
Revision programmingVictor W. MarekMiros law Truszczy�nskiDepartment of Computer ScienceUniversity of KentuckyLexington, KY 40506-0027
AbstractIn this paper we introduce revision programming | a logic-based framework for de-scribing constraints on databases and providing a computational mechanism to enforcethem. Revision programming captures those constraints that can be stated in termsof the membership (presence or absence) of items (records) in a database. Each suchconstraint is represented by a revision rule � �1; : : : ; �k, where � and all �i are of theform in(a) and out(b). Collections of revision rules form revision programs. Similarly aslogic programs, revision programs admit both declarative and imperative (procedural)interpretations. In our paper, we introduce a semantics that reects both interpreta-tions. Given a revision program, this semantics assigns to any database B a collection(possibly empty) of P -justi�ed revisions of B. The paper contains a thorough study ofrevision programming. We exhibit several fundamental properties of revision program-ming. We study the relationship of revision programming to logic programming. Weinvestigate complexity of reasoning with revision programs as well as algorithms to com-pute P -justi�ed revisions. Most importantly from the practical database perspective, weidentify two classes of revision programs, safe and strati�ed, with a desirable propertythat they determine for each initial database a unique revision.

1

1 IntroductionIn this paper we propose a framework for studying the process of database revision.Revisions that we have in mind are speci�ed by means of revision programs | sets ofrevision rules expressing constraints on presence or absence of data items (records) indatabases. The rules or constraints are of two forms:in(a) in(a1); : : : ; in(am); out(b1); : : : ; out(bn) (1)and out(a) in(a1); : : : ; in(am); out(b1); : : : ; out(bn): (2)Such rules have several possible interpretations. For instance, under a declarative inter-pretation, the meaning of rule (1) is that1. a belongs to the database B under consideration, or2. ak =2 B, for some k, 1 � k � m, or3. bk 2 B, for some k, 1 � k � n.A similar declarative interpretation can be o�ered for the rule of type (2).But there is also an imperative, or computational, interpretation of rules (1) and (2).Namely, assume that all data items ak, 1 � k � m, belong to the current database andnone of the data items bl, 1 � l � n belongs to the current database. Then, in the caseof rule (1), the item a should be added to the database (if it is not there already), andin the case of rule (2), a should be eliminated from the database (if it is there).This simultaneously declarative and imperative character of revision rules makes theassignment of semantics to revision programs quite di�cult. The imperative interpreta-tion implies that the rules of the program should be used in the process of computinga revision of a database. The declarative interpretation requires that, after we termi-nate the computation of a revision, the revised database should satisfy the constraintsspeci�ed by the program.This declarative/imperative nature of revision rules is not unique to revision pro-gramming. For instance, logic programs [Llo84, Apt90] can be assigned similar interpre-tations. Namely, the clauses of the program can be regarded as describing constraintsthat need to be satis�ed and, in the same time, as a computational tool needed to com-pute appropriate models. For Horn programs, the computation uses clauses as inferencerules. That is, when the premises of a clause have all been already computed, thehead of the clause becomes computed, too [vEK76]. Similar concepts of computationare available for DATALOG programs [Ull88]. In the case of the stable semantics oflogic programs [GL88] the computational mechanism is that of default logic [Rei80], see[BF91, MT89] for more details.In this paper, we propose a semantics for revision programs, called the justi�edrevision semantics. This semantics is motivated by the stable model semantics of logic2

