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s.uky.edu)Abstra
tIn this paper, we fo
us on the problem of existen
e and 
omputing of small and largestable models. We show that for every �xed integer k, there is a linear-time algorithm tode
ide the problem LSM (large stable models problem): does a logi
 program P have astable model of size at least jP j � k? In 
ontrast, we show that the problem SSM (smallstable models problem) to de
ide whether a logi
 program P has a stable model of sizeat most k is mu
h harder. We present two algorithms for this problem but their runningtime is given by polynomials of order depending on k. We show that the problem SSM is�xed-parameter intra
table by demonstrating that it is W [2℄-hard. This result implies thatit is unlikely an algorithm exists to 
ompute stable models of size at most k that wouldrun in time O(m
), where m is the size of the program and 
 is a 
onstant independentof k. We also provide an upper bound on the �xed-parameter 
omplexity of the problemSSM by showing that it belongs to the 
lass W [3℄.1 Introdu
tionThe stable model semanti
s by Gelfond and Lifs
hitz (Gelfond & Lifs
hitz, 1988) isone of the two most widely studied semanti
s for normal logi
 programs, the otherone being the well-founded semanti
s by Van Gelder, Ross and S
hlipf (Van Gelderet al., 1991). Among 2-valued semanti
s, the stable model semanti
s is 
ommonlyregarded as the one providing the 
orre
t meaning to the negation operator in logi
programming. It 
oin
ides with the least model semanti
s on the 
lass of Horn pro-grams, and with the well-founded semanti
s and the perfe
t model semanti
s onthe 
lass of strati�ed programs (Apt et al., 1988). In addition, the stable modelsemanti
s is 
losely related to the notion of a default extension by Reiter (Marek& Trusz
zy�nski, 1989; Bidoit & Froidevaux, 1991). Logi
 programming with stablemodel semanti
s has appli
ations in knowledge representation, planning and reason-ing about a
tion. It was also re
ently proposed as a 
omputational paradigm wellsuited for solving 
ombinatorial optimization and 
onstraint satisfa
tion problems(Marek & Trusz
zy�nski, 1999; Niemel�a, 1999).Before we pro
eed, we will re
all the de�nition of a stable model of a logi
 pro-gram, and some related terminology and properties. The reader is referred to (Marek& Trusz
zy�nski, 1993) for a more detailed treatment of the subje
t. In the paper� This is a full version of an extended abstra
t presented at the International Conferen
e on Logi
Programming, ICLP-99 and in
luded in the pro
eedings published by MIT Press.



2 M. Trusz
zy�nskiwe deal only with the propositional 
ase. A logi
 program rule is an expression r ofthe form r = a b1; : : : ; bs;not(
1); : : : ;not(
t);where a, bis and 
is are propositional atoms. The atom a is 
alled the head of rand is denoted by h(r). Atoms bi and 
i form the body of r. The set fb1; : : : ; bsg is
alled the positive body of r (denoted by b+(r)) and the set f
1; : : : ; 
tg is 
alledthe negative body of r (denoted by b�(r)). A logi
 program is a 
olle
tion of rules.For a logi
 program P , by At(P ) we denote the set of atoms o

urring in its rulesand by h(P ) | the set of atoms appearing as the heads of rules in P . We will alsodenote the size of P , that is, the total number of o

urren
es of atoms in P , bysize(P ). Throughout the paper we use n to denote the number of atoms in a logi
program P , and m to denote the size of P .A set of atoms M � At(P ) satis�es a rule r if h(r) 2 M , or if b+(r) nM 6= ;,or if b�(r) \M 6= ;. A set of atoms M � At(P ) is a model of a program P if Msatis�es all rules of P .A logi
 program rule r is 
alled Horn if b�(r) = ;. A Horn program is a programwhose every rule is a Horn rule. The interse
tion of two models of a Horn programP is a model of P . Sin
e the set of all atoms is a model of P , it follows thatevery Horn program P has a unique least model. We will denote this model byLM(P ). The least model of a Horn program P 
an be 
onstru
ted by means of thevan Emden-Kowalski operator TP (van Emden & Kowalski, 1976). Given a Hornprogram P and a set of atoms M � P , we de�neTP (M) = fa: a b1; : : : ; bs 2 P; and fb1; : : : ; bsg �Mg:We also de�ne T 0P (M) = ;; and T i+1P (M) = TP (T iP (M)):Sin
e the operator TP is monotone, the sequen
e T iP (;) is monotone and its unionyields the least model of a Horn program P . That is,LM(P ) = 1[i=0T iP (;):If P is �nite, the sequen
e stabilizes after �nitely many steps.For a logi
 program rule r, by horn(r) we denote the rule obtained from r byeliminating all negated atoms from the body of r. If P is a logi
 program, we de�nehorn(P ) = fhorn(r): r 2 Pg.Let P be a logi
 program (possibly with rules 
ontaining negated atoms). For aset of atoms M � At(P ) we de�ne the redu
t of P with respe
t to M to be theprogram obtained by eliminating from P ea
h rule r su
h that b�(r) \M 6= ; (we
all su
h rules blo
ked by M), and by removing negated atoms from all other rulesin P . The resulting program is a Horn program. We will denote it by PM . As aHorn program, PM has the least model LM(PM ). If M = LM(PM ), M is a stablemodel of P . Clearly, if M is a stable model of P , M � h(P ). Both the notion of theredu
t and of a stable model are due to Gelfond and Lifs
hitz (Gelfond & Lifs
hitz,1988).



Theory and Pra
ti
e of Logi
 Programming 3In the paper we restri
t our attention to programs whose rules do not 
ontainmultiple positive o

urren
es of the same atom nor multiple negative o

urren
es ofthe same atom in the body. It is 
lear that adopting this assumption does not limitthe generality of our 
onsiderations. Repetitive o

urren
es 
an be eliminated inlinear time (in the size of the program) and doing so does not a�e
t stable modelsof the program.If M is a stable model of P , ea
h rule r su
h that b+(r) �M and b�(r)\M = ;(that is, su
h that M satis�es its body), is 
alled a generating rule for M . Clearly,if M is a stable model of P , it is also a stable model of the program 
onsisting ofall rules in P that are generating for M .There are several ways to look at the sear
h spa
e of possible stable models ofa program P . The most dire
t way is to look for stable models by 
onsidering all
andidate subsets of h(P ). For ea
h 
andidate subset M � h(P ), one 
an 
omputethe 
orresponding redu
t PM , its least model LM(PM ), and 
he
k the equalityM = LM(PM ) to de
ide whether M is stable. An alternative way is to observethat stable models are determined by subsets of the set of atoms appearing negatedin P . Indeed, let us denote this set by Neg(P ) and let us 
onsider sets M � At(P )and B � Neg(P ). Let B0 = Neg(P )nB. Then, M is a stable model of P if and onlyif M = LM(PB0), B\M = ; and B0 �M . Thus, the existen
e of stable models 
anbe de
ided by 
onsidering subsets of Neg(P ). Finally, one 
an 
onsider the sear
hspa
e of all subsets of P itself, and regard ea
h su
h subset as a 
andidate for theset of generating rules of a stable model. Indeed, if M � At(P ) and P 0 � P , thenM is a stable model of P if and only if M = h(P 0), P 0 is the set of all generatingrules for M in P and M = LM(horn(P 0)).The problem with the stable model semanti
s is that, even in the propositional
ase, reasoning with logi
 programs under the stable model semanti
s is 
ompu-tationally hard. It is well-known that de
iding whether a �nite propositional logi
program has a stable model is NP-
omplete (Marek & Trusz
zy�nski, 1991). Conse-quently, it is not at all 
lear that logi
 programming with the stable model semanti
s
an serve as a pra
ti
al 
omputational tool.This issue 
an be resolved by implementing systems 
omputing stable models andby experimentally studying the performan
e of these systems. Several su
h proje
tsare now under way. Niemel�a and Simons (Niemel�a & Simons, 1996) developed asystem, smodels, for 
omputing stable models of �nite fun
tion symbol-free logi
programs and reported very promising performan
e results. For some 
lasses ofprograms, smodels de
ides the existen
e of a stable model in a matter of se
ondseven if an input program 
onsists of tens of thousands of 
lauses. En
ouragingresults on using smodels to solve planning problems are reported in (Niemel�a, 1999).Another well-advan
ed system is DeReS (Cholewi�nski et al., 1996), designed to
ompute extensions of arbitrary propositional default theories but being espe
iallye�e
tive for default theories en
oding propositional logi
 programs. Finally, systems
apable of reasoning with disjun
tive logi
 programs were des
ribed in (Eiter et al.,1997) and (Aravindan et al., 1997).However, faster implementations will ultimately depend on better understandingof the algorithmi
 aspe
ts of reasoning with logi
 programs under the stable model



