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AbstractWe establish the complexity of decision problems associated with the nonmonotonic modal logicS4. We prove that the problem of existence of an S4-expansion for a given set A of premises is�P2 -complete. Similarly, we show that for a given formula ' and a set A of premises, it is �P2 -complete to decide whether ' belongs to at least one S4-expansion for A, and it is �P2 -complete todecide whether ' belongs to all S4-expansions for A. This refutes a conjecture of Gottlob that theseproblems are PSPACE-complete. An interesting aspect of these results is that reasoning (testingsatis�ability and provability) in the monotonic modal logic S4 is PSPACE-complete. To the best ofour knowledge, the nonmonotonic logic S4 is the �rst example of a nonmonotonic formalism whichis computationally easier than the monotonic logic that underlies it (assuming PSPACE does notcollapse to �P2 ).1 IntroductionFirst nonmonotonic logics were proposed in late 70s and early 80s in an attempt toconstruct knowledge representation tools for situations where only partial, incompleteinformation is available. Among these early nonmonotonic logics are circumscription[11], default logic [20] and a whole family of modal nonmonotonic logics [13, 12], withautoepistemic logic [15] as its most prominent representative. (In fact, at the time ofits introduction autoepistemic logic was not known to belong to the family of logicsintroduced in [13, 12]. It was proved to be the case by Schwarz [22].)1This is a full version of the paper presented at the Third Kurt G�odel Colloquium, KGC `93, andpublished in Lecture Notes in Computer Science, vol. 713, Springer Verlag, 19931



As the discipline of nonmonotonic logics matured, the issues of their practicalapplicability came to the focus of attention. In particular, the complexity of non-monotonic reasoning has been recently a subject of an extensive research activity.Usually, a nonmonotonic logic is obtained from some monotonic logic by modifyingits semantics, for example, by restricting to minimal models only (circumscription),or proof theoretically by means of some �xed-point construction (default logic, au-toepistemic logic, nonmonotonic modal logics of [13, 12]). Checking whether a modelis minimal or if a theory is a solution to a �xed-point equation is costly. In fact, whena nonmonotonic logic is de�ned by a �xed-point construction, it is not at all obviousthat it is decidable. Hence, perhaps not unexpectedly but still rather disappointingly,in all cases studied so far nonmonotonic reasoning turns out to be more complex(unless the polynomial hierarchy collapses at some low level) than the underlyingmonotonic reasoning. For example, Eiter and Gottlob proved that propositional cir-cumscription is �P2 -complete [1] and Gottlob proved that several problems associatedwith reasoning in default logic are �P2 - or �P2 -complete [4]. Hence, under the assump-tion that the polynomial hierarchy does not collapse, propositional circumscriptionand default logic are substantially more complex than the reasoning in propositionallogic.Let us look now at the case of nonmonotonic modal logics introduced by McDer-mott and Doyle [13, 12]. These logics are de�ned by means of a �xed-point construc-tion. The basic notion is that of an expansion. Let S be a propositional modal logicand let A be a set of sentences. A theory T is called an S-expansion, ifT = CnS(A [ f:K':' =2 Tg); (1)where CnS stands for the consequence operator in the logic S. Depending on the ap-proach, an arbitrarily selected S-expansion for A or the intersection of all S-expansionfor A is regarded as a set of nonmonotonic consequences of A. Hence, reasoning withthe nonmonotonic logic S consists of checking whether a given formula is in some(or all) S-expansions for A. Since the de�nition of an S-expansion involves the con-sequence operator in the (monotonic) modal logic S, it is natural to expect that adecision procedure for the nonmonotonic logic S, if exists, is at least as complex asany decision procedure for the monotonic modal logic S.McDermott [12] considered nonmonotonic modal logics S5, S4 and T. He provedthat the nonmonotonic logic S5 coincides with the monotonic logic S5. Hence, thecomputational complexity of nonmonotonic S5 coincides with that of monotonic S5,which is co-NP complete for the provability problem and NP-complete for the sat-is�ability problem [8]. Gottlob [4] conjectured that, although nonmonotonic logicsK, T and S4 do not collapse into monotonic logics, their computational complexitycoincide with the complexity of the corresponding monotonic modal logics (which allare known to be PSPACE-complete, see [8]).Some modal logics have received special attention since their nonmonotonic ver-sions are particularly suitable for knowledge representation purposes. The logic KD45is one of them. It is commonly accepted as a logic of belief [9, 7]. Halpern and Moses[7] proved that the satis�ability problem for KD45 is NP-complete (and, correspond-ingly, the derivability problem is co-NP complete). The nonmonotonic logic KD45 is(essentially) equivalent to one of the most celebrated nonmonotonic formalisms, au-toepistemic logic of Moore [15]. It was proved in [22] that for each set A of premises,2



a consistent theory T is a stable expansion of A if and only if T is a KD45-expansionof A. Gottlob [4] and Niemel�a [18] proved that the problems of existence of a sta-ble expansion, and of membership in some (all) stable expansions are located on thesecond level of the polynomial hierarchy. Hence, they are more complex (unless thepolynomial hierarchy collapses to NP) than reasoning in the underlying modal logicKD45, for which the satis�ability problem is NP-complete. More results of that type,on nonmonotonic systems that are variations of autoepistemic logic, are given in [2].Another logic with important applications in knowledge representation is logic S4.This logic is often considered as a logic of knowledge (see [14]). It was shown in [22]that if we use the nonmonotonic logic S4 instead of autoepistemic logic, then we canavoid some of the problems caused by counterintuitive behavior of stable expansions.In addition, the nonmonotonic logic S4 can be regarded as a generalization of bothdefault logic [25] and autoepistemic logic [23]. Thus, it is important, to investigateits computational aspects. This is the main objective of this paper.McDermott presented in [12] a decision procedure for the nonmonotonic logic S4,based on the tableau method, but no complexity analysis was given.General results characterizing S-expansions for a wide class of modal logics S wereobtained in [22, 16]. These characterizations are algorithmic under the assumptionsthat a set A of premises is �nite, and that the derivability in S is decidable. It wasused in [16] to design algorithms for problem such as: does an S-expansion of Aexist? does a given formula belong to all (some) S-expansions of A? The algorithmspresented in [16] depend on procedures for checking derivability of formulas in theunderlying (monotonic) modal logic S. Therefore they are at least as complex. Inparticular, in the case of S4 they are at least as complex as any decision procedurefor the monotonic logic S4.Can we do better? In fact, we can! The main result of this paper states thatreasoning in the nonmonotonic logic S4 resides on the second level of the polynomialhierarchy while S4-satis�ability is PSPACE-complete [8]. Hence, the nonmonotoniclogic S4 is much less computationally complex (assuming PSPACE does not collapseto �P2 ) than monotonic S4. To the best of our knowledge it is the �rst example of anonmonotonic logic with this property.The key idea is to exploit the concept of a range [16]. It was observed in [16]that, sometimes, di�erent monotonic modal logics generate the same nonmonotonicversion. For example, logics K45 and KD45 are di�erent, but consistent K45- andKD45-expansions coincide. If we have two logics S1 and S2 with the property thatfor each set A of premises, consistent S1-expansions of A coincide with consistentS2-expansions of A, then we say that logics S1 and S2 are in the same range. Theconcept of a range suggests the following approach to the problem of reasoning withnonmonotonic S4: �nd a computationally simple modal logic S in the same range asS4. Then, the decision procedure from [16] for the nonmonotonic logic S would be,in the same time, a decision procedure for the nonmonotonic logic S4. Since it wouldbe based on a computationally simple logic S, rather than on a highly complex logicS4, it might actually be simpler than any decision procedure for monotonic S4.With this approach we immediately run into a problem. So far we have beenunable to �nd a logic in the same range as S4 and computationally simpler than S4.However, for our complexity considerations a weaker notion of a range is su�cient.Namely such which only requires that logics in the same range generate the same3



expansions for all �nite sets of premises. In [16] it was shown that there is a logic,namely the logic S4F (also known as S4.3.2), which is equivalent, in this weakersense, to S4. That is, for every �nite theory A, consistent S4-expansions of A coincidewith consistent S4F-expansions of A. (In general, the nonmonotonic logics S4 andS4F are di�erent. An example of an in�nite set A of premises such that not everyS4F-expansion of A is an S4-expansion of A is also given in [16].)The logic S4F, although not as well-known as S4, has been investigated in theliterature. Segerberg [21] studied its mathematical properties, and Lenzen [10] dis-cussed it from the epistemological point of view. The nonmonotonic logic S4F hasseveral interesting properties. In particular, similarly to the nonmonotonic logic S4,it can be regarded as a generalization of default and autoepistemic logics. A detailedstudy of the properties of the nonmonotonic logic S4F is given in [23]. The logicS4F has a more complex axiomatization than S4. Despite this, we will show that itis computationally much simpler than S4 (assuming PSPACE does not collapse toNP). In the paper, we will use the logic S4F, according to the plan outlined above,to establish the complexity of reasoning with the nonmonotonic logic S4.The paper is organized as follows. Basic de�nitions and results are gathered inSection 2. Results on the complexity of reasoning in the nonmonotonic modal logicS4F are presented in Section 3. The last section contains main results of the paperestablishing the complexity of reasoning in the nonmonotonic modal logic S4.2 PreliminariesWe assume familiarity with basic notions of the complexity theory such as the polyno-mial hierarchy, the classes P, NP, �Pk , �Pk , �Pk , PSPACE, the notion of completenessof a problem in a class. For a good presentation of the topic of complexity the readeris referred to Garey and Johnson [3]. Let us recall that class NP coincides with �P1 ,class co-NP coincides with �P1 . Class �P2 (�P2 ) consists of problems which can be de-cided in polynomial time by a deterministic algorithm (a non-deterministic algorithm)with an oracle for a problem belonging to NP. Class �P2 consists of problems whosecomplements are in �P2 . For a detailed presentation of the topic of the polynomialhierarchy the reader is referred to [3].We will present now basic notions and results on modal logics. More on the subjectcan be found in Hughes and Cresswell [6]. We will consider the language of modallogic obtained by extending a language of propositional calculus, say L, by a necessitymodal operator K. We will denote it by LK . Let S be a modal logic.By A `S  we denote the fact that a formula  is derivable from a set A of formulasby means of axioms of S and the inference rules modus ponens and necessitation. Notethat our notion of `S di�ers from that in [6] and some other books and papers onmodal logic. Namely, in [6], A `S  denotes that  is derivable from A and theoremsof S by means of modus ponens only. Thus, in our sense, p `S Kp while, under thestronger interpretation of `S , this statement is false. However, this is mostly just aterminological di�erence and all our results may be reformulated under the alternativenotation. By CnS we denote the provability operator in the modal logic S. That is,CnS(A) = f : A `S  g.In this paper we focus our attention on two modal logics: S4 and S4F. Logic S4is speci�ed by the following three axiom schemata:4



K: Kp � (K(p � q) � Kq);T: Kp � p;4: Kp � KKp.Logic S4F (also known as S4.3.2) is speci�ed by the schemata K, T and 4 and, inaddition by the schemaF: (p ^MKq) � K(Mp _ q),where M' abbreviates, as usual, the formula :K:'.We assume familiarity with Kripke models (see [6, 17] for a detailed presentationof modal logics). Here we brie
y recall the terminology we use. A Kripke model is atriple M = hM;R; V i, where M is a nonempty set (called the set of worlds of M),R is a binary relation on M , and for each � 2 M , V� is a valuation of propositionalvariables of the language. By (M; �) j=  we denote that a formula  is true in aworld � of M. Let us recall that, by de�nition, (M; �) j= K if and only if for each� 2M such that �R�, (M; �) j=  .We write M j=  and say that  is valid in M if for each � 2 M , (M; �) j=  .Let A be a modal theory. We write M j= A and say that A is valid in M, if M j=  for every  2 A.Let K be a class of Kripke models. We say that S is characterized by K, if thefollowing holds: for each set A of formulas, and for each  , A `S  if and only iffor each Kripke model M 2 K, M j= A implies M j=  . It is well known that logicS4 is characterized by the class of models with re
exive and transitive accessibilityrelation. We will refer to such models as S4-models. Logic S4F is characterized bythe class C(S4F) of models of the formhM; (M1 �M) [ (M2 �M2); V i;where M = M1 [M2, M1 \M2 = ; and M2 6= ;. Observe that we do not requirethat M1 be nonempty. Hence, speaking informally, C(S4F) consists of clusters and ofpairs of clusters one concatenated on top of the other. Models in C(S4F ) are referredto as S4F-models. Finally, models of the form hM;M �M;V i characterize the logicS5 (de�ned by the modal axioms K, T, 4 and 5: :Kp � K:Kp). They are calleduniversal S5-models.Remark 1 Usually, the characterization results are proved in a weaker form, namely,that `S  if and only if for each M 2 K, M j=  . Characterization results used inthis paper can be obtained from the weaker ones, see [12, 17].It is well known, that if 6`S4  , then there is a �nite S4-model M and a world �inM such that (M; �) 6j=  . This result is known as the �nite model property for S4.We will now prove a generalization of this result.Proposition 2 Let A be a �nite set of formulas. If A 6`S4  , then there is a Kripkemodel M = hM;R; V i such that M is �nite, R is transitive and re
exive, M j= A,and for some � 2M; (M; �) 6j=  . 5



Proof: Let � be a conjunction of all the formulas of A. Clearly, � 6`S4  . Since� `S4 K�, it follows that 6`S4 K� �  . Applying the �nite model property for S4,we get a �nite model N = hN;Q;W i, where Q is re
exive and transitive, and a world� 2 N such that (N ; �) 6j= K� �  . Then (N ; �) j= K� and (N ; �) 6j=  . LetM = hM;R; V i be the submodel of N generated by �. That is, M = f� : �R�g,R = Q \ (M �M), V is the restriction of W on M .It is easy to prove by induction on the length of a formula that for every formula 'and for every world �0 2M , (M; �0) j= ' if and only if (N ; �0) j= '. By the de�nitionof M, we also have � 2 M . Consequently, (M; �) j= K� and (M; �) 6j=  . Also bythe de�nition of M, for every �0 2 M , �Q�0 and, hence, �R�0. Thus, M j= � or,equivalently, M j= A. Hence, the assertion follows. 2We say that a theory A is consistent with a modal logic S if A 6`S ?. Thefollowing result on consistency of theories with logics S4, S4F and S5 is well-known(see [24, 8, 17] for more details).Proposition 3 Let A be a �nite modal theory, let k be the number of occurrencesof the modal operator K in A. Then the following conditions are equivalent:1. A is consistent with S42. A is consistent with S4F3. A is consistent with S54. A is valid in a universal S5-model with k + 1 worlds.Proof: The equivalence of (1) and (3) is proved, for example, in [24]. Since S4Fcontains S4 and is contained in S5, the equivalence of (1), (2) and (3) follows. For theproof that (3) is equivalent to (4), assume that the conjunction of all formulas in A is�. Now, note that � is valid in a universal S5-model if and only if K� is satis�ablein some world of the model, and that � is consistent with S5 if and only if 6`S5 :K�(deduction theorem for S5, see e.g. [12]). The result then follows from a theorem byLadner [8]. 2Next, we present basic notions and results on modal nonmonotonic logics (a de-tailed treatment of the subject can be found in [17] and [16]). Let S be a modal logic.Let A � LK . A theory T � LK is an S-expansion for A ifT = CnS(A [ f:K':' =2 Tg): (2)For a wide range of modal logics S, S-expansions have been e�ectively character-ized in [22, 16]. We will recall this characterization in the case of logics S4 and S4F.Given a theory A � LK , we de�neAK = f':K' is a subformula of a formula from Ag:Any formula built of propositional variables and modal atoms (formulas of the formK') from the set fK':' 2 AKg is called an A-formula.A pair (�;	) of subsets of AK is called introspection-consistent with A if:(C1) � \	 = ; and � [	 = AK ; 6



(C2) A [ f:K':' 2 �g [ fK : 2 	g [	 is propositionally consistent;(C3) For each ' 2 �, A [ f:K':' 2 �g [ fK : 2 	g [ 	 6` ' (` denotespropositional provability relation).A propositional valuation assigns a truth value to each propositional letter, andto each formula of the form K . Note that no relationship is assumed between truthvalues of K and  . That is, formulas beginning with K are treated here as atoms.Propositional valuations are extended, in the standard way, to the set of all modalformulas.Let a pair (�;	) of subsets ofAK be introspection-consistent with A. Let VA(�;	)consist of all propositional valuations v of LK such thatv(A [ f:K':' 2 �g [ fK : 2 	g [	) = 1:Denote by MA(�;	) the Kripke modelhVA(�;	); VA(�;	)� VA(�;	); UA(�;	)i;where for every v 2 VA(�;	), UA(�;	)(v) = vjL (vjL denotes the restriction of avaluation v to the set of formulas in L). Clearly, MA(�;	) is a universal S5-Kripkemodel. Finally, de�ne TA(�;	) = f' 2 LK :MA(�;	) j= 'g:The following theorem [22, 16] gathers useful properties of TA(�;	). The next oneprovides a characterization of S4- and S4F-expansions.Theorem 4 Let A � LK . If a pair (�;	) of subsets of AK is introspection-consistentwith A, then1. The theory TA(�;	) is consistent, closed under propositional provability andnecessitation, and for every ' =2 TA(�;	), :K' 2 TA(�;	).2. For every A-formula �, � 2 TA(�;	) if and only ifA [ f:K':' 2 �g [ fK : 2 	g [	 ` �:Theorem 5 Let S stand for S4 or S4F. A consistent with S theory T is an S-expansion for A if and only if T = TA(�;	) for some pair (�;	) introspection-consistent with A and such that for every  2 	,A [ f:K':' 2 �g `S  : (3)Note that this theorem implies, for a �nite theory A, a decision procedure for non-monotonic S4, establishing existence of S4-expansions. The procedure �rst decideswhether A is consistent with S4. This problem is decidable, in fact, it is NP-complete(see Proposition 3 and [8]). If the answer is negative, A has a unique S4-expansionLK . Otherwise, every S4-expansion of A is consistent with S4 and can be found usingTheorem 5. That is, a procedure for testing S4-derivability is invoked to decide (3),for every possible pair (�;	) introspection consistent with A (checking introspection7



consistency is \easy" is at involves only propositional provability). Hence, this proce-dure to determine existence of S4-expansions is at least as hard as the S4-derivabilityproblem. Recall that S4-derivability problem is PSPACE-complete. Consequently,this straightforward decision procedure for nonmonotonic S4 is quite complex. Oursubsequent results show that, in fact, decision problems for nonmonotonic S4 reside onthe second level of the polynomial hierarchy. In other words, the particular instancesof S4 derivability, involved in (3), are not hard.3 Nonmonotonic modal logic S4FLet S be a modal logic. S-expansions can be regarded as formal descriptions ofrealities an agent reasoning (nonmonotonically) from A regards as possible. There areseveral problems such an agent must be able to solve in order to reason. For example,is there an S-expansion of A, does a formula belong to some (all) S-expansions ofA, etc. Hence, it is important to establish the complexity of these problems. In thispaper we will study the complexity of the following four problems:EXISTENCE(S) Given a �nite theory A � LK , decide if A has an S-expansion;IN-SOME(S) Given a �nite theory A � LK and a formula ' 2 LK , decide if ' isin some S-expansion of A;NOT-IN-ALL(S) Given a �nite theory A � LK and a formula ' 2 LK , decide ifthere is an S-expansion for A not containing ';IN-ALL(S) Given a �nite theory A � LK and a formula ' 2 LK , decide if ' is inall S-expansions of A.We will concentrate on the cases S = S4F and S = S4. We start with the caseof logic S4F. We will need two auxiliary results. The next theorem establishes thatthe complexity of monotonic S4F is essentially the same as that of S5. Our proof isbased on the ideas of Ladner [8].A set of formulas, A, is called S4F-satis�able, if there exists an S4F-model hM;R; V iand a world � 2M , such that A is true in the world �. Since the modal logic S4F ischaracterized by the class of S4F-models, we have the following simple fact establish-ing the relationship between the notions of provability and satis�ability in S4F. Theproof is standard and is omitted.Proposition 6 A formula ' is provable in S4F from a set of premises A if and onlyif the theory fK : 2 Ag [ f:'g is not S4F-satis�able. 2Theorem 7 The following problem is NP-complete:S4F-SAT Given a �nite theory A � LK , is A S4F-satis�able?Proof: NP-hardness follows easily from the fact that propositional satis�ability is aspecial case of S4F-satis�ability: a theory consisting of modal-free formulas is propo-sitionally satis�able if and only if it is S4F-satis�able.To prove that the problem S4F-SAT is in NP is harder. We will represent an S4F-model M = hM; (M1 �M) [ (M2 �M2); Ui, where M = M1 [M2 and M1 \M2 =8



;, by specifying the sets M1 and M2, and by representing each valuation Um, form 2 M1 [M2, as a set of those propositional variables that are assigned the truthvalue 1. By the size of a model we mean the total size of such representation. Wewill show that the problem S4F-SAT is in NP by showing that if a �nite theory A isS4F-satis�able, then it is satis�able in an S4F-model whose size is polynomial in thesize of an encoding of A.Let us assume that A is S4F-satis�able. LetM = hM; (M1�M)[ (M2�M2); Ui,where M = M1 [ M2 and M1 \ M2 = ;, be an S4F-model and let � 2 M be aworld such that(M; �) j= A. Without loss of generality, we may assume that eachvaluation Um, m 2M , assigns the truth value 0 to those propositional variables thatdo not appear in the formulas from A. Since A is �nite, each valuation Um is thenrepresented by a �nite set of propositional variables. Its cardinality does not exceedthe total number of propositional variables appearing in the formulas from A. Thus,the size of our representation of each Um is bounded from above by the size of (theencoding of) A.For each ' 2 AK and such that M 6j= K' select a world m 2 M such that(M;m) 6j= ' under an additional stipulation that, if possible, m be selected fromM2.Denote the world selected by m'. Next, for i = 1; 2 de�neM 0i = fm':' 2 AK ; M 6j= K' and m' 2Mig [ (f�g \Mi):Notice that � 2M 01 [M 02. Next, consider the Kripke modelM0 = hM 0; (M 01 �M 0) [ (M 02 �M 02); U 0i;whereM 0 =M 01[M 02 and U 0 = U jM 0 (the restriction of U onM 0). Note thatM 0 6= ;.Hence, M0 is an S4F-model (even an S5-model if M 01 orM 02 is empty). We will provethat for every A-formula ' and for every world m 2M 0,(M;m) j= ' if and only if (M0;m) j= ': (4)We proceed by induction on the length of formulas. For the basis of induction, assumethat ' = p, for some propositional variable p. Since U 0m = UmjM 0, for each m 2M 0,the equivalence (4) follows. Consider now an A-formula ' other than a propositionalvariable, and assume that (4) holds for every A-formula of length less than the lengthof '. If ' is of the form : or  1 �  2, for some boolean connective �, then theinduction step follows easily from the induction hypothesis ( , or  1 and  2 areA-formulas shorter than ') and the de�nition of the relation j= for Kripke models.Hence, let us consider the only remaining case when ' = K . Clearly,  is alsoan A-formula and it is shorter than '. Let m 2M 0 and assume that (M;m) j= '. Ifm 2M 01 (m 2M 02) then, for every world m0 2M 0 (for every world m0 2M 02),(M;m0) j=  :By the induction hypothesis, (M0;m0) j=  :Hence, it follows that in both cases (m 2M 01 and m 2M 02)(M0;m) j= ':9



Conversely, let us assume that (M;m) 6j= '. Then, (M;m ) 6j=  . Since m 2 M 0,by the induction hypothesis, (M0;m ) 6j=  :In addition, by the choice of m (if possible, m is taken from M2), m is accessiblefrom m. Hence, (M0;m) 6j= K :This completes the proof of (4).Since (M; �) j= A, we have (M0; �) j= A, too. Next observe that jM 0j � jAK j+1is linear in the size of A. Since each valuation Um, m 2M , has a representation of sizenot exceeding the size of the representation of A, and since U 0m = Um, for m 2 M 0,the size of the representation of M0 is polynomial in the size of the representationof A. It follows then that for each YES-instance of the problem S4F-SAT there isa polynomial-size \evidence" of that. Hence, a nondeterministic algorithm to decideS4F-SAT would �rst \guess" this polynomial size model and, then, would check thatin one of its worlds all formulas from A are true. Since the model has size polynomialin A, this veri�cation can be accomplished in time proportional to the size of A.Consequently, S4F-SAT is in NP. 2The same complexity result for logic S4.3 and some of its versions was establishedearlier in [19]. The argument given above can be generalized to an arbitrary indexlogic (see [21] or [17] for the de�nition of index logics). In this way one can prove thefollowing result.Theorem 8 Let S be an index logic. The following problem is NP-complete:S-SAT Given a �nite theory A � LK , is A S-satis�able?The next result is a basis for an algorithm to test whether a formula � 2 LKbelongs to a theory TA(�;	).Lemma 9 Let A � LK and � 2 LK . If a pair (�;	) of subsets of AK is introspection-consistent with A, then � 2 TA(�;	) if and only ifA [ f:K':' 2 �g [ fK : 2 	g [	[fK�:� 2 f�gK \ TA(�;	)g [ f:K�:� 2 f�gK n TA(�;	)g ` �:Proof: Let us denote the theoryA [ f:K':' 2 �g [ fK : 2 	g [	[fK�:� 2 f�gK \ TA(�;	)g [ f:K�:� 2 f�gK n TA(�;	)gby �� . By Theorem 4 (1) and (2), �� � TA(�;	). Hence, if �� ` �, then � 2 TA(�;	)(recall that by Theorem 4(1), TA(�;	) is closed under propositional provability). Thisproves the su�ciency part of the assertion.Conversely, assume that � 2 TA(�;	). Since � and all its propositionally equiv-alent normal forms have the same set of modal atoms (that is, formulas of the formK'), without loss of generality we may assume that � is of the formK�1 _ : : : _K�k _ :K�1 _ : : : _ :K�m _ 
;where 
 is modal-free. It follows from Theorem 4(1) that there are the following threepossibilities: 10



1. �i 2 TA(�;	) for some i, 1 � i � k;2. �i =2 TA(�;	) for some i, 1 � i � m;3. 
 2 TA(�;	).(1) Since �i 2 f�gK , K�i 2 �� . Consequently, �� ` �.(2) Similarly, since �i 2 f�gK , :K�i 2 �� . Hence, �� ` �.(3) Since 
 is modal-free, 
 is an A-formula. By Theorem 4(2),A [ f:K':' 2 �g [ fK : 2 	g [	 ` 
:Hence, �� ` 
 and, consequently, �� ` �. 2Corollary 10 The problem of deciding whether a formula � belongs to TA(�;	) isin �P2 .Proof: It follows from Lemma 9 that in order to decide whether � 2 TA(�;	) itsu�ces to decide whether �� ` �. In order to construct �� we need to decide whether� 2 TA(�;	) for each � 2 f�gK . It can be accomplished by constructing the theory�� and checking whether �� ` �. Lemma 9 implies the right order in which formulasfrom f�gK must be dealt with. Namely, one should consider formulas with smallerK-depths �rst. It is easy to see that all the theories constructed in the processhave sizes polynomial in the total size of A and � and that the number of calls toan oracle for propositional provability (which can easily be designed from an oraclefor propositional satis�ability) is also polynomial in the size of A and �. Since thepropositional satis�ability problem is in NP, the assertion follows. 2Remark 11 Since the paper was submitted, Gottlob [5] proved that the problemdiscussed in Corollary 10 is complete for the class �P2 (O(log n)).)Now, we are ready to state and prove our theorem on the complexity of reasoningin nonmonotonic logic S4F.Theorem 12 Under the restriction to theories A which are consistent with S4F,problems EXISTENCE(S4F), IN-SOME(S4F) and NOT-IN-ALL(S4F) are �P2 -comp-lete. Problem IN-ALL(S4F) is �P2 -complete.Proof: The hardness part was established by Gottlob [4], so it remains to show thatthe problems in question belong to �P2 (�P2 ).First, recall that theories consistent with S4F have only consistent S4F-expansions.To show that a �nite theory has a consistent S4F-expansion it is enough to guess a pair(�;	) of subsets of AK (its size is polynomial in the size of A) and to check conditions(C1) - (C3) of the de�nition of introspection-consistent pairs of subsets of AK , andcondition (3) of Theorem 5 (with S =S4F). The checking phase requires polynomiallymany calls to the propositional satis�ability procedure and polynomially many callsto the S4F-satis�ability procedure (let us recall that, by Proposition 6,  is provablefrom a theory B in S4F if and only if fK' : ' 2 Bg [ f: g is not S4F-satis�able).Hence, EXISTENCE(S4F) is in �P2 (under the restriction to theories A which areconsistent with S4F). 11



Let us now consider the problem IN-SOME(S4F). To show that a formula ' is insome consistent S4F-expansion of A, it is enough to guess a pair (�;	) and checktwo things. First, we need to verify that TA(�;	) is an S4F-expansion for A (wehave seen that polynomially many calls to oracles for problems in NP are enough).Secondly, we need to check that ' 2 TA(�;	) which, according to Corollary 10 canalso be achieved by means of polynomially many calls to on oracle for a problem inNP.In a similar way we show that the problem NOT-IN-ALL(S4F) is �P2 -completeand, consequently, that the problem IN-ALL(S4F) is �P2 -complete (all this under therestriction to theories A which are consistent with S4F). 2The assumption that A be consistent can be removed from the formulation of thelast theorem:Corollary 13 Problems EXISTENCE(S4F), IN-SOME(S4F) and NOT-IN-ALL(S4F)are �P2 -complete. Problem IN-ALL(S4F) is �P2 -complete.Proof: We will provide the proof only for the problem IN-SOME(S4F). Other prob-lems can be dealt with similarly.Let ' be a modal formula and A be a �nite set of modal formulas. Considerthe following procedure to check if there is an S4F-expansion of A containing ':check if A is consistent with S4F (by referring to an oracle for this problem). If theanswer is no, A has a unique S4F-expansion, LK . Output YES and stop. Otherwise,every S4F-expansion of A is consistent. Use the nondeterministic procedure from theprevious proof to decide whether ' 2 A. Clearly, the whole procedure is correct,requires polynomially many calls to oracles to NP-complete problems and works inpolynomial time (assuming each call to the oracles takes constant time). Hence, theproblem IN-SOME(S4F) is in �P2 .Since a theory A has an inconsistent S4F-expansion if and only if it is inconsistentwith S4F, hardness follows from the hardness of the restricted version of the IN-SOME(S4F) problem. 24 Main resultThe method used in the proof of Theorem 12 will not work in the case of logic S4.The reason is that S4-satis�ability is PSPACE-complete rather than NP-complete (asin the case of logic S4F). However, there is a way of applying Theorem 12 to obtainidentical bounds for logic S4.In [16] it has been noted that di�erent modal logics may have equivalent non-monotonic counterparts. The case of logics S4 and S4F is especially interesting. Anexample is given in [16] which shows that nonmonotonic logics S4 and S4F are notidentical. Namely, a theory is constructed such that one of its S4F-expansions is notits S4-expansion. However, the theory used in this example is in�nite and this turnsout to be essential. In [16] it is proved that for �nite sets of premises nonmonotoniclogics S4 and S4F coincide. Since this property provides the key element for the proofof our main result establishing the complexity of reasoning with the nonmonotoniclogic S4, we repeat the proof below. 12



Theorem 14 Let A � LK be �nite. A consistent theory T � LK is an S4-expansionof A if and only if T is an S4F-expansion of A.Proof: Let T be consistent. By Theorem 5, if T is an S4-expansion for A then T isan S4F-expansion for A (even without an assumption that A is �nite). Theorem 5implies also that to prove the converse implication it is enough to show that for anypair (�;	), introspection-consistent with A, ifA [ f:K':' 2 �g `S4F 	; (5)then A [ f:K':' 2 �g `S4 	: (6)Hence, let (�;	) be a pair of subsets of AK introspection-consistent with A.Assume also that (5) holds. According to Proposition 2, to prove (6) it is enough toshow that for every �nite S4-model M, if M j= A [ f:K':' 2 �g, then M j= 	.So, let M = hM;R; V i be a �nite S4-model such that M j= A [ f:K':' 2 �g.By a rank of a world � 2 M , r(�), we mean the maximal integer n such that thereexists a sequence of worlds �0; : : : ; �n, where �0 = � and for each i, 0 � i < n,�iR�i+1, but not �i+1R�i. Since M is �nite, each world has a rank. We prove bythe induction on r(�), that for each � 2M , (M; �) j= 	.Let r(�) = 0. Put M� = f� : �R� and �R�g. Consider the Kripke modelM� = hM�; R�; V�i, where R� and V� are the restrictions of R and V to M�.Clearly, M� is an S4F-model (in fact, even a universal S5-model). Since r(�) = 0,there is no world � 2M such that �R� but not �R�. It follows that for every formula� and for every world � 2 M�, (M; �) j= � if and only if (M�; �) j= �. In particular,since M j= A [ f:K':' 2 �g, M� j= A [ f:K':' 2 �g. Since (5) holds and M�is an S4F-model, M� j= 	. Hence, (M�; �) j= 	. Consequently, (M; �) j= 	.Consider now a world � 2 M with r(�) = k + 1, and assume that for each world� 2M such that r(�) � k (M; �) j= 	.De�ne M0 = f
 2 M : �R
 and 
R�g and M1 = f
 2 M : �R
 but not 
R�g.Clearly, M0 and M1 are disjoint and for each 
, �R
 if and only if 
 2M0 [M1.De�ne a Kripke model N = hN;Q;Ui as follows. Put N = M0 [M1 and de�ne�Q
 if 
 2M1 or �; 
 2M0. De�ne U to be the restriction of V to N . Observe thatfor � 2 N and for every world 
 2 M , if �R
 then �Q
. Moreover, if � 2 M0 then�R
 if and only if �Q
.We will prove now that for each � 2 N and for each A-formula �, (M; �) j= �if and only if (N ; �) j= �. The proof will be by induction on the complexity of �.(So, we have a double induction here. The external induction on r(�) and, within itsinduction step, an internal induction on the complexity of a formula.) The basis ofthe (internal) induction is obvious. The only nontrivial case in the induction step iswhen � = K�.Assume (N ; �) j= K�. Consider an arbitrary world 
 such that �R
. Then,�Q
. Hence, (N ; 
) j= �. By the induction hypothesis, (M; 
) j= �. Consequently,(M; �) j= K�.Conversely, assume that (M; �) j= K�. If � 2 M0, then, since for each 
, �R
if and only if �Q
, it follows directly from the (internal) induction hypothesis that(N ; �) j= K�. 13



Assume then that � 2M1. Since M j= f:K':' 2 �g, we have that � 2 	 (sinceK� is an A-formula, � belongs to AK). By the de�nition of the model N , we havethat for each 
 2M1, r(
) � k. Thus, applying the (external) induction hypothesis,we obtain that for each 
 2M1, (M; 
) j= �. By the (internal) induction hypothesis,for each 
 2M1 (that is, for each 
 such that �Q
), (N ; 
) j= �. Hence (N ; �) j= K�.Thus, we have proved that for each A-formula � and for each � 2 N , (M; �) j= �if and only if (N ; �) j= �. Since A [ f:K':' 2 �g consists of A-formulas, we obtainthat N j= A [ f:K':' 2 �g. But N is an S4F-model. Since (5) holds, N j= 	.In particular, (N ; �) j= 	 and, since 	 consists of A-formulas, (M; �) j= 	. Thiscompletes the proof of the induction step of the main induction. 2Proposition 3 and Theorems 12 and 14 immediately imply the following corollary,which is the main result of our paper.Corollary 15 Under the restriction to theories which are consistent with S4, prob-lems EXISTENCE(S4), IN-SOME(S4) and NOT-IN-ALL are �P2 -complete and prob-lem IN-ALL(S4) is �P2 -complete. 2As in the case of the logic S4F, the restriction to theories which are consistentwith S4 can be eliminated.Corollary 16 Problems EXISTENCE(S4), IN-SOME(S4) and NOT-IN-ALL are �P2 -complete and problem IN-ALL(S4) is �P2 -complete. 2Speaking informally, Corollaries 15 and 16 show that, unless the class PSPACEcollapses to �P2 , nonmonotonic modal logic S4 is computationally simpler than (mono-tonic) modal logic S4. To the best of our knowledge it is the �rst example when non-monotonic reasoning turns out to be easier than the monotonic ones than underliesit.AcknowledgementsThe authors gratefully acknowledge comments on earlier drafts of the paper fromGeorg Gottlob, Thomas Eiter and Rajeev Gore. The comments of the anonymousreferee were very useful and helped to improve the �nal look of the paper. The �rstauthor was supported by the National Science Foundation under grant IRI-9220645.The second author was partially supported by the National Science Foundation undergrant IRI-9012902.References[1] T. Eiter and G. Gottlob. Propositional circumscription and extended closedworld reasoning are �p2-complete. Theoretical Computer Science, 114:231{245,1993.[2] T. Eiter and G. Gottlob. Complexity of reasoning with parsimonious and mod-erately grounded expansions. Fundamenta Informaticae, 17:31{54, 1992.14
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