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Abstract. Strong emphasis on intuitive and direct modeling of applica-
tion domains is one of the distinguishing features and major strengths of
the answer-set programming paradigm. It leads naturally to several key
questions. Is there a need for standardizing such languages? What func-
tionality should these languages support? Are there any general design
requirements for them? This note attempts to propose some answers.

1 Introduction

Answer-set programming (ASP) is a paradigm for declarative programming.
Speaking informally, in ASP a problem is modeled as a theory in some language
of logic. This representation is designed so that once expanded with an encod-
ing of particular instance of the problem, it results in a theory whose models
correspond to solutions to the problem for this instance [13, 14].

Thus, the main automated reasoning task in support of the ASP paradigm
is computing models of theories. A typical approach is to ground a theory
representing a problem and its particular instance or, in other words, to compile
the “program” and the “data” into a low-level representation. The result of this
step is a propositional theory that has the same models as the original one. They
are computed in the last step of the process by programs called solvers.

This overview of the ASP process shows that when solving a problem one
deals with a theory in several different formats. First, there is a format deter-
mined by the modeling language. Second, there is a format of the grounded
(propositional) version of this theory. Finally, there is “solver” format, a version
of the ground theory in a format accepted by solvers. A central issue to the
design and development of software tools in support of ASP is that of standards
for theory formats at every stage of the process.

My goal in this note is to address the matter of standards for ASP modeling
languages. I argue that no specific standards are necessary. Instead I present
several “desiderata” that should be taken into account when designing ASP
modeling languages.

2 What is Answer-Set Programming?

In most general terms, ASP is a paradigm for modeling and solving search prob-
lems. In order to talk about ASP and issues related to software tools for ASP, it
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will be convenient to introduce first a formal setting, in which search problems
can be defined and studied.

2.1 Search problems

In formal definitions of search problems, one typically assumes a fixed infinite
countable set U , referred to throughout the note as the universe. A signature
is a nonempty set σ of relation symbols r, each with a positive integer arity kr.
An instance of a signature σ is a pair I = 〈D,R〉, where D ⊆ U is a finite set
called the domain of I, dom(I) in symbols, and

R = {rI : r ∈ σ and rI ⊆ Dkr is a relation of arity r}.

Throughout the note, Instσ will stand for the set of all instances of σ.
For two disjoint signatures σi and σs, a search problem over (σi, σs) is a

recursive set Π ⊆ Instσi × Instσs such that for every (I, S) ∈ Π, dom(I) =
dom(S). Elements of Instσi are instances of Π. If I ∈ Instσi then every S ∈
Instσs such that (I, S) ∈ Π is a solution to Π for I.

Typically, given a search problem Π ∈ Instσi × Instσo and its instance I ∈
Instσi , the objective is to find a solution to Π for I. From the practical point of
view, there are two crucial issues: how to model search problems — one must be
able to specify them in order to solve them, and how to find a solution given a
problem specification and an instance. Answer-set programming is a paradigm
that addresses both issues.

2.2 Modeling search problems

Let Lσ be some logic language over σ. For now, I specify neither the set of
boolean connectives of the language nor its set of well-formed formulas. The
only assumption I make is that there is a recursive relation |= that holds between
instances in Instσ and formulas in Lσ. For example, if Lσ is the language of first-
order logic (under our definition of σ — with no constant or function symbols),
one could choose for |= the standard satisfiability relation between a structure
and a formula. If Lσ is the language of logic programs, where formulas are
conjunctions of program rules, one might define I |= ϕ to hold if I is a stable
model (an answer set) of ϕ.

If σ′ ⊆ σ are signatures, then K ∈ Instσ expands I ∈ Instσ′ , written as
I = K|σ′ , if dom(K) = dom(I) and for every r ∈ σ′, rI = rK . Let σi and σs be
two disjoint signatures such that σi ∪ σo ⊆ σ. Every formula ϕ ∈ Lσ gives rise
to a search problem

Πϕ = {(K|σi ,K|σs): K ∈ Instσ and K |= ϕ}.

Indeed, dom(K|σi) = dom(K|σs) (each is equal to dom(K)) and, since |= is a
recursive relation, Πϕ is a recursive set.
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3 A minimal requirement for an ASP language

The discussion so far implies that every logical language, for which there is
a recursive satisfiability relation |= between instances and formulas provides a
way to specify search problems. In other words, it can be regarded as an ASP
modeling language.

