
Under onsideration for publiation in Theory and Pratie of Logi Programming 1Computing large and small stable models�Miros law Truszzy�nskiDepartment of Computer Siene, University of Kentuky, Lexington, KY 40506-0046, USA(e-mail: mirek�s.uky.edu)AbstratIn this paper, we fous on the problem of existene and omputing of small and largestable models. We show that for every �xed integer k, there is a linear-time algorithm todeide the problem LSM (large stable models problem): does a logi program P have astable model of size at least jP j � k? In ontrast, we show that the problem SSM (smallstable models problem) to deide whether a logi program P has a stable model of sizeat most k is muh harder. We present two algorithms for this problem but their runningtime is given by polynomials of order depending on k. We show that the problem SSM is�xed-parameter intratable by demonstrating that it is W [2℄-hard. This result implies thatit is unlikely an algorithm exists to ompute stable models of size at most k that wouldrun in time O(m), where m is the size of the program and  is a onstant independentof k. We also provide an upper bound on the �xed-parameter omplexity of the problemSSM by showing that it belongs to the lass W [3℄.1 IntrodutionThe stable model semantis by Gelfond and Lifshitz (Gelfond & Lifshitz, 1988) isone of the two most widely studied semantis for normal logi programs, the otherone being the well-founded semantis by Van Gelder, Ross and Shlipf (Van Gelderet al., 1991). Among 2-valued semantis, the stable model semantis is ommonlyregarded as the one providing the orret meaning to the negation operator in logiprogramming. It oinides with the least model semantis on the lass of Horn pro-grams, and with the well-founded semantis and the perfet model semantis onthe lass of strati�ed programs (Apt et al., 1988). In addition, the stable modelsemantis is losely related to the notion of a default extension by Reiter (Marek& Truszzy�nski, 1989; Bidoit & Froidevaux, 1991). Logi programming with stablemodel semantis has appliations in knowledge representation, planning and reason-ing about ation. It was also reently proposed as a omputational paradigm wellsuited for solving ombinatorial optimization and onstraint satisfation problems(Marek & Truszzy�nski, 1999; Niemel�a, 1999).Before we proeed, we will reall the de�nition of a stable model of a logi pro-gram, and some related terminology and properties. The reader is referred to (Marek& Truszzy�nski, 1993) for a more detailed treatment of the subjet. In the paper� This is a full version of an extended abstrat presented at the International Conferene on LogiProgramming, ICLP-99 and inluded in the proeedings published by MIT Press.



2 M. Truszzy�nskiwe deal only with the propositional ase. A logi program rule is an expression r ofthe form r = a b1; : : : ; bs;not(1); : : : ;not(t);where a, bis and is are propositional atoms. The atom a is alled the head of rand is denoted by h(r). Atoms bi and i form the body of r. The set fb1; : : : ; bsg isalled the positive body of r (denoted by b+(r)) and the set f1; : : : ; tg is alledthe negative body of r (denoted by b�(r)). A logi program is a olletion of rules.For a logi program P , by At(P ) we denote the set of atoms ourring in its rulesand by h(P ) | the set of atoms appearing as the heads of rules in P . We will alsodenote the size of P , that is, the total number of ourrenes of atoms in P , bysize(P ). Throughout the paper we use n to denote the number of atoms in a logiprogram P , and m to denote the size of P .A set of atoms M � At(P ) satis�es a rule r if h(r) 2 M , or if b+(r) nM 6= ;,or if b�(r) \M 6= ;. A set of atoms M � At(P ) is a model of a program P if Msatis�es all rules of P .A logi program rule r is alled Horn if b�(r) = ;. A Horn program is a programwhose every rule is a Horn rule. The intersetion of two models of a Horn programP is a model of P . Sine the set of all atoms is a model of P , it follows thatevery Horn program P has a unique least model. We will denote this model byLM(P ). The least model of a Horn program P an be onstruted by means of thevan Emden-Kowalski operator TP (van Emden & Kowalski, 1976). Given a Hornprogram P and a set of atoms M � P , we de�neTP (M) = fa: a b1; : : : ; bs 2 P; and fb1; : : : ; bsg �Mg:We also de�ne T 0P (M) = ;; and T i+1P (M) = TP (T iP (M)):Sine the operator TP is monotone, the sequene T iP (;) is monotone and its unionyields the least model of a Horn program P . That is,LM(P ) = 1[i=0T iP (;):If P is �nite, the sequene stabilizes after �nitely many steps.For a logi program rule r, by horn(r) we denote the rule obtained from r byeliminating all negated atoms from the body of r. If P is a logi program, we de�nehorn(P ) = fhorn(r): r 2 Pg.Let P be a logi program (possibly with rules ontaining negated atoms). For aset of atoms M � At(P ) we de�ne the redut of P with respet to M to be theprogram obtained by eliminating from P eah rule r suh that b�(r) \M 6= ; (weall suh rules bloked by M), and by removing negated atoms from all other rulesin P . The resulting program is a Horn program. We will denote it by PM . As aHorn program, PM has the least model LM(PM ). If M = LM(PM ), M is a stablemodel of P . Clearly, if M is a stable model of P , M � h(P ). Both the notion of theredut and of a stable model are due to Gelfond and Lifshitz (Gelfond & Lifshitz,1988).



Theory and Pratie of Logi Programming 3In the paper we restrit our attention to programs whose rules do not ontainmultiple positive ourrenes of the same atom nor multiple negative ourrenes ofthe same atom in the body. It is lear that adopting this assumption does not limitthe generality of our onsiderations. Repetitive ourrenes an be eliminated inlinear time (in the size of the program) and doing so does not a�et stable modelsof the program.If M is a stable model of P , eah rule r suh that b+(r) �M and b�(r)\M = ;(that is, suh that M satis�es its body), is alled a generating rule for M . Clearly,if M is a stable model of P , it is also a stable model of the program onsisting ofall rules in P that are generating for M .There are several ways to look at the searh spae of possible stable models ofa program P . The most diret way is to look for stable models by onsidering allandidate subsets of h(P ). For eah andidate subset M � h(P ), one an omputethe orresponding redut PM , its least model LM(PM ), and hek the equalityM = LM(PM ) to deide whether M is stable. An alternative way is to observethat stable models are determined by subsets of the set of atoms appearing negatedin P . Indeed, let us denote this set by Neg(P ) and let us onsider sets M � At(P )and B � Neg(P ). Let B0 = Neg(P )nB. Then, M is a stable model of P if and onlyif M = LM(PB0), B\M = ; and B0 �M . Thus, the existene of stable models anbe deided by onsidering subsets of Neg(P ). Finally, one an onsider the searhspae of all subsets of P itself, and regard eah suh subset as a andidate for theset of generating rules of a stable model. Indeed, if M � At(P ) and P 0 � P , thenM is a stable model of P if and only if M = h(P 0), P 0 is the set of all generatingrules for M in P and M = LM(horn(P 0)).The problem with the stable model semantis is that, even in the propositionalase, reasoning with logi programs under the stable model semantis is ompu-tationally hard. It is well-known that deiding whether a �nite propositional logiprogram has a stable model is NP-omplete (Marek & Truszzy�nski, 1991). Conse-quently, it is not at all lear that logi programming with the stable model semantisan serve as a pratial omputational tool.This issue an be resolved by implementing systems omputing stable models andby experimentally studying the performane of these systems. Several suh projetsare now under way. Niemel�a and Simons (Niemel�a & Simons, 1996) developed asystem, smodels, for omputing stable models of �nite funtion symbol-free logiprograms and reported very promising performane results. For some lasses ofprograms, smodels deides the existene of a stable model in a matter of seondseven if an input program onsists of tens of thousands of lauses. Enouragingresults on using smodels to solve planning problems are reported in (Niemel�a, 1999).Another well-advaned system is DeReS (Cholewi�nski et al., 1996), designed toompute extensions of arbitrary propositional default theories but being espeiallye�etive for default theories enoding propositional logi programs. Finally, systemsapable of reasoning with disjuntive logi programs were desribed in (Eiter et al.,1997) and (Aravindan et al., 1997).However, faster implementations will ultimately depend on better understandingof the algorithmi aspets of reasoning with logi programs under the stable model



