
Computing large and small stablemodelsMiros law Truszczy�nskiDepartment of Computer ScienceUniversity of KentuckyLexington, KY 40506-0046, USAmirek@cs.uky.eduAbstractIn this paper, we focus on the problem of existence of and computing smalland large stable models. We show that for every �xed integer k, thereis a linear-time algorithm to decide the problem LSM (large stable modelsproblem): does a logic program P have a stable model of size at least jP j�k.In contrast, we show that the problem SSM (small stable models problem)to decide whether a logic program P has a stable model of size at mostk is much harder. We present two algorithms for this problem but theirrunning time is given by polynomials of order depending on k. We showthat the problem SSM is �xed-parameter intractable by demonstrating thatit is W [2]-hard. This result implies that it is unlikely, an algorithm existsto compute stable models of size at most k that would run in time O(nc),where c is a constant independent of k. We also provide an upper boundon the �xed-parameter complexity of the problem SSM by showing that itbelongs to the class W [3].1 IntroductionThe stable model semantics by Gelfond and Lifschitz [10] is one of the twomost widely studied semantics for normal logic programs, the other one be-ing the well-founded semantics by Van Gelder, Ross and Schlipf [17]. Among2-valued semantics, the stable model semantics is commonly regarded as theone providing the correct meaning to the negation operator in logic pro-gramming. It coincides with the least model semantics on the class of Hornprograms, and with the well-founded semantics and the perfect model se-mantics on the class of strati�ed programs [1]. In addition, the stable modelsemantics is closely related to the notion of a default extension by Reiter[12, 4]. Logic programming with stable model semantics has applicationsin knowledge representation, planning and reasoning about action. It wasalso recently proposed as a computational paradigm especially well suitedfor solving combinatorial optimization and constraint satisfaction problems[14, 15].The problem with the stable model semantics is that, even in the proposi-tional case, reasoning with logic programs under the stable model semantics



is computationally hard. It is well-known that deciding whether a �nitepropositional logic program has a stable model is NP-complete [13]. Conse-quently, it is not at all clear that logic programming with the stable modelsemantics can serve as a practical computational tool.This issue can be resolved by implementing systems computing stablemodels and by experimentally studying the performance of these systems.Several such projects are now under way. Niemel�a and Simons [16] developeda system, smodels, for computing stable models of �nite function symbol-free logic programs and reported very promising performance results. Forsome classes of programs, smodels decides the existence of a stable model ina matter of seconds even if an input program consists of tens of thousandsof clauses. Encouraging results on using smodels to solve planning problemsare reported in [15]. Another well-advanced system is DeReS [6], designedto compute extensions of arbitrary propositional default theories but beingespecially e�ective for default theories encoding propositional logic programswith good relaxed strati�cation. Finally, systems capable of reasoning withdisjunctive logic programs were described in [9] and [2].However, faster implementations will ultimately depend on better under-standing of the algorithmic aspects of reasoning with logic programs underthe stable model semantics. In this paper, we investigate the complexity ofdeciding whether a �nite propositional logic program has stable models ofsome restricted sizes. Speci�cally, we study the following two problems (jP jstands for the number of rules in a logic program P ):LSM (Large stable models) Given a �nite propositional logic program Pand an integer k, decide whether there is a stable model of