
area, of nonmonotonic reasoning is a relatively new research topic. Another
paper that pursues this direction is [11].



2 Fixed-parameter intractability

This section recalls basic ideas of the work of Downey and Fellows on fixed-
parameter intractability. The reader is referred to [7, 8] for a detailed treat-
ment of this subject.

Informally, a parametrized decision problem is a decision problem whose
inputs are pairs of items, one of which is referred to as a parameter. The
graph colorability problem is an example of a parametrized problem. The
inputs are pairs (G, k), where G is an undirected graph and k is a non-
negative integer. The problem is to decide whether G' can be colored with
at most k colors. The problems SSM and LSM are also examples of
parametrized decision problems. Formally, a parametrized decision problem
is aset L C X* x X%, where X* is a fixed alphabet.

By selecting a concrete value y € 3* of the parameter, a parametrized
decision problem L gives rise to an associated fized-parameter problem L, =
{z : (z,y) € L}. For instance, by fixing the value of k to 3, we get a
fixed-parameter version of the colorability problem, known as 3-colorability.
Inputs to the 3-colorability problem are graphs and the question is to decide
whether an input graph can be colored with 3 colors. Clearly, the problems
SSM(k) and LSM (k) are fixed-parameter versions of the problems SSM
and LSM, respectively.

The interest in the fixed-parameter problems stems from the fact that
they are often computationally easier than the corresponding parametrized
problems. For instance, the problems SSM and LSM are NP-complete yet,
as we saw earlier, their parametrized versions SSM (k) and LSM (k) can be
solved in polynomial time. A word of caution is in order here. It is not
always the case that fixed-parameter problems are easier. For instance, the
3-colorability problem is still NP-complete.

As we already pointed out, the fact that a problem admits a polynomial-
time solution does not necessarily mean that practical algorithms to solve
it exist. An algorithm that runs in time O(n'®), where n is the size of
the input, is hardly more practical than an algorithm with an exponential
running time (and may even be a worse choice in practice). The algorithms
we presented so far to argue that the problems SSM(k), LSM (k) are in
P rely on searching through the space of n*¥ possible solutions (where n is
the number of atoms or rules of a program). Thus, these algorithms are not
practical (except for the very smallest values of k). The key question is how
fast those polynomial-time solvable fixed-parameter problems can really be
solved. Or, in other words, can one significantly improve over the brute-force
approach?

A technique to deal with such questions is provided by the fixed-parameter
intractability theory of Downey and Fellows [7]. A parametrized problem
L C¥* x ¥* is fized-parameter tractable if there exist a constant p, an inte-
ger function f and an algorithm A such that A determines whether (z,y) € L
in time f(|y|)|z|’ (]z| stands for the length of a string z € ¥£*). The class



of fixed-parameter tractable problems will be denoted by FPT. Clearly, if a
parametrized problem L is in FPT, each of the associated fixed-parameter
problems L, is solvable in polynomial time by an algorithm whose exponent
does not depend on the value of the parameter y. It is known (see [7]) that,
for instance, the vertex cover problem is in FPT.

There is substantial evidence supporting a conjecture that some paramet-
rized problems whose fixed-parameter versions belong to P are not fixed-
parameter tractable. To study and compare complexity of parametrized
problems Downey and Fellows proposed the following notion of reducibility®.
A parametrized problem L can be reduced to a parametrized problem L' if
there exist a constant p, an integer function ¢ and an algorithm A that to
each instance (x,y) of L assigns an instance (z,y') of L' such that

1. 7’ depends upon z and y and 3’ depends upon y only,
2. A runs in time O(q(|y|)|z|P),
3. (z,y) € L if and only if (2',y') € L.

Downey and Fellows also defined a hierarchy of complexity classes called the
W hierarchy:
FPT C W[1] C W[2] CW]3]... (1)

The classes W[t] can be described in terms of problems that are complete
for them (a problem D is complete for a complexity class £ if D € £ and
every problem in £ can be reduced to D). Let us call a boolean formula ¢-
normalized if it is of the form of products-of-sums-of-products ... of literals,
with ¢ being the number of products-of, sums-of expressions in this definition.
For example, 2-normalized formulas are products of sums of literals. Thus,
the class of 2-normalized formulas is precisely the class of CNF formulas.
Define the weighted t-normalized satisfiability problem as:

WS(t) Given a t-normalized formula ¢ and an integer k, decide whether
there is a model of ¢ with at most k atoms (or, alternatively, decide
whether there is a satisfying valuation for ¢ which assigns the logical
value true to at most k& atoms).

