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Abstract

The modal logic S4F provides an account for the default logic
of Reiter, and several modal nonmonotonic logics of knowl-
edge and belief. In this paper we focus on a fragment of the
logic S4F concerned with modal formulas called modal de-
faults, and on sets of modal defaults — modal default the-
ories. We present characterizations of S4F-expansions of
modal default theories, and show that strong and uniform
equivalence of modal default theories can be expressed in
terms of the logical equivalence in the logic S4F. We ar-
gue that the logic S4F can be viewed as the general default
logic of nested defaults. We also study special modal default
theories called modal programs, and show that this fragment
of the logic S4F generalizes the logic here-and-there.

Introduction

The emergence of the logic here-and-there as the founda-
tion of answer-set programming (ASP) has been one of the
most exciting developments in nonmonotonic reasoning in
recent years. ASP is concerned with the use of general
logic programs in knowledge representation, databases and
constraint satisfaction. It is based on the concept of an
answer-set of a logic program (Gelfond & Lifschitz 1988;
1991) and the idea that to model a problem, one constructs a
program so that its answer sets represent solutions (Marek &
Truszczyński 1999; Niemelä 1999; Gelfond & Leone 2002).

While researchers proposed several accounts of the se-
mantics of answer sets of logic programs by relating this
formalism to other nonmonotonic logics (Bidoit & Froide-
vaux 1991; Lifschitz & Schwarz 1993), several key issues
remained open. First, the syntax of logic programs was re-
stricted to program rules only. Second, there were no re-
sults addressing the fundamental problem of equivalence
of logic programs. It all changed when Pearce (1997)
discovered connections between ASP and the logic here-
and-there, a non-standard propositional logic introduced by
Heyting (1930). Subsequent research by Ferraris and Lif-
schitz (2005) expanded the syntax of logic programs and
resulted in the class of general logic programs. It also es-
tablished a relation between general logic programs and the-
ories in the logic here-and-there. Under this connection,
answer-sets of programs correspond precisely to equilibrium
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models of theories in the logic here-and-there (Pearce 1997;
Ferraris & Lifschitz 2005).

Even more interestingly, the logic here-and-there allows
one to characterize the strong equivalence of programs. One
of the key questions for any logic is: given a theory P ∪ R,
when can one replace P with Q so that the result, Q ∪ R,
is logically equivalent to P ∪ R, no matter what R is. For
classical logic, the equivalence of theories P and Q is the
necessary and sufficient condition guaranteeing this prop-
erty. It is not so for logic programs with the answer-set se-
mantics. There are logic programs P , Q and R such that
P and Q have the same answer sets but P ∪ R and Q ∪ R
do not! We say that programs P and Q are strongly equiv-
alent if for every logic program R, P ∪ R and Q ∪ R have
the same answer sets (Lifschitz, Pearce, & Valverde 2001).
Several characterizations of strong equivalence have been
discovered (Lifschitz, Pearce, & Valverde 2001; Lin 2002;
Turner 2003; Eiter, Fink, & Woltran 2006). In particular, it
is known that two general programs are strongly equivalent
if they are equivalent in the logic here-and-there (Ferraris &
Lifschitz 2005).

Our goal is to show that the modal logic S4F can be re-
garded as a more general alternative to the logic here-and-
there. It has been known since early 1990s that the modal
logic S4F provides an account for the default logic of Reiter,
and several modal nonmonotonic logics of knowledge and
belief (Truszczyński 1991; Schwarz & Truszczyński 1994;
Lifschitz & Schwarz 1993; Lifschitz 1994). In this paper we
focus on a fragment of the logic S4F concerned with modal
formulas called modal defaults and on sets of modal defaults
— modal default theories.