P of sizeat least jP j � k.SSM (Small stable models) Given a �nite propositional logic program Pand an integer k, decide whether there is a stable model of P of sizeno more than k.Inputs to the problems LSM and SSM are pairs (P; k), where P is a�nite propositional logic program and k is a non-negative integer. Problemsof this type are referred to as parametrized decision problems. By �xing aparameter, a parameterized decision problem gives rise to its �xed-parameterversion. In the case of problems LSM and SSM , by �xing k we obtain thefollowing two �xed-parameter problems (k is now no longer a part of input):LSM(k) Given a �nite propositional logic program P , decide whether Phas a stable model of size at least jP j � k.SSM(k) Given a �nite propositional logic program P , decide whether Phas a stable model of size at most k.The problems LSM and SSM are NP-complete. It follows directly fromthe NP-completeness of the problem of existence of stable models [13]. But



�xing k makes a di�erence! Clearly, the �xed-parameter problems SSM(k)and LSM(k) can be solved in polynomial time. Indeed, consider a �nitepropositional logic program P with the set of atoms At(P ). Then, there areO(jAt(P )jk) subsets of At(P ) of cardinality at most k. For each such subsetM , it can be checked in time linear in the size of P (the total number ofall occurrences of atoms in P ; in the paper we will denote this number bysize(P )) whether M is a stable model of P . Thus, one can decide whetherP has a stable model of size at most k in time O(size(P ) � jAt(P )jk).Similarly, there are only O(jP jk) subsets of P of size at least jP j � k.Each such subset is a candidate for the set of generating rules of a stablemodel of size at least jP j � k (and smaller subsets, clearly, are not). Givensuch a subset R, one can check in time O(size(P )) whether R generates astable model for P . Thus, it follows that there is an algorithm that decidesin time O(size(P )� jP jk) whether a logic program P has a stable model ofsize at least jP j � k.While both algorithms are polynomial in the size of the program, theirasymptotic complexity is expressed by the product of the size of a programand of a polynomial of order k in the number of atoms (or rules) of theprogram. Even for small values of k, say for k � 4, the functions size(P ) �jAt(P )jk and size(P ) � jP jk grow very fast with size(P ), jAt(P )j and jP j,and render the corresponding algorithms infeasible.An important question is whether algorithms for problems SSM(k) andLSM(k) exist whose order is signi�cantly lower than k, preferably, a con-stant independent of k. The study of this question is the main goal of ourpaper. A general framework for such investigations was proposed by Downeyand Fellows [7, 8]. They introduced the concepts of �xed-parameter tractabil-ity and �xed-parameter intractability that are de�ned in terms of a certainhierarchy of complexity classes known as the W hierarchy.In the paper, we show that the problem LSM is �xed-parameter tractableand demonstrate an algorithm that for every �xed k decides the problemLSM(k) in linear time | a signi�cant improvement over the straightfor-ward algorithm presented earlier.On the other hand, we demonstrate that the problem SSM is muchharder. We outline an algorithm to decide the problems SSM(k), k �1, that is asymptotically faster than the simple algorithm described abovebut the improvement is rather insigni�cant. Our algorithm runs in timeO(size(P )�jAt(P )jk�1), an improvement only by the factor of jAt(P )j. Thedi�culty in �nding a substantially better algorithm is not coincidental. Weprovide evidence that the problem SSM is �xed-parameter intractable and,thus, it is unlikely that there is an algorithm to decide the problems SSM(k)whose running time would be given by a polynomial of order independent ofk. The study of �xed-parameter tractability of problems occuring in thearea of nonmonotonic reasoning is a relatively new research topic. Anotherpaper that pursues this direction is [11].