programs and provides a computational mechanism that uses a revision program toproduce revisions of input databases. In addition, once the revisions are computed, theysatisfy all the constraints described by the program.We will now briey describe the process of computing a revised database R from aninitial database I using the rules of a revision program P . The computation involves a�xpoint construction. That is, a candidate for a revised database is �rst proposed. Next,a decision is made whether the transition from I to R is justi�ed under the program P .If so, R is regarded as a revision of I (and called a P -justi�ed revision of I). Otherwise,another candidate for a revised database is considered.The key question is: how to decide whether a transition from I to R is justi�edunder P . To answer it, observe that to every candidate R for a P -justi�ed revision ofI we can assign the set of these elements which do not change status as we pass fromI to R. This set is, of course, given by the complement of the symmetric di�erence ofI and R. Assuming that U is the set of all data items under consideration, this set is(I \ R) [(U n (I [R)). Observe now that there is an important distinction betweenthe elements of (I \R) and the elements of U n (I [R). Namely, the elements of I \Rstay in, whereas the elements of U n (I [R) stay out. Consequently, we will de�ne theinertia for I and R as:fin(a) : a 2 I \Rg [fout(b) : b =2 (I [R)g:We will assume that we need no justi�cation for not changing the status of an element.Hence, we will use the inertia set as input to the program P . Speci�cally, we willeliminate the elements of the inertia from the rules in P (as they can be regarded astrue). The modi�ed program is then treated as a Horn program and is used to computeits least model. The resulting set of updates of the form in(a) and out(b) is thenexecuted on I. The order in which we execute these updates should be immaterial.Since the constraints need to be true after the revision, we will require that there is noa such that both in(a) and out(a) are computed. If the result of the process coincideswith R, we accept R as a P -justi�ed revision of I.There are clearly similarities between P -justi�ed revisions and stable models of logicprograms. For instance, we will show that logic programs can be identi�ed with revisionprograms consisting of rules with heads of the form in(a). On the other hand, revisionprograms can be encoded as logic programs [PT95]. So, in a sense, the converse holdsas well. That is, revision programs are special logic programs. However, there areimportant di�erences. First, revision programs are explicitly designed as input-outputdevices. For input I they produce as the output a collection of P -justi�ed revisions of I.Secondly, and perhaps more importantly, in revision programming there is a desirablesymmetry between literals in(a) and out(a) (Theorem 3.8) that is not present in logicprogramming, where positive and negative literals are treated di�erently. These andother aspects of the nature of the relationship between logic and revision programs willbe discussed in detail in Section 4.Similarly, there are di�erences between revision programming and DATALOG. WhileDATALOG programs can be viewed as input-output devices, they only add elements and3

never delete. This issue was, to some extent, pursued in [AV91]. However, the semanticsthat we assign to revision programs is di�erent. Secondly, in revision programming wedo not distinguish between the extensional and intentional databases. In particular, theconstraints may be imposed on the extensional part as well. In the case of DATALOGprograms without negation this can be easily handled by means of the least cumulative�xpoint construction. With negation in the bodies allowed, the solution is no longerstraightforward and other kinds of �xpoints have been used.There are also di�erences between revision programming and popular formalismsthat describe change by means of postulates on the e�ects of change, either coming fromphilosophy (AGM postulates, see [AGM85]) or from database theory (KM postulates,see [KM91]). In our framework, programs specify change and change is not subject toany postulates beyond those speci�ed by the program.In this paper we formally introduce and study revision programming. In the nextsection we introduce the syntax of revision programming as well as the semantics ofjusti�ed revisions. We consider two equivalent de�nitions for P -justi�ed revisions. Oneof them formalizes the ideas described above and the other one uses a modi�ed versionof Gelfond-Lifschitz approach to stable semantics of logic programs. We also introducethe necessary terminology and technical apparatus for investigating revisions.In Section 3, we prove a number of properties of justi�ed revisions. For instancewe show that every P -justi�ed revision of any database I satis�es P . We prove thatP -justi�ed revisions of I di�er from I as little as possible to satisfy P . That is thesymmetric di�erence between I and any P -justi�ed revision R is minimal in the set ofsymmetric di�erences of I and models of P . We show that if I satis�es the constraintsspeci�ed by P then I is its only P -justi�ed revision. This shows that our process hasthe desired property that once a revision succeeds, no further change is justi�ed. Thesymmetric character of in and out is highlighted in a duality result. Namely, if R isa P -justi�ed revision of I then the complement of R is a P 0-justi�ed revision of thecomplement of I for a suitably constructed program P 0. Moreover, the translation fromP to P 0 is modular. We also briey study another proposal for a semantics of revisionprograms given by the notion of supported revisions.In Section 4 we show that the concept of P -justi�ed revision generalizes that ofstable model of logic program. Speci�cally, we show that there is a translation of logicprograms to revision programs so that stable models of logic programs become preciselyjusti�ed revisions of an empty database.In Section 5 we discuss serializability of the process of P -justi�ed revision. We showthat every P -justi�ed revision can be obtained by processing rules of P in a sequentialmanner. In Section 6 we discuss two classes of programs P with a property that everyinitial database I possesses a unique P -justi�ed revision. The �rst of these classes,consisting of the so called safe programs, has also the property that any serializationleads to the same result, namely the unique P -justi�ed revision. The second class,strati�ed programs, also produces unique revisions, but the serializations are no morearbitrary, only those that agree with strati�cation can be used. We conclude this sectionwith a brief discussion of expressibility issues for safe revision programs and relate our4