4 M. Trusz
zy�nskisemanti
s. In this paper, we investigate the 
omplexity of de
iding whether a �nitepropositional logi
 program has stable models of some restri
ted sizes. Spe
i�
ally,we study the following two problems (jP j stands for the number of rules in a logi
program P ):LSM (Large stable models) Given a �nite propositional logi
 program P and aninteger k, de
ide whether there is a stable model of P of size at least jP j � k.SSM (Small stable models) Given a �nite propositional logi
 program P and aninteger k, de
ide whether there is a stable model of P of size no more than k.Inputs to the problems LSM and SSM are pairs (P; k), where P is a �nite propo-sitional logi
 program and k is a non-negative integer. Problems of this type arereferred to as parametrized de
ision problems. By �xing a parameter, a parame-terized de
ision problem gives rise to its �xed-parameter version. In the 
ase ofproblems LSM and SSM, by �xing k we obtain the following two �xed-parameterproblems (k is now no longer a part of input):LSM(k) Given a �nite propositional logi
 program P , de
ide whether P has a stablemodel of size at least jP j � k.SSM(k) Given a �nite propositional logi
 program P , de
ide whether P has a stablemodel of size at most k.The problems LSM and SSM are NP-
omplete. It follows dire
tly from the NP-
ompleteness of the problem of existen
e of stable models (Marek & Trusz
zy�nski,1991). But �xing k makes a di�eren
e! Clearly, the �xed-parameter problems SSM(k)and LSM(k) 
an be solved in polynomial time (unlike the problems SSM and LSMwhi
h, most likely, 
annot). Indeed, 
onsider a �nite propositional logi
 program P .Then, there are O(nk) subsets of At(P ) (in fa
t, as pointed out earlier, it is enoughto 
onsider subsets of h(P ) or Neg(P )) of 
ardinality at most k (we re
all that inthe paper n stands for the number of atoms in P ). For ea
h su
h subset M , it 
anbe 
he
ked in time linear in m | the size of P | whether M is a stable model ofP . Thus, one 
an de
ide whether P has a stable model of size at most k in timeO(mnk).Similarly, there are only O(jP jk) subsets of P of size at least jP j � k. Ea
h su
hsubset is a 
andidate for the set of generating rules of a stable model of size at leastjP j�k (and smaller subsets, 
learly, are not). Given su
h a subset R, one 
an 
he
kin time O(m) whether R generates a stable model for P . Thus, it follows that thereis an algorithm that de
ides in time O(mjP jk) whether a logi
 program P has astable model of size at least jP j � k.While both algorithms are polynomial in the size of the program, their asymptoti

omplexity is expressed by the produ
t of the size of a program and a polynomialof order k in the number of atoms of the program or in the number of rules ofthe program. Even for small values of k, say for k � 4, the fun
tions mnk andmjP jk grow very fast with m = size(P ), n = jAt(P )j and jP j, and render the
orresponding algorithms infeasible.An important question is whether algorithms for problems SSM(k) and LSM(k)exist whose order is signi�
antly lower than k, preferably, a 
onstant independent of



Theory and Pra
ti
e of Logi
 Programming 5k. The study of this question is the main goal of our paper. A general framework forsu
h investigations was proposed by Downey and Fellows (Downey & Fellows, 1997).They introdu
ed the 
on
epts of �xed-parameter tra
tability and �xed-parameterintra
tability that are de�ned in terms of a 
ertain hierar
hy of 
omplexity 
lassesknown as the W hierar
hy.In the paper, we show that the problem LSM is �xed-parameter tra
table anddemonstrate an algorithm that for every �xed k de
ides the problem LSM(k) in lin-ear time | a signi�
ant improvement over the straightforward algorithm presentedearlier.On the other hand, we demonstrate that the problem SSM is mu
h harder. Wepresent an algorithm to de
ide the problems SSM(k), for k � 1, that is asymp-toti
ally faster than the simple algorithm des
ribed above but the improvement israther insigni�
ant. Our algorithm runs in time O(mnk�1), an improvement only bythe fa
tor of n. The diÆ
ulty in �nding a substantially better algorithm is not 
oin-
idental. We provide eviden
e that the problem SSM is �xed-parameter intra
table.This result implies it is unlikely that there is an algorithm to de
ide the problemsSSM(k) whose running time would be given by a polynomial of order independentof k.The study of �xed-parameter tra
tability of problems o

urring in the area ofnonmonotoni
 reasoning is a relatively new resear
h topi
. Another paper that pur-sues this dire
tion is (Gottlob et al., 1999). The authors fo
us there on parametersdes
ribing stru
tural properties of programs and show that in some 
ases, �xingthese parameters leads to polynomial algorithms.Our paper is organized as follows. In Se
tion 2, we re
all basi
 
on
epts of thetheory of �xed-parameter intra
tability by Downey and Fellows (Downey & Fellows,1997). The following two se
tions present the algorithms to de
ide the problemsLSM and SSM, respe
tively. The next se
tion fo
uses on the issue of �xed-parameterintra
tability of the problem SSM and 
ontains the two main results of the paper.The last se
tion 
ontains 
on
lusions and open problems.2 Fixed-parameter intra
tabilityThis se
tion re
alls basi
 ideas of the work of Downey and Fellows on �xed-parameterintra
tability. The reader is referred to (Downey & Fellows, 1997) for a detailedtreatment of this subje
t.Informally, a parametrized de
ision problem is a de
ision problem whose inputsare pairs of items, one of whi
h is referred to as a parameter. The graph 
olorabilityproblem is an example of a parametrized problem. The inputs are pairs (G; k), whereG is an undire
ted graph and k is a non-negative integer. The problem is to de
idewhether G 
an be 
olored with at most k 
olors. Another example is the vertex
over problem in a graph. Again, the inputs are graph-integer pairs (G; k) and thequestion is whether G has a vertex 
over of 
ardinality k or less. The problemsSSM and LSM are also examples of parametrized de
ision problems. Formally, aparametrized de
ision problem is a set L � �� � ��, where � is a �xed alphabet.By sele
ting a 
on
rete value � 2 �� of the parameter, a parametrized de
ision