It is believed that the problems WS(t), t > 2, are not fixed-parameter
tractable and that for different values of ¢ they are of different difficulty.
Downey and Fellows show that for ¢ > 2, the problems WS(t¢) are complete
for the class W[t]. They also show that a restricted version of the problem

WS(2):

WS3(2) Given a 3CNF formula ¢ and an integer k (parameter), decide
whether there is a model of ¢ with at most k£ atoms

!The definition given here is sufficient for the needs of this paper. To obtain structural
theorems a subtler definition is needed. This topic goes beyond the scope of the present
paper. The reader is referred to [7] for more details.



is complete for the class W[1]. Downey and Fellows conjecture that all the
implications in (1) are proper?. In particular, they conjecture that problems
complete for the classes W[t], ¢ > 1, are not fixed-parameter tractable.

In the paper, we relate the problem SSM to the problems WS (2) and
WS(3) to place the problem SSM in the W hierarchy, to obtain estimates
of its complexity and to argue for its fixed-parameter intractability.

3 Large stable models

In this section we will show an algorithm for the parametrized problem LSM
that runs in time O(2¥%* x size(P)), where (P, k) is an input instance. This
result implies that the problem LSM is fixed-parameter tractable and that
for every fixed k there is a linear-time algorithm for the problem LSM (k).

We start by introducing some basic notation. Given a logic program rule
r, we define h(r) to be the head of the rule r and b(r) to be the set of atoms
appearing in the body of 7. We denote by b (r) the set of atoms that appear
positively in the body of r and by b~ (r) the set of atoms that appear negated
in the body of r. For a logic program P, by H(P) we denote the set atoms
of P that appear as heads of rules from P. Finally, given a logic program P
and a set of atoms M, by Pj; we denote the Gelfond-Lifschitz reduct of P
with respect to M.

Given a logic program P, denote by P* the logic program obtained from
P by eliminating from the bodies of the rules in P all literals not(a), where
a is not the head of any rule from P. The following well-known result states
the key property of the program P*.

Lemma 3.1 A set of atoms M is a stable model of a logic program P if and
only if M s a stable model of P*.

Since |P| = |P*|, Lemma 3.1 implies that the problem LSM has a pos-
itive answer for (P, k) if and only if it has a positive answer for (P* k).
Moreover, it is easy to see that P* can be constructed from P in time linear
in the size of P. Thus, when looking for algorithms to decide the problem
LSM we may restrict our attention to programs in which every atom ap-
pearing negated in the body of a rule appears also as the head of a rule. We
will denote the class of such logic programs by C.

By P* let us denote the program consisting of those rules r in P for
which |67 (r)| < k. We have the following lemma.

Lemma 3.2 Let P be a logic program in C and let M C H(P) be a set of
atoms such that |M| > |P| — k.

1. M is a stable model of P if and only if M is a stable model of P*

2If true, this conjecture would imply that in the context of fixed-parameter tractability
there is a difference between the complexity of weighted satisfiability for 3CNF and CNF
formulas.



2. If M is a stable model of P*, then P¥ has no more than k+k* different
negated literals appearing in the bodies of its rules.

The following algorithm for the problem LSM (k) is implied by Lemmas
3.1 and 3.2.

1. Eliminate from the input logic program P all literals not(a), where a
is not the head of any rule from P. Denote the resulting program by
Q (that is, @ = P*).

2. Compute the set of rules Q* consisting of those rules r in @ for which
b= (r)| < k.

3. Decide whether Q¥ has a stable model M such that |M| > |P| — k.

By Lemmas 3.1 and 3.2, stable models of Q* that have at least |P| — k
elements are precisely the stable models of P with at least |P| — k elements.
Thus, our algorithm is correct.