4 M. Truszzy�nskisemantis. In this paper, we investigate the omplexity of deiding whether a �nitepropositional logi program has stable models of some restrited sizes. Spei�ally,we study the following two problems (jP j stands for the number of rules in a logiprogram P ):LSM (Large stable models) Given a �nite propositional logi program P and aninteger k, deide whether there is a stable model of P of size at least jP j � k.SSM (Small stable models) Given a �nite propositional logi program P and aninteger k, deide whether there is a stable model of P of size no more than k.Inputs to the problems LSM and SSM are pairs (P; k), where P is a �nite propo-sitional logi program and k is a non-negative integer. Problems of this type arereferred to as parametrized deision problems. By �xing a parameter, a parame-terized deision problem gives rise to its �xed-parameter version. In the ase ofproblems LSM and SSM, by �xing k we obtain the following two �xed-parameterproblems (k is now no longer a part of input):LSM(k) Given a �nite propositional logi program P , deide whether P has a stablemodel of size at least jP j � k.SSM(k) Given a �nite propositional logi program P , deide whether P has a stablemodel of size at most k.The problems LSM and SSM are NP-omplete. It follows diretly from the NP-ompleteness of the problem of existene of stable models (Marek & Truszzy�nski,1991). But �xing k makes a di�erene! Clearly, the �xed-parameter problems SSM(k)and LSM(k) an be solved in polynomial time (unlike the problems SSM and LSMwhih, most likely, annot). Indeed, onsider a �nite propositional logi program P .Then, there are O(nk) subsets of At(P ) (in fat, as pointed out earlier, it is enoughto onsider subsets of h(P ) or Neg(P )) of ardinality at most k (we reall that inthe paper n stands for the number of atoms in P ). For eah suh subset M , it anbe heked in time linear in m | the size of P | whether M is a stable model ofP . Thus, one an deide whether P has a stable model of size at most k in timeO(mnk).Similarly, there are only O(jP jk) subsets of P of size at least jP j � k. Eah suhsubset is a andidate for the set of generating rules of a stable model of size at leastjP j�k (and smaller subsets, learly, are not). Given suh a subset R, one an hekin time O(m) whether R generates a stable model for P . Thus, it follows that thereis an algorithm that deides in time O(mjP jk) whether a logi program P has astable model of size at least jP j � k.While both algorithms are polynomial in the size of the program, their asymptotiomplexity is expressed by the produt of the size of a program and a polynomialof order k in the number of atoms of the program or in the number of rules ofthe program. Even for small values of k, say for k � 4, the funtions mnk andmjP jk grow very fast with m = size(P ), n = jAt(P )j and jP j, and render theorresponding algorithms infeasible.An important question is whether algorithms for problems SSM(k) and LSM(k)exist whose order is signi�antly lower than k, preferably, a onstant independent of



Theory and Pratie of Logi Programming 5k. The study of this question is the main goal of our paper. A general framework forsuh investigations was proposed by Downey and Fellows (Downey & Fellows, 1997).They introdued the onepts of �xed-parameter tratability and �xed-parameterintratability that are de�ned in terms of a ertain hierarhy of omplexity lassesknown as the W hierarhy.In the paper, we show that the problem LSM is �xed-parameter tratable anddemonstrate an algorithm that for every �xed k deides the problem LSM(k) in lin-ear time | a signi�ant improvement over the straightforward algorithm presentedearlier.On the other hand, we demonstrate that the problem SSM is muh harder. Wepresent an algorithm to deide the problems SSM(k), for k � 1, that is asymp-totially faster than the simple algorithm desribed above but the improvement israther insigni�ant. Our algorithm runs in time O(mnk�1), an improvement only bythe fator of n. The diÆulty in �nding a substantially better algorithm is not oin-idental. We provide evidene that the problem SSM is �xed-parameter intratable.This result implies it is unlikely that there is an algorithm to deide the problemsSSM(k) whose running time would be given by a polynomial of order independentof k.The study of �xed-parameter tratability of problems ourring in the area ofnonmonotoni reasoning is a relatively new researh topi. Another paper that pur-sues this diretion is (Gottlob et al., 1999). The authors fous there on parametersdesribing strutural properties of programs and show that in some ases, �xingthese parameters leads to polynomial algorithms.Our paper is organized as follows. In Setion 2, we reall basi onepts of thetheory of �xed-parameter intratability by Downey and Fellows (Downey & Fellows,1997). The following two setions present the algorithms to deide the problemsLSM and SSM, respetively. The next setion fouses on the issue of �xed-parameterintratability of the problem SSM and ontains the two main results of the paper.The last setion ontains onlusions and open problems.2 Fixed-parameter intratabilityThis setion realls basi ideas of the work of Downey and Fellows on �xed-parameterintratability. The reader is referred to (Downey & Fellows, 1997) for a detailedtreatment of this subjet.Informally, a parametrized deision problem is a deision problem whose inputsare pairs of items, one of whih is referred to as a parameter. The graph olorabilityproblem is an example of a parametrized problem. The inputs are pairs (G; k), whereG is an undireted graph and k is a non-negative integer. The problem is to deidewhether G an be olored with at most k olors. Another example is the vertexover problem in a graph. Again, the inputs are graph-integer pairs (G; k) and thequestion is whether G has a vertex over of ardinality k or less. The problemsSSM and LSM are also examples of parametrized deision problems. Formally, aparametrized deision problem is a set L � �� � ��, where � is a �xed alphabet.By seleting a onrete value � 2 �� of the parameter, a parametrized deision



6 M. Truszzy�nskiproblem L gives rise to an assoiated �xed-parameter problem L� = fx : (x; �) 2Lg. For instane, by �xing the value of k to 3, we get a �xed-parameter versionof the olorability problem, known as 3-olorability. Inputs to the 3-olorabilityproblem are graphs and the question is to deide whether an input graph an beolored with 3 olors. Clearly, the problems SSM(k) (LSM(k), respetively) are�xed-parameter versions of the problem SSM (LSM, respetively).The interest in the �xed-parameter problems stems from the fat that they areoften omputationally easier than the orresponding parametrized problems. Forinstane, the problems SSM and LSM are NP-omplete yet, as we saw earlier,their parametrized versions SSM(k) and LSM(k) an be solved in polynomial time.Similarly, the vertex over problem is NP-omplete but its �xed-parameter versionsare in the lass P. To see this, observe that to deide whether a graph has a vertexover of size at most k, where k is a �xed value and not a part of an input, it isenough to generate all subsets with at most k elements of the vertex set of a graph,and then hek if any of them is a vertex over. A word of aution is in order here.It is not always the ase that �xed-parameter problems are easier. For instane, the3-olorability problem is still NP-omplete.As we already pointed out, the fat that a problem admits a polynomial-timesolution does not neessarily mean that pratial algorithms to solve it exist. Analgorithm that runs in time O(N15), where N is the size of the input, is hardlymore pratial than an algorithm with an exponential running time (and may evenbe a worse hoie in pratie). The algorithms we presented so far to argue thatthe problems SSM(k), LSM(k) and the �xed-parameter versions of the vertex overproblem are in P rely on searhing through the spae of Nk possible solutions(where N is the number of atoms of a program, the number of rules of a program,or the number of verties in a graph, respetively). Thus, these algorithms are notpratial, exept for the very smallest values of k. The key question is how fastthose polynomial-time solvable �xed-parameter problems an really be solved. Or,in other words, an one signi�antly improve over the brute-fore approah?A tehnique to deal with suh questions is provided by the �xed-parameter in-tratability theory of Downey and Fellows (Downey & Fellows, 1997). A parametrizedproblem L � �� � �� is �xed-parameter tratable if there exist a onstant p, aninteger funtion f and an algorithm A suh that A determines whether (x; y) 2 Lin time f(jyj)jxjp (jzj stands for the length of a string z 2 ��). The lass of �xed-parameter tratable problems will be denoted by FPT. Clearly, if a parametrizedproblem L is in FPT, eah of the assoiated �xed-parameter problems Ly is solvablein polynomial time by an algorithm whose exponent does not depend on the valueof the parameter y. It is known (see (Downey & Fellows, 1997)) that the vertexover problem is in FPT.There is substantial evidene to support a onjeture that some parametrizedproblems whose �xed-parameter versions are in P are not �xed-parameter tratable.To study and ompare omplexity of parametrized problems Downey and Fellows