6 M. Trusz
zy�nskiproblem L gives rise to an asso
iated �xed-parameter problem L� = fx : (x; �) 2Lg. For instan
e, by �xing the value of k to 3, we get a �xed-parameter versionof the 
olorability problem, known as 3-
olorability. Inputs to the 3-
olorabilityproblem are graphs and the question is to de
ide whether an input graph 
an be
olored with 3 
olors. Clearly, the problems SSM(k) (LSM(k), respe
tively) are�xed-parameter versions of the problem SSM (LSM, respe
tively).The interest in the �xed-parameter problems stems from the fa
t that they areoften 
omputationally easier than the 
orresponding parametrized problems. Forinstan
e, the problems SSM and LSM are NP-
omplete yet, as we saw earlier,their parametrized versions SSM(k) and LSM(k) 
an be solved in polynomial time.Similarly, the vertex 
over problem is NP-
omplete but its �xed-parameter versionsare in the 
lass P. To see this, observe that to de
ide whether a graph has a vertex
over of size at most k, where k is a �xed value and not a part of an input, it isenough to generate all subsets with at most k elements of the vertex set of a graph,and then 
he
k if any of them is a vertex 
over. A word of 
aution is in order here.It is not always the 
ase that �xed-parameter problems are easier. For instan
e, the3-
olorability problem is still NP-
omplete.As we already pointed out, the fa
t that a problem admits a polynomial-timesolution does not ne
essarily mean that pra
ti
al algorithms to solve it exist. Analgorithm that runs in time O(N15), where N is the size of the input, is hardlymore pra
ti
al than an algorithm with an exponential running time (and may evenbe a worse 
hoi
e in pra
ti
e). The algorithms we presented so far to argue thatthe problems SSM(k), LSM(k) and the �xed-parameter versions of the vertex 
overproblem are in P rely on sear
hing through the spa
e of Nk possible solutions(where N is the number of atoms of a program, the number of rules of a program,or the number of verti
es in a graph, respe
tively). Thus, these algorithms are notpra
ti
al, ex
ept for the very smallest values of k. The key question is how fastthose polynomial-time solvable �xed-parameter problems 
an really be solved. Or,in other words, 
an one signi�
antly improve over the brute-for
e approa
h?A te
hnique to deal with su
h questions is provided by the �xed-parameter in-tra
tability theory of Downey and Fellows (Downey & Fellows, 1997). A parametrizedproblem L � �� � �� is �xed-parameter tra
table if there exist a 
onstant p, aninteger fun
tion f and an algorithm A su
h that A determines whether (x; y) 2 Lin time f(jyj)jxjp (jzj stands for the length of a string z 2 ��). The 
lass of �xed-parameter tra
table problems will be denoted by FPT. Clearly, if a parametrizedproblem L is in FPT, ea
h of the asso
iated �xed-parameter problems Ly is solvablein polynomial time by an algorithm whose exponent does not depend on the valueof the parameter y. It is known (see (Downey & Fellows, 1997)) that the vertex
over problem is in FPT.There is substantial eviden
e to support a 
onje
ture that some parametrizedproblems whose �xed-parameter versions are in P are not �xed-parameter tra
table.To study and 
ompare 
omplexity of parametrized problems Downey and Fellows



Theory and Pra
ti
e of Logi
 Programming 7proposed the following notion of redu
ibility1. A parametrized problem L 
an beredu
ed to a parametrized problem L0 if there exist a 
onstant p, an integer fun
tionq and an algorithm A that to ea
h instan
e (x; y) of L assigns an instan
e (x0; y0)of L0 su
h that1. x0 depends upon x and y and y0 depends upon y only,2. A runs in time O(q(jyj)jxjp),3. (x; y) 2 L if and only if (x0; y0) 2 L0.Downey and Fellows also de�ned a hierar
hy of 
omplexity 
lasses 
alled the Whierar
hy: FPT �W[1℄ �W[2℄ �W[3℄ : : : (1)The 
lasses W[t℄ 
an be des
ribed in terms of problems that are 
omplete forthem (a problem D is 
omplete for a 
omplexity 
lass E if D 2 E and every problemin this 
lass 
an be redu
ed to D). Let us 
all a boolean formula t-normalized if itis of the form of produ
t-of-sums-of-produ
ts ... of literals, with t being the numberof produ
ts-of, sums-of expressions in this de�nition. For example, 2-normalizedformulas are produ
ts of sums of literals. Thus, the 
lass of 2-normalized formu-las is pre
isely the 
lass of CNF formulas. We de�ne the weighted t-normalizedsatis�ability problem as:WS(t) Given a t-normalized formula ', de
ide whether there is a model of ' withexa
tly k atoms (or, alternatively, de
ide whether there is a satisfying valuationfor ' whi
h assigns the logi
al value true to exa
tly k atoms)Downey and Fellows show that for t � 2, the problems WS(t) are 
omplete for the
lass W[t℄. They also show that a restri
ted version of the problem WS(2):WS3(2) Given a 3CNF formula ' and an integer k (parameter), de
ide whetherthere is a model of ' with exa
tly k atomsis 
omplete for the 
lass W [1℄. Downey and Fellows 
onje
ture that all the impli
a-tions in (1) are proper2. In parti
ular, they 
onje
ture that problems in the 
lassesW[t℄, with t � 1, are not �xed-parameter tra
table.In the paper, we relate the problem SSM to the problems WS(2) and WS(3) topla
e the problem SSM in the W hierar
hy, to obtain estimates of its 
omplexityand to argue for its �xed-parameter intra
tability.3 Large stable modelsIn this se
tion we will show an algorithm for the parametrized problem LSM thatruns in time O(2k+k2m), where (P; k) is an input instan
e and, as in all other1 The de�nition given here is suÆ
ient for the needs of this paper. To obtain stru
tural theoremsa subtler de�nition is needed. This topi
 goes beyond the s
ope of the present paper. The readeris referred to (Downey & Fellows, 1997) for more details.2 If true, this 
onje
ture would imply that in the 
ontext of �xed-parameter tra
tability there isa di�eren
e between the 
omplexity of weighted satis�ability for 3CNF and CNF formulas.



8 M. Trusz
zy�nskipla
es in the paper, m = size(P ). This result implies that the problem LSM is�xed-parameter tra
table and that there is an algorithm that for every �xed ksolves the problem LSM(k) in linear-time.Given a logi
 program P , denote by P � the logi
 program obtained from P byeliminating from the bodies of the rules in P all literals not(a), where a is not thehead of any rule from P . The following well-known result states the key propertyof the program P �.Lemma 3.1A set of atoms M is a stable model of a logi
 program P if and only if M is a stablemodel of P �.Lemma 3.1 implies that the problem LSM has a positive answer for (P; k) if andonly if it has a positive answer for (P �; k). Moreover, it is easy to see that P �
an be 
onstru
ted from P in time linear in the size of P . Thus, when looking foralgorithms to de
ide the problem LSM we may restri
t our attention to programsP in whi
h every atom appearing negated in the body of a rule appears also as thehead of a rule (that is, to su
h programs P for whi
h we have Neg(P ) � h(P )).By P k let us denote the program 
onsisting of those rules r in P for whi
hjb�(r)j � k. We have the following lemma.Lemma 3.2Let P be a logi
 program su
h that Neg(P ) � h(P ). Let M � At(P ) be a set ofatoms su
h that jM j � jP j � k. Then:1. M is a stable model of P if and only if M is a stable model of P k2. if M is a stable model of P k, then P k has no more than k + k2 di�erentnegated literals appearing in the bodies of its rules.Proof: (1) Consider a rule r 2 P n P k. Then jb�(r)j � k + 1 and, 
onsequently,b�(r) \M 6= ;. Indeed, if b�(r) \M = ;, then jM [ b�(r)j = jM j+ jb�(r)j > jP j.Sin
e Neg(P ) � h(P ), b�(r) � h(P ). In addition, (both if we assume that Mis a stable model of P and if we assume that M is a stable model of P k), wehave M � h(P ). Thus, b�(r) [M � h(P ). Now observe that jP j � jh(P )j. Thus,jM [ b�(r)j � jh(P )j � jP j, a 
ontradi
tion.Sin
e for every rule r 2 P n P k we have b�(r) \M 6= ;, it follows that (P k)M =PM . Hen
e, M = LM(PM ) if and only if M = LM((P k)M ). Consequently, M is astable model of P if and only if M is a stable model of P k.(2) Let P 0 be the set of rules from P k su
h that r 2 P 0 if and only if b�(r)\M = ;(the rules in P 0 
ontribute to the redu
t (P k)M ) and let P 00 be the set of theremaining rules in P k (these are the rules that are eliminated when the redu
t(P k)M is 
omputed). Sin
e Neg(P ) � h(P ), for every rule r 2 P , b�(r) � h(P ).Thus, Sfb�(r): r 2 P 0g � h(P ) nM . Sin
e M � h(P ) (as M is a stable model ofP k) and jP j � jh(P )j, we have jSfb�(r): r 2 P 0gj � k. Further, sin
e jP 0j � jM j �jP j�k � jP kj�k, it follows that jP 00j � k. Consequently, jSfb�(r): r 2 P 00gj � k2.Hen
e, the se
ond part of the assertion follows. 2Let us now 
onsider the following algorithm for the problem LSM(k) (the inputto this algorithm is a logi
 program P ).