Notice that steps 1 and 2 can be implemented in time O(size(P)). To
implement step 3, note that every stable model of the logic program QF is
determined by a subset of [J{b~(r):r € Q*} [5]. By Lemma 3.2, there are
no more than 2¥%* such candidate subsets to consider. Checking for each
of them whether it determines a stable model of Q¥ can be implemented in

time O(size(Qk)) = O(size(P)). Consequently, our algorithm runs in time
0255 % size(P)).

Theorem 3.3 The problem LSM is fized-parameter tractable. Moreover,
for each fized k there is a linear-time algorithm to decide whether a logic
program P has a stable model of size at least |P| — k.

4 Computing stable models of size at most £

As already mentioned, there is a straightforward algorithm to decide the
problem SSM (k) that runs in time O(size(P) x nF), where n = |A#(P)].
This algorithm can be somewhat improved. In this section we will outline
an algorithm for the problem SSM (k) that runs in time O(size(P) x nF~1).
We will provide a detailed description in the case £k = 2 and comment on
how to extend this algorithm to the case of an arbitrary k.

We say that a logic program P is proper if it satisfies the following three
conditions:

(P1) for every rule r € P, h(r) ¢ b*(r)
(P2) for every ruler € P, b (r)Nb (r) =10

(P3) U{b~(r):r € P} C H(P) (that is, P = P*).



Given a logic program P, its proper core is a logic program obtained from P
by removing from P every clause that violates conditions (P1) or (P2) and
by enforcing (P3). The following lemma is straightforward.

Lemma 4.1 A set of atoms M is a stable model of a logic program P if and
only if it is a stable model of its proper core.

Clearly, a proper core of a program P can be constructed in time linear
in the size of P. Hence, Lemma 4.1 allows us to restrict our discussion
of algorithms to decide the problem SSM (k) to the class of proper logic
programs.

Let P be a logic program. By P(k) we will denote the program obtained
from P by removing from it each clause with more than k£ atoms appearing
positively in its body. In our discussion below we will use the following
result.

Lemma 4.2 Let P be a proper logic program and let M be a set of atoms
such that |M| < k. Then M is a stable model of P if and only if M is a
stable model of P(k).

We will now present an algorithm to decide the problem SSM(1). Define
Py = P(0) and P, = P(1) \ P(0). In other words, F;, ¢ = 0,1, consists of
those rules in P that have exactly ¢ different atoms occurring positively in
the body. Next, for each atom a define:

Hy(a) = the number of rules r in Py with h(r) =a and a ¢ b~ (r)
Hi(a) = the number of rules r in P, with a € b™(r) (since r € Py,
there are no other positive atoms in the body of r)

Hjy(a) = the number of rules r in Py with h(r) # a and a ¢ b~ (r).

We have the following lemma.

Lemma 4.3 Let P be a proper logic program. The set {a} is a stable model
of P(1) if and only if Hy(a) > 1 and H;(a) = Ha(a) = 0.

Clearly, the tables Hy, H; and Hj can be computed in time O(size(P)).
Since it takes linear time to decide whether the empty set is a stable model
of a program, Lemmas 4.2 and 4.3 imply a linear-time algorithm to decide
whether a logic program P has a stable model of size at most 1.

We will next describe an algorithm to decide whether a logic program
has a stable model of size at most 2. Counsider a proper logic program P.
As before, define Py = P(0) and P, = P(1) \ P(0). In addition, define
P, =P(2)\ P(1).

For every two different atoms ¢ and b in P define:

Go(a,b) = the number of rules r in Py with h(r) =a, a ¢ b~ (r)
and b ¢ b (r)



G1(a,b) = the number of rules r in Py such that h(r) = b, bT (r) =
{a},a¢ b (r)and b¢ b (r)

G(a,b) = the number of rules r in P, with b*(r) = {a,b}
G3(a,b) = the number of rules r in P, with b (r) = {a}, h(r) # b
and b ¢ b (r)

G4(a,b) = the number of rules r in Py with h(r) ¢ {a,b}, a ¢
b= (r) and b ¢ b (r).

We have the following lemma.