Theory and Pratie of Logi Programming 7proposed the following notion of reduibility1. A parametrized problem L an beredued to a parametrized problem L0 if there exist a onstant p, an integer funtionq and an algorithm A that to eah instane (x; y) of L assigns an instane (x0; y0)of L0 suh that1. x0 depends upon x and y and y0 depends upon y only,2. A runs in time O(q(jyj)jxjp),3. (x; y) 2 L if and only if (x0; y0) 2 L0.Downey and Fellows also de�ned a hierarhy of omplexity lasses alled the Whierarhy: FPT �W[1℄ �W[2℄ �W[3℄ : : : (1)The lasses W[t℄ an be desribed in terms of problems that are omplete forthem (a problem D is omplete for a omplexity lass E if D 2 E and every problemin this lass an be redued to D). Let us all a boolean formula t-normalized if itis of the form of produt-of-sums-of-produts ... of literals, with t being the numberof produts-of, sums-of expressions in this de�nition. For example, 2-normalizedformulas are produts of sums of literals. Thus, the lass of 2-normalized formu-las is preisely the lass of CNF formulas. We de�ne the weighted t-normalizedsatis�ability problem as:WS(t) Given a t-normalized formula ', deide whether there is a model of ' withexatly k atoms (or, alternatively, deide whether there is a satisfying valuationfor ' whih assigns the logial value true to exatly k atoms)Downey and Fellows show that for t � 2, the problems WS(t) are omplete for thelass W[t℄. They also show that a restrited version of the problem WS(2):WS3(2) Given a 3CNF formula ' and an integer k (parameter), deide whetherthere is a model of ' with exatly k atomsis omplete for the lass W [1℄. Downey and Fellows onjeture that all the implia-tions in (1) are proper2. In partiular, they onjeture that problems in the lassesW[t℄, with t � 1, are not �xed-parameter tratable.In the paper, we relate the problem SSM to the problems WS(2) and WS(3) toplae the problem SSM in the W hierarhy, to obtain estimates of its omplexityand to argue for its �xed-parameter intratability.3 Large stable modelsIn this setion we will show an algorithm for the parametrized problem LSM thatruns in time O(2k+k2m), where (P; k) is an input instane and, as in all other1 The de�nition given here is suÆient for the needs of this paper. To obtain strutural theoremsa subtler de�nition is needed. This topi goes beyond the sope of the present paper. The readeris referred to (Downey & Fellows, 1997) for more details.2 If true, this onjeture would imply that in the ontext of �xed-parameter tratability there isa di�erene between the omplexity of weighted satis�ability for 3CNF and CNF formulas.



8 M. Truszzy�nskiplaes in the paper, m = size(P ). This result implies that the problem LSM is�xed-parameter tratable and that there is an algorithm that for every �xed ksolves the problem LSM(k) in linear-time.Given a logi program P , denote by P � the logi program obtained from P byeliminating from the bodies of the rules in P all literals not(a), where a is not thehead of any rule from P . The following well-known result states the key propertyof the program P �.Lemma 3.1A set of atoms M is a stable model of a logi program P if and only if M is a stablemodel of P �.Lemma 3.1 implies that the problem LSM has a positive answer for (P; k) if andonly if it has a positive answer for (P �; k). Moreover, it is easy to see that P �an be onstruted from P in time linear in the size of P . Thus, when looking foralgorithms to deide the problem LSM we may restrit our attention to programsP in whih every atom appearing negated in the body of a rule appears also as thehead of a rule (that is, to suh programs P for whih we have Neg(P ) � h(P )).By P k let us denote the program onsisting of those rules r in P for whihjb�(r)j � k. We have the following lemma.Lemma 3.2Let P be a logi program suh that Neg(P ) � h(P ). Let M � At(P ) be a set ofatoms suh that jM j � jP j � k. Then:1. M is a stable model of P if and only if M is a stable model of P k2. if M is a stable model of P k, then P k has no more than k + k2 di�erentnegated literals appearing in the bodies of its rules.Proof: (1) Consider a rule r 2 P n P k. Then jb�(r)j � k + 1 and, onsequently,b�(r) \M 6= ;. Indeed, if b�(r) \M = ;, then jM [ b�(r)j = jM j+ jb�(r)j > jP j.Sine Neg(P ) � h(P ), b�(r) � h(P ). In addition, (both if we assume that Mis a stable model of P and if we assume that M is a stable model of P k), wehave M � h(P ). Thus, b�(r) [M � h(P ). Now observe that jP j � jh(P )j. Thus,jM [ b�(r)j � jh(P )j � jP j, a ontradition.Sine for every rule r 2 P n P k we have b�(r) \M 6= ;, it follows that (P k)M =PM . Hene, M = LM(PM ) if and only if M = LM((P k)M ). Consequently, M is astable model of P if and only if M is a stable model of P k.(2) Let P 0 be the set of rules from P k suh that r 2 P 0 if and only if b�(r)\M = ;(the rules in P 0 ontribute to the redut (P k)M ) and let P 00 be the set of theremaining rules in P k (these are the rules that are eliminated when the redut(P k)M is omputed). Sine Neg(P ) � h(P ), for every rule r 2 P , b�(r) � h(P ).Thus, Sfb�(r): r 2 P 0g � h(P ) nM . Sine M � h(P ) (as M is a stable model ofP k) and jP j � jh(P )j, we have jSfb�(r): r 2 P 0gj � k. Further, sine jP 0j � jM j �jP j�k � jP kj�k, it follows that jP 00j � k. Consequently, jSfb�(r): r 2 P 00gj � k2.Hene, the seond part of the assertion follows. 2Let us now onsider the following algorithm for the problem LSM(k) (the inputto this algorithm is a logi program P ).