2 Fixed-parameter intractabilityThis section recalls basic ideas of the work of Downey and Fellows on �xed-parameter intractability. The reader is referred to [7, 8] for a detailed treat-ment of this subject.Informally, a parametrized decision problem is a decision problem whoseinputs are pairs of items, one of which is referred to as a parameter. Thegraph colorability problem is an example of a parametrized problem. Theinputs are pairs (G; k), where G is an undirected graph and k is a non-negative integer. The problem is to decide whether G can be colored withat most k colors. The problems SSM and LSM are also examples ofparametrized decision problems. Formally, a parametrized decision problemis a set L � �� � ��, where �� is a �xed alphabet.By selecting a concrete value y 2 �� of the parameter, a parametrizeddecision problem L gives rise to an associated �xed-parameter problem Ly =fx : (x; y) 2 Lg. For instance, by �xing the value of k to 3, we get a�xed-parameter version of the colorability problem, known as 3-colorability.Inputs to the 3-colorability problem are graphs and the question is to decidewhether an input graph can be colored with 3 colors. Clearly, the problemsSSM(k) and LSM(k) are �xed-parameter versions of the problems SSMand LSM , respectively.The interest in the �xed-parameter problems stems from the fact thatthey are often computationally easier than the corresponding parametrizedproblems. For instance, the problems SSM and LSM are NP-complete yet,as we saw earlier, their parametrized versions SSM(k) and LSM(k) can besolved in polynomial time. A word of caution is in order here. It is notalways the case that �xed-parameter problems are easier. For instance, the3-colorability problem is still NP-complete.As we already pointed out, the fact that a problem admits a polynomial-time solution does not necessarily mean that practical algorithms to solveit exist. An algorithm that runs in time O(n15), where n is the size ofthe input, is hardly more practical than an algorithm with an exponentialrunning time (and may even be a worse choice in practice). The algorithmswe presented so far to argue that the problems SSM(k), LSM(k) are inP rely on searching through the space of nk possible solutions (where n isthe number of atoms or rules of a program). Thus, these algorithms are notpractical (except for the very smallest values of k). The key question is howfast those polynomial-time solvable �xed-parameter problems can really besolved. Or, in other words, can one signi�cantly improve over the brute-forceapproach?A technique to deal with such questions is provided by the �xed-parameterintractability theory of Downey and Fellows [7]. A parametrized problemL � �� ��� is �xed-parameter tractable if there exist a constant p, an inte-ger function f and an algorithm A such that A determines whether (x; y) 2 Lin time f(jyj)jxjp (jzj stands for the length of a string z 2 ��). The class



of �xed-parameter tractable problems will be denoted by FPT. Clearly, if aparametrized problem L is in FPT, each of the associated �xed-parameterproblems Ly is solvable in polynomial time by an algorithm whose exponentdoes not depend on the value of the parameter y. It is known (see [7]) that,for instance, the vertex cover problem is in FPT.There is substantial evidence supporting a conjecture that some paramet-rized problems whose �xed-parameter versions belong to P are not �xed-parameter tractable. To study and compare complexity of parametrizedproblems Downey and Fellows proposed the following notion of reducibility1.A parametrized problem L can be reduced to a parametrized problem L0 ifthere exist a constant p, an integer function q and an algorithm A that toeach instance (x; y) of L assigns an instance (x0; y0) of L0 such that1. x0 depends upon x and y and y0 depends upon y only,2. A runs in time O(q(jyj)jxjp),3. (x; y) 2 L if and only if (x0; y0) 2 L0.Downey and Fellows also de�ned a hierarchy of complexity classes called theW hierarchy: FPT �W[1] �W[2] �W[3] : : : (1)The classes W[t] can be described in terms of problems that are completefor them (a problem D is complete for a complexity class E if D 2 E andevery problem in E can be reduced to D). Let us call a boolean formula t-normalized if it is of the form of products-of-sums-of-products ... of literals,with t being the number of products-of, sums-of expressions in this de�nition.For example, 2-normalized formulas are products of sums of literals. Thus,the class of 2-normalized formulas is precisely the class of CNF formulas.De�ne the weighted t-normalized satis�ability problem as:WS (t) Given a t-normalized formula ' and an integer k, decide whetherthere is a model of ' with at most k atoms (or, alternatively, decidewhether there is a satisfying valuation for ' which assigns the logicalvalue true to at most k atoms).It is believed that the problems WS(t), t � 2, are not �xed-parametertractable and that for di�erent values of t they are of di�erent di�culty.Downey and Fellows show that for t � 2, the problems WS (t) are completefor the class W[t]. They also show that a restricted version of the problemWS (2):WS 3(2) Given a 3CNF formula ' and an integer k (parameter), decidewhether there is a model of ' with at most k atoms1The de�nition given here is su�cient for the needs of this paper. To obtain structuraltheorems a subtler de�nition is needed. This topic goes beyond the scope of the presentpaper. The reader is referred to [7] for more details.