Theory and Pra
ti
e of Logi
 Programming 91. Eliminate from the input logi
 program P all literals not(a), where a is notthe head of any rule from P . Denote the resulting program by Q.2. Compute the set of rulesQk 
onsisting of those rules r in Q for whi
h jb�(r)j �k.3. De
ide whether Qk has a stable model M su
h that jM j � jQj � k.This algorithm reports YES if and only if the program Qk has a stable model Msu
h that jM j � jQj�k. By Lemma 3.2, that happens pre
isely if and only if Q hasa stable model M su
h that jM j � jQj � k. This last statement, by Lemma 3.1, isequivalent to the statement that P has a stable model M su
h that jM j � jP j � k.In other words, our algorithm 
orre
tly de
ides the problem LSM(k).Let us noti
e that steps 1 and 2 
an be implemented in time O(m), where the
onstant hidden by the \big O" notation does not depend on k. To implementstep 3, let us re
all that every stable model of a logi
 program is determined bysome subset of the set of atoms that appear negated in the program (ea
h su
hsubset uniquely determines the redu
t, as we stated in the introdu
tion; see also(Bondarenko et al., 1993)). By Lemma 3.2, the set of su
h atoms in the programQk has 
ardinality at most k + k2. Che
king for ea
h subset of this set whether itdetermines a stable model of Qk 
an be implemented in time O(size(Qk)) = O(m).Consequently, our algorithm runs in time O(2k+k2m) (with the 
onstant hidden bythe \big O" notation independent of k).Theorem 3.3The problem LSM is �xed-parameter tra
table. Moreover, for ea
h �xed k there isa linear-time algorithm to de
ide whether a logi
 program P has a stable model ofsize at least jP j � k.4 Computing stable models of size at most kIn the introdu
tion we pointed out that there is a straightforward algorithm tode
ide the problem SSM(k) that runs in time O(mnk), where m = size(P ) andn = jAt(P )j. For k � 1 (the assumption we adopt in this se
tion), this algorithm
an be slightly improved. Namely, we will now des
ribe an algorithm for the problemSSM(k) that runs in time O(F (k)mnk�1), where F is some integer fun
tion. Thus,if k is �xed and not a part of the input, this improved algorithm runs in timeO(mnk�1).We present our algorithm under the assumption that input logi
 programs areproper. We say that a logi
 program rule r is proper if:(P1) h(r) =2 b+(r), and(P2) b+(r) \ b�(r) = ;We say that a logi
 program P is proper if all its rules are proper. Rules that violateat least one of the 
onditions (P1) and (P2) (that is, rules that are not proper) haveno in
uen
e on the 
olle
tion of stable models of a program as we have the followingwell-known result (see, for instan
e, (Brass & Dix, 1997)).Lemma 4.1



10 M. Trusz
zy�nskiA set of atoms M is a stable model of a logi
 program P if and only if M is a stablemodel of the subprogram of P 
onsisting of all proper rules in P .It is easy to see that rules that violate (P1) or (P2) 
an be eliminated from alogi
 program P in time O(m). Thus, the restri
tion to proper programs does nota�e
t the generality of our dis
ussion.For a proper logi
 program P and for a set A � At(P ) of atoms, we de�ne P (A)to be the program 
onsisting of all those rules r of P that are not blo
ked by A (inother words, those that satisfy b�(r)\A = ;) and whose positive body is 
ontainedin A (in other words, su
h that b+(r) � A).Let P be a logi
 program and let A � At(P ) be a set of atoms. A stable modelM of P is 
alled A-based if1. M is of the form A [ fag, where a 2 At(P ) nA, and2. M � LM(P (A)M ) (in other words, when 
omputing LM(PM ), the derivationof A does not require that a be derived �rst).We have the following simple lemma.Lemma 4.2Let k be an integer su
h that k � 1. A proper logi
 program P has a stable modelof 
ardinality k if and only if for some A � At(P ), with jAj = k � 1, P has anA-based stable model.It follows from Lemma 4.2 that when de
iding the existen
e of k-element stablemodels, k � 1, it is enough to fo
us on the existen
e of A-based stable models. Thisis the approa
h we take here. In most general terms, our algorithm for the problemSSM(k) 
onsists of generating all subsets A � At(P ), with jAj � k�1, and for ea
hsu
h subset A, of 
he
king whether P has an A-based stable model. This latter taskis the key.We will now des
ribe an algorithm that, given a logi
 program P and a setA � At(P ), de
ides whether P has an A-based stable model. To this end, we de�neP 0(A) to be the program 
onsisting of all those rules r of P su
h that:1. b�(r) \A = ; (r is not blo
ked by A)2. h(r) =2 A3. b+(r) nA 
onsists of exa
tly one element; we will denote it by ar.Our algorithm is based on the following result allowing us to restri
t attention to theprogram P (A) (the statement of the lemma and its proof rely on the terminologyintrodu
ed above).Lemma 4.3Let A be a set of atoms. A proper logi
 program P has an A-based stable model ifand only if P (A) has an A-based stable model M = A[fag, su
h that a =2 far: r 2P 0(A)g.Proof: ()) Let M be an A-based stable model of P . Assume that M = A [ fag,for some a =2 A. Sin
e P (A)M � PM , LM(P (A)M ) � LM(PM ) = M . Sin
e M is
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ti
e of Logi
 Programming 11A-based, we have that M � LM(P (A)M ). It follows that M is an A-based stablemodel of P (A).Let us assume that there is a rule s 2 P 0(A) su
h that a = as. The rule s is notblo
ked by A. Sin
e a 2 b+(s), we have that a =2 b�(s) (we re
all that all rules inP are proper). Hen
e, s is not blo
ked by fag either. Consequently, horn(s) 2 PM .Sin
e s 2 P 0(A), the body of horn(s) (that is, b+(s)) is 
ontained in M . The setM is a least model of PM . In parti
ular, M satis�es horn(s). Thus, it followsthat h(s) 2 M . In the same time, h(s) 6= a (as s is proper). Thus, h(s) 2 A, a
ontradi
tion (we re
all that s 2 P 0(A)). It follows that a =2 far: r 2 P 0(A)g.(() We will now assume that M = A [ fag is an A-based stable model of P (A)su
h that a =2 far: r 2 P 0(A)g. Similarly as before, we have M = LM(P (A)M ) �LM(PM ). Let us assume that LM(PM ) nM 6= ;. Then there is a rule t in PMsu
h that the body of t is 
ontained in M and h(t) =2 M . Let s be a rule in Pthat gives rise to t when 
onstru
ting the redu
t. Assume �rst that the body of t(that is, b+(s)) is 
ontained in A. Then s 2 P (A), t 2 P (A)M and, 
onsequently,h(t) 2 LM(P (A)M ) = M , a 
ontradi
tion.Thus, the body of t is not 
ontained in A. Sin
e the body of t is 
ontained in M ,it 
onsists of a and, possibly, some other elements, all of whi
h are in A. It followsthat s 2 P 0(A). Consequently, a = as and a 2 far: r 2 P 0(A)g, a 
ontradi
tion.Thus, LM(PM ) = M , that is, M is a stable model of P . Sin
e M = LM(P (A)M ),it follows that M is an A-based model of P . 2Let A be a set of atoms. A logi
 program with negation, P , is an A-program ifP = P (A), that is if for every rule r 2 P we have b+(P ) � A and b�(P ) \ A = ;.Clearly, the program P (A), des
ribed above, is an A-program. We will now fo
uson A-programs and their A-based stable models.Let A be a set of atoms. We denote by R(A) the set of all proper Horn rulesover the set of atoms A. Clearly, the 
ardinality of R(A) depends on the 
ardinalityof A only. Further, we de�ne P(A) to be the set of all Horn programs Q � R(A)satisfying the 
ondition LM(Q) = A. As in the 
ase of R(A), the 
ardinality ofP(A) also depends on the size of A only.We will now des
ribe 
onditions that determine whether an A-program P has anA-based stable model. To this end, with every atom a 2 At(P ) n A, we asso
iatethe following values:� F (a) = 1 if there is a rule s in P with h(s) =2 A[fag and a =2 b�(s); F (a) = 0,otherwise� G(a) = the number of rules s in P with h(s) = a and a =2 b�(s).Further, with every proper Horn rule r 2 R(A) and every atom a 2 At(P ) nA, weasso
iate the quantity:� H(r; a) = 1 if there is a rule s in P with horn(s) = r and a =2 b�(s); H(r; a) =0, otherwise.The following lemma 
hara
terizes A-based stable models of an A-program. Boththe statement of the lemma and its proof rely on the terminology introdu
ed above.Lemma 4.4