Theory and Pratie of Logi Programming 91. Eliminate from the input logi program P all literals not(a), where a is notthe head of any rule from P . Denote the resulting program by Q.2. Compute the set of rulesQk onsisting of those rules r in Q for whih jb�(r)j �k.3. Deide whether Qk has a stable model M suh that jM j � jQj � k.This algorithm reports YES if and only if the program Qk has a stable model Msuh that jM j � jQj�k. By Lemma 3.2, that happens preisely if and only if Q hasa stable model M suh that jM j � jQj � k. This last statement, by Lemma 3.1, isequivalent to the statement that P has a stable model M suh that jM j � jP j � k.In other words, our algorithm orretly deides the problem LSM(k).Let us notie that steps 1 and 2 an be implemented in time O(m), where theonstant hidden by the \big O" notation does not depend on k. To implementstep 3, let us reall that every stable model of a logi program is determined bysome subset of the set of atoms that appear negated in the program (eah suhsubset uniquely determines the redut, as we stated in the introdution; see also(Bondarenko et al., 1993)). By Lemma 3.2, the set of suh atoms in the programQk has ardinality at most k + k2. Cheking for eah subset of this set whether itdetermines a stable model of Qk an be implemented in time O(size(Qk)) = O(m).Consequently, our algorithm runs in time O(2k+k2m) (with the onstant hidden bythe \big O" notation independent of k).Theorem 3.3The problem LSM is �xed-parameter tratable. Moreover, for eah �xed k there isa linear-time algorithm to deide whether a logi program P has a stable model ofsize at least jP j � k.4 Computing stable models of size at most kIn the introdution we pointed out that there is a straightforward algorithm todeide the problem SSM(k) that runs in time O(mnk), where m = size(P ) andn = jAt(P )j. For k � 1 (the assumption we adopt in this setion), this algorithman be slightly improved. Namely, we will now desribe an algorithm for the problemSSM(k) that runs in time O(F (k)mnk�1), where F is some integer funtion. Thus,if k is �xed and not a part of the input, this improved algorithm runs in timeO(mnk�1).We present our algorithm under the assumption that input logi programs areproper. We say that a logi program rule r is proper if:(P1) h(r) =2 b+(r), and(P2) b+(r) \ b�(r) = ;We say that a logi program P is proper if all its rules are proper. Rules that violateat least one of the onditions (P1) and (P2) (that is, rules that are not proper) haveno inuene on the olletion of stable models of a program as we have the followingwell-known result (see, for instane, (Brass & Dix, 1997)).Lemma 4.1



10 M. Truszzy�nskiA set of atoms M is a stable model of a logi program P if and only if M is a stablemodel of the subprogram of P onsisting of all proper rules in P .It is easy to see that rules that violate (P1) or (P2) an be eliminated from alogi program P in time O(m). Thus, the restrition to proper programs does nota�et the generality of our disussion.For a proper logi program P and for a set A � At(P ) of atoms, we de�ne P (A)to be the program onsisting of all those rules r of P that are not bloked by A (inother words, those that satisfy b�(r)\A = ;) and whose positive body is ontainedin A (in other words, suh that b+(r) � A).Let P be a logi program and let A � At(P ) be a set of atoms. A stable modelM of P is alled A-based if1. M is of the form A [ fag, where a 2 At(P ) nA, and2. M � LM(P (A)M ) (in other words, when omputing LM(PM ), the derivationof A does not require that a be derived �rst).We have the following simple lemma.Lemma 4.2Let k be an integer suh that k � 1. A proper logi program P has a stable modelof ardinality k if and only if for some A � At(P ), with jAj = k � 1, P has anA-based stable model.It follows from Lemma 4.2 that when deiding the existene of k-element stablemodels, k � 1, it is enough to fous on the existene of A-based stable models. Thisis the approah we take here. In most general terms, our algorithm for the problemSSM(k) onsists of generating all subsets A � At(P ), with jAj � k�1, and for eahsuh subset A, of heking whether P has an A-based stable model. This latter taskis the key.We will now desribe an algorithm that, given a logi program P and a setA � At(P ), deides whether P has an A-based stable model. To this end, we de�neP 0(A) to be the program onsisting of all those rules r of P suh that:1. b�(r) \A = ; (r is not bloked by A)2. h(r) =2 A3. b+(r) nA onsists of exatly one element; we will denote it by ar.Our algorithm is based on the following result allowing us to restrit attention to theprogram P (A) (the statement of the lemma and its proof rely on the terminologyintrodued above).Lemma 4.3Let A be a set of atoms. A proper logi program P has an A-based stable model ifand only if P (A) has an A-based stable model M = A[fag, suh that a =2 far: r 2P 0(A)g.Proof: ()) Let M be an A-based stable model of P . Assume that M = A [ fag,for some a =2 A. Sine P (A)M � PM , LM(P (A)M ) � LM(PM ) = M . Sine M is



Theory and Pratie of Logi Programming 11A-based, we have that M � LM(P (A)M ). It follows that M is an A-based stablemodel of P (A).Let us assume that there is a rule s 2 P 0(A) suh that a = as. The rule s is notbloked by A. Sine a 2 b+(s), we have that a =2 b�(s) (we reall that all rules inP are proper). Hene, s is not bloked by fag either. Consequently, horn(s) 2 PM .Sine s 2 P 0(A), the body of horn(s) (that is, b+(s)) is ontained in M . The setM is a least model of PM . In partiular, M satis�es horn(s). Thus, it followsthat h(s) 2 M . In the same time, h(s) 6= a (as s is proper). Thus, h(s) 2 A, aontradition (we reall that s 2 P 0(A)). It follows that a =2 far: r 2 P 0(A)g.(() We will now assume that M = A [ fag is an A-based stable model of P (A)suh that a =2 far: r 2 P 0(A)g. Similarly as before, we have M = LM(P (A)M ) �LM(PM ). Let us assume that LM(PM ) nM 6= ;. Then there is a rule t in PMsuh that the body of t is ontained in M and h(t) =2 M . Let s be a rule in Pthat gives rise to t when onstruting the redut. Assume �rst that the body of t(that is, b+(s)) is ontained in A. Then s 2 P (A), t 2 P (A)M and, onsequently,h(t) 2 LM(P (A)M ) = M , a ontradition.Thus, the body of t is not ontained in A. Sine the body of t is ontained in M ,it onsists of a and, possibly, some other elements, all of whih are in A. It followsthat s 2 P 0(A). Consequently, a = as and a 2 far: r 2 P 0(A)g, a ontradition.Thus, LM(PM ) = M , that is, M is a stable model of P . Sine M = LM(P (A)M ),it follows that M is an A-based model of P . 2Let A be a set of atoms. A logi program with negation, P , is an A-program ifP = P (A), that is if for every rule r 2 P we have b+(P ) � A and b�(P ) \ A = ;.Clearly, the program P (A), desribed above, is an A-program. We will now fouson A-programs and their A-based stable models.Let A be a set of atoms. We denote by R(A) the set of all proper Horn rulesover the set of atoms A. Clearly, the ardinality of R(A) depends on the ardinalityof A only. Further, we de�ne P(A) to be the set of all Horn programs Q � R(A)satisfying the ondition LM(Q) = A. As in the ase of R(A), the ardinality ofP(A) also depends on the size of A only.We will now desribe onditions that determine whether an A-program P has anA-based stable model. To this end, with every atom a 2 At(P ) n A, we assoiatethe following values:� F (a) = 1 if there is a rule s in P with h(s) =2 A[fag and a =2 b�(s); F (a) = 0,otherwise� G(a) = the number of rules s in P with h(s) = a and a =2 b�(s).Further, with every proper Horn rule r 2 R(A) and every atom a 2 At(P ) nA, weassoiate the quantity:� H(r; a) = 1 if there is a rule s in P with horn(s) = r and a =2 b�(s); H(r; a) =0, otherwise.The following lemma haraterizes A-based stable models of an A-program. Boththe statement of the lemma and its proof rely on the terminology introdued above.Lemma 4.4