is complete for the class W [1]. Downey and Fellows conjecture that all theimplications in (1) are proper2. In particular, they conjecture that problemscomplete for the classes W[t], t � 1, are not �xed-parameter tractable.In the paper, we relate the problem SSM to the problems WS (2) andWS (3) to place the problem SSM in the W hierarchy, to obtain estimatesof its complexity and to argue for its �xed-parameter intractability.3 Large stable modelsIn this section we will show an algorithm for the parametrized problem LSMthat runs in time O(2k+k2�size(P )), where (P; k) is an input instance. Thisresult implies that the problem LSM is �xed-parameter tractable and thatfor every �xed k there is a linear-time algorithm for the problem LSM(k).We start by introducing some basic notation. Given a logic program ruler, we de�ne h(r) to be the head of the rule r and b(r) to be the set of atomsappearing in the body of r. We denote by b+(r) the set of atoms that appearpositively in the body of r and by b�(r) the set of atoms that appear negatedin the body of r. For a logic program P , by H(P ) we denote the set atomsof P that appear as heads of rules from P . Finally, given a logic program Pand a set of atoms M , by PM we denote the Gelfond-Lifschitz reduct of Pwith respect to M .Given a logic program P , denote by P � the logic program obtained fromP by eliminating from the bodies of the rules in P all literals not(a), wherea is not the head of any rule from P . The following well-known result statesthe key property of the program P �.Lemma 3.1 A set of atoms M is a stable model of a logic program P if andonly if M is a stable model of P �.Since jP j = jP �j, Lemma 3.1 implies that the problem LSM has a pos-itive answer for (P; k) if and only if it has a positive answer for (P �; k).Moreover, it is easy to see that P � can be constructed from P in time linearin the size of P . Thus, when looking for algorithms to decide the problemLSM we may restrict our attention to programs in which every atom ap-pearing negated in the body of a rule appears also as the head of a rule. Wewill denote the class of such logic programs by C.By P k let us denote the program consisting of those rules r in P forwhich jb�(r)j � k. We have the following lemma.Lemma 3.2 Let P be a logic program in C and let M � H(P ) be a set ofatoms such that jM j � jP j � k.1. M is a stable model of P if and only if M is a stable model of P k2If true, this conjecture would imply that in the context of �xed-parameter tractabilitythere is a di�erence between the complexity of weighted satis�ability for 3CNF and CNFformulas.



2. If M is a stable model of P k, then P k has no more than k+k2 di�erentnegated literals appearing in the bodies of its rules.The following algorithm for the problem LSM(k) is implied by Lemmas3.1 and 3.2.1. Eliminate from the input logic program P all literals not(a), where ais not the head of any rule from P . Denote the resulting program byQ (that is, Q = P �).2. Compute the set of rules Qk consisting of those rules r in Q for whichjb�(r)j � k.3. Decide whether Qk has a stable model M such that jM j � jP j � k.By Lemmas 3.1 and 3.2, stable models of Qk that have at least jP j � kelements are precisely the stable models of P with at least jP j � k elements.Thus, our algorithm is correct.Notice that steps 1 and 2 can be implemented in time O(size(P )). Toimplement step 3, note that every stable model of the logic program Qk isdetermined by a subset of Sfb�(r): r 2 Qkg [5]. By Lemma 3.2, there areno more than 2k+k2 such candidate subsets to consider. Checking for eachof them whether it determines a stable model of Qk can be implemented intime O(size(Qk)) = O(size(P )). Consequently, our algorithm runs in timeO(2k+k2 � size(P )).Theorem 3.3 The problem LSM is �xed-parameter tractable. Moreover,for each �xed k there is a linear-time algorithm to decide whether a logicprogram P has a stable model of size at least jP j � k.4 Computing stable models of size at most kAs already mentioned, there is a straightforward algorithm to decide theproblem SSM(k) that runs in time O(size(P ) � nk), where n = jAt(P )j.This algorithm can be somewhat improved. In this section we will outlinean algorithm for the problem SSM(k) that runs in time O(size(P )�nk�1).We will provide a detailed description in the case k = 2 and comment onhow to extend this algorithm to the case of an arbitrary k.We say that a logic program P is proper if it satis�es the following threeconditions:(P1) for every rule r 2 P , h(r) =2 b+(r)(P2) for every rule r 2 P , b+(r) \ b�(r) = ;(P3) Sfb�(r): r 2 Pg � H(P ) (that is, P = P �).