12 M. Trusz
zy�nskiLet A be a set of atoms, let P be an A-program and let a be an atom su
h thata 2 At(P )nA. Then A[fag is an A-based stable model of P if and only if F (a) = 0,G(a) > 0, and for some program Q 2 P(A) and for every rule r 2 Q, H(r; a) > 0.Proof: ()) We denote M = A [ fag and assume that M is an A-based stablemodel for P . It follows that M = LM(PM ). Let PA be the subprogram of P
onsisting of those rules of P whose head belongs to A. Sin
e M is an A-basedstable model of P , we have A = LM(PMA ). Let Q be the program obtained fromPMA by removing multiple o

urren
es of rules. Clearly,Q 2 P(A). It follows dire
tlyfrom the de�nition of the redu
t that for every rule r 2 Q, H(r; a) = 1.Next, we observe that a 2 LM(PM ). Thus, G(a) > 0. Let us assume that F (a) =1. Let r be a rule in P su
h that h(r) =2 A [ fag and a =2 b�(r). Sin
e P is an A-program, A \ b�(r) = ;. Thus, it follows that horn(r) 2 PM . We also have thatb+(r) � A �M . Sin
e M is a model of PM , h(r) 2M . However, in the same timewe have that h(r) =2 A [ fag(= M), a 
ontradi
tion. It follows that F (a) = 0.(() We now assume that for some a 2 At(P ) n A, F (a) = 0, G(a) > 0 and forsome program Q 2 P(A) and for every rule r 2 Q, H(r; a) = 1. As before, we setM = A [ fag. We will show that M = LM(PM ).First, sin
e P is an A-program and H(r; a) = 1 for every rule r 2 Q, it followsthat Q � P (A)M . Thus, A � LM(P (A)M ). Se
ond, we have that G(a) > 0. Thus,there is a rule r 2 P su
h that h(r) = a and a =2 b�(r). It follows that horn(r) =2 Qand horn(r) 2 PM . Sin
e Q � P (A)M , A = LM(Q) and b+(r) � A, we obtainthat a 2 LM(P (A)M ). Thus, M � LM(P (A)M ). Finally, sin
e F (a) = 0, we havethat for every rule s 2 P su
h that a =2 b�(s), h(s) 2M . Thus, LM(PM ) does not
ontain any atom not in M . Consequently, M = LM(PM ) and M is a stable modelof P . Sin
e M � LM(P (A)M ), M is an A-based stable model of P . 2We will dis
uss now e�e
tive ways to 
ompute values F (a), G(a) and H(r; a).Clearly, 
omputing the values G(a) 
an be a

omplished in time linear in the sizeof the program, that is, in time O(m). Indeed, we start by initializing all valuesG(a) to 0. Then, for ea
h rule s 2 P , we set G(h(s)) := G(h(s)) + 1 if h(s) =2 b�(s),and leave G(h(s)) un
hanged, otherwise. To de
ide whi
h is the 
ase requires thatwe s
an all negated lierals in the body of s. That takes time O(jb�(s)j). Thus, theoverall time is O(m).Computing values F (a) and H(r; a) is more 
ompli
ated. First, we prove thefollowing lemma.Lemma 4.5Let P be an A-program, let a 2 At(P ) nA and let r 2 R(A). Then1. F (a) = 1 if and only if a =2 Tffh(s)g [ b�(s) : s 2 P; h(s) =2 Ag.2. H(r; a) = 1 if and only if a =2 Tfb�(s) : s 2 P; horn(s) = rg.Proof: (1) Let us assume �rst that F (a) = 1. Then there is a rule s 2 P su
hthat h(s) =2 A [ fag and a =2 b�(s). Thus, a =2 fh(s)g [ b�(s). Consequently, theidentity a =2 Tffh(s)g [ b�(s) : s 2 P; h(s) =2 Ag follows. All the impli
ations inthis argument 
an be reversed. Hen
e, we obtain the assertion (1).(2) Let us assume thatH(r; a) = 1. Then, there is a rule s 2 P su
h that horn(s) = r
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ti
e of Logi
 Programming 13and a =2 b�(s). Consequently, a =2 Tfb�(s) : s 2 P; horn(s) = rg. As in (1), all theimpli
ations are in fa
t equivalen
es and the assertion (2) follows. 2Lemma 4.5 shows that to 
ompute all the values F (a) one has to 
ompute theset \ffh(s)g [ b�(s) : s 2 P; h(s) =2 Ag:To this end, for ea
h atom a we will 
ompute the number of sets in ffh(s)g[b�(s) :s 2 P; h(s) =2 Ag that a is a member of. We will denote this number by C(a). We�rst initialize all values C(a) to 0. Then, we 
onsider all sets in ffh(s)g [ b�(s) :s 2 P; h(s) =2 Ag in turn. For ea
h su
h set and for ea
h atom a in this set weset C(a) := C(a) + 1. The set Tffh(s)g [ b�(s) : s 2 P; h(s) =2 Ag is given by allthose atoms a for whi
h C(a) is equal to the number of sets in ffh(s)g [ b�(s) :s 2 P; h(s) =2 Ag. It is 
lear that the time needed for this 
omputation is linear inthe size of the program (assuming appropriate linked-list representation of rules).Thus, all the values F (a) 
an be 
omputed in time linear in the size of the program,that is, in O(m) steps.To 
ompute values H(r; a) we pro
eed similarly. First, we 
ompute all the setsfs : s 2 P; horn(s) = rg, where r 2 R(A). To this end, we s
an all rules in P inorder and for ea
h of them we �nd the rule r 2 R(A) su
h that horn(s) = r. Thenwe in
lude s in the set fs : s 2 P; horn(s) = rg. Given s, it takes O(gjAj) steps toidentify rule r (where g is some fun
tion). Indeed, the size of b+(s) is bound by jAjas P is an A-program. Moreover, the number of rules in R(A) depends on jAj only.Thus, the task of 
omputing all sets fs : s 2 P; horn(s) = rg, for r 2 R(A), 
an bea

omplished in O(g(jAj)jP j) steps. Next, for ea
h these sets of rules, we pro
eed asin the 
ase of values F (a), to 
ompute their interse
tions. Ea
h su
h 
omputationtakes time O(m), where m = size(P )). Thus, 
omputing all the values H(r; a) 
anbe a

omplished in time O(g(jAj)jP j+ jR(A)jm) = O(f(jAj)m), for some fun
tionf .We 
an now put all the pie
es together. As a result of our 
onsiderations, weobtain the following algorithm for de
iding the problem SSM(k).Algorithm to de
ide the problem SSM(k), k � 1Input: A logi
 program P (k is not a part of input)(0) if ; is a stable model of P then return YES and exit;(1) P := the set of proper rules in P ;(2) for every A � At(P ) with jAj � k � 1 do(3) 
ompute the set of rules R(A) and the set of programs P(A);(4) 
ompute the program P (A);(5) 
ompute the program P 0(A) and the set B = far: r 2 P 0(A)g;(6) given P (A) and R(A), 
ompute tables F , G and H (as des
ribed above);(7) for every a 2 At(P (A)) nA nB do(8) if(9) F (a) = 0, G(a) > 0 and(10) there is a program Q 2 P(A) s. t. for every rule r 2 Q, H(r; a) > 0