Lemma 4.4 Let P be a proper logic program. Then, the set {a,b} is a stable
model for P if and only if Go(a,b) = G3(a,b) = G4(a,b) = 0 and at least
one of the following three conditions holds:

1. Go(a,b) > 1 and Go(b,a) > 1
2. Go(a,b) > 1 and G1(a,b) > 1
3. Go(b,a) > 1 and G1(b,a) > 1.

Observe that each of the arrays G;, 0 < ¢ < 4, can be computed in time
O(n x size(P)). Thus, Lemmas 4.2 and 4.4 imply the following algorithm
to decide the problem SSM (2):

1. Decide whether SSM (1) holds. If so, output YES and stop (as shown
earlier, this task takes O(size(P)) steps)

2. Otherwise, use the algorithm implied by Lemma 4.4 to decide whether
P has stable models of size 2 (that is, compute tables G; and check
the condition of Lemma 4.4 for each set of two atoms). If so, output
YES and otherwise output NO.

Let |A#(P)| = n. Since there are O(n?) two-element subsets of At(P)
and since n? = O(n x size(P)), our algorithm can be implemented to run
in time O(n x size(P)), where n is the number of atoms occurring in P.
However, the algorithm requires that several n x n arrays be maintained.

The algorithms presented in this section can be extended to the case of an
arbitrary k. We will only present a very general outline here. The details are
rather complex and are omitted. First, observe that by Lemmas 4.1 and 4.2,
it is enough to describe the algorithm for proper logic programs with at most
k positive atoms in the body. Hence, consider such a program P. As in the
case of k = 2, we first compute programs Py = P(0), and P; = P(i)\ P(i—1),
1 < ¢ < k. Next, we establish a lemma, corresponding to Lemmas 4.3 and
4.4 that we used in the cases k = 1 and k = 2, characterizing stable models of
size at most k in terms of the numbers of rules in the programs P; satisfying
certain properties. These numbers can be arranged in no more than f(k)
tables (for some function f) of dimensions no more than k. One can show
that these tables can be computed in time O(size(P) x n¥~1) and that the
whole algorithm can also be implemented to run in time O(size(P) x nF~1).



5 Complexity of the problem SSM

The algorithm outlined in the previous section is not quite satisfactory. First,
the detailed description is quite complex, Second, it poses high space require-
ments that are of the order ©(n*). A natural question to ask is: are there
significantly better algorithms for the problems SSM (k)?

In this section we address this question by studying the complexity of the
problem SSM. Our goal is to show that the problem is difficult in the sense
of the W hierarchy. To this end we will show that the problem WS(2) can
be reduced to the problem SSM, that is, that the problem SSM is W|2]-
hard. Given the overwhelming evidence of fixed-parameter intractability of
problems that are W[2]-hard [7], it is unlikely that algorithms for problems
SSM (k) exist whose asymptotic behavior would be given by a polynomial
of order independent of k. To better delineate the location of the problem
SSM in the W hierarchy we also provide an upper bound on its hardness
by showing that it belongs to the class W[3].

We will start by showing that the problem SSM (k) is reducible (in the
sense of the definition from Section 2) to the problem WS(3). To this end,
we describe an encoding of a logic program P by means of a collection
T(P) of 3-normalized formulas so that P has a stable model of size at most
k if and only if T'(P) has a model with no more than (k + 1)(k? + 2k)
atoms. In the general setting of the class NP, an explicit encoding of the
problem of existence of stable models in terms of propositional satisfiability
was described in [3]. Our encoding, while different in key details, uses some
ideas from that paper.

Let us consider an integer k£ and a logic program P. For each atom ¢
in P let us introduce new atoms c(q), c(q,i), 1 < i < k+ 1, and ¢ (q,1%),
2 < i <k + 1. Intuitively, atom ¢(q) represents the fact that in the process
of computing the least model of the reduct of P with respect to some set of
atoms, atom ¢ is computed no later than during the iteration k41 of the van
Emden-Kowalski operator. Similarly, atom ¢(g, ) represents the fact that in
the same process atom ¢ is computed exactly in the iteration ¢ of the van
Emden-Kowalski operator. Finally, atom ¢~ (q,), expresses the fact that ¢
is computed before the iteration ¢ of the van Emden-Kowalski operator. The
formulas F(q,7), 2 <i < k+1, and F5(gq) describe some basic relationships
between atoms c¢(q), ¢(q,) and ¢ (g,7) that we will require to hold:

Fi(q,7) =c¢ (q,1) & c(q, 1) V...Ve(g,i—1),

Fy(q) =clq) & c(qg, 1) V...Ve(g, k+1).
Let r be a rule in P with h(r) = q, say

r=¢q<4 a1,...,0,,00t(by),..., not(b,).
Define a formula Fj(r,i), 2 <i < k+1, by

F5(ryi) =c¢ (a1,9) A ..o Ac (am, i) A —e(br) A ... A =e(by) A—e (g, ).