Given a logic program P , its proper core is a logic program obtained from Pby removing from P every clause that violates conditions (P1) or (P2) andby enforcing (P3). The following lemma is straightforward.Lemma 4.1 A set of atoms M is a stable model of a logic program P if andonly if it is a stable model of its proper core.Clearly, a proper core of a program P can be constructed in time linearin the size of P . Hence, Lemma 4.1 allows us to restrict our discussionof algorithms to decide the problem SSM(k) to the class of proper logicprograms.Let P be a logic program. By P (k) we will denote the program obtainedfrom P by removing from it each clause with more than k atoms appearingpositively in its body. In our discussion below we will use the followingresult.Lemma 4.2 Let P be a proper logic program and let M be a set of atomssuch that jM j � k. Then M is a stable model of P if and only if M is astable model of P (k).We will now present an algorithm to decide the problem SSM(1). De�neP0 = P (0) and P1 = P (1) n P (0). In other words, Pi, i = 0; 1, consists ofthose rules in P that have exactly i di�erent atoms occurring positively inthe body. Next, for each atom a de�ne:H0(a) = the number of rules r in P0 with h(r) = a and a =2 b�(r)H1(a) = the number of rules r in P1 with a 2 b+(r) (since r 2 P1,there are no other positive atoms in the body of r)H2(a) = the number of rules r in P0 with h(r) 6= a and a =2 b�(r).We have the following lemma.Lemma 4.3 Let P be a proper logic program. The set fag is a stable modelof P (1) if and only if H0(a) � 1 and H1(a) = H2(a) = 0.Clearly, the tables H0, H1 and H2 can be computed in time O(size(P )).Since it takes linear time to decide whether the empty set is a stable modelof a program, Lemmas 4.2 and 4.3 imply a linear-time algorithm to decidewhether a logic program P has a stable model of size at most 1.We will next describe an algorithm to decide whether a logic programhas a stable model of size at most 2. Consider a proper logic program P .As before, de�ne P0 = P (0) and P1 = P (1) n P (0). In addition, de�neP2 = P (2) n P (1).For every two di�erent atoms a and b in P de�ne:G0(a; b) = the number of rules r in P0 with h(r) = a, a =2 b�(r)and b =2 b�(r)



G1(a; b) = the number of rules r in P1 such that h(r) = b, b+(r) =fag, a =2 b�(r) and b =2 b�(r)G2(a; b) = the number of rules r in P2 with b+(r) = fa; bgG3(a; b) = the number of rules r in P1 with b+(r) = fag, h(r) 6= band b =2 b�(r)G4(a; b) = the number of rules r in P0 with h(r) =2 fa; bg, a =2b�(r) and b =2 b�(r).We have the following lemma.Lemma 4.4 Let P be a proper logic program. Then, the set fa; bg is a stablemodel for P if and only if G2(a; b) = G3(a; b) = G4(a; b) = 0 and at leastone of the following three conditions holds:1. G0(a; b) � 1 and G0(b; a) � 12. G0(a; b) � 1 and G1(a; b) � 13. G0(b; a) � 1 and G1(b; a) � 1.Observe that each of the arrays Gi, 0 � i � 4, can be computed in timeO(n � size(P )). Thus, Lemmas 4.2 and 4.4 imply the following algorithmto decide the problem SSM(2):1. Decide whether SSM(1) holds. If so, output YES and stop (as shownearlier, this task takes O(size(P )) steps)2. Otherwise, use the algorithm implied by Lemma 4.4 to decide whetherP has stable models of size 2 (that is, compute tables Gi and checkthe condition of Lemma 4.4 for each set of two atoms). If so, outputYES and otherwise output NO.Let jAt(P )j = n. Since there are O(n2) two-element subsets