14 M. Trusz
zy�nski(11) then report YES and exit;(12) report NO and exit.The 
orre
tness of this algorithm follows from Lemmas 4.2 - 4.4. We will nowanalyze the running time of this algorithm. Clearly, line (0) 
an be exe
uted inO(m) steps. As we already observed, rules that are not proper 
an be eliminatedfrom P in time O(m). Next, there are O(nk�1) iterations of loop (2). In ea
h ofthem, line (3) takes time O(f1(k)), for some fun
tion f1 (let us re
all that jR(A)jand jP(A)j depend on jAj only). Further, lines (4) and (5) 
an be exe
uted intime O(m). Line (6), as we dis
ussed earlier, 
an be implemented so that to run inO(f(k)m) steps. Loop (7) is exe
uted O(n) times and ea
h iteration takes O(f2(k))steps, for some fun
tion f2 (let us again re
all that jP(A)j depends on k only).Thus, the running time of the whole algorithm is O(F (k)mnk�1), for some integerfun
tion F . Consequently, we get the following result.Theorem 4.6There is an integer fun
tion F and an algorithm A su
h that A de
ides the problemSSM(k) and runs in time O(F (k)mnk�1) (the 
onstant hidden in the "big Oh"notation does not depend on k).5 Complexity of the problem SSMThe algorithm outlined in the previous se
tion is not quite satisfa
tory. Its run-ning time is still high. A natural question to ask is: are there signi�
antly betteralgorithms for the problems SSM(k)? In this se
tion we address this question bystudying the 
omplexity of the problem SSM. Our goal is to show that the problemis diÆ
ult in the sense of the W hierar
hy. We will show that the problem SSM isW [2℄-hard and that it is in the 
lass W[3℄. To this end, we de�ne the (� k)-weightedt-normalized satis�ability problem as:WS�(t) Given a t-normalized formula ', de
ide whether there is a model of ' withat most k atoms (k is a parameter).The problem WS�(t) is a slight variation of the problem WS(t). It is known to be
omplete for the 
lass W[t℄, for t � 2 (see (Downey & Fellows, 1997), page 468). Toshow W[2℄-hardness of SSM, we will redu
e the problem WS�(2) to the problemSSM. Given the overwhelming eviden
e of �xed-parameter intra
tability of prob-lems that are W [2℄-hard (Downey & Fellows, 1997), it is unlikely that algorithms forproblems SSM(k) exist whose asymptoti
 behavior would be given by a polynomialof order independent of k. To better delineate the lo
ation of the problem SSM inthe W hierar
hy we also provide an upper bound on its hardness by showing thatit 
an be redu
ed to the problem WS�(3), thus proving that the problem SSMbelongs to the 
lass W [3℄.We will start by showing that the problem SSM(k) is redu
ible (in the sense ofthe de�nition from Se
tion 2) to the problem WS�(3). To this end, we des
ribean en
oding of a logi
 program P by means of a 
olle
tion of 
lauses T (P ) so thatP has a stable model of size at most k if and only if T (P ) has a model with no
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ti
e of Logi
 Programming 15more than (k+1)(k2+2k) atoms. In the general setting of the 
lass NP, an expli
iten
oding of the problem of existen
e of stable models in terms of propositionalsatis�ability was des
ribed in (Ben-Eliyahu & De
hter, 1994). Our en
oding, whiledi�erent in key details, uses some ideas from that paper.Let us 
onsider an integer k and a logi
 program P . For ea
h atom q in Plet us introdu
e new atoms 
(q), 
(q; i), 1 � i � k + 1, and 
�(q; i), 2 � i �k + 1. Intuitively, atom 
(q) represents the fa
t that in the pro
ess of 
omputingthe least model of the redu
t of P with respe
t to some set of atoms, atom q is
omputed no later than during the iteration k + 1 of the van Emden-Kowalskioperator. Similarly, atom 
(q; i) represents the fa
t that in the same pro
ess atom qis 
omputed exa
tly in the iteration i of the van Emden-Kowalski operator. Finally,atom 
�(q; i), expresses the fa
t that q is 
omputed before the iteration i of the vanEmden-Kowalski operator. The formulas F1(q; i), 2 � i � k+ 1, and F2(q) des
ribesome basi
 relationships between atoms 
(q), 
(q; i) and 
�(q; i) that we will requireto hold: F1(q; i) = 
�(q; i), 
(q; 1) _ : : : _ 
(q; i� 1);F2(q) = 
(q), 
(q; 1) _ : : : _ 
(q; k + 1):Let r be a rule in P with h(r) = q, sayr = q  a1; : : : ; as;not(b1); : : : ;not(bt):We de�ne a formula F3(r; i), 2 � i � k + 1, byF3(r; i) = 
�(a1; i) ^ : : : ^ 
�(as; i) ^ :
(b1) ^ : : : ^ :
(bt) ^ :
�(q; i):We de�ne F3(r; 1) = false (false is a distinguished 
ontradi
tory formula in ourpropositional language) if s � 1. Otherwise, we de�neF3(r; 1) = :
(b1) ^ : : : ^ :
(bt):Speaking informally, formula F3(r; i) asserts that q is 
omputed by means of rule rin the iteration i of the least model 
omputation pro
ess and that it has not been
omputed earlier.Let r1; : : : ; rv be all rules in P with atom q in the head. We de�ne a formulaF4(q; i), 1 � i � k + 1, byF4(q; i) = 
(q; i), F3(r1; i) _ : : : _ F3(rv ; i):Intuitively, the formula F4(q; i) asserts that when 
omputing the least model of theredu
t of P , atom q is �rst 
omputed in the iteration i.We now de�ne the theory T0(P ) that en
odes the problem of existen
e of smallstable models:T0(P ) = fF1(q; i): q 2 At(P ); 2 � i � k + 1g [ fF2(q): q 2 At(P )g [fF4(q; i): q 2 At(P ); 1 � i � k + 1g:Next, we establish some useful properties of the theory T0(P ). First, we 
onsidera set U of atoms that is a model of T0(P ) and de�neM(U) = fq 2 At(P ): 
(q) 2 Ug:
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zy�nskiLemma 5.1Let U be a model of T0(P ) and let q 2 M(U). Then there is a unique integer i,1 � i � k + 1, su
h that 
(q; i) 2 U .Proof: Sin
e U is a model of a formula F2(q), there is an integer i, 1 � i � k + 1,su
h that 
(q; i) 2 U . To prove uniqueness of su
h i, assume that there are twointegers j1 and j2, 1 � j1 < j2 � k + 1, su
h that 
(q; j1) 2 U and 
(q; j2) 2 U .Sin
e U j= F4(q; j2), it follows that there is a rule r 2 P with h(r) = q and su
h thatU j= F3(r; j2). In parti
ular, U j= :
�(q; j2). In the same time, sin
e 
(q; j1) 2 Uand U j= F1(q; j2), we have 
�(q; j2) 2 U , a 
ontradi
tion. 2For every atom q 2M(U) de�ne iq to be the integer whose existen
e and unique-ness is guaranteed by Lemma 5.1. De�ne iU = maxfiq: q 2 M(U)g. Next, for ea
hi, 1 � i � iU , de�ne [M(U)℄i = fq 2M(U): iq = ig:Lemma 5.2Let U be a model of T0(P ). Under the terminology introdu
ed above, for every i,1 � i � iU , [M(U)℄i 6= ;.Proof: We will pro
eed by downward indu
tion. By the de�nition of iU , [M(U)℄iU 6=;. Consider i, 2 � i � iU , and assume that [M(U)℄i 6= ;. We will show that[M(U)℄i�1 6= ;. Let q 2 [M(U)℄i. Clearly, 
(q; i) 2 U and, sin
e U j= F4(q; i),there is a rule r = q  a1; : : : ; as;not(b1); : : : ;not(bt) su
h that U j= F3(r; i).Consequently, for every j, 1 � j � s, 
�(aj ; i) 2 U . Assume that for every j, 1 �j � s, 
�(aj ; i� 1) 2 U . Sin
e U j= 
�(q; i� 1)) 
�(q; i) and sin
e U j= :
�(q; i),it follows that U j= :
�(q; i� 1). Consequently, U satis�es the formula F3(r; i� 1)and, so, U j= F4(q; i� 1). It follows that 
(q; i� 1) 2 U , a 
ontradi
tion (we re
allthat iq = i). Hen
e, there is j, 1 � j � s, su
h that 
(aj ; i� 1) 2 U . It follows thataj 2 [M(U)℄i�1 and [M(U)℄i�1 6= ;. 2Lemma 5.3Let U be a model of T0(P ) and let jM(U)j � k. Then1. iU � k, and2. M(U) is a stable model of P .Proof: (1) The assertion follows dire
tly from the fa
t that jM(U)j � k and fromLemma 5.2.(2) We need to show that M(U) = LM(PM(U)). We will �rst show that M(U) �LM(PM(U)). Sin
e M(U) = SiUi=1[M(U)℄i, we will show that for every i, 1 � i �iU , [M(U)℄i � LM(PM(U)). We will pro
eed by indu
tion. Let q 2 [M(U)℄1. Itfollows that there is a rule r su
h that U j= F3(r; 1). Consequently, r is of theform r = q  not(b1); : : : ;not(bt) and U j= :
(b1) ^ : : : ^ :
(bt). Hen
e, for everyj, 1 � j � t, bj =2 M(U). Consequently, the rule (q  :) is in PM(U) and, so,q 2 LM(PM(U)). The indu
tive step is based on a similar argument. It relies onthe inequality iU � k we proved in (1). We leave the details of the indu