We present characterizations of S4F-expansions of modal
default theories We show that the nonmonotonic logic S4F
generalizes the (disjunctive) default logic in the same way
as general logic programs generalize (disjunctive) logic pro-
grams. We extend the characterization of strong equiva-
lence of programs in terms of the equivalence in the logic
here-and-there to a characterization of strong equivalence
of modal default theories in terms of the equivalence in the
logic S4F. Similarly, we extend the characterizations of the
uniform equivalence of programs given by Eiter, Fink and
Woltran (2006) to the case of modal programs — a modal
counterpart to general logic programs and a special class of
modal defaults



Modal Logics and Modal Nonmonotonic

Logics

We refer to (Marek & Truszczyński 1993) for a detailed dis-
cussion of topics covered in this section. We consider the
propositional modal language determined by a set At (pos-
sibly infinite) of propositional atoms, a constant ⊥, the usual
boolean connectives ¬, ∨, ∧, →, and a single modal operator
K. The constant ⊥ represents a “generic” contradiction and
K is read as “known”. An inductive definition of a formula,
given in the BNF notation, is as follows:

ϕ ::= ⊥ | p |Kϕ | ¬ϕ |ϕ ∨ ϕ |ϕ ∧ ϕ |ϕ→ ϕ,

where p ∈ At . We denote the language consisting of such
formulas by LK (in the paper we fix the set At and so, we
drop references to At from the notation). We write L for the
set of K-free (modal-free) formulas in LK .

Modal logics in the language LK differ from each other in
the properties of the modality K. Typically, a modal logic S
is defined by its entailment relation |=S , specified by Kripke
interpretations, or in terms of proofs based on a set of modal
axioms of S.

To model knowledge and belief sets formed by rational
agents with perfect introspection capabilities based on in-
complete information, researchers introduced modal non-
monotonic logics (McDermott 1982). Let S be a modal logic
with the entailment relation |=S . For every theory I ⊆ LK ,
a theory T ⊆ LK is an S-expansion of I if

T = {ϕ ∈ LK |I ∪ ¬KT |=S ϕ},

where ¬KT = {¬Kϕ|ϕ ∈ LK \ T}. The nonmonotonic
logic S is a formalism, in which the semantics of a theory
I ⊆ LK is given by its S-expansions.

If A ⊆ L is a propositional theory then A has a unique
S5-expansion, where S5 is a well-known modal logic whose
entailment relation is given by Kripke interpretations with
the universal accessibility relation. We denote this unique
expansion by St(A)1. We have the following result.

Theorem 1 If S is a modal logic contained in S5 and A ⊆
L, then St(A) is the unique S-expansion of A.

Logic S4F

In this work we are concerned with the modal logic S4F
(Segerberg 1971; Voorbraak 1991; Marek & Truszczyński
1993). It is a modal logic in the language LK with the se-
mantics specified by Kripke S4F-interpretations (or simply,
S4F-interpretations), that is, tuples 〈V,W, π〉, where

1. V and W are nonempty and disjoint sets of worlds, and

2. π is a function assigning to each worldw ∈ V ∪W a set of
atoms π(w), representing a propositional truth valuation
for w.

Given an S4F-interpretation M = 〈V,W, π〉, we define the
satisfaction relation M, w |= ϕ, where w ∈ V ∪ W and
ϕ ∈ LK , as follows:

1The notation reflects the fact that expansions are stable theo-
ries (Stalnaker 1980; McDermott 1982).

1. M, w 6|= ⊥

2. M, w |= p if p ∈ π(w) (for p ∈ At)

3. If w ∈ V , then M, w |= Kϕ if M, v |= ϕ for every
v ∈ V ∪W

4. If w ∈ W , then M, w |= Kϕ if M, v |= ϕ for every
v ∈W

5. The induction over boolean connectives is standard. For
instance, M, w |= ϕ ∧ ψ if M, w |= ϕ and M, w |= ψ.

An S4F-interpretation M = 〈V,W, π〉 is an S4F-model
of ϕ ∈ LK , written M |= ϕ, if for every w ∈ V ∪ W ,
M, w |= ϕ. We write ϕ |=S4F ψ if every S4F-model of ϕ
is an S4F-model of ψ. The notation extends in a standard
way to modal theories, that is, subsets of LK . The logic
S4F is the logic of the entailment relation |=S4F. We note
that |=S4F has a proof-theoretic characterization based on
the necessitation inference rule and axiom schemata K, T, 4
and F (Segerberg 1971; Marek & Truszczyński 1993).