12 M. Truszzy�nskiLet A be a set of atoms, let P be an A-program and let a be an atom suh thata 2 At(P )nA. Then A[fag is an A-based stable model of P if and only if F (a) = 0,G(a) > 0, and for some program Q 2 P(A) and for every rule r 2 Q, H(r; a) > 0.Proof: ()) We denote M = A [ fag and assume that M is an A-based stablemodel for P . It follows that M = LM(PM ). Let PA be the subprogram of Ponsisting of those rules of P whose head belongs to A. Sine M is an A-basedstable model of P , we have A = LM(PMA ). Let Q be the program obtained fromPMA by removing multiple ourrenes of rules. Clearly,Q 2 P(A). It follows diretlyfrom the de�nition of the redut that for every rule r 2 Q, H(r; a) = 1.Next, we observe that a 2 LM(PM ). Thus, G(a) > 0. Let us assume that F (a) =1. Let r be a rule in P suh that h(r) =2 A [ fag and a =2 b�(r). Sine P is an A-program, A \ b�(r) = ;. Thus, it follows that horn(r) 2 PM . We also have thatb+(r) � A �M . Sine M is a model of PM , h(r) 2M . However, in the same timewe have that h(r) =2 A [ fag(= M), a ontradition. It follows that F (a) = 0.(() We now assume that for some a 2 At(P ) n A, F (a) = 0, G(a) > 0 and forsome program Q 2 P(A) and for every rule r 2 Q, H(r; a) = 1. As before, we setM = A [ fag. We will show that M = LM(PM ).First, sine P is an A-program and H(r; a) = 1 for every rule r 2 Q, it followsthat Q � P (A)M . Thus, A � LM(P (A)M ). Seond, we have that G(a) > 0. Thus,there is a rule r 2 P suh that h(r) = a and a =2 b�(r). It follows that horn(r) =2 Qand horn(r) 2 PM . Sine Q � P (A)M , A = LM(Q) and b+(r) � A, we obtainthat a 2 LM(P (A)M ). Thus, M � LM(P (A)M ). Finally, sine F (a) = 0, we havethat for every rule s 2 P suh that a =2 b�(s), h(s) 2M . Thus, LM(PM ) does notontain any atom not in M . Consequently, M = LM(PM ) and M is a stable modelof P . Sine M � LM(P (A)M ), M is an A-based stable model of P . 2We will disuss now e�etive ways to ompute values F (a), G(a) and H(r; a).Clearly, omputing the values G(a) an be aomplished in time linear in the sizeof the program, that is, in time O(m). Indeed, we start by initializing all valuesG(a) to 0. Then, for eah rule s 2 P , we set G(h(s)) := G(h(s)) + 1 if h(s) =2 b�(s),and leave G(h(s)) unhanged, otherwise. To deide whih is the ase requires thatwe san all negated lierals in the body of s. That takes time O(jb�(s)j). Thus, theoverall time is O(m).Computing values F (a) and H(r; a) is more ompliated. First, we prove thefollowing lemma.Lemma 4.5Let P be an A-program, let a 2 At(P ) nA and let r 2 R(A). Then1. F (a) = 1 if and only if a =2 Tffh(s)g [ b�(s) : s 2 P; h(s) =2 Ag.2. H(r; a) = 1 if and only if a =2 Tfb�(s) : s 2 P; horn(s) = rg.Proof: (1) Let us assume �rst that F (a) = 1. Then there is a rule s 2 P suhthat h(s) =2 A [ fag and a =2 b�(s). Thus, a =2 fh(s)g [ b�(s). Consequently, theidentity a =2 Tffh(s)g [ b�(s) : s 2 P; h(s) =2 Ag follows. All the impliations inthis argument an be reversed. Hene, we obtain the assertion (1).(2) Let us assume thatH(r; a) = 1. Then, there is a rule s 2 P suh that horn(s) = r



Theory and Pratie of Logi Programming 13and a =2 b�(s). Consequently, a =2 Tfb�(s) : s 2 P; horn(s) = rg. As in (1), all theimpliations are in fat equivalenes and the assertion (2) follows. 2Lemma 4.5 shows that to ompute all the values F (a) one has to ompute theset \ffh(s)g [ b�(s) : s 2 P; h(s) =2 Ag:To this end, for eah atom a we will ompute the number of sets in ffh(s)g[b�(s) :s 2 P; h(s) =2 Ag that a is a member of. We will denote this number by C(a). We�rst initialize all values C(a) to 0. Then, we onsider all sets in ffh(s)g [ b�(s) :s 2 P; h(s) =2 Ag in turn. For eah suh set and for eah atom a in this set weset C(a) := C(a) + 1. The set Tffh(s)g [ b�(s) : s 2 P; h(s) =2 Ag is given by allthose atoms a for whih C(a) is equal to the number of sets in ffh(s)g [ b�(s) :s 2 P; h(s) =2 Ag. It is lear that the time needed for this omputation is linear inthe size of the program (assuming appropriate linked-list representation of rules).Thus, all the values F (a) an be omputed in time linear in the size of the program,that is, in O(m) steps.To ompute values H(r; a) we proeed similarly. First, we ompute all the setsfs : s 2 P; horn(s) = rg, where r 2 R(A). To this end, we san all rules in P inorder and for eah of them we �nd the rule r 2 R(A) suh that horn(s) = r. Thenwe inlude s in the set fs : s 2 P; horn(s) = rg. Given s, it takes O(gjAj) steps toidentify rule r (where g is some funtion). Indeed, the size of b+(s) is bound by jAjas P is an A-program. Moreover, the number of rules in R(A) depends on jAj only.Thus, the task of omputing all sets fs : s 2 P; horn(s) = rg, for r 2 R(A), an beaomplished in O(g(jAj)jP j) steps. Next, for eah these sets of rules, we proeed asin the ase of values F (a), to ompute their intersetions. Eah suh omputationtakes time O(m), where m = size(P )). Thus, omputing all the values H(r; a) anbe aomplished in time O(g(jAj)jP j+ jR(A)jm) = O(f(jAj)m), for some funtionf .We an now put all the piees together. As a result of our onsiderations, weobtain the following algorithm for deiding the problem SSM(k).Algorithm to deide the problem SSM(k), k � 1Input: A logi program P (k is not a part of input)(0) if ; is a stable model of P then return YES and exit;(1) P := the set of proper rules in P ;(2) for every A � At(P ) with jAj � k � 1 do(3) ompute the set of rules R(A) and the set of programs P(A);(4) ompute the program P (A);(5) ompute the program P 0(A) and the set B = far: r 2 P 0(A)g;(6) given P (A) and R(A), ompute tables F , G and H (as desribed above);(7) for every a 2 At(P (A)) nA nB do(8) if(9) F (a) = 0, G(a) > 0 and(10) there is a program Q 2 P(A) s. t. for every rule r 2 Q, H(r; a) > 0