tive stepto the reader.
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ti
e of Logi
 Programming 17We will next show that LM(PM(U)) �M(U). We will use the 
hara
terization ofLM(PM(U)) as the limit of the sequen
e of iterations of the van Emden-Kowalskioperator TPM(U) : LM(PM(U)) = 1[i=0T iPM(U)(;):We will �rst show that for every integer i, 0 � i � k+1, we have: T iPM(U)(;) �M(U)and for every q 2 T iPM(U)(;), iq � i.Clearly, T 0PM(U)(;) = ; �M(U). Hen
e, the basis for the indu
tion is established.Assume that for some i, 0 � i � k, T iPM(U)(;) � M(U) and that for every q 2T iPM(U)(;), iq � i. Consider q 2 T i+1PM(U)(;). If U j= 
�(q; i+ 1), then 
(q; v) 2 U forsome v, 1 � v � i. Sin
e U j= F2(q), 
(q) 2 U and q 2 M(U). By Lemma 5.1, itfollows that iq = v. Hen
e, iq < i+ 1.Thus, assume that U j= :
�(q; i+ 1). Sin
e q 2 T i+1PM(U)(;), there is a ruler = q  a1; : : : ; as;not(b1); : : : ;not(bt)in P su
h that bj =2M(U), for every j, 1 � j � t, and aj 2 T iPM(U)(;), 1 � i � s. Bythe indu
tion hypothesis, for every j, 1 � j � s, we have aj 2 M(U) and iaj � i.It follows that U j= F3(r; i + 1) and, 
onsequently, that 
(q; i + 1) 2 U . Sin
eU j= F2(q), 
(q) 2 U and q 2M(U). It also follows (Lemma 5.1) that iq = i+ 1.Thus, we proved that Sk+1i=0 T iPM(U)(;) � M(U). Sin
e jM(U)j � k, there is j,0 � j � k su
h that T jPM(U)(;) = T j+1PM(U)(;). It follows that for every j0, j < j0,T jPM(U)(;) = T j0PM(U)(;). Consequently, T iPM(U)(;) � M(U) for every non-negativeinteger i. 2Consider now a stable model M of the program P and assume that jM j � k.Clearly, M = S1i=1 T iPM (;). For ea
h atom q 2 M de�ne sq to be the least integers su
h that q 2 T sPM (;). Clearly, sq � 1. Moreover, sin
e jM j � k, it follows thatfor ea
h q 2M , sq � k. Now, de�neUM = f
(q); 
(q; sq): q 2Mg [ f
�(q; i): q 2M; sq < i � k + 1gLemma 5.4Let M be a stable model of a logi
 program P su
h that jM j � k. Under theterminology introdu
ed above, the set of atoms UM is a model of T0(P ).Proof: Clearly, UM j= F1(q; i) for q 2 At(P ) and 2 � i � k + 1, and UM j= F2(q)for q 2 At(P ).We will now show that UM j= F4(q; i), for q 2 At(P ) and i = 1; 2; : : : ; k+1. First,we will 
onsider the 
ase q 2 M . There are three sub
ases here depending on thevalue of i.We start with i su
h that sq < i � k + 1. Then UM 6j= :
�(q; i). It followsthat UM 6j= F3(r; i) for every rule r 2 P su
h that h(r) = q. Sin
e UM 6j= 
(q; i),UM j= F4(q; i).Next, we assume that i = sq . Then, there is a rule r = q  a1; : : : ; as;not(b1); : : : ;not(bt) in P su
h that bj =2M , for every j, 1 � j � t, and aj 2 T i�1PM (;), 1 � j � s.Clearly, UM j= F3(r; i). Sin
e UM j= 
(q; i), it follows that UM j= F4(q; i), for i = sq.
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zy�nskiFinally, let us 
onsider the 
ase 1 � i < sq . Assume that there is rule r 2 P su
hthat h(r) = q and UM j= F3(r; i). Let us assume that r = q  a1; : : : ; as;not(b1); : : : ;not(bt). It follows that for every j, 1 � j � t, UM j= :
(bj). Consequently, for everyj, 1 � j � t, bj =2M and the rule r0 = q  a1; : : : ; as belongs to the redu
t PM . Inaddition, for every j, 1 � j � s, 
�(aj ; i) 2 UM . Thus, aj 2M and saj � i�1. Thislatter property is equivalent to aj 2 T i�1PM (;). Thus, it follows that q 2 T iPM (;) andsq � i | a 
ontradi
tion with the assumption that i < sq . Hen
e, for every rule rwith the head q, UM 6j= F3(r; i). Sin
e for i < sq, 
(q; i) =2 UM , UM j= F4(q; i).To 
omplete the proof, we still need to 
onsider the 
ase q =2 M . Clearly, forevery i, 1 � i � k + 1, UM 6j= 
(q; i). Assume that there is i, 1 � i � k + 1,and a rule r su
h that h(r) = q and UM j= F3(r; i). Let us assume that r is ofthe form q  a1; : : : ; as;not(b1); : : : ;not(bt). It follows that 
�(aj ; i) 2 UM and,
onsequently, aj 2M for every j, 1 � j � s. In addition, it follows that for every j,1 � j � t, UM j= :
(bj) and, 
onsequently, bj =2 M . Thus, q  a1; : : : ; as belongsto the redu
t PM and, sin
e M is a model of the redu
t, q 2 M , a 
ontradi
tion.It follows that for every i, 1 � i � k + 1, UM j= F4(q; i). 2For ea
h atom q 2 At(P ), let us introdu
e k2 + 2k new atoms d(q; i), 1 � i �k2 + 2k, and de�neT (P ) = T0(P ) [ f
(q), d(q; i): 1 � i � k2 + 2kg:Lemmas 5.1 - 5.4 add up to a proof of the following result.Theorem 5.5Let k be a non-negative integer and let P be a logi
 program. The program P hasa stable model of size at most k if and only if the theory T (P ) has a model of sizeat most (k + 1)(k2 + 2k).Proof: ()) Let M be a stable model of P su
h that jM j � k. By Lemma 5.4, theset UM is a model of T0(P ) Consequently, the setU = UM [ fd(q; i): q 2M; 1 � i � k2 + 2kgis a model of T (P ). Moreover, it is easy to see that jUM j � 2k + k2. Hen
e, jU j �2k + k2 + k(k2 + 2k) = (k + 1)(k2 + 2k).Conversely, let us assume that some set V , 
onsisting of atoms appearing in T (P )and su
h that jV j � (k+ 1)(k2 + 2k), is a model of T (P ). Let us de�ne U to 
onsistof all atoms of the form 
(q), 
(q; i) and 
�(q; i) that appear in V . Clearly, U isa model of T0(P ). Let us assume that M(U) � k + 1 (we re
all that the notationM(U) was introdu
ed just before Lemma 5.1 was stated). Then, there are at least(k + 1)(k2 + 2k) atoms of type d(q; i) in V . Consequently, V > (k + 1)(k2 + 2k) asit 
ontains also at least k+ 1 atoms 
(q), where q 2M(U). This is a 
ontradi
tion.Thus, it follows that jM(U)j � k. Moreover, by Lemma 5.3, M(U) is a stable modelof P . 2Let us now de�ne the following sets of formulas. First, for ea
h atom q 2 At(P )we de�neC0(q) = f:
(q) _ d(q; i): 1 � i � k2 + 2kg [ f
(q) _ :d(q; i): 1 � i � k2 + 2kg:
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ti
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 Programming 19Next, we de�neC1(q; i) = f:
�(q; i)_ 
(q; 1)_ : : :_ 
(q; i� 1)g[ f:
(q; j)_ 
�(q; i): 1 � j � i� 1g;C2(q) = f:
(q) _ 
(q; 1) _ : : : _ 
(q; k + 1)g [ f:
(q; j) _ 
(q): 1 � j � k + 1g;andC4(q; i) = f:
(q; i) _ F3(r1; i) _ : : : _ F3(rv ; i)g [ f:F3(rj ; i) _ 
(q; i): 1 � j � vg;where fr1; : : : ; rvg is the set of all rules in P with q in the head.Clearly, the theoryT 
(P ) = fC0(q): q 2 At(P )g [ fC1(q; i): q 2 At(P ); 2 � i � k + 1g [fC2(q): q 2 At(P )g [ fC4(q; i): q 2 At(P ); 1 � i � k + 1gis equivalent to the theory T (P ). Moreover, it is a 
olle
tion of sums of produ
ts ofliterals. Therefore, it is a 3-normalized formula. By Theorem 5.5, it follows that theproblem SSM 
an be redu
ed to the problem WS�(3). Thus, we get the followingresult.Theorem 5.6The problem SSM(k) 2W [3℄.Next, we will show that the problem WS�(2) 
an be redu
ed to the problemSSM. Let C = f
1; : : : ; 
pg be a 
olle
tion of 
lauses. Let A = fx1; : : : ; xrg be theset of atoms appearing in 
lauses in C. For ea
h atom x 2 A, introdu
e k newatoms x(i), 1 � i � k. By Si, 1 � i � k, we denote the logi
 program 
onsisting ofthe following n 
lauses: x1(i) not(x2(i)); : : : ;not(xr(i))� � �xr(i) not(x1(i)); : : : ;not(xr�1(i))De�ne S = Ski=1 Si. Clearly, ea
h stable model of S is of the form fxj1(1); : : : ; xjk (k)g,where 1 � jp � r for p = 1; : : : ; k. Sets of this form 
an be viewed as representationsof nonempty subsets of the set A that have no more than k elements. This repre-sentation is not one-to-one, that is, some subsets have multiple representations.Next, de�ne P1 to be the program 
onsisting of the 
lausesxj  xj(i); j = 1; : : : ; r; i = 1; 2; : : : ; k:Stable models of the program S [ P1 are of the form fxj1(1); : : : ; xjk (k)g [ M ,where M is a nonempty subset of A su
h that jM j � k and xj1 ; : : : ; xjk enumerate(possibly with repetitions) all elements of M .Finally, for ea
h 
lause
 = a1 _ : : : _ as _ :b1 _ : : : _ :btfrom C de�ne a logi
 program 
lause p(
):p(
) = f  b1; : : : ; bt;not(a1); : : : ;not(as);not(f)where f is yet another new atom. De�ne P2 = fp(
): 
 2 Cg and PC = S [P1 [P2.