The importance of the logic S4F for knowledge represen-
tation stems from properties of its nonmonotonic version.
Truszczyński (1991) and Schwarz and Truszczyński (1994)
showed that the nonmonotonic logic S4F captures, under
some direct and intuitive encodings, the (disjunctive) logic
programming with the answer set semantics (Gelfond & Lif-
schitz 1991), the (disjunctive) default logic (Reiter 1980;
Gelfond et al. 1991), the logic of grounded knowledge (Lin
& Shoham 1990), the logic of minimal belief and negation
as failure (Lifschitz 1994) and the logic of minimal knowl-
edge and belief (Schwarz & Truszczyński 1994).

For an S4F-interpretation M = 〈V,W, π〉, we write
LM (UM) for the set of all formulas from L (propositional
formulas) that hold in every truth assignment π(v), where
v ∈ V (π(w), where w ∈ W , respectively). The fol-
lowing result is a restatement of a characterization of S4F-
expansions developed by Schwarz in (1992).

Theorem 2 Let I ⊆ LK . A theory T ⊆ LK is an S4F-
expansion of I if and only if there is an S4F-model M of I
such that T = St(UM); LM = UM; and for every S4F-
model N of I with UN = UM, UN ⊆ LN .

Modal Defaults
In this paper, we are interested in formulas from LK , which
we call modal defaults. An inductive definition of a modal
default, given in the BNF notation, is as follows:

ϕ ::= Kψ |Kϕ | ¬ϕ |ϕ ∨ ϕ |ϕ ∧ ϕ |ϕ→ ϕ,

where ψ ∈ L. In other words, modal defaults are formulas
built according to the same rules as arbitrary modal formulas
are. The difference is in the base case. It consists of formu-
las Kψ, where ψ ∈ L. We define a modal default theory to
be a set of modal defaults. The terminology reflects the fact
that, as we argue later, standard defaults and default theo-
ries introduced by Reiter (1980) are special cases of modal
defaults and modal default theories, respectively.

For modal defaults, the concepts of an S4F-interpretation
and S4F-entailment can be replaced by simpler ones. An
S4F-pair is a pair 〈L,U〉, where L,U ⊆ L are propositional
theories closed under propositional entailment.



For an S4F-pair 〈L,U〉 and a modal default ϕ, we define
two satisfiability relations 〈L,U〉 |=l ϕ and 〈L,U〉 |=u ϕ
inductively as follows:

1. For ϕ = Kψ, where ψ ∈ L, we define 〈L,U〉 |=u ϕ if
ψ ∈ U ; and we define 〈L,U〉 |=l ϕ if ψ ∈ L ∩ U

2. We handle boolean connectives in the standard way. For
instance, for ϕ = ¬ψ, where ψ is a modal default, we
define 〈L,U〉 |=u ϕ if 〈L,U〉 6|=u ψ; and 〈L,U〉 |=l ϕ if
〈L,U〉 6|=l ψ

3. For ϕ = Kψ, where ψ is a modal default, we define
〈L,U〉 |=u ϕ if 〈L,U〉 |=u ψ; and we define 〈L,U〉 |=l ϕ
if 〈L,U〉 |=l ψ and 〈L,U〉 |=u ψ

We write 〈L,U〉 |= ϕ2 if 〈L,U〉 |=l ϕ and 〈L,U〉 |=u ϕ.
If M is an S4F-interpretation then 〈LM, UM〉 is an S4F-

pair. One can also show that for every S4F-pair 〈L,U〉 there
is an S4F-interpretation M = 〈V,W.π〉 such that LM = L
and UM = U .

The following result describes the connection between the
satisfiability of modal defaults in S4F-interpretations, and
the satisfiability relations involving S4F-pairs.