Define also F3(r,1) = false if m > 1 and
F5(r,1) = =c(by) A ... A =e(by),

otherwise. Speaking informally, formula F;(r,4) asserts that ¢ is computed
by means of rule r in the iteration ¢ of the least model computation process
and that it has not been computed earlier.

Let r1,...,7 be all rules in P with atom ¢ in the head. Define a formula
Fy(q,i),1<i<k+1, by

Fu(q,i) = c(q,i) & F3(r1,4) V...V F3(r,0).

Intuitively, the formula Fy(q,7) expresses the definition of ¢(q, %) (recall that
¢(q,1) stands for the following statement: when computing the least model
of the reduct of P, atom g is first computed in the iteration 7).

We will now define the theory Ty(P) that encodes the problem of exis-
tence of small stable models. Put

To(P) = {Fi(g,9):q€ AUP), 1 <i<k+1}U{Fa(q):q € AHP)}U
{Fi(q,i):q € A(P), 1 <i < k+1}.

We will now establish some useful properties of the theory Ty (P). First,
consider a set U of atoms that is a model of Ty(P). Define

M = {q € At(P):c(q) € U}.

Lemma 5.1 Let ¢ € M. Then there is a unique integer i, 1 < ¢ < k+1,
such that ¢(q,1) € U.

For every atom ¢ € M define i, to be the integer whose existence and
uniqueness is guaranteed by Lemma 5.1. Define iy = max{i,: ¢ € M }. Next,
for each i, 1 <1 <y define

M; = {q € M:i, = i}.
Lemma 5.2 For every i, 1 <i <iy, M; # 0.
Lemma 5.2 implies that if |M| < k, then iy < k.
Lemma 5.3 Assume that |M| < k. Then M is a stable model of P.

Consider now a stable model M of the program P and assume that
|M| < k. Clearly, M = U;—; T}QM(V)). For each atom ¢ € M define s, to be
the least integer s such that ¢ € T} (0). Clearly, s; > 1. Moreover, since
|M| <k, it follows that for each ¢ € M, s, < k. Now, define

Unm ={c(q),c(q,8¢):q € M} U{c (q,i):q € M, s4 <i<k+1}



Lemma 5.4 The set of atoms Uy is a model of To(P).
Lemmas 5.1 - 5.4 add up to a proof of the following result.

Theorem 5.5 Let k be a non-negative integer and let P be a logic program.
The program P has a stable model of size at most k if and only if the theory
To(P) has a model U such that |{q € AH(P):c(q) € U}| < k}.

We will now modify the theory Ty (P) to construct a theory T'(P) that
will demonstrate that the problem SSM (k) can be reduced to the problem
WS(3). First, for each atom ¢ € At(P), introduce k? + 2k new atoms d(q, i),
1 <i < k?+ 2k, and define

Co(q) = {~c(q)Vd(g,i):1 <i < k> +2k}U{c(q) V—d(q,i):1 <i < k*+2k}.
Next, define

Ci(q,i) = {-c (¢,i)Ve(g, ) V...Ve(q,i—1)}U
{~clg,j) Ve (gi):1 <j<i—1}

Ca(q) = {~clq) Velg, 1) V... Velg, b+ 1)} U{~c(q, ) Ve(g): 1 < j < k+1},

and
Ci(q,1) = {—c(q, i) VF3(r1,9)V. . VF3(ry, 1) fU{~F3(rj,i)Ve(g,i): 1 < j < m},

where {ry,...,r} is the set of all rules in P with ¢ in the head.
Finally, define

T(P) = {Colg):q € A(P)}U{Ci(g,1):q € AL(P),1 < i<k +1}U
{C2(q):q € At(P)} U{C4(q,i):q € At(P),1 <i<k+1}