14 M. Truszzy�nski(11) then report YES and exit;(12) report NO and exit.The orretness of this algorithm follows from Lemmas 4.2 - 4.4. We will nowanalyze the running time of this algorithm. Clearly, line (0) an be exeuted inO(m) steps. As we already observed, rules that are not proper an be eliminatedfrom P in time O(m). Next, there are O(nk�1) iterations of loop (2). In eah ofthem, line (3) takes time O(f1(k)), for some funtion f1 (let us reall that jR(A)jand jP(A)j depend on jAj only). Further, lines (4) and (5) an be exeuted intime O(m). Line (6), as we disussed earlier, an be implemented so that to run inO(f(k)m) steps. Loop (7) is exeuted O(n) times and eah iteration takes O(f2(k))steps, for some funtion f2 (let us again reall that jP(A)j depends on k only).Thus, the running time of the whole algorithm is O(F (k)mnk�1), for some integerfuntion F . Consequently, we get the following result.Theorem 4.6There is an integer funtion F and an algorithm A suh that A deides the problemSSM(k) and runs in time O(F (k)mnk�1) (the onstant hidden in the "big Oh"notation does not depend on k).5 Complexity of the problem SSMThe algorithm outlined in the previous setion is not quite satisfatory. Its run-ning time is still high. A natural question to ask is: are there signi�antly betteralgorithms for the problems SSM(k)? In this setion we address this question bystudying the omplexity of the problem SSM. Our goal is to show that the problemis diÆult in the sense of the W hierarhy. We will show that the problem SSM isW [2℄-hard and that it is in the lass W[3℄. To this end, we de�ne the (� k)-weightedt-normalized satis�ability problem as:WS�(t) Given a t-normalized formula ', deide whether there is a model of ' withat most k atoms (k is a parameter).The problem WS�(t) is a slight variation of the problem WS(t). It is known to beomplete for the lass W[t℄, for t � 2 (see (Downey & Fellows, 1997), page 468). Toshow W[2℄-hardness of SSM, we will redue the problem WS�(2) to the problemSSM. Given the overwhelming evidene of �xed-parameter intratability of prob-lems that are W [2℄-hard (Downey & Fellows, 1997), it is unlikely that algorithms forproblems SSM(k) exist whose asymptoti behavior would be given by a polynomialof order independent of k. To better delineate the loation of the problem SSM inthe W hierarhy we also provide an upper bound on its hardness by showing thatit an be redued to the problem WS�(3), thus proving that the problem SSMbelongs to the lass W [3℄.We will start by showing that the problem SSM(k) is reduible (in the sense ofthe de�nition from Setion 2) to the problem WS�(3). To this end, we desribean enoding of a logi program P by means of a olletion of lauses T (P ) so thatP has a stable model of size at most k if and only if T (P ) has a model with no



Theory and Pratie of Logi Programming 15more than (k+1)(k2+2k) atoms. In the general setting of the lass NP, an expliitenoding of the problem of existene of stable models in terms of propositionalsatis�ability was desribed in (Ben-Eliyahu & Dehter, 1994). Our enoding, whiledi�erent in key details, uses some ideas from that paper.Let us onsider an integer k and a logi program P . For eah atom q in Plet us introdue new atoms (q), (q; i), 1 � i � k + 1, and �(q; i), 2 � i �k + 1. Intuitively, atom (q) represents the fat that in the proess of omputingthe least model of the redut of P with respet to some set of atoms, atom q isomputed no later than during the iteration k + 1 of the van Emden-Kowalskioperator. Similarly, atom (q; i) represents the fat that in the same proess atom qis omputed exatly in the iteration i of the van Emden-Kowalski operator. Finally,atom �(q; i), expresses the fat that q is omputed before the iteration i of the vanEmden-Kowalski operator. The formulas F1(q; i), 2 � i � k+ 1, and F2(q) desribesome basi relationships between atoms (q), (q; i) and �(q; i) that we will requireto hold: F1(q; i) = �(q; i), (q; 1) _ : : : _ (q; i� 1);F2(q) = (q), (q; 1) _ : : : _ (q; k + 1):Let r be a rule in P with h(r) = q, sayr = q  a1; : : : ; as;not(b1); : : : ;not(bt):We de�ne a formula F3(r; i), 2 � i � k + 1, byF3(r; i) = �(a1; i) ^ : : : ^ �(as; i) ^ :(b1) ^ : : : ^ :(bt) ^ :�(q; i):We de�ne F3(r; 1) = false (false is a distinguished ontraditory formula in ourpropositional language) if s � 1. Otherwise, we de�neF3(r; 1) = :(b1) ^ : : : ^ :(bt):Speaking informally, formula F3(r; i) asserts that q is omputed by means of rule rin the iteration i of the least model omputation proess and that it has not beenomputed earlier.Let r1; : : : ; rv be all rules in P with atom q in the head. We de�ne a formulaF4(q; i), 1 � i � k + 1, byF4(q; i) = (q; i), F3(r1; i) _ : : : _ F3(rv ; i):Intuitively, the formula F4(q; i) asserts that when omputing the least model of theredut of P , atom q is �rst omputed in the iteration i.We now de�ne the theory T0(P ) that enodes the problem of existene of smallstable models:T0(P ) = fF1(q; i): q 2 At(P ); 2 � i � k + 1g [ fF2(q): q 2 At(P )g [fF4(q; i): q 2 At(P ); 1 � i � k + 1g:Next, we establish some useful properties of the theory T0(P ). First, we onsidera set U of atoms that is a model of T0(P ) and de�neM(U) = fq 2 At(P ): (q) 2 Ug:



16 M. Truszzy�nskiLemma 5.1Let U be a model of T0(P ) and let q 2 M(U). Then there is a unique integer i,1 � i � k + 1, suh that (q; i) 2 U .Proof: Sine U is a model of a formula F2(q), there is an integer i, 1 � i � k + 1,suh that (q; i) 2 U . To prove uniqueness of suh i, assume that there are twointegers j1 and j2, 1 � j1 < j2 � k + 1, suh that (q; j1) 2 U and (q; j2) 2 U .Sine U j= F4(q; j2), it follows that there is a rule r 2 P with h(r) = q and suh thatU j= F3(r; j2). In partiular, U j= :�(q; j2). In the same time, sine (q; j1) 2 Uand U j= F1(q; j2), we have �(q; j2) 2 U , a ontradition. 2For every atom q 2M(U) de�ne iq to be the integer whose existene and unique-ness is guaranteed by Lemma 5.1. De�ne iU = maxfiq: q 2 M(U)g. Next, for eahi, 1 � i � iU , de�ne [M(U)℄i = fq 2M(U): iq = ig:Lemma 5.2Let U be a model of T0(P ). Under the terminology introdued above, for every i,1 � i � iU , [M(U)℄i 6= ;.Proof: We will proeed by downward indution. By the de�nition of iU , [M(U)℄iU 6=;. Consider i, 2 � i � iU , and assume that [M(U)℄i 6= ;. We will show that[M(U)℄i�1 6= ;. Let q 2 [M(U)℄i. Clearly, (q; i) 2 U and, sine U j= F4(q; i),there is a rule r = q  a1; : : : ; as;not(b1); : : : ;not(bt) suh that U j= F3(r; i).Consequently, for every j, 1 � j � s, �(aj ; i) 2 U . Assume that for every j, 1 �j � s, �(aj ; i� 1) 2 U . Sine U j= �(q; i� 1)) �(q; i) and sine U j= :�(q; i),it follows that U j= :�(q; i� 1). Consequently, U satis�es the formula F3(r; i� 1)and, so, U j= F4(q; i� 1). It follows that (q; i� 1) 2 U , a ontradition (we reallthat iq = i). Hene, there is j, 1 � j � s, suh that (aj ; i� 1) 2 U . It follows thataj 2 [M(U)℄i�1 and [M(U)℄i�1 6= ;. 2Lemma 5.3Let U be a model of T0(P ) and let jM(U)j � k. Then1. iU � k, and2. M(U) is a stable model of P .Proof: (1) The assertion follows diretly from the fat that jM(U)j � k and fromLemma 5.2.(2) We need to show that M(U) = LM(PM(U)). We will �rst show that M(U) �LM(PM(U)). Sine M(U) = SiUi=1[M(U)℄i, we will show that for every i, 1 � i �iU , [M(U)℄i � LM(PM(U)). We will proeed by indution. Let q 2 [M(U)℄1. Itfollows that there is a rule r suh that U j= F3(r; 1). Consequently, r is of theform r = q  not(b1); : : : ;not(bt) and U j= :(b1) ^ : : : ^ :(bt). Hene, for everyj, 1 � j � t, bj =2 M(U). Consequently, the rule (q  :) is in PM(U) and, so,q 2 LM(PM(U)). The indutive step is based on a similar argument. It relies onthe inequality iU � k we proved in (1). We leave the details of the indutive stepto the reader.