Proposition 3 Let M = 〈V,W, π〉 be an S4F-interpre-
tation and ϕ a modal default.

1. For every v ∈ V :
M, v |= ϕ if and only if 〈LM, UM〉 |=l ϕ

2. For every w ∈W :
M, w |= ϕ if and only if 〈LM, UM〉 |=u ϕ

3. M |= ϕ if and only if 〈LM, UM〉 |= ϕ.

This result implies the following characterization of S4F-
expansions of modal default theories.

Theorem 4 Let I ⊆ LK be a modal default theory. A the-
ory T ⊆ LK is an S4F-expansion of I if and only if there
is U ⊆ L such that U is closed under propositional entail-
ment, T = St(U), 〈U,U〉 |= I , and for every S4F-pair
〈L,U〉, 〈L,U〉 |= I implies U ⊆ L.

Proof: (⇒) Let T be an S4F-expansion of I . By Theorem
2, there is an S4F-model M of I such that T = St(UM),
LM = UM, and for every S4F-model N of I with UN =
UM, UN ⊆ LN . Let U = UM. Clearly, U is closed
under propositional entailment and T = St(U). More-
over, by Proposition 3, 〈U,U〉 |= I . Let us consider an
S4F-pair 〈L,U〉 such that 〈L,U〉 |= I . Let N be an S4F-
interpretation such that LN = L and UN = U (we observed
earlier that such S4F-interpretations exist). Then N |= I
and UN = UM. By Theorem 2, UN ⊆ LN . Since U = UN

and L = LN , U ⊆ L. Thus, U has all the properties re-
quired.
(⇐) Let 〈U,U〉 be an S4F-pair such that T = St(U),
〈U,U〉 |= I , and for every S4F-pair 〈L,U〉 such that
〈L,U〉 |= ϕ, U ⊆ L. Let M be any S4F-interpretation
such that LM = UM = U . Since UM = U , T = St(UM).
By Proposition 3, M |= I . Let us consider an S4F-model N
of I such that UN = UM (that is, UN = U ). By Proposition

2We overload the symbol |=. Its exact meaning is determined
by the context, that is, the structure appearing to its left (a Kripke
interpretation M, a pair M, w or an S4F-pair).

3, 〈LN , UN 〉 |= I . Hence, UN ⊆ LN and so, by Theorem
2, T is an S4F-expansion of I , 2

We can further simplify this result by restricting attention
to special S4F-pairs. First, we note the following result.

Proposition 5 For every modal default ϕ and for every
S4F-pair 〈L,U〉:

1. 〈L,U〉 |=u ϕ if and only if 〈L ∩ U,U〉 |=u ϕ

2. 〈L,U〉 |=l ϕ if and only if 〈L ∩ U,U〉 |=l ϕ.

We now define an se-interpretation as an S4F-pair 〈L,U〉
such that L ⊆ U . If I is a modal default theory then an se-
interpretation 〈L,U〉 such that 〈L,U〉 |= I is an se-model
of I3. Since S4F-pairs 〈L ∩ U,U〉 are se-interpretations,
Proposition 5 implies that se-interpretations suffice to char-
acterize the S4F-entailment. For a modal default theory I
and a modal default ϕ we write I |=se ϕ if every se-model
of I is an se-model of ϕ.

Corollary 6 Let I ⊆ LK be a modal default theory and let
ϕ ∈ LK be a modal default. Then I |=S4F ϕ if and only if
I |=se ϕ.

Corollary 7 Let I ⊆ LK be a modal default theory. A the-
ory T ⊆ LK is an S4F-expansion of I if and only if there
is U ⊆ L such that U is closed under propositional entail-
ment, T = St(U), 〈U,U〉 is an se-model for I , and for every
se-model 〈L,U〉 for I , U = L.

Let I ⊆ LK . We call an se-interpretation 〈U,U〉 an se-
expansion of I if 〈U,U〉 |= I and for every se-model 〈L,U〉
of I , L = U . Our results show that there is a one-to-one cor-
respondence between S4F-expansions and se-expansions.