It is easy to see that the set of clauses Ci(q,1%) is equivalent to the formula
Fi(q,1), the set of clauses Cy(q) is equivalent to the formula F,(q), and the
set Cy(q,4) of disjunctions of conjunctions of literals is equivalent to the
formula Fy(q,7). Thus, the union of the last three sets of clauses in the
definition of T'(P) is logically equivalent to the theory Ty(P). It follows that
UCHclg):q e Aty U{ce(g,i):qe M, 1 <i<k+1}U{c (¢,9):qe M, 2<
i < k+1} is a model of Ty(P) if and only if U U {d(q,7):c(q) € U,1 <i <
k% + 2k} is a model of T'(P). Moreover, every model of T'(P) is of the form
Uu{d(q,i):c(q) € U,1 <i < k?+2k}, where U C {c(q): q € At}U{c(q,i):q €
M, 1<i<k+1}U{c (¢,i):q e M, 2<1i<k+ 1} is a model of Ty(P).
The role of the clauses in the sets Cy(q) is to decrease the effect of the
atoms ¢ (q,7) and ¢(q,7) on the size of models of T'(P). Consequently, given
a model U of Ty(P), we can derive a bound on |[{q € A{(P):c(q) € U}| from
a bound on the size of the model of T'(P) corresponding to U. Specifically,
one can show that Ty(P) has a model U with |{q € A(P):c(q) e U} < k
if and only if 7'(P) has a model of size at most (k + 1)(k% + 2k). Thus, by



Theorem 5.5, one can show that P has a stable model of size at most k if
and only if T(P) has a model of size at most (k + 1)(k* + 2k). In other
words, the problem SSM can be reduced to the problem WS(3) (note that
T'(P) consists of 3-normalized formulas).

Theorem 5.6 The problem SSM (k) € W3].

Next, we will show that the problem WS(2) can be reduced to the prob-
lem SSM. Let C = {ci,...,cm} be a collection of clauses. Let A =
{z1,...,z,} be the set of atoms appearing in clauses in C. For each atom
x € A, introduce k new atoms z(i), 1 <i < k. By S;, 1 <i <k, we denote
the logic program consisting of the following n clauses:

z1(i) < not(z2(7)),...,not(z, (7))

Zp (i) < not(z1(7)),...,not(z,_1(7))

Define S = JF_; S;. Clearly, each stable model of S is of the form {z;, (1),...,
xj,(k)}, where 1 < j, <n for p=1,...,k. Sets of this form can be viewed
as representations of nonempty subsets of the set A that have no more than
k elements. This representation is not one-to-one, that is, some subsets have
multiple representations.

Next, define P, to be the program consisting of the clauses

.%‘j(—.%‘j(i), j=1,...,n, 1+=1,2,...,k.

Stable models of the program SUP; are of the form {z; (1),...,z;, (k)}UM,
where M is a nonempty subset of A such that |[M| < k and zj,,...,2;
enumerate (possibly with repetitions) all elements of M.

Finally, for each clause

k

c=a1V...VagV-b V...V b
from C define a logic program clause p(c):
ple) = f < by,...,b,not(ay),...,not(as), not(f)

where f is yet another new atom. Define P, = {p(c):c € C} and P® =
SUPUDP,.

Theorem 5.7 A set of clauses C' has a nonempty model with no more than
k elements if and only if the program P has a stable model with no more
than 2k elements.

Now the reducibility of the problem WS(k) to the problem SSM(2k) is
evident. Given a collection of clauses C, to check whether it has a model of
size at most k, we first check whether the empty set of atoms is a model of
C. If so, we return the answer YES and terminate the algorithm. Otherwise,
we construct the program P and check whether it has a stable model of
size at most 2k. Consequently, we obtain the following result.

Theorem 5.8 The problem SSM is W[2]-hard.



6 Open problems and conclusions

There is a natural variation on the problem of computing large stable models:
given a logic program P and an integer k (parameter), decide whether P has
a stable model of size at least |A#(P)| — k. We conjecture that this version
of the problem LSM is fixed-parameter intractable but have not been able
to find a proof, yet.

Another open problem is to resolve whether there is an algorithm for the
problem SSM (k) that would run in time O(n), for some constant « < 1.

Finally, our results show that SSM is in W3] and that it is W[2]-hard.
Determining the exact location of the problem SSM in the W hierarchy is
yet another open problems suggested by our paper.
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