20 M. Trusz
zy�nskiTheorem 5.7A set of 
lauses C has a nonempty model with no more than k elements if and onlyif the program PC has a stable model with no more than 2k elements.Proof: Let M be a nonempty model of C su
h that jM j � k. Let xj1 ; : : : ; xjkbe an enumeration of all elements of M (possibly with repetitions). Then the setM 0 = fxj1(1); : : : ; xjk (k)g [M is a stable model of the program S [ P1. Sin
e Mis a model of C, it follows that (PC)M 0 = (S [ P1)M 0 [ F , where F 
onsists of the
lauses of the form f  b1; : : : ; bt;su
h that t � 1 and for some j, 1 � j � t, bj =2 M 0. Sin
e M 0 = LM((S [ P1)M 0),it follows that M 0 = LM((S [ P1)M 0 [ F ) = LM((PC)M 0 ):Thus, M 0 is a stable model of PC . Sin
e jM 0j � 2k, the \only if" part of theassertion follows.Conversely, assume that M 0 is a stable model of PC . Clearly, f =2 M 0. Conse-quently, LM((S [ P1)M 0) = LM((S [ P1 [ P2)M 0 ) = LM((PC)M 0) = M 0:That is, M 0 is a stable model of S [ P1. As mentioned earlier, it follows thatM 0 = fxj1(1); : : : ; xjk (k)g [M , where M is a nonempty subset of At(P ) su
h thatjM j � k and xj1 ; : : : ; xjk is an enumeration of all elements of M .Consider a 
lause 
 = a1 _ : : :_ as _ :b1 _ : : :_ :bt from C. Sin
e M 0 is a stablemodel of PC , it is a model of PC . In parti
ular, M 0 is a model of p(
). Sin
e f =2M 0,it follows that M 0 j= 
 and, 
onsequently, M j= 
. Hen
e, M is a model of C. 2Now the redu
ibility of the problem WS�(2) to the problem SSM is evident.Given a 
olle
tion of 
lauses C, to 
he
k whether it has a model of size at mostk, we �rst 
he
k whether the empty set of atoms is a model of C. If so, we returnthe answer YES and terminate the algorithm. Otherwise, we 
onstru
t the programPC and 
he
k whether it has a stable model of size at most 2k. Consequently, weobtain the following result.Theorem 5.8The problem SSM is W[2℄-hard.6 Open problems and 
on
lusionsThe paper established several results pertaining to the problem of 
omputing smalland large stable models. It also brings up interesting resear
h questions.First, we proved that the problem LSM is in the 
lass FPT. For problems thatare �xed-parameter tra
table, it is often possible to design an algorithm runningin time O(p(N) + f(k)), where N is the size of the problem, k is a parameter, pis a polynomial and f is a fun
tion (Downey & Fellows, 1997). Su
h algorithmsare often pra
ti
al for quite large ranges of N and k. The algorithm for the LSMproblem presented in this paper runs in time O(m2k+k2 ). It seems plausible it 
an
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 Programming 21be improved to run in time O(m + f(k)), for some fun
tion f . Su
h an algorithmwould most 
ertainly be pra
ti
al for wide range of values of m and k. We proposeas an open problem the 
hallenge of designing an algorithm for 
omputing largestable models with this time 
omplexity.There is a natural variation on the problem of 
omputing large stable models:given a logi
 program P and an integer k (parameter), de
ide whether P has astable model of size at least jAt(P )j � k. This version of the problem LSM wasre
ently proved by Zbigniew Lon
 and the author to be W[3℄-hard (and, hen
e,�xed-parameter intra
table) (Lon
 & Trusz
zy�nski, 2000). The upper bound forthe 
omplexity of this problem remains unknown.In the paper, we des
ribed an algorithm that for every �xed k, de
ides the exis-ten
e of stable models of size at most k in time O(nk�1m), where n is the number ofatoms in the program and m is its size. This algorithm o�ers only a slight improve-ment over the straightforward \guess-and-
he
k" algorithm. An interesting and, itseems, diÆ
ult problem is to signi�
antly improve on this algorithm by loweringthe exponent in the 
omplexity estimate to �k, for some 
onstant � < 1.We also studied the 
omplexity of the problem SSM and showed that it is �xed-parameter intra
table. Our results show that SSM is W [2℄-hard. This result impliesthat the problem SSM is at least as hard as the problem to determine whethera CNF theory has a model of 
ardinality at most k, and strongly suggests thatalgorithms do not exist that would de
ide problems SSM(k) and run in time O(n
),where 
 is a 
onstant independent on k. For the upper bound, we proved in thispaper that the problem SSM belongs to 
lass W [3℄. Re
ently, Zbigniew Lon
 andthe author (Lon
 & Trusz
zy�nski, 2000) showed that the problem SSM is, in fa
t,in the 
lass W [2℄. A
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