of At(P )and since n2 = O(n � size(P )), our algorithm can be implemented to runin time O(n � size(P )), where n is the number of atoms occurring in P .However, the algorithm requires that several n� n arrays be maintained.The algorithms presented in this section can be extended to the case of anarbitrary k. We will only present a very general outline here. The details arerather complex and are omitted. First, observe that by Lemmas 4.1 and 4.2,it is enough to describe the algorithm for proper logic programs with at mostk positive atoms in the body. Hence, consider such a program P . As in thecase of k = 2, we �rst compute programs P0 = P (0), and Pi = P (i)nP (i�1),1 � i � k. Next, we establish a lemma, corresponding to Lemmas 4.3 and4.4 that we used in the cases k = 1 and k = 2, characterizing stable models ofsize at most k in terms of the numbers of rules in the programs Pi satisfyingcertain properties. These numbers can be arranged in no more than f(k)tables (for some function f) of dimensions no more than k. One can showthat these tables can be computed in time O(size(P ) � nk�1) and that thewhole algorithm can also be implemented to run in time O(size(P )�nk�1).



5 Complexity of the problem SSMThe algorithm outlined in the previous section is not quite satisfactory. First,the detailed description is quite complex, Second, it poses high space require-ments that are of the order �(nk). A natural question to ask is: are theresigni�cantly better algorithms for the problems SSM(k)?In this section we address this question by studying the complexity of theproblem SSM . Our goal is to show that the problem is di�cult in the senseof the W hierarchy. To this end we will show that the problem WS(2) canbe reduced to the problem SSM , that is, that the problem SSM is W [2]-hard. Given the overwhelming evidence of �xed-parameter intractability ofproblems that are W [2]-hard [7], it is unlikely that algorithms for problemsSSM(k) exist whose asymptotic behavior would be given by a polynomialof order independent of k. To better delineate the location of the problemSSM in the W hierarchy we also provide an upper bound on its hardnessby showing that it belongs to the class W [3].We will start by showing that the problem SSM(k) is reducible (in thesense of the de�nition from Section 2) to the problem WS (3). To this end,we describe an encoding of a logic program P by means of a collectionT (P ) of 3-normalized formulas so that P has a stable model of size at mostk if and only if T (P ) has a model with no more than (k + 1)(k2 + 2k)atoms. In the general setting of the class NP, an explicit encoding of theproblem of existence of stable models in terms of propositional satis�abilitywas described in [3]. Our encoding, while di�erent in key details, uses someideas from that paper.Let us consider an integer k and a logic program P . For each atom qin P let us introduce new atoms c(q), c(q; i), 1 � i � k + 1, and c�(q; i),2 � i � k + 1. Intuitively, atom c(q) represents the fact that in the processof computing the least model of the reduct of P with respect to some set ofatoms, atom q is computed no later than during the iteration k+1 of the vanEmden-Kowalski operator. Similarly, atom c(q; i) represents the fact that inthe same process atom q is computed exactly in the iteration i of the vanEmden-Kowalski operator. Finally, atom c�(q; i), expresses the fact that qis computed before the iteration i of the van Emden-Kowalski operator. Theformulas F1(q; i), 2 � i � k+1, and F2(q) describe some basic relationshipsbetween atoms c(q), c(q; i) and c�(q; i) that we will require to hold:F1(q; i) = c�(q; i), c(q; 1) _ : : : _ c(q; i � 1);F2(q) = c(q), c(q; 1) _ : : : _ c(q; k + 1):Let r be a rule in P with h(r) = q, sayr = q  a1; : : : ; am;not(b1); : : : ;not(bn):De�ne a formula F3(r; i), 2 � i � k + 1, byF3(r; i) = c�(a1; i) ^ : : : ^ c�(am; i) ^ :c(b1) ^ : : : ^ :c(bn) ^ :c�(q; i):