Corollary 8 Let I ⊆ LK be a modal default theory. A the-
ory T ⊆ LK is an S4F-expansion of I if and only if there is
an se-expansion 〈U,U〉 of I such that T = St(U).

Strong Equivalence for the Nonmonotonic

Logic S4F
Strong equivalence is a fundamental property in the studies
of nonmonotonic logics. It captures the concept of modular-
ity, or “equivalence for replacement”. Theories I, I ′ ⊆ LK

are strongly equivalent (in the nonmonotonic logic S4F) if
for every theory J ⊆ LK , I ∪ J and I ′ ∪ J have the same
S4F-expansions (or equivalently, the same se-expansions).
Thus, if I, I ′ ⊆ LK are strongly equivalent, one can be re-
placed by the other within a larger theory without affecting
the nonmonotonic semantics of the theory. This notion was
studied for logic programs (Lifschitz, Pearce, & Valverde
2001; Lin 2002) and default logic (Turner 2003), and in ab-
stract algebraic settings (Truszczyński 2006).

We will now characterize strong equivalence of modal de-
fault theories I and I ′. We will use the following notation:
for U ⊆ LK , we write KU = {Kϕ|ϕ ∈ U}. We will also
use the following simple lemma.

Lemma 9 Let 〈L,U〉 be an se-interpretation. For every
modal default ϕ, if 〈L,U〉 |= ϕ then 〈U,U〉 |= ϕ.

3The term “se” stands for strong equivalence reflecting con-
nections to models used by Turner (2003) to characterize strong
equivalence of logic programs.



We now present the main result of this section.

Theorem 10 Let I, I ′ ⊆ LK be modal default theories. The
following conditions are equivalent:

1. I and I ′ are strongly equivalent

2. I and I ′ are equivalent in the logic S4F

3. I and I ′ have the same se-models.

Proof: By Corollary 6, the conditions (2) and (3) are equiv-
alent. If I and I ′ are equivalent in the logic S4F then, for
every theory J ⊆ LK , I ∪J and I ∪J ′ are equivalent in the
logic S4F and so, have the same S4F-expansions. Thus, I
and I ′ are strongly equivalent, and so (2) implies (1).

It follows that to complete the proof it suffices to show
that (1) implies (3). By Corollary 8, (1) implies
(1′) for every modal default theory J , I ∪J and I ′ ∪J have
the same se-expansions.

Let us assume that (3) fails. By symmetry, we may as-
sume that some se-model 〈L,U〉 of I is not an se-model of
I ′.
Case 1. 〈U,U〉 6|= I ′. Then, 〈U,U〉 6|= I ′ ∪ KU . Thus,
〈U,U〉 is not an se-expansion of I ′ ∪KU .

Next, we note that 〈U,U〉 |= I (it follows by Lemma 9
from the fact that 〈L,U〉 |= I). Moreover, from the defini-
tion we have 〈U,U〉 |= KU . Thus, 〈U,U〉 |= I ∪KU .

Let us consider an se-model 〈L′, U〉 of I ∪ KU . Since
〈L′, U〉 |= KU , U ⊆ L′, and since 〈L′, U〉 is an se-
interpretation, L′ = U . Thus, 〈U,U〉 is an se-expansion
of I ∪KU . This is a contradiction with (1′).
Case 2. 〈U,U〉 |= I ′. Since 〈L,U〉 6|= I ′, it follows that
L 6= U and so, U \ L 6= ∅.

Since L ⊆ U , it follows that 〈U,U〉 is an se-model of

P ′ = I ′ ∪KL ∪ {Kα→ Kβ|α, β ∈ U \ L}.

Let us consider an se-model 〈L′, U〉 of P ′. Then, it follows
that L ⊆ L′ ⊆ U . Since L′ 6= L (we recall that 〈L,U〉 is
not an se-model of I ′), L′ \ L 6= ∅.

Let α ∈ L′\L. Since α ∈ U , α ∈ U \L. Thus, 〈L′, U〉 |=
Kα→ Kβ, for every β ∈ U \ L. Since α ∈ L′,

〈L′, U〉 |=l Kα and 〈L′, U〉 |=u Kα.

Consequently, 〈L′, U〉 |= Kβ, for every β ∈ U \ L. Thus,
since 〈L′, U〉 |= KL, 〈L′, U〉 |= KU . It follows that U ⊆
L′ and so L′ = U . Thus, 〈U,U, 〉 is an se-expansion of P ′.
By (1′), 〈U,U〉 is an se-expansion of

P = I ∪KL ∪ {Kα→ Kβ|α, β ∈ U \ L}.

On the other hand, we have 〈L,U〉 |= P . Thus, 〈U,U〉 is
not an se-expansion of P , a contradiction with (1′). 2

Uniform Equivalence for the Nonmonotonic

Logic S4F

The notion of uniformly equivalent logic programs was in-
troduced by Eiter, Fink and Woltran (2006). Here we gener-
alize it to modal default theories in the logic S4F.

Let P,Q ⊆ LK be modal theories. We say that P and Q
are uniformly equivalent if for every set X ⊆ L, P ∪ KX
andQ∪KX have the same S4F-expansions. If P andQ are

modal default theories then for every X ⊆ L, P ∪KX and
Q ∪ KX are modal default theories, too. It turns out that
se-interpretations can also be used to characterize uniform
equivalence. Namely, we have the following theorem.

Theorem 11 Default modal theories P,Q ⊆ LK are uni-
formly equivalent if and only if the following three condi-
tions hold:

1. for every se-interpretation 〈U,U〉, 〈U,U〉 |= P if and
only if 〈U,U〉 |= Q

2. for every se-interpretation 〈L,U〉, if L ⊂ U and
〈L,U〉 |= P then there is an se-interpretation 〈L′, U〉
such that L ⊆ L′ ⊂ U and 〈L′, U〉 |= Q

3. for every se-interpretation 〈L,U〉, if L ⊂ U and
〈L,U〉 |= Q then there is an se-interpretation 〈L′, U〉
such that L ⊆ L′ ⊂ U and 〈L′, U〉 |= P

Modal Programs

We will now consider modal programs, a special class of
modal default theories consisting of modal rules. A formal
inductive definition of a modal rule, given in the BNF nota-
tion, is as follows:

ϕ ::= Kp |Kϕ | ¬ϕ |ϕ ∨ ϕ |ϕ ∧ ϕ |ϕ→ ϕ,

where p ∈ At ∪ {⊥}. In other words, modal rules are built
in the same way as modal defaults, but from expressions of
the form Kp, where p ∈ At ∪ {⊥} and not Kψ, ψ ∈ L. A
modal program is a set of modal rules.

If X ⊆ L, we write Th(X) for the set of all propositional
consequences of X . A simple se-interpretation is any se-
interpretation of the form 〈Th(L),Th(U)〉, where L,U ⊆
At . To characterize S4F-expansions of modal programs it
suffices to restrict to simple se-interpretations. Indeed, the
following results state the key property of modal rules.

Theorem 12 If ϕ is a modal rule and 〈L,U〉 is an se-
interpretation then 〈L,U〉 |= ϕ if and only if 〈Th(L ∩
At),Th(U ∩ At)〉 |= ϕ.

Proof: The assertion can be proved by a standard inductive
argument on the complexity of a formula. 2

Corollary 13 If I and I ′ are modal programs, then I and
I ′ have the same se-models if and only if they have the same
simple se-models.

These results allow us to strengthen the characterization
of strong equivalence in the case of modal programs.

Corollary 14 Let I, I ′ ⊆ LK be modal programs. The fol-
lowing conditions are equivalent:

1. I and I ′ are strongly equivalent

2. I and I ′ have the same simple se-models.

Proof: By Corollary 13, I and I ′ have the same simple se-
models if and only if they have the same se-models. Thus,
the assertion follows directly from Theorem 10. 2

Using a similar argument we can also strengthen the char-
acterization of the uniform equivalence of modal programs
(Theorem 11) by consistently replacing se-interpretations
with simple se-interpretations.



We conclude this section by noting that all results con-
cerning modal programs can be restated in terms of the
modal logic SW5. The semantics of the logic SW5 is de-
termined by S4F-interpretations 〈V,W, π〉, where |V | = 1.
Alternatively, this logic can be characterized in a proof-
theoretic way in terms of axiom schemata K, T, 4 and W5
(Segerberg 1971; Marek & Truszczyński 1993). For modal
programs we have the following results.

Theorem 15 If I, I ′ ⊆ LK are modal programs and ϕ is a
modal rule then:

1. I |=S4F ϕ if and only if I |=SW5 ϕ

2. A theory T is an S4F-expansion of I if and only if T is an
SW5-expansion of I

3. I and I ′ are strongly equivalent if and only if I and I ′ are
equivalent in the logic SW5.

The Logic Here-and-There
In recent years, the the logic here-and-there (Heyting 1930)
has emerged as the logic behind the answer-set program-
ming (Pearce 1997; Ferraris & Lifschitz 2005). We will now
show that the logic here-and-there can be embedded in the
logic S4F. Even more, as the embedding represents theo-
ries of the logic here-and-there as modal programs, the logic
S4F can be replaced by the logic SW5. Our results in this
section are related to results of Lin and Zhou (2007), where
an embedding of the logic here-and-there in the logic GK
(Lin & Shoham 1990) was presented.

The language of the logic here-and-there has three prim-
itive binary connectives ∧, ∨ and →, and a constant ⊥ to
represent a generic contradiction. A formal BNF definition
of formulas in the propositional language of the logic here-
and-there is:

ϕ ::= ⊥ | p |ϕ ∨ ϕ |ϕ ∧ ϕ |ϕ→ ϕ,

where p ∈ At . The negation of a formula ϕ, ¬ϕ, is a short-
hand for the formula ϕ→ ⊥. We denote the set of all formu-
las defined in this way by Lht (formally, it is only a subset
of L, as ¬ is not a primary connective in the logic here-and-
there, as introduced here).

The semantics of the logic here-and-there is given by HT-
interpretations. An HT-interpretation is a pair 〈L,U〉, where
L ⊆ U ⊆ At are sets of atoms. We define the satisfiability
relation 〈L,U〉 |=ht ϕ, where ϕ ∈ Lht , by induction as
follows:

1. 〈L,U〉 6|= ⊥

2. For ϕ = p, where p ∈ At , we define 〈L,U〉 |=ht p if
p ∈ L

3. 〈L,U〉 |=ht ϕ ∧ ψ if 〈L,U〉 |=ht ϕ and 〈L,U〉 |=ht ψ

4. 〈L,U〉 |=ht ϕ ∨ ψ if 〈L,U〉 |=ht ϕ or 〈L,U〉 |=ht ψ

5. 〈L,U〉 |=ht ϕ→ ψ if (i) 〈L,U〉 6|=ht ϕ or 〈L,U〉 |=ht ψ;
and (ii) U |= ϕ→ ψ (in standard propositional logic).

An HT-interpretation 〈U,U〉 is an equilibrium model of
A ⊆ Lht if 〈U,U〉 |=ht A and for every L ⊆ U , if
〈L,U〉 |=ht A then L = U (Pearce 1997). Equilibrium
models correspond to stable models of general logic pro-
grams (Ferraris & Lifschitz 2005).

We will now show that the logic here-and-there can be
embedded in the logic S4F. To this end, for every proposi-
tional formula ϕ ∈ Lht we define a formula ϕ¬K¬K to be a
modal rule obtained from ϕ by replacing each a ∈ At∪{⊥}
in ϕ with ¬K¬Ka (intuitively, ¬K¬K represents a modal-
ity exhibiting properties of the belief modality). We note
that all formulas ϕ¬K¬K are modal rules.

Next, for every propositional formula ϕ ∈ Lht we define
the corresponding modal rule ϕmp inductively as follows:

1. amp = Ka for a ∈ At ∪ {⊥}

2. (ϕ ∧ ψ)mp = ϕmp ∧ ψmp and (ϕ ∨ ψ)mp = ϕmp ∨ ψmp

3. (ϕ→ ψ)mp = (ϕmp → ψmp) ∧ (ψ → ϕ)¬K¬K .

We extend this notation to sets of formulas: for a set A ⊆
Lht , we define Amp = {ϕmp |ϕ ∈ A}.

We have the following result establishing the connection
between the logic here-and-there and the logic SW5 (or S4F
as the two logics coincide on modal programs). To state it,
we use the notation A |=sse ϕ to denote that every simple
se-model of A is a simple se-model of ϕ.

Theorem 16 Let A ⊆ Lht and ϕ ∈ Lht . The following
conditions are equivalent:

1. A |=ht ϕ

2. Amp |=se ϕmp

3. Amp |=sse ϕmp

4. Amp |=SW5 ϕmp

5. Amp |=S4F ϕmp .

Corollary 17 Let A ⊆ Lht and U ⊆ At . The following
conditions are equivalent:

1. U is a stable model of A

2. 〈U,U〉 is an equilibrium model of A

3. 〈Th(U),Th(U)〉 is an se-expansion of A

4. St(U) is an SW5-expansion of Amp

5. St(U) is an S4F-expansion of Amp .

Logic of Nested Defaults

Let α:β1,...,βm

γ1|...|γn

be a disjunctive default (Gelfond et al. 1991).

By encoding it with a modal default

Kα ∧K¬Kβ1 ∧ . . . ∧K¬Kβk → Kγ1 ∨ . . . ∨Kγn

we obtain an embedding of (disjunctive) default theories
in LK which establishes a one-to-one correspondence be-
tween extensions and S4F-expansions (Truszczyński 1991).
Thus, the class of modal default theories with the semantics
of S4F-expansions (or se-expansions) can be regarded as a
generalization of the disjunctive default logic. In fact, we
can regard it as a general default logic of nested defaults as
it covers, for instance, the case of formulas of the form

Kα ∧K¬Kβ1 ∧ . . . ∧K¬Kβk → Kγ1 ∨ . . . ∨Kγn

where α, βi and γi are arbitrary modal defaults rather than
formulas from L.

We also note that by exploiting the embedding given
above, our results on strong equivalence of modal default
theories can be specialized to results on strong equiva-
lence of disjunctive default theories, first obtained by Turner
(2003). Our results on uniform equivalence of modal default
theories generalize those obtained by Truszczyński (2006).



Conclusions

In this paper we investigated the modal (nonmonotonic)
logic S4F under the restriction to modal default theories.
We presented new characterizations of S4F-expansions of
modal default theories and showed that two modal default
theories are strongly equivalent if and only if they are equiv-
alent in the logic S4F. We also generalized to the setting of
the logic S4F and modal default theories the concept of uni-
form equivalence, and we derived characterizations of modal
default theories that are uniformly equivalent.

We also studied modal programs — a subclass of the class
of modal default theories. We showed that the logic here-
and-there can be viewed as a fragment of the logic S4F. In
particular, general logic programs with the semantics of sta-
ble models can be encoded as modal programs under the
semantics of the nonmonotonic modal logic S4F. We also
showed that for the class of modal programs, the logic S4F
can be replaced by a stronger modal logic, the logic SW5.

One might argue that the modal logic S4F has an advan-
tage over the logic here-and-there as the logic of general
logic programs. Its language contains all boolean connec-
tives and they are interpreted in the standard way. In the
logic here-and-there, negation is a derived operator and im-
plication has a non-standard interpretation in HT-models.

Our paper is related to (Lin & Zhou 2007). However, our
logic explicitly handles nested modalities and, more impor-
tantly, requires only one modal operator and not two.

The results of the paper provide further evidence of the
importance of the logic S4F for knowledge representation.
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