How good a modeling tool an ASP language is depends to a large degree
on the expressive power of the language — the class of search problems that
are defined by formulas in the language in the way described above. One could
argue that at the very least the expressive power of an ASP modeling language
should be given by the class NPMV [18], as this class contains search problems
of practical importance. In particular, all decision problems in the class NP
(once they are recast as search problems) belong to the class NPMV. The class
NPMV is also known as the class NP-search, the term I prefer as it makes a
direct reference to search problems.

Of course, to be of practical use, the language also needs to be implemented,
that is, come with a way to specify signatures, instances and formulas in terms of
expressions that can be processed by computers, as well as with tools to compute
solutions given a problem description as a formula and its input specified as an
instance to the problem.

These comments suggest the following minimal requirement for ASP model-
ing languages.

An ASP modeling language is a language of logic with a recursive satisfi-
ability relation |= between signature instances (structures) and formulas,
and with the expressive power equal at least to that of the class NP-
search. The language comes with an implementation — software that
allows one to code problem and instance specifications and, given the
encodings, compute solutions (or determine that none exists).

I do not think there is a need for any standardization of ASP modeling lan-
guages beyond this basic requirement. However, there are several considerations
that should be taken into account when developing and evaluating ASP systems.
Before discussing them, I introduce two examples of ASP modeling languages.

4 Two examples

The most studied and widely used ASP modeling language is the language
of logic programming with the stable-model semantics [11, 13, 14]. In this for-
malism, problems are modeled as logic program. For example, the graph 3-
colorability problem can be specified by the following program Pcol :

b(X) :- vtx(X), not r(X), not g(X).

r(X) :- vtx(X), not b(X), not g(X).

g(X) :- vtx(X), not r(X), not b(X).

:- edge(X,Y), b(X), b(Y).

:- edge(X,Y), r(X), r(Y).

:- edge(X,Y), g(X), g(Y).
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This program is presented in a format that is accepted by implementations
of logic programming as an ASP system such as lparse/smodels [15, 19] and
dlv [8, 12]. Each line lists a program rule — a single conjunct of the program.
Commas in the bodies of rules stand for the conjunction and not represents
the negation (to be exact, the negation-as-failure). The empty head stands for
the contradiction. The program defines implicitly the signature σ (in this case
consisting of relation symbols b, r, g, vtx and edge), as well as the signature σi,
which consists of those symbols that do not appear in the heads of rules (symbols
r, b and g),

An instance to the problem is a set of ground atoms of the form vtx (x) and
edge(x, y) defining an input graph. The domain is defined implicitly as the set
of all constants used in the description of the instance.

The program Pcol is indeed an encoding of the graph 3-colorability problem
due to the property that for every input instance I, instances of the signature
{b, r, g, vtx , edge} expanding the input instance and such that they are stable
models of Pcol ∪ I determine solutions to the problem. That is, extensions of
the relations corresponding to b, r and g in a stable model of Pcol ∪ I form a
proper 3-coloring of the graph represented by I, and every proper 3-coloring has
a representation as a stable model of Pcol ∪ I.

Another language that received some attention is based on the logic of propo-
sitional schemata [7]. In this logic, a basic formula is an implication with a
conjunction of atoms in the antecedent and the disjunction of atoms (possi-
bly existentially quantified) in the consequent. Search problems are represented
as conjunctions (lists) of formulas in this elementary syntax. In particular, the
graph 3-colorability problem can be specified as the conjunction of the following
formulas:

vtx(X) -> r(X) | b(X) | g(X).

r(X), b(X) -> .

r(X), g(X) -> .

b(X), b(X) -> .

edge(X,Y), b(X), b(Y) -> .

edge(X,Y), r(X), r(Y) -> .

edge(X,Y), g(X), g(Y) -> .

Also in this case, the program is given in the format accepted by an imple-
mentation of the logic of propositional schemata [7]. In particular, commas in the
antecedents represent the conjunction connective, -> and | stand for the impli-
cation and disjunction, respectively. As before, the empty consequent represents
the contradiction.

In the logic of propositional schemata signatures and input instances need
to be defined explicitly. Similarly as for the logic programming representation,
instances expanding an input instance and such that they are models of Tcol

correspond to 3-colorings of the graph represented by the instance.
Both logic programming and the language PS can express the whole class

NP-search and each has been implemented. Thus, they satisfy the basic require-
ment identified above. I note that a variant of logic programming, disjunctive
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logic programming, captures a wider class of problems — the class ΣP
2

-search
(wider, assuming the polynomial hierarchy does not collapse) and also has an
implementation (for instance, system dlv [9, 12]).

5 Other requirements for ASP languages

These two examples of ASP modeling languages examples are simple and pre-
sented here without much detail. Nevertheless they bring up several important
points.
Definitions. Due to the KR roots of logic programming with the answer-set
semantics, ASP languages based on this formalism can handle effectively the
problem of definitions. Let us suppose, that p holds precisely when both q and r

hold or when both s and t hold. In LP languages, this definition can be stated
in terms of two clauses:

p :- q, r.

p :- s, t.

In the language of propositional schemata, specifying this simple definition is
much less concise — one needs to express in a CNF representation the formula
p ↔ (q1 ∧ q2) ∨ (r1 ∧ r2). It can be done, for instance, as follows:

q, r -> p.

s, t -> p.

p -> q | s.

p -> q | t.

p -> r | s.

p -> r | t.

This is a more complex representation. Moreover, as the number of cases
under which p holds grows, the complexity of the CNF representation may grow
exponentially. To control this growth one typically introduces new symbols to
the language.

In the case when p has a recursive definition matters get still more interest-
ing. The definition of an answer-set involves a fixpoint construction and so LP
languages support concise and direct definitions of relations that are closures of
other relations. For instance, the following simple program defines the closure
path of a relation arc,

path(X,X) :- arc(X,Y).

path(X,X) :- arc(Y,X).

path(X,Y) :- arc(X,Z), path(Z,Y).

No such simple definitions of the closure of a relation is known in terms of the
logic of propositional schemata, where one needs to introduce several auxiliary
predicates in order to build a representation [7].
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The importance of definitions in knowledge representation is broadly recog-
nized. Recent work on ID-logic [2, 4] demonstrates convincingly that providing
means to model definitions is central to effective knowledge representation. These
arguments extend to ASP and give rise to the following requirement.

An ASP modeling language should offer means for concise and direct
representations of definitions and inductive definitions.

With respect to this postulate, LP languages score well and the language PS
scores poorly. Extending the language PS and, more generally, other languages
based on first-order logic, with inductive definitions [4, 6, 3] addresses the short-
coming. I claim that this “definition-based” approach to ASP has substantial
promise and deserves attention. On the one hand, it explicitly subsumes the lan-
guage PS , on the other hand, it allows for straightforward and direct encodings
of logic programs.
Basic syntax. There are two major considerations one needs to have in mind
when deciding on the basic syntax of ASP languages. First, operators supported
by the language should reflect typical structure of problem statements given in
natural language. This is a “modeling” consideration. The second consideration
is “computational”. The syntax of an ASP language must be attuned to avail-
able tools for processing programs and, most importantly, computing solutions.
Currently, these tools are based on DPLL-type backtracking search. In some
cases they actually are SAT-solvers implementing the DPLL procedure. The ef-
fectiveness of DPLL-type backtracking search depends to a large degree on the
effective unit propagation. The simpler the syntax of rules, the stronger propa-
gation methods one can apply, leading to better performance of solvers. These
considerations suggest the following postulate:

The basic syntax of ASP languages should be rooted in the notion of a
clause — a conjunction of literals implying a disjunction of atoms.

All LP languages and the language PS support formulas that are conjunctions
of clauses. The restriction to clauses does not pose any major problems for LP
languages. However, for the language PS, the restriction to clauses may make
modeling even non-recursive definitions difficult. One could alleviate the problem
to some degree by allowing additional connectives to the language, specifically,
the “if and only if ” connective. This approach does not address the problem in
general (in particular, the problem of inductive definitions). Thus, extensions of
the language PS with Horn rules or logic programs, as discussed above, may be
a better solution.

On the other hand, the language PS is directly aligned with the syntax ac-
cepted by SAT-solvers. Due to dramatic advances of SAT-solver technology, it is
a major advantage. Whenever specification of a search problem do not require
modeling the closure operation, the language PS might be the right modeling
tool.

A formalism that takes full advantage of the syntax of clauses as defined
above is that of disjunctive logic programming. Disjunctive program rules are
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implications, where the antecedent is a conjunction of atoms and negation-as-
failure literals, the consequent is a disjunctions of atoms. The two formalisms
discussed above either do not allow negation in the antecedent or disjunctions
in the consequent. With the semantics of answer sets, the disjunctive logic pro-
gramming is an effective knowledge representation formalism and the basis for
the dlv [9, 12], one of the most advanced ASP systems. Two important features
of this formalism are explicit means to model indefinite information (through
disjunctions) and its expressive power given by the class ΣP

2
-search.

Support for externally evaluated relations and functions. Most ASP
languages support built-in integer arithmetic operations and integer arithmetic
comparison relations. They also support the equality relation over the domain
of problem instances. These modeling features of ASP languages turned out to
be crucial for concise encodings of problems of practical interest.

The benefits of built-in functions and relations can be expanded to custom-
built relations and functions coded in programming languages external to an
ASP language. In this way programmers are able to delegate simple compu-
tational tasks that are hard to capture in a declarative fashion to much more
effective procedural languages. Such functionality is, for example, available in
the lparse/smodels system. This discussion brings up the following requirement.

An ASP modeling language should have support for external evaluation
of relations and functions.

Aggregates. Aggregates in the form of cardinality and weight atoms were in-
troduced to ASP by lparse/smodels system. Experiments demonstrated that
constraints specifying search problems often involve aggregates. Expanding the
syntax of an ASP language with aggregates often allows us to design represen-
tations of search problems that are direct, intuitive and concise. Importantly, it
turns out that computational tools developed for programs without aggregates
can be generalized to the case with aggregates. Moreover, due to significant de-
crease in the size of the representation and some new propagation methods, the
overall performance improves substantially. I feel that providing the functionality
of aggregate operations is one of the most crucial requirements for ASP:

An ASP modeling language must provide support for aggregate opera-
tions.

At present all ASP modeling languages provide some level of support for
aggregates. However, there are significant differences in the syntax and, on the
side of LP languages, some differences in the semantics of aggregates [19, 1, 10,
16, 17]. As for approaches stemming from the language PS and ID-logic, support
for cardinality and weight atoms is provided by the implementation of the logic
PS+ [5]. There are no semantic difficulties though, as long as aggregates do not
appear in the definitions.
Optimization and preferences. Most problems of interest are not plain search
problems, where any solution satisfying constraints will do. In most cases, there
are preferences that users have and optimization criteria that they take into
account.



8

An ASP modeling language must have means to specify user preferences,
goal functions, and optimization criteria.

Some current ASP languages provide support for preferences and optimiza-
tion. Most comprehensive approach is implemented by the dlv system. A more
narrow approach, focusing on optimization of linear goal functions is available in
lparse/smodels. Nevertheless, I feel this is an area where the field has not bridged
the gap between theoretical studies of preferences (there is a vast literature on
the subject, much of it devoted to preferences in logic programming) and prac-
tical implementations. Addressing the problem of preferences in ASP modeling
languages is one of the main problems for the field.
Interoperability with databases. ASP languages can be regarded as query
languages for deductive database systems. In fact, much of the interest in logic
programs with negation came from the database community.

There are several reasons to do it. Let us consider a database of employees.
The goal is to select a team of at most five with particular skills and satisfying
some additional constraints (preventing some pairs of employees from being in-
cluded together in a team, ensuring that some skills are adequately represented,
etc.). It may be the case that the selection has to be repeated with some regular-
ity and that the set of employees in the company changes with time, the changes
being reflected in a database. In this scenario, an ASP modeling language should
support accessing the company database, posing a query to extract tables spec-
ifying data needed for the team selection and, finally, modeling the constraints
and criteria to be used in the selection. Other applications might concern data
integration, and query processing in case of data inconsistency. These comments
serve as a justification for the following postulate:

An ASP modeling language must provide support for interactions with
database systems.

This postulate was one of the main principles guiding the development of the
dlv system. As a result, the dlv has all the functionality needed for the effective
interoperability with database systems.

6 Summary

This note presents a personal look at the problem of designing ASP modeling
languages. I identified one general fundamental requirement related to the fact
that the main goal of ASP modeling languages is to offer ways to express search
problems. I also put forth several other postulates, based on the current state-
of-the-art in ASP systems.

There are several issues that I have not discussed here but that are of impor-
tance to ASP modeling languages. I will now mention two of them. First, there
is a problem of ASP program development tools. As the complexity of applica-
tions grows, it becomes acutely clear that they are necessary. Second, there is a
problem of expressing the syntax of ASP programs within the framework of the
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Rule Markup Initiative (cf. http://www.ruleml.org/). The problem has received
some some attention (cf. http://www.kr.tuwien.ac.at/staff/roman/aspruleml/).
Nevertheless, it seems to me much remains to be done, especially that the effort
I mentioned has focused only on ASP languages based on the logic programming
formalism.
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Apt, W. Marek, M. Truszczyński, and D.S. Warren, eds.), Springer, Berlin, 1999,
pp. 375–398.
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