Theory and Pratie of Logi Programming 17We will next show that LM(PM(U)) �M(U). We will use the haraterization ofLM(PM(U)) as the limit of the sequene of iterations of the van Emden-Kowalskioperator TPM(U) : LM(PM(U)) = 1[i=0T iPM(U)(;):We will �rst show that for every integer i, 0 � i � k+1, we have: T iPM(U)(;) �M(U)and for every q 2 T iPM(U)(;), iq � i.Clearly, T 0PM(U)(;) = ; �M(U). Hene, the basis for the indution is established.Assume that for some i, 0 � i � k, T iPM(U)(;) � M(U) and that for every q 2T iPM(U)(;), iq � i. Consider q 2 T i+1PM(U)(;). If U j= �(q; i+ 1), then (q; v) 2 U forsome v, 1 � v � i. Sine U j= F2(q), (q) 2 U and q 2 M(U). By Lemma 5.1, itfollows that iq = v. Hene, iq < i+ 1.Thus, assume that U j= :�(q; i+ 1). Sine q 2 T i+1PM(U)(;), there is a ruler = q  a1; : : : ; as;not(b1); : : : ;not(bt)in P suh that bj =2M(U), for every j, 1 � j � t, and aj 2 T iPM(U)(;), 1 � i � s. Bythe indution hypothesis, for every j, 1 � j � s, we have aj 2 M(U) and iaj � i.It follows that U j= F3(r; i + 1) and, onsequently, that (q; i + 1) 2 U . SineU j= F2(q), (q) 2 U and q 2M(U). It also follows (Lemma 5.1) that iq = i+ 1.Thus, we proved that Sk+1i=0 T iPM(U)(;) � M(U). Sine jM(U)j � k, there is j,0 � j � k suh that T jPM(U)(;) = T j+1PM(U)(;). It follows that for every j0, j < j0,T jPM(U)(;) = T j0PM(U)(;). Consequently, T iPM(U)(;) � M(U) for every non-negativeinteger i. 2Consider now a stable model M of the program P and assume that jM j � k.Clearly, M = S1i=1 T iPM (;). For eah atom q 2 M de�ne sq to be the least integers suh that q 2 T sPM (;). Clearly, sq � 1. Moreover, sine jM j � k, it follows thatfor eah q 2M , sq � k. Now, de�neUM = f(q); (q; sq): q 2Mg [ f�(q; i): q 2M; sq < i � k + 1gLemma 5.4Let M be a stable model of a logi program P suh that jM j � k. Under theterminology introdued above, the set of atoms UM is a model of T0(P ).Proof: Clearly, UM j= F1(q; i) for q 2 At(P ) and 2 � i � k + 1, and UM j= F2(q)for q 2 At(P ).We will now show that UM j= F4(q; i), for q 2 At(P ) and i = 1; 2; : : : ; k+1. First,we will onsider the ase q 2 M . There are three subases here depending on thevalue of i.We start with i suh that sq < i � k + 1. Then UM 6j= :�(q; i). It followsthat UM 6j= F3(r; i) for every rule r 2 P suh that h(r) = q. Sine UM 6j= (q; i),UM j= F4(q; i).Next, we assume that i = sq . Then, there is a rule r = q  a1; : : : ; as;not(b1); : : : ;not(bt) in P suh that bj =2M , for every j, 1 � j � t, and aj 2 T i�1PM (;), 1 � j � s.Clearly, UM j= F3(r; i). Sine UM j= (q; i), it follows that UM j= F4(q; i), for i = sq.



18 M. Truszzy�nskiFinally, let us onsider the ase 1 � i < sq . Assume that there is rule r 2 P suhthat h(r) = q and UM j= F3(r; i). Let us assume that r = q  a1; : : : ; as;not(b1); : : : ;not(bt). It follows that for every j, 1 � j � t, UM j= :(bj). Consequently, for everyj, 1 � j � t, bj =2M and the rule r0 = q  a1; : : : ; as belongs to the redut PM . Inaddition, for every j, 1 � j � s, �(aj ; i) 2 UM . Thus, aj 2M and saj � i�1. Thislatter property is equivalent to aj 2 T i�1PM (;). Thus, it follows that q 2 T iPM (;) andsq � i | a ontradition with the assumption that i < sq . Hene, for every rule rwith the head q, UM 6j= F3(r; i). Sine for i < sq, (q; i) =2 UM , UM j= F4(q; i).To omplete the proof, we still need to onsider the ase q =2 M . Clearly, forevery i, 1 � i � k + 1, UM 6j= (q; i). Assume that there is i, 1 � i � k + 1,and a rule r suh that h(r) = q and UM j= F3(r; i). Let us assume that r is ofthe form q  a1; : : : ; as;not(b1); : : : ;not(bt). It follows that �(aj ; i) 2 UM and,onsequently, aj 2M for every j, 1 � j � s. In addition, it follows that for every j,1 � j � t, UM j= :(bj) and, onsequently, bj =2 M . Thus, q  a1; : : : ; as belongsto the redut PM and, sine M is a model of the redut, q 2 M , a ontradition.It follows that for every i, 1 � i � k + 1, UM j= F4(q; i). 2For eah atom q 2 At(P ), let us introdue k2 + 2k new atoms d(q; i), 1 � i �k2 + 2k, and de�neT (P ) = T0(P ) [ f(q), d(q; i): 1 � i � k2 + 2kg:Lemmas 5.1 - 5.4 add up to a proof of the following result.Theorem 5.5Let k be a non-negative integer and let P be a logi program. The program P hasa stable model of size at most k if and only if the theory T (P ) has a model of sizeat most (k + 1)(k2 + 2k).Proof: ()) Let M be a stable model of P suh that jM j � k. By Lemma 5.4, theset UM is a model of T0(P ) Consequently, the setU = UM [ fd(q; i): q 2M; 1 � i � k2 + 2kgis a model of T (P ). Moreover, it is easy to see that jUM j � 2k + k2. Hene, jU j �2k + k2 + k(k2 + 2k) = (k + 1)(k2 + 2k).Conversely, let us assume that some set V , onsisting of atoms appearing in T (P )and suh that jV j � (k+ 1)(k2 + 2k), is a model of T (P ). Let us de�ne U to onsistof all atoms of the form (q), (q; i) and �(q; i) that appear in V . Clearly, U isa model of T0(P ). Let us assume that M(U) � k + 1 (we reall that the notationM(U) was introdued just before Lemma 5.1 was stated). Then, there are at least(k + 1)(k2 + 2k) atoms of type d(q; i) in V . Consequently, V > (k + 1)(k2 + 2k) asit ontains also at least k+ 1 atoms (q), where q 2M(U). This is a ontradition.Thus, it follows that jM(U)j � k. Moreover, by Lemma 5.3, M(U) is a stable modelof P . 2Let us now de�ne the following sets of formulas. First, for eah atom q 2 At(P )we de�neC0(q) = f:(q) _ d(q; i): 1 � i � k2 + 2kg [ f(q) _ :d(q; i): 1 � i � k2 + 2kg:



Theory and Pratie of Logi Programming 19Next, we de�neC1(q; i) = f:�(q; i)_ (q; 1)_ : : :_ (q; i� 1)g[ f:(q; j)_ �(q; i): 1 � j � i� 1g;C2(q) = f:(q) _ (q; 1) _ : : : _ (q; k + 1)g [ f:(q; j) _ (q): 1 � j � k + 1g;andC4(q; i) = f:(q; i) _ F3(r1; i) _ : : : _ F3(rv ; i)g [ f:F3(rj ; i) _ (q; i): 1 � j � vg;where fr1; : : : ; rvg is the set of all rules in P with q in the head.Clearly, the theoryT (P ) = fC0(q): q 2 At(P )g [ fC1(q; i): q 2 At(P ); 2 � i � k + 1g [fC2(q): q 2 At(P )g [ fC4(q; i): q 2 At(P ); 1 � i � k + 1gis equivalent to the theory T (P ). Moreover, it is a olletion of sums of produts ofliterals. Therefore, it is a 3-normalized formula. By Theorem 5.5, it follows that theproblem SSM an be redued to the problem WS�(3). Thus, we get the followingresult.Theorem 5.6The problem SSM(k) 2W [3℄.Next, we will show that the problem WS�(2) an be redued to the problemSSM. Let C = f1; : : : ; pg be a olletion of lauses. Let A = fx1; : : : ; xrg be theset of atoms appearing in lauses in C. For eah atom x 2 A, introdue k newatoms x(i), 1 � i � k. By Si, 1 � i � k, we denote the logi program onsisting ofthe following n lauses: x1(i) not(x2(i)); : : : ;not(xr(i))� � �xr(i) not(x1(i)); : : : ;not(xr�1(i))De�ne S = Ski=1 Si. Clearly, eah stable model of S is of the form fxj1(1); : : : ; xjk (k)g,where 1 � jp � r for p = 1; : : : ; k. Sets of this form an be viewed as representationsof nonempty subsets of the set A that have no more than k elements. This repre-sentation is not one-to-one, that is, some subsets have multiple representations.Next, de�ne P1 to be the program onsisting of the lausesxj  xj(i); j = 1; : : : ; r; i = 1; 2; : : : ; k:Stable models of the program S [ P1 are of the form fxj1(1); : : : ; xjk (k)g [ M ,where M is a nonempty subset of A suh that jM j � k and xj1 ; : : : ; xjk enumerate(possibly with repetitions) all elements of M .Finally, for eah lause = a1 _ : : : _ as _ :b1 _ : : : _ :btfrom C de�ne a logi program lause p():p() = f  b1; : : : ; bt;not(a1); : : : ;not(as);not(f)where f is yet another new atom. De�ne P2 = fp():  2 Cg and PC = S [P1 [P2.



20 M. Truszzy�nskiTheorem 5.7A set of lauses C has a nonempty model with no more than k elements if and onlyif the program PC has a stable model with no more than 2k elements.Proof: Let M be a nonempty model of C suh that jM j � k. Let xj1 ; : : : ; xjkbe an enumeration of all elements of M (possibly with repetitions). Then the setM 0 = fxj1(1); : : : ; xjk (k)g [M is a stable model of the program S [ P1. Sine Mis a model of C, it follows that (PC)M 0 = (S [ P1)M 0 [ F , where F onsists of thelauses of the form f  b1; : : : ; bt;suh that t � 1 and for some j, 1 � j � t, bj =2 M 0. Sine M 0 = LM((S [ P1)M 0),it follows that M 0 = LM((S [ P1)M 0 [ F ) = LM((PC)M 0 ):Thus, M 0 is a stable model of PC . Sine jM 0j � 2k, the \only if" part of theassertion follows.Conversely, assume that M 0 is a stable model of PC . Clearly, f =2 M 0. Conse-quently, LM((S [ P1)M 0) = LM((S [ P1 [ P2)M 0 ) = LM((PC)M 0) = M 0:That is, M 0 is a stable model of S [ P1. As mentioned earlier, it follows thatM 0 = fxj1(1); : : : ; xjk (k)g [M , where M is a nonempty subset of At(P ) suh thatjM j � k and xj1 ; : : : ; xjk is an enumeration of all elements of M .Consider a lause  = a1 _ : : :_ as _ :b1 _ : : :_ :bt from C. Sine M 0 is a stablemodel of PC , it is a model of PC . In partiular, M 0 is a model of p(). Sine f =2M 0,it follows that M 0 j=  and, onsequently, M j= . Hene, M is a model of C. 2Now the reduibility of the problem WS�(2) to the problem SSM is evident.Given a olletion of lauses C, to hek whether it has a model of size at mostk, we �rst hek whether the empty set of atoms is a model of C. If so, we returnthe answer YES and terminate the algorithm. Otherwise, we onstrut the programPC and hek whether it has a stable model of size at most 2k. Consequently, weobtain the following result.Theorem 5.8The problem SSM is W[2℄-hard.6 Open problems and onlusionsThe paper established several results pertaining to the problem of omputing smalland large stable models. It also brings up interesting researh questions.First, we proved that the problem LSM is in the lass FPT. For problems thatare �xed-parameter tratable, it is often possible to design an algorithm runningin time O(p(N) + f(k)), where N is the size of the problem, k is a parameter, pis a polynomial and f is a funtion (Downey & Fellows, 1997). Suh algorithmsare often pratial for quite large ranges of N and k. The algorithm for the LSMproblem presented in this paper runs in time O(m2k+k2 ). It seems plausible it an



Theory and Pratie of Logi Programming 21be improved to run in time O(m + f(k)), for some funtion f . Suh an algorithmwould most ertainly be pratial for wide range of values of m and k. We proposeas an open problem the hallenge of designing an algorithm for omputing largestable models with this time omplexity.There is a natural variation on the problem of omputing large stable models:given a logi program P and an integer k (parameter), deide whether P has astable model of size at least jAt(P )j � k. This version of the problem LSM wasreently proved by Zbigniew Lon and the author to be W[3℄-hard (and, hene,�xed-parameter intratable) (Lon & Truszzy�nski, 2000). The upper bound forthe omplexity of this problem remains unknown.In the paper, we desribed an algorithm that for every �xed k, deides the exis-tene of stable models of size at most k in time O(nk�1m), where n is the number ofatoms in the program and m is its size. This algorithm o�ers only a slight improve-ment over the straightforward \guess-and-hek" algorithm. An interesting and, itseems, diÆult problem is to signi�antly improve on this algorithm by loweringthe exponent in the omplexity estimate to �k, for some onstant � < 1.We also studied the omplexity of the problem SSM and showed that it is �xed-parameter intratable. Our results show that SSM is W [2℄-hard. This result impliesthat the problem SSM is at least as hard as the problem to determine whethera CNF theory has a model of ardinality at most k, and strongly suggests thatalgorithms do not exist that would deide problems SSM(k) and run in time O(n),where  is a onstant independent on k. For the upper bound, we proved in thispaper that the problem SSM belongs to lass W [3℄. Reently, Zbigniew Lon andthe author (Lon & Truszzy�nski, 2000) showed that the problem SSM is, in fat,in the lass W [2℄. AknowledgmentsThe author thanks Vitor Marek and Jennifer Seitzer for useful disussions andomments. The author is grateful to anonymous referees for very areful reading ofthe manusript. Their omments helped eliminate some inauraies and improvethe presentation of the results. This researh was supported by the NSF grantsCDA-9502645, IRI-9619233 and EPS-9874764.ReferenesApt, K., Blair, H.A., & Walker, A. (1988). Towards a theory of delarative knowledge.Pages 89{142 of:Minker, J. (ed), Foundations of dedutive databases and logi program-ming. Papers from the workshop held in Washington, D.C., August 18{22, 1986. PaloAlto, CA: Morgan Kaufmann.Aravindan, C., Dix, J., & Niemel�a, I. (1997). DisLoP: Towards a disjuntive logi pro-gramming system. Pages 342{353 of: Logi Programming and Nonmonotoni Reasoning(Dagstuhl, Germany, 1997). Leture Notes in Computer Siene, vol. 1265. Springer.Ben-Eliyahu, R., & Dehter, R. (1994). Propositional semantis for disjuntive logi pro-grams. Annals of Mathematis and Arti�ial Intelligene, 12, 53{87.
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