results to classic results by Smullyan [Smu68] and Apt and Blair [AB90] on expressibilityof strati�ed logic programs.In Section 7 we study the complexity issues of revision programming. We showthat the existence problem for P -justi�ed revisions is NP-complete. A number of othercomplexity results, as well as algorithms for various problems is also introduced.The material covered in this paper has been presented in two extended abstracts:[MT94] and [MT95].2 PreliminariesThe language of revision programming is similar to the language of logic programming.In this paper we will discuss only the propositional case. As with logic programming,the restriction to the propositional case is not essential. Our de�nitions and results canbe lifted to the predicate case.Let U be a denumerable set of atoms (a universe). Revision programming is a for-malism to describe constraints on the subsets of U (databases) and provide a mechanismto enforce them. The constraints are concerned with the membership status of atoms ina database. An example of a simple constraint is: a must be present in a database. Inrevision programming, it is expressed by a rulein(a) :Enforcing such a constraint means inserting a to the database (if a is not there already).Another example of a constraint is: a must be absent from a database. We describe itby a rule out(a) :To enforce this constraint, a must be deleted from the database (if it is there).The expressive power of revision programming goes much beyond these simple con-straints. It allows the user to formulate complex constraints such as: a must not be ina database whenever b is in it and c is not. In revision programming, it is described bythe rule out(a) in(b); out(c):To enforce collections of such constraints on a database, one has to change it by insertingsome atoms and removing some others. The critical question, in fact the main questionstudied in this paper, is: which atoms need to be inserted and which to be removed.Formally, by a literal we mean an expression of the form in(a) or out(a), where ais an atom from U . The set of all literals will be denoted by Lit. A revision rule or,simply, a rule, is any expression of the form� �1; : : : ; �m; (3)where � and �i, 1 � i � m, are literals. The literal � is called the head of the rule, andthe set of literals �i, 1 � i � m, its body. The head of a rule c and its body are denoted5

by head(c) and body(c), respectively. If the head of a rule is of the form in(a), the ruleis called an in-rule. Otherwise, it is called an out-rule.A collection of rules is called a revision program or, simply, a program. The set ofall literals appearing in a program P is denoted by var(P). The set of the heads of allrules in P is denoted by head(P).The basic notion for revision programming is that of a model of a literal or a con-straint. We say that a set of atoms B � U is a model of (or satis�es) a literal in(a), ifa 2 B. Similarly, B is a model of (or satis�es) a literal out(b), if b =2 B. A set of atoms Bis a model of (or satis�es) a rule of the form (3) if either B is not a model of at least oneliteral �i, or B is a model of �. Finally, B is a model of (or, satis�es) a revision programP if B is a model of every rule in P . The set of all models of a revision program P isdenoted by MOD(P). We will write B j= �, B j= c and B j= P to denote that B is amodel of a literal �, rule c and program P , respectively.For instance, a rulein(a) in(a1); : : : ; in(am); out(b1); : : : ; out(bn) (4)is satis�ed by a set of atoms B exactly when at least one of the following conditionsholds:1. a 2 B,2. ak =2 B, for some k, 1 � k � m,3. bk 2 B, for some k, 1 � k � n.Similarly, an out-ruleout(a) in(a1); : : : ; in(am); out(b1); : : : ; out(bn) (5)is satis�ed by B exactly when a =2 B, or when at least one of the conditions (2) and (3)above holds.The main goal of this paper is to propose a semantics for revision programming.Revision programs can be viewed as operators that assign to a database a collection ofits possible revisions each of which, at the very least, must be a model of P . Followingthis intuition, by a semantics for revision programming we mean any function SEM ,which assigns, to every revision program P , an operator SEMP : P(U) ! P(P(U))such that for every B � U , SEMP (B) �MOD(P).An obvious example of a semantics is the operator SEM de�ned bySEMP (B) = MOD(P):However, it is much too weak. First, revisions of a database B by a program P shoulddepend on both P and B, and not on P only. Hence, in general, SEMP (B) must be aproper subset of the set of models of P . For instance, if a current database B satis�es6

all the constraints in P , SEMP (B) should consist of B only (and not of all models ofP) as, intuitively, there is no need for any revisions in such case.A solution might be to de�ne SEMP (B) to consist of all those models B0 of P thatdi�er from B by as little as possible, that is, for which the symmetric di�erence with Bis minimal (recall that the symmetric di�erence is given by: B0�B = (B0 nB)[(BnB0)).Formally, we de�neMODmin(P;B) = fB0 2 MOD(P) : B0 � B is minimalg:Clearly, the operator MODmin de�nes a semantics for revision programming. We willcall it the minimal revision semantics. It is a counterpart of the minimal model semanticsfor logic programs and it su�ers from a similar problem. In revision programming, bywriting constraints as rules we not only express a constraint but, also, a preferred wayto impose it. If a database B does not satisfy a rule (3), then all premises of the rule aresatis�ed but the head is not. There are two ways to guarantee that a revised version ofB satis�es rule (3):1. change B so that � is satis�ed after the revision (if � = in(a), insert a, if � =out(a), remove a)2. change B so that at least one �k is not satis�ed after the revision (if �k = in(a),remove a, if �k = out(a), insert a).In addition to describing constraints, revision programming views rules as mechanismto infer new facts. Assuming that the premises of a rule are satis�ed, the rule is usedto derive its head. Consequently, it is the �rst way of enforcing a constraint that ispreferred.Example 2.1 Consider a database B = fa; bg and a program P = fout(b) in(a)g.Clearly, B is not a model of P . In order to satisfy P , we have two possibilities: (1) removeb from B, and (2) remove a from B. Each of these possibilities leads to a model of Pminimally di�ering from B. However, the �rst one is preferred, as it reects the intuitionof a rule as an inference mechanism. Hence, we should require that SEMP (B) = ffagg.The analogies with logic programming are quite obvious. We will study the corre-spondence in more detail in Section 4.We will now introduce our proposal for the semantics of revision programs. We willstart with more terminology. Let B � U be a set of atoms. We de�neBc = fin(a): a 2 Bg [fout(a): a =2 Bg:For any set of literals L, we de�neL+ = fa 2 U : in(a) 2 Lg7

and L� = fa 2 U : out(a) 2 Lg:We call a set L of literals coherent if L� \ L+ = ;. Clearly, a coherent set of literalsdetermines a revision of a database B as it speci�es necessary insertions and deletionsto be performed. Namely, the result of the revisions determined by L is the database(B n L�) [L+. We will denote it by B � L. That is,B � L = (B n L�) [L+:Notice that if a set L of literals is coherent, then (B n L�) [L+ = (B [L+) n L�.More generally, the order in which insertions and deletions speci�ed by L are executedis immaterial. However, if L is incoherent, then (B n L�) [L+ 6= (B [L+) n L�. Thus,the order in which the changes are made becomes crucial. Consequently, in such case,the revision by a set of literals becomes ill-de�ned. This is the reason why we do notconsider revisions speci�ed by incoherent sets of literals.The following lemma summarizes basic properties of the notion of model and theoperator �.Lemma 2.2 Let L be a set of literals and let B be a database.1. If B j= L, then L is coherent and B � L = B.2. Let L be a coherent set of literals. If L � L0 and B�L j= L0, then B�L = B�L0.3. Let L be coherent. If � 2 L, then B � L j= �. If B � L j= � and B 6j= �, then� 2 L. 2Our proposal for a semantics for revision programming is based on two key concepts:necessary change and inertia set. We will now introduce these notions and study theirproperties.Example 2.3 Consider the program P = fin(c) ; out(b) in(c)g and the initialdatabase B = fa; bg. Since c must be inserted unconditionally, b | whose removal isconditioned only upon believing in c | must be removed. Literals in(c) and out(b)form the necessary change determined by P .In this example, the intuition behind the term \necessary change" is that no matterwhat the initial database is, the actions described by it (insert some objects, eliminatesome objects) will have to be performed. This intuition is formalized as follows.De�nition 2.4 (Necessary change) Let P be a revision program. The necessarychange of P , NC(P), is the least model of P , when treated as a Horn program built ofindependent propositional atoms of the form in(a) and out(b).8

One can develop the notion of necessary change in the language of operator theory.Namely, one can assign to a revision program P the corresponding one-step revisionoperator and then prove that the necessary change is its least �xpoint. This one-steprevision operator coincides, in fact, with van Emden-Kowalski [vEK76] operator for Ptreated as a Horn program (De�nition 2.4). Hence, it is monotone and compact and,consequently, the �xpoint exists and is reached in at most ! steps.Since the notion of necessary change is de�ned as a least model of a certain Hornprogram, we will recall some well-known properties of propositional Horn programs. Wewill not prove them, although, to the best of our knowledge, they were not reported inthe literature.Let P be a propositional Horn program. By LM(P) we denote a least model of P .Let us de�ne P u = fc 2 P : body(c) � LM(P)g:Intuitively, P u consists of all those rules in P which \�re" (are used) during the con-struction of the least model of P . In particular,head(P u) = LM(P):Lemma 2.5 Let P be a Horn program and let P = P1 [P2. If1. P1 \ P2 = ;, and2. for every rule c 2 P2, body(c) 6� head(P1),then P u = P u1 and LM(P) = LM(P1). If, in addition, P u1 = P1 then P u = P1 andLM(P) = LM(P1) = head(P1). 2Let P be a Horn program and let B be a set of atoms. By P jB we denote the Hornprogram obtained from P by eliