Nonmonotonic reasoning is sometimes simpler!!
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Abstract

We establish the complexity of decision problems associated with the nonmonotonic modal logic
S4. We prove that the problem of existence of an S4-expansion for a given set A of premises is
E2P—complete. Similarly, we show that for a given formula ¢ and a set A of premises, it is El;—
complete to decide whether ¢ belongs to at least one S4-expansion for A, and it is H2P—complete to
decide whether ¢ belongs to all S4-expansions for A. This refutes a conjecture of Gottlob that these
problems are PSPACE-complete. An interesting aspect of these results is that reasoning (testing
satisfiability and provability) in the monotonic modal logic S4 is PSPACE-complete. To the best of
our knowledge, the nonmonotonic logic S4 is the first example of a nonmonotonic formalism which
is computationally easier than the monotonic logic that underlies it (assuming PSPACE does not
collapse to £1).

1 Introduction

First nonmonotonic logics were proposed in late 70s and early 80s in an attempt to
construct knowledge representation tools for situations where only partial, incomplete
information is available. Among these early nonmonotonic logics are circumscription
[11], default logic [20] and a whole family of modal nonmonotonic logics [13, 12], with
autoepistemic logic [15] as its most prominent representative. (In fact, at the time of
its introduction autoepistemic logic was not known to belong to the family of logics
introduced in [13, 12]. It was proved to be the case by Schwarz [22].)
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As the discipline of nonmonotonic logics matured, the issues of their practical
applicability came to the focus of attention. In particular, the complexity of non-
monotonic reasoning has been recently a subject of an extensive research activity.
Usually, a nonmonotonic logic is obtained from some monotonic logic by modifying
its semantics, for example, by restricting to minimal models only (circumscription),
or proof theoretically by means of some fixed-point construction (default logic, au-
toepistemic logic, nonmonotonic modal logics of [13, 12]). Checking whether a model
is minimal or if a theory is a solution to a fixed-point equation is costly. In fact, when
a nonmonotonic logic is defined by a fixed-point construction, it is not at all obvious
that it is decidable. Hence, perhaps not unexpectedly but still rather disappointingly,
in all cases studied so far nonmonotonic reasoning turns out to be more complex
(unless the polynomial hierarchy collapses at some low level) than the underlying
monotonic reasoning. For example, Eiter and Gottlob proved that propositional cir-
cumscription is 115 -complete [1] and Gottlob proved that several problems associated
with reasoning in default logic are X4~ or ITI{’-complete [4]. Hence, under the assump-
tion that the polynomial hierarchy does not collapse, propositional circumscription
and default logic are substantially more complex than the reasoning in propositional
logic.

Let us look now at the case of nonmonotonic modal logics introduced by McDer-
mott and Doyle [13, 12]. These logics are defined by means of a fixed-point construc-
tion. The basic notion is that of an expansion. Let S be a propositional modal logic
and let A be a set of sentences. A theory T is called an S-expansion, if

T=Cns(AU{=Kp:p ¢ T}), (1)

where Cns stands for the consequence operator in the logic S. Depending on the ap-
proach, an arbitrarily selected S-expansion for A or the intersection of all S-expansion
for A is regarded as a set of nonmonotonic consequences of A. Hence, reasoning with
the nonmonotonic logic S consists of checking whether a given formula is in some
(or all) S-expansions for A. Since the definition of an S-expansion involves the con-
sequence operator in the (monotonic) modal logic S, it is natural to expect that a
decision procedure for the nonmonotonic logic S, if exists, is at least as complex as
any decision procedure for the monotonic modal logic S.

McDermott [12] considered nonmonotonic modal logics S5, S4 and T. He proved
that the nonmonotonic logic S5 coincides with the monotonic logic S5. Hence, the
computational complexity of nonmonotonic S5 coincides with that of monotonic S5,
which is co-NP complete for the provability problem and NP-complete for the sat-
isfiability problem [8]. Gottlob [4] conjectured that, although nonmonotonic logics
K, T and S4 do not collapse into monotonic logics, their computational complexity
coincide with the complexity of the corresponding monotonic modal logics (which all
are known to be PSPACE-complete, see [8]).

Some modal logics have received special attention since their nonmonotonic ver-
sions are particularly suitable for knowledge representation purposes. The logic KD45
is one of them. It is commonly accepted as a logic of belief [9, 7]. Halpern and Moses
[7] proved that the satisfiability problem for KD45 is NP-complete (and, correspond-
ingly, the derivability problem is co-NP complete). The nonmonotonic logic KD45 is
(essentially) equivalent to one of the most celebrated nonmonotonic formalisms, au-
toepistemic logic of Moore [15]. It was proved in [22] that for each set A of premises,



a consistent theory 7" is a stable expansion of A if and only if 7" is a KD45-expansion
of A. Gottlob [4] and Niemeld [18] proved that the problems of existence of a sta-
ble expansion, and of membership in some (all) stable expansions are located on the
second level of the polynomial hierarchy. Hence, they are more complex (unless the
polynomial hierarchy collapses to NP) than reasoning in the underlying modal logic
KD45, for which the satisfiability problem is NP-complete. More results of that type,
on nonmonotonic systems that are variations of autoepistemic logic, are given in [2].

Another logic with important applications in knowledge representation is logic S4.
This logic is often considered as a logic of knowledge (see [14]). It was shown in [22]
that if we use the nonmonotonic logic S4 instead of autoepistemic logic, then we can
avoid some of the problems caused by counterintuitive behavior of stable expansions.
In addition, the nonmonotonic logic S4 can be regarded as a generalization of both
default logic [25] and autoepistemic logic [23]. Thus, it is important, to investigate
its computational aspects. This is the main objective of this paper.

McDermott presented in [12] a decision procedure for the nonmonotonic logic S4,
based on the tableau method, but no complexity analysis was given.

General results characterizing S-expansions for a wide class of modal logics & were
obtained in [22, 16]. These characterizations are algorithmic under the assumptions
that a set A of premises is finite, and that the derivability in S is decidable. It was
used in [16] to design algorithms for problem such as: does an S-expansion of A
exist? does a given formula belong to all (some) S-expansions of A7 The algorithms
presented in [16] depend on procedures for checking derivability of formulas in the
underlying (monotonic) modal logic S. Therefore they are at least as complex. In
particular, in the case of S4 they are at least as complex as any decision procedure
for the monotonic logic S4.

Can we do better? In fact, we can! The main result of this paper states that
reasoning in the nonmonotonic logic S4 resides on the second level of the polynomial
hierarchy while S4-satisfiability is PSPACE-complete [8]. Hence, the nonmonotonic
logic S4 is much less computationally complex (assuming PSPACE does not collapse
to ¥¢) than monotonic S4. To the best of our knowledge it is the first example of a
nonmonotonic logic with this property.

The key idea is to exploit the concept of a range [16]. It was observed in [16]
that, sometimes, different monotonic modal logics generate the same nonmonotonic
version. For example, logics K45 and KD45 are different, but consistent K45- and
KD45-expansions coincide. If we have two logics §; and S; with the property that
for each set A of premises, consistent S;-expansions of A coincide with consistent
So-expansions of A, then we say that logics &) and S2 are in the same range. The
concept of a range suggests the following approach to the problem of reasoning with
nonmonotonic S4: find a computationally simple modal logic S in the same range as
S4. Then, the decision procedure from [16] for the nonmonotonic logic S would be,
in the same time, a decision procedure for the nonmonotonic logic S4. Since it would
be based on a computationally simple logic S, rather than on a highly complex logic
S4, it might actually be simpler than any decision procedure for monotonic S4.

With this approach we immediately run into a problem. So far we have been
unable to find a logic in the same range as S4 and computationally simpler than S4.
However, for our complexity considerations a weaker notion of a range is sufficient.
Namely such which only requires that logics in the same range generate the same



expansions for all finite sets of premises. In [16] it was shown that there is a logic,
namely the logic S4F (also known as S4.3.2), which is equivalent, in this weaker
sense, to S4. That is, for every finite theory A, consistent S4-expansions of A coincide
with consistent S4F-expansions of A. (In general, the nonmonotonic logics S4 and
S4F are different. An example of an infinite set A of premises such that not every
S4F-expansion of A is an S4-expansion of A is also given in [16].)

The logic S4F, although not as well-known as S4, has been investigated in the
literature. Segerberg [21] studied its mathematical properties, and Lenzen [10] dis-
cussed it from the epistemological point of view. The nonmonotonic logic S4F has
several interesting properties. In particular, similarly to the nonmonotonic logic 5S4,
it can be regarded as a generalization of default and autoepistemic logics. A detailed
study of the properties of the nonmonotonic logic S4F is given in [23]. The logic
S4F has a more complex axiomatization than S4. Despite this, we will show that it
is computationally much simpler than S4 (assuming PSPACE does not collapse to
NP). In the paper, we will use the logic S4F, according to the plan outlined above,
to establish the complexity of reasoning with the nonmonotonic logic S4.

The paper is organized as follows. Basic definitions and results are gathered in
Section 2. Results on the complexity of reasoning in the nonmonotonic modal logic
S4F are presented in Section 3. The last section contains main results of the paper
establishing the complexity of reasoning in the nonmonotonic modal logic S4.

2 Preliminaries

We assume familiarity with basic notions of the complexity theory such as the polyno-
mial hierarchy, the classes P, NP, AL £ TP PSPACE, the notion of completeness
of a problem in a class. For a good presentation of the topic of complexity the reader
is referred to Garey and Johnson [3]. Let us recall that class NP coincides with $F,
class co-NP coincides with II¥. Class AY (£F) consists of problems which can be de-
cided in polynomial time by a deterministic algorithm (a non-deterministic algorithm)
with an oracle for a problem belonging to NP. Class II{’ consists of problems whose
complements are in ¥¥'. For a detailed presentation of the topic of the polynomial
hierarchy the reader is referred to [3].

We will present now basic notions and results on modal logics. More on the subject
can be found in Hughes and Cresswell [6]. We will consider the language of modal
logic obtained by extending a language of propositional calculus, say £, by a necessity
modal operator K. We will denote it by L. Let S be a modal logic.

By A Fs ¢ we denote the fact that a formula v is derivable from a set A of formulas
by means of axioms of § and the inference rules modus ponens and necessitation. Note
that our notion of kg differs from that in [6] and some other books and papers on
modal logic. Namely, in [6], A Fs ¢ denotes that ¢ is derivable from A and theorems
of § by means of modus ponens only. Thus, in our sense, p s Kp while, under the
stronger interpretation of ks, this statement is false. However, this is mostly just a
terminological difference and all our results may be reformulated under the alternative
notation. By Cns we denote the provability operator in the modal logic S. That is,
Cns(A) ={¢: Akrs ¢}

In this paper we focus our attention on two modal logics: S4 and S4F. Logic S4
is specified by the following three axiom schemata:



K: KpD (K(pDq) D Kgq);
T: Kp D p;
4: Kp D KKp.

Logic S4F (also known as S4.3.2) is specified by the schemata K, T and 4 and, in
addition by the schema

F: (pAMKq) D K(MpV q),

where M abbreviates, as usual, the formula =K —p.

We assume familiarity with Kripke models (see [6, 17] for a detailed presentation
of modal logics). Here we briefly recall the terminology we use. A Kripke model is a
triple M = (M, R,V), where M is a nonempty set (called the set of worlds of M),
R is a binary relation on M, and for each a € M, V,, is a valuation of propositional
variables of the language. By (M,a) | ¢ we denote that a formula ¢ is true in a
world « of M. Let us recall that, by definition, (M, «) = Kt if and only if for each
B € M such that aRS, (M, B) = .

We write M |= ¢ and say that ¢ is valid in M if for each a € M, (M, a) = .
Let A be a modal theory. We write M = A and say that A is valid in M, if M E ¢
for every ¢ € A.

Let I be a class of Kripke models. We say that S is characterized by IC, if the
following holds: for each set A of formulas, and for each ¢, A ks ¢ if and only if
for each Kripke model M € K, M = A implies M |= ¢. It is well known that logic
S4 is characterized by the class of models with reflexive and transitive accessibility
relation. We will refer to such models as S4-models. Logic S4F is characterized by
the class C(S4F) of models of the form

(M, (Ml X M) U (MZ X M2)7V>,

where M = My U Ms, M; N Ms = () and My # (). Observe that we do not require
that M, be nonempty. Hence, speaking informally, C(S4F) consists of clusters and of
pairs of clusters one concatenated on top of the other. Models in C(S4F’) are referred
to as S4F-models. Finally, models of the form (M, M x M,V) characterize the logic
S5 (defined by the modal axioms K, T, 4 and 5: -Kp D K—Kp). They are called
universal S5-models.

Remark 1 Usually, the characterization results are proved in a weaker form, namely,
that kg ¢ if and only if for each M € K, M |= . Characterization results used in
this paper can be obtained from the weaker ones, see [12, 17].

It is well known, that if tfs4 v, then there is a finite S4-model M and a world «
in M such that (M, a) [~ . This result is known as the finite model property for S4.
We will now prove a generalization of this result.

Proposition 2 Let A be a finite set of formulas. If A tfs4 9, then there is a Kripke
model M = (M, R,V such that M is finite, R is transitive and reflexive, M | A,
and for some a € M, (M, a) = 2.



Proof: Let ® be a conjunction of all the formulas of A. Clearly, ® ts4 9. Since
® gy KO, it follows that sy K® D v. Applying the finite model property for S4,
we get a finite model N' = (N, Q, W), where @ is reflexive and transitive, and a world
a € N such that (V,a) £ K® D ¢. Then (N,a) E K® and (V,a) & . Let
M = (M, R,V) be the submodel of N generated by «. That is, M = {3 : aRj3},
R=QN (M x M), V is the restriction of W on M.

It is easy to prove by induction on the length of a formula that for every formula ¢
and for every world o' € M, (M, ') E ¢ if and only if (M, o) = . By the definition
of M, we also have a € M. Consequently, (M,a) E K® and (M, a) & ¢. Also by
the definition of M, for every o' € M, aQa' and, hence, aRa’. Thus, M |= @ or,
equivalently, M |= A. Hence, the assertion follows. a

We say that a theory A is consistent with a modal logic S if A /s L. The
following result on consistency of theories with logics S4, S4F and S5 is well-known
(see [24, 8, 17] for more details).

Proposition 3 Let A be a finite modal theory, let k£ be the number of occurrences
of the modal operator K in A. Then the following conditions are equivalent:

1. A is consistent with S4
2. A is consistent with S4F
3. A is consistent with S5

4. A is valid in a universal S5-model with k£ + 1 worlds.

Proof: The equivalence of (1) and (3) is proved, for example, in [24]. Since S4F
contains S4 and is contained in S5, the equivalence of (1), (2) and (3) follows. For the
proof that (3) is equivalent to (4), assume that the conjunction of all formulas in A is
®. Now, note that ® is valid in a universal S5-model if and only if K® is satisfiable
in some world of the model, and that ® is consistent with S5 if and only if g5 - K ®
(deduction theorem for S5, see e.g. [12]). The result then follows from a theorem by
Ladner [8]. |

Next, we present basic notions and results on modal nonmonotonic logics (a de-
tailed treatment of the subject can be found in [17] and [16]). Let S be a modal logic.
Let A C L. A theory T C Lk is an S-expansion for A if

T = Ons(AU{~Kp:p ¢ T}). (2)

For a wide range of modal logics S, S-expansions have been effectively character-
ized in [22, 16]. We will recall this characterization in the case of logics S4 and S4F.
Given a theory A C Lk, we define

AKX = {p: K¢ is a subformula of a formula from A}.

Any formula built of propositional variables and modal atoms (formulas of the form
K) from the set {K: ¢ € A%} is called an A-formula.
A pair (®, V) of subsets of AX is called introspection-consistent with A if:

(Cl) NV =0 and U ¥ = AK;



(C2) AU{-Kyp:¢p € ®}U{K¢:¢ € ¥} U ¥ is propositionally consistent;

(C3) For each p € &, AU{-Kp:p € P} U{Ky:¢yp € ¥} UV¥ I/ ¢ (- denotes
propositional provability relation).

A propositional valuation assigns a truth value to each propositional letter, and
to each formula of the form K. Note that no relationship is assumed between truth
values of K4 and . That is, formulas beginning with K are treated here as atoms.
Propositional valuations are extended, in the standard way, to the set of all modal
formulas.

Let a pair (®, ¥) of subsets of AX be introspection-consistent with A. Let V4 (®, ¥)
consist of all propositional valuations v of Lx such that

V(AU{-Kp:p € B} U{Ky:p € T}UT) = 1.
Denote by M 4(®, ¥) the Kripke model
(VA(q):‘P):VA((I)a‘II) X VA((I)a‘II)aUA((I)a‘II»;

where for every v € V4(®,¥), Ua(®,¥)(v) = v|L (v|L denotes the restriction of a
valuation v to the set of formulas in £). Clearly, M 4(®,¥) is a universal S5-Kripke
model. Finally, define

TaA(®,9) ={p € Lxg: Ma(P,P) | ¢}

The following theorem [22, 16] gathers useful properties of T4 (®,¥). The next one
provides a characterization of S4- and S4F-expansions.

Theorem 4 Let A C L. If a pair (@, ¥) of subsets of AX is introspection-consistent
with A, then

1. The theory T4(®,¥) is consistent, closed under propositional provability and
necessitation, and for every ¢ ¢ T4 (P, V), ~K¢ € Ty(2,P).

2. For every A-formula &, £ € T4(®, ¥) if and only if

AU{~Kp:p e ®yU{Kip:ip € T}UT ¢,

Theorem 5 Let S stand for S4 or S4F. A consistent with S theory 7' is an S-
expansion for A if and only if T' = Ty (®,¥) for some pair (®,¥) introspection-
consistent with A and such that for every ¢ € ¥,

AU{-Kp:p € ®} Fs ). (3)

Note that this theorem implies, for a finite theory A, a decision procedure for non-
monotonic S4, establishing existence of S4-expansions. The procedure first decides
whether A is consistent with S4. This problem is decidable, in fact, it is NP-complete
(see Proposition 3 and [8]). If the answer is negative, A has a unique S4-expansion
L. Otherwise, every S4-expansion of A is consistent with S4 and can be found using
Theorem 5. That is, a procedure for testing S4-derivability is invoked to decide (3),
for every possible pair (®, ¥) introspection consistent with A (checking introspection



consistency is “easy” is at involves only propositional provability). Hence, this proce-
dure to determine existence of S4-expansions is at least as hard as the S4-derivability
problem. Recall that S4-derivability problem is PSPACE-complete. Consequently,
this straightforward decision procedure for nonmonotonic S4 is quite complex. Our
subsequent results show that, in fact, decision problems for nonmonotonic S4 reside on
the second level of the polynomial hierarchy. In other words, the particular instances
of S4 derivability, involved in (3), are not hard.

3 Nonmonotonic modal logic S4F

Let S be a modal logic. S-expansions can be regarded as formal descriptions of
realities an agent reasoning (nonmonotonically) from A regards as possible. There are
several problems such an agent must be able to solve in order to reason. For example,
is there an S-expansion of A, does a formula belong to some (all) S-expansions of
A, etc. Hence, it is important to establish the complexity of these problems. In this
paper we will study the complexity of the following four problems:

EXISTENCE(S) Given a finite theory A C Lk, decide if A has an S-expansion;

IN-SOME(S) Given a finite theory A C Lk and a formula ¢ € Lk, decide if ¢ is
in some S-expansion of A;

NOT-IN-ALL(S) Given a finite theory A C Lk and a formula ¢ € Lk, decide if
there is an S-expansion for A not containing ¢;

IN-ALL(S) Given a finite theory A C L and a formula ¢ € Lk, decide if ¢ is in
all S-expansions of A.

We will concentrate on the cases S = S4F and S = S4. We start with the case
of logic S4F. We will need two auxiliary results. The next theorem establishes that
the complexity of monotonic S4F is essentially the same as that of S5. Our proof is
based on the ideas of Ladner [8].

A set of formulas, A, is called S4F-satisfiable, if there exists an S4F-model (M, R, V')
and a world a € M, such that A is true in the world a. Since the modal logic S4F is
characterized by the class of S4F-models, we have the following simple fact establish-
ing the relationship between the notions of provability and satisfiability in S4F. The
proof is standard and is omitted.

Proposition 6 A formula ¢ is provable in S4F from a set of premises A if and only
if the theory {Kv:1 € A} U {-p} is not S4F-satisfiable. O

Theorem 7 The following problem is NP-complete:
S4F-SAT Given a finite theory A C Lk, is A S4F-satisfiable?

Proof: NP-hardness follows easily from the fact that propositional satisfiability is a
special case of S4F-satisfiability: a theory consisting of modal-free formulas is propo-
sitionally satisfiable if and only if it is S4F-satisfiable.

To prove that the problem S4F-SAT is in NP is harder. We will represent an S4F-
model M = <M, (M1 X M) U (M2 X Mg),U), where M = M1 U M2 and M1 N M2 =



0, by specifying the sets M; and M,, and by representing each valuation U,,, for
m € My, U Ms, as a set of those propositional variables that are assigned the truth
value 1. By the size of a model we mean the total size of such representation. We
will show that the problem S4F-SAT is in NP by showing that if a finite theory A is
S4F-satisfiable, then it is satisfiable in an S4F-model whose size is polynomial in the
size of an encoding of A.

Let us assume that A is S4F-satisfiable. Let M = (M, (M x M)U (M2 x M>),U),
where M = M; U M> and M; N My = @, be an S4F-model and let « € M be a
world such that(M,a) | A. Without loss of generality, we may assume that each
valuation U,,, m € M, assigns the truth value 0 to those propositional variables that
do not appear in the formulas from A. Since A is finite, each valuation U, is then
represented by a finite set of propositional variables. Its cardinality does not exceed
the total number of propositional variables appearing in the formulas from A. Thus,
the size of our representation of each U, is bounded from above by the size of (the
encoding of) A.

For each ¢ € A% and such that M £ Ko select a world m € M such that
(M, m) £ ¢ under an additional stipulation that, if possible, m be selected from M.
Denote the world selected by m,,. Next, for ¢ = 1,2 define

M] = {my:p € AKX, M £ Kyp and m, € M;} U ({a} N M,;).
Notice that a € M| U Mj. Next, consider the Kripke model
M= (M, (M{ x M') U (M3 x M), U"),

where M' = M{UM} and U" = U|M' (the restriction of U on M'). Note that M’ # 0.
Hence, M’ is an S4F-model (even an S5-model if M{ or M} is empty). We will prove
that for every A-formula ¢ and for every world m € M’,

(M,m) E ¢ if and only if (M',m) | . (4)

We proceed by induction on the length of formulas. For the basis of induction, assume
that ¢ = p, for some propositional variable p. Since U,, = U,,|M', for each m € M’,
the equivalence (4) follows. Consider now an A-formula ¢ other than a propositional
variable, and assume that (4) holds for every A-formula of length less than the length
of p. If ¢ is of the form —) or 1 o ¢, for some boolean connective o, then the
induction step follows easily from the induction hypothesis (v, or ¢; and ), are
A-formulas shorter than ¢) and the definition of the relation = for Kripke models.

Hence, let us consider the only remaining case when ¢ = K. Clearly, ¢ is also
an A-formula and it is shorter than ¢. Let m € M' and assume that (M, m) E ¢. If
m € M{ (m € M)) then, for every world m’ € M' (for every world m' € M}),

(M,m') = 1.

By the induction hypothesis,
(M',m) |= ¢

Hence, it follows that in both cases (m € M| and m € M})
(M',m) = .



Conversely, let us assume that (M, m) = ¢. Then, (M, my) = 9. Since my, € M',
by the induction hypothesis,

(M,7 M¢) l# .
In addition, by the choice of m,, (if possible, my; is taken from M,), my is accessible
from m. Hence,

(M',m) £ K.
This completes the proof of (4).

Since (M, a) E A, we have (M’, ) |= A, too. Next observe that |M'| < |AK|+1
is linear in the size of A. Since each valuation U,,, m € M, has a representation of size
not exceeding the size of the representation of A, and since U}, = U,,, for m € M',
the size of the representation of M’ is polynomial in the size of the representation
of A. It follows then that for each YES-instance of the problem S4F-SAT there is
a polynomial-size “evidence” of that. Hence, a nondeterministic algorithm to decide
S4F-SAT would first “guess” this polynomial size model and, then, would check that
in one of its worlds all formulas from A are true. Since the model has size polynomial
in A, this verification can be accomplished in time proportional to the size of A.
Consequently, S4F-SAT is in NP. a

The same complexity result for logic S4.3 and some of its versions was established
earlier in [19]. The argument given above can be generalized to an arbitrary index
logic (see [21] or [17] for the definition of index logics). In this way one can prove the
following result.

Theorem 8 Let S be an index logic. The following problem is NP-complete:
S-SAT Given a finite theory A C Lk, is A S-satisfiable?

The next result is a basis for an algorithm to test whether a formula & € Lg
belongs to a theory T4 (®, ¥).

Lemma 9 Let A C Lx and € € L. If a pair (®, ¥) of subsets of AX is introspection-
consistent with A, then £ € Ty (®, ¥) if and only if
AU{-Kp:p e @} U{Ky:¢p € T} UTU
{Kaza € {35 NTa(®, )} U {-Ka:a € {£}5\ Ta(®,0)} - £
Proof: Let us denote the theory
AU{-Kp:p e @} U{Ky:¢p € T} UTU
{Kaza € {5 NT4(®@, )} U {-Ka:a € {£}5\ Ta(®,¥)}

by ¥¢. By Theorem 4 (1) and (2), ¢ C T'4(®, V). Hence, if ¢ - &, then £ € T4 (®, ¥)
(recall that by Theorem 4(1), T4 (®, ¥) is closed under propositional provability). This
proves the sufficiency part of the assertion.

Conversely, assume that £ € T4 (®, ). Since £ and all its propositionally equiv-

alent normal forms have the same set of modal atoms (that is, formulas of the form
K ), without loss of generality we may assume that & is of the form

KOélV...VKOékV_'KﬁlV...\/"K,@m\/’}/,
where 7y is modal-free. It follows from Theorem 4(1) that there are the following three

possibilities:
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1. a; € To(®,¥) for some i, 1 <i < k;
2. B; ¢ T4(®,%) for some i, 1 <i < m;
3. v € Tu(®,0).

(1) Since a; € {&}, Ka; € ¥¢. Consequently, X6 F £.
(2) Similarly, since 3; € {£}, =K 3; € £¢. Hence, X6 | €.
(3) Since « is modal-free, v is an A-formula. By Theorem 4(2),

AU{-Kp:pe @} U{K¢:p € T} UT | ~.
Hence, X¢ F v and, consequently, ¥¢ I &. |

Corollary 10 The problem of deciding whether a formula ¢ belongs to T4 (®, ¥) is
in AL,

Proof: It follows from Lemma 9 that in order to decide whether £ € Ty (®,¥) it
suffices to decide whether ¥¢ F £. In order to construct ¢ we need to decide whether
a € Ta(®,¥) for each a € {€}X. Tt can be accomplished by constructing the theory
3 and checking whether ¥ . Lemma 9 implies the right order in which formulas
from {¢}¥ must be dealt with. Namely, one should consider formulas with smaller
K-depths first. It is easy to see that all the theories constructed in the process
have sizes polynomial in the total size of A and & and that the number of calls to
an oracle for propositional provability (which can easily be designed from an oracle
for propositional satisfiability) is also polynomial in the size of A and £. Since the
propositional satisfiability problem is in NP, the assertion follows. O

Remark 11 Since the paper was submitted, Gottlob [5] proved that the problem
discussed in Corollary 10 is complete for the class A (O(logn)).)

Now, we are ready to state and prove our theorem on the complexity of reasoning
in nonmonotonic logic S4F.

Theorem 12 Under the restriction to theories A which are consistent with S4F,
problems EXISTENCE(S4F), IN-SOME(S4F) and NOT-IN-ALL(S4F) are ¥¥-comp-
lete. Problem IN-ALL(S4F) is I1¥'-complete.

Proof: The hardness part was established by Gottlob [4], so it remains to show that
the problems in question belong to £ (IIL).

First, recall that theories consistent with S4F have only consistent S4F-expansions.
To show that a finite theory has a consistent S4F-expansion it is enough to guess a pair
(@, ¥) of subsets of AX (its size is polynomial in the size of A) and to check conditions
(C1) - (C3) of the definition of introspection-consistent pairs of subsets of AX  and
condition (3) of Theorem 5 (with & =S4F). The checking phase requires polynomially
many calls to the propositional satisfiability procedure and polynomially many calls
to the S4F-satisfiability procedure (let us recall that, by Proposition 6, ¢ is provable
from a theory B in S4F if and only if {K¢ : ¢ € B} U {—%} is not S4F-satisfiable).
Hence, EXISTENCE(S4F) is in X% (under the restriction to theories A which are
consistent with S4F).
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Let us now consider the problem IN-SOME(S4F). To show that a formula ¢ is in
some consistent S4F-expansion of A, it is enough to guess a pair (®,¥) and check
two things. First, we need to verify that T4 (®, ¥) is an S4F-expansion for A (we
have seen that polynomially many calls to oracles for problems in NP are enough).
Secondly, we need to check that ¢ € T4(®, ¥) which, according to Corollary 10 can
also be achieved by means of polynomially many calls to on oracle for a problem in
NP.

In a similar way we show that the problem NOT-IN-ALL(S4F) is ¥-complete
and, consequently, that the problem IN-ALL(S4F) is I1{'-complete (all this under the
restriction to theories A which are consistent with S4F). i

The assumption that A be consistent can be removed from the formulation of the
last theorem:

Corollary 13 Problems EXISTENCE(S4F), IN-SOME(S4F) and NOT-IN-ALL(S4F)
are ©¥-complete. Problem IN-ALL(S4F) is I} -complete.

Proof: We will provide the proof only for the problem IN-SOME(S4F). Other prob-
lems can be dealt with similarly.

Let ¢ be a modal formula and A be a finite set of modal formulas. Consider
the following procedure to check if there is an S4F-expansion of A containing ¢:
check if A is consistent with S4F (by referring to an oracle for this problem). If the
answer is no, A has a unique S4F-expansion, L. Output YES and stop. Otherwise,
every S4F-expansion of A is consistent. Use the nondeterministic procedure from the
previous proof to decide whether ¢ € A. Clearly, the whole procedure is correct,
requires polynomially many calls to oracles to NP-complete problems and works in
polynomial time (assuming each call to the oracles takes constant time). Hence, the
problem IN-SOME(S4F) is in X4

Since a theory A has an inconsistent S4F-expansion if and only if it is inconsistent

with S4F, hardness follows from the hardness of the restricted version of the IN-
SOME(S4F) problem. O

4 Main result

The method used in the proof of Theorem 12 will not work in the case of logic S4.
The reason is that S4-satisfiability is PSPACE-complete rather than NP-complete (as
in the case of logic S4F). However, there is a way of applying Theorem 12 to obtain
identical bounds for logic S4.

In [16] it has been noted that different modal logics may have equivalent non-
monotonic counterparts. The case of logics S4 and S4F is especially interesting. An
example is given in [16] which shows that nonmonotonic logics S4 and S4F are not
identical. Namely, a theory is constructed such that one of its S4F-expansions is not
its S4-expansion. However, the theory used in this example is infinite and this turns
out to be essential. In [16] it is proved that for finite sets of premises nonmonotonic
logics S4 and S4F coincide. Since this property provides the key element for the proof
of our main result establishing the complexity of reasoning with the nonmonotonic
logic S4, we repeat the proof below.

12



Theorem 14 Let A C Lk be finite. A consistent theory T' C L is an S4-expansion
of A if and only if T" is an S4F-expansion of A.

Proof: Let T be consistent. By Theorem 5, if 7' is an S4-expansion for A then T is
an S4F-expansion for A (even without an assumption that A is finite). Theorem 5
implies also that to prove the converse implication it is enough to show that for any
pair (®, ¥), introspection-consistent with A, if

AU{-Kp:p € @} Fgyp V; (5)

then
AU {—|K(p:(p € ‘13} Fgq 0. (6)

Hence, let (®,¥) be a pair of subsets of AX introspection-consistent with A.
Assume also that (5) holds. According to Proposition 2, to prove (6) it is enough to
show that for every finite S4-model M, if M |= AU {-Kyp:p € ®}, then M E V.

So, let M = (M, R,V be a finite S4-model such that M = AU {-Ky:¢ € ®}.
By a rank of a world a € M, r(a), we mean the maximal integer n such that there
exists a sequence of worlds «g,...,a,, where ag = a and for each i, 0 < i < n,
a;Rajy1, but not a1 Ra;. Since M is finite, each world has a rank. We prove by
the induction on r(«), that for each a € M, (M, a) = .

Let (o) = 0. Put M, = {f : BRa and aRpB}. Consider the Kripke model
My = (My, R, V,), where R, and V,, are the restrictions of R and V' to M,.
Clearly, M, is an S4F-model (in fact, even a universal S5-model). Since r(a) = 0,
there is no world 8 € M such that aR/ but not SR«. It follows that for every formula
6 and for every world g € M,, (M, ) = 6 if and only if (M4, ) |E 6. In particular,
since M = AU{-Kp:p € &}, M, = AU {-Kp:p € ®}. Since (5) holds and M,
is an S4F-model, M, |= ¥. Hence, (Mg, a) = ¥. Consequently, (M, a) = ¥.

Consider now a world o € M with r(«) = k + 1, and assume that for each world
B € M such that r(8) < k (M, ) = ¥.

Define My = {y € M : aRy and yRa} and M; = {y € M : aRy but not yRa}.
Clearly, My and M, are disjoint and for each v, aRy if and only if v € My U M;.

Define a Kripke model V' = (N, Q,U) as follows. Put N = My U M; and define
BQ~ if v € My or 3,7 € My. Define U to be the restriction of V to N. Observe that
for 8 € N and for every world v € M, if SRy then 8Q~. Moreover, if 5 € My then
BRy if and only if Q.

We will prove now that for each 8 € N and for each A-formula n, (M,3) |= g
if and only if (NV,8) = 1. The proof will be by induction on the complexity of 5.
(So, we have a double induction here. The external induction on r(a) and, within its
induction step, an internal induction on the complexity of a formula.) The basis of
the (internal) induction is obvious. The only nontrivial case in the induction step is
when n = K(.

Assume (N,B) &= K(. Consider an arbitrary world v such that SR7y. Then,
BQ~. Hence, (N,v) = ¢. By the induction hypothesis, (M,v) = ¢. Consequently,
(M, ) = KC.

Conversely, assume that (M, 3) E K(. If 3 € My, then, since for each v, B3Ry
if and only if 8Q7, it follows directly from the (internal) induction hypothesis that
(V,8) | KC.
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Assume then that 8 € M;. Since M |= {-Ky: ¢ € ®}, we have that ( € ¥ (since
K( is an A-formula, ¢ belongs to AX). By the definition of the model A/, we have
that for each v € My, r(y) < k. Thus, applying the (external) induction hypothesis,
we obtain that for each v € My, (M,7) = (. By the (internal) induction hypothesis,
for each v € M (that is, for each v such that 8Q7), (NV,~) |= (. Hence (N, 8) = K¢.

Thus, we have proved that for each A-formula 1 and for each 8 € N, (M, 3) E 7
if and only if (N, 8) E 5. Since AU {—=Ky: @ € ®} consists of A-formulas, we obtain
that N = AU {=K¢:p € ®}. But A is an S4F-model. Since (5) holds, N |= .
In particular, (V,a) E ¥ and, since ¥ consists of A-formulas, (M,«a) = ¥. This
completes the proof of the induction step of the main induction. a

Proposition 3 and Theorems 12 and 14 immediately imply the following corollary,
which is the main result of our paper.

Corollary 15 Under the restriction to theories which are consistent with S4, prob-
lems EXISTENCE(S4), IN-SOME(S4) and NOT-IN-ALL are %£-complete and prob-
lem IN-ALL(S4) is I} -complete. |

As in the case of the logic S4F, the restriction to theories which are consistent
with S4 can be eliminated.

Corollary 16 Problems EXISTENCE(S4), IN-SOME(S4) and NOT-IN-ALL are %4-
complete and problem IN-ALL(S4) is II£’-complete. |

Speaking informally, Corollaries 15 and 16 show that, unless the class PSPACE
collapses to ¥4, nonmonotonic modal logic S4 is computationally simpler than (mono-
tonic) modal logic S4. To the best of our knowledge it is the first example when non-
monotonic reasoning turns out to be easier than the monotonic ones than underlies
it.
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