De�ne also F3(r; 1) = false if m � 1 andF3(r; 1) = :c(b1) ^ : : : ^ :c(bk);otherwise. Speaking informally, formula F3(r; i) asserts that q is computedby means of rule r in the iteration i of the least model computation processand that it has not been computed earlier.Let r1; : : : ; rt be all rules in P with atom q in the head. De�ne a formulaF4(q; i), 1 � i � k + 1, byF4(q; i) = c(q; i), F3(r1; i) _ : : : _ F3(rt; i):Intuitively, the formula F4(q; i) expresses the de�nition of c(q; i) (recall thatc(q; i) stands for the following statement: when computing the least modelof the reduct of P , atom q is �rst computed in the iteration i).We will now de�ne the theory T0(P ) that encodes the problem of exis-tence of small stable models. PutT0(P ) = fF1(q; i): q 2 At(P ); 1 � i � k + 1g [ fF2(q): q 2 At(P )g [fF4(q; i): q 2 At(P ); 1 � i � k + 1g:We will now establish some useful properties of the theory T0(P ). First,consider a set U of atoms that is a model of T0(P ). De�neM = fq 2 At(P ): c(q) 2 Ug:Lemma 5.1 Let q 2 M . Then there is a unique integer i, 1 � i � k + 1,such that c(q; i) 2 U .For every atom q 2 M de�ne iq to be the integer whose existence anduniqueness is guaranteed by Lemma 5.1. De�ne iU = maxfiq: q 2Mg. Next,for each i, 1 � i � iU de�neMi = fq 2M : iq = ig:Lemma 5.2 For every i, 1 � i � iU , Mi 6= ;.Lemma 5.2 implies that if jM j � k, then iU � k.Lemma 5.3 Assume that jM j � k. Then M is a stable model of P .Consider now a stable model M of the program P and assume thatjM j � k. Clearly, M = Si=1 T iPM (;). For each atom q 2 M de�ne sq to bethe least integer s such that q 2 T sPM (;). Clearly, sq � 1. Moreover, sincejM j � k, it follows that for each q 2M , sq � k. Now, de�neUM = fc(q); c(q; sq): q 2Mg [ fc�(q; i): q 2M; sq < i � k + 1g



Lemma 5.4 The set of atoms UM is a model of T0(P ).Lemmas 5.1 - 5.4 add up to a proof of the following result.Theorem 5.5 Let k be a non-negative integer and let P be a logic program.The program P has a stable model of size at most k if and only if the theoryT0(P ) has a model U such that jfq 2 At(P ): c(q) 2 Ugj � kg.We will now modify the theory T0(P ) to construct a theory T (P ) thatwill demonstrate that the problem SSM(k) can be reduced to the problemWS (3). First, for each atom q 2 At(P ), introduce k2+2k new atoms d(q; i),1 � i � k2 + 2k, and de�neC0(q) = f:c(q)_d(q; i): 1 � i � k2+2kg[fc(q)_:d(q; i): 1 � i � k2+2kg:Next, de�neC1(q; i) = f:c�(q; i) _ c(q; 1) _ : : : _ c(q; i � 1)g [f:c(q; j) _ c�(q; i): 1 � j � i� 1g;C2(q) = f:c(q) _ c(q; 1) _ : : :_ c(q; k+1)g [ f:c(q; j) _ c(q): 1 � j � k+1g;andC4(q; i) = f:c(q; i)_F3(r1; i)_: : :_F3(rt; i)g[f:F3(rj; i)_c(q; i): 1 � j � mg;where fr1; : : : ; rtg is the set of all rules in P with q in the head.Finally, de�neT (P ) = fC0(q): q 2 At(P )g [ fC1(q; i): q 2 At(P ); 1 � i � k + 1g [fC2(q): q 2 At(P )g [ fC4(q; i): q 2 At(P ); 1 � i � k + 1gIt is easy to see that the set of clauses C1(q; i) is equivalent to the formulaF1(q; i), the set of clauses C2(q) is equivalent to the formula F2(q), and theset C4(q; i) of disjunctions of conjunctions of literals is equivalent to theformula F4(q; i). Thus, the union of the last three sets of clauses in thede�nition of T (P ) is logically equivalent to the theory T0(P ). It follows thatU � fc(q): q 2 Atg [ fc(q; i): q 2 M; 1 � i � k + 1g [ fc�(q; i): q 2 M; 2 �i � k + 1g is a model of T0(P ) if and only if U [ fd(q; i): c(q) 2 U; 1 � i �k2 + 2kg is a model of T (P ). Moreover, every model of T (P ) is of the formU[fd(q; i): c(q) 2 U; 1 � i � k2+2kg, where U � fc(q): q 2 Atg[fc(q; i): q 2M; 1 � i � k + 1g [ fc�(q; i): q 2M; 2 � i � k + 1g is a model of T0(P ).The role of the clauses in the sets C0(q) is to decrease the e�ect of theatoms c�(q; i) and c(q; i) on the size of models of T (P ). Consequently, givena model U of T0(P ), we can derive a bound on jfq 2 At(P ): c(q) 2 Ugj froma bound on the size of the model of T (P ) corresponding to U . Speci�cally,one can show that T0(P ) has a model U with jfq 2 At(P ): c(q) 2 Ugj � kif and only if T (P ) has a model of size at most (k + 1)(k2 + 2k). Thus, by



Theorem 5.5, one can show that P has a stable model of size at most k ifand only if T (P ) has a model of size at most (k + 1)(k2 + 2k). In otherwords, the problem SSM can be reduced to the problem WS (3) (note thatT (P ) consists of 3-normalized formulas).Theorem 5.6 The problem SSM(k) 2W [3].Next, we will show that the problem WS (2) can be reduced to the prob-lem SSM . Let C = fc1; : : : ; cmg be a collection of clauses. Let A =fx1; : : : ; xng be the set of atoms appearing in clauses in C. For each atomx 2 A, introduce k new atoms x(i), 1 � i � k. By Si, 1 � i � k, we denotethe logic program consisting of the following n clauses:x1(i) not(x2(i)); : : : ;not(xn(i))� � �xn(i) not(x1(i)); : : : ;not(xn�1(i))De�ne S = Ski=1 Si. Clearly, each stable model of S is of the form fxj1(1); : : : ;xjk(k)g, where 1 � jp � n for p = 1; : : : ; k. Sets of this form can be viewedas representations of nonempty subsets of the set A that have no more thank elements. This representation is not one-to-one, that is, some subsets havemultiple representations.Next, de�ne P1 to be the program consisting of the clausesxj  xj(i); j = 1; : : : ; n; i = 1; 2; : : : ; k:Stable models of the program S[P1 are of the form fxj1(1); : : : ; xjk(k)g[M ,where M is a nonempty subset of A such that jM j � k and xj1 ; : : : ; xjkenumerate (possibly with repetitions) all elements of M .Finally, for each clausec = a1 _ : : : _ as _ :b1 _ : : : _ :btfrom C de�ne a logic program clause p(c):p(c) = f  b1; : : : ; bt;not(a1); : : : ;not(as);not(f)where f is yet another new atom. De�ne P2 = fp(c): c 2 Cg and PC =S [ P1 [ P2.Theorem 5.7 A set of clauses C has a nonempty model with no more thank elements if and only if the program PC has a stable model with no morethan 2k elements.Now the reducibility of the problem WS (k) to the problem SSM(2k) isevident. Given a collection of clauses C, to check whether it has a model ofsize at most k, we �rst check whether the empty set of atoms is a model ofC. If so, we return the answer YES and terminate the algorithm. Otherwise,we construct the program PC and check whether it has a stable model ofsize at most 2k. Consequently, we obtain the following result.Theorem 5.8 The problem SSM is W[2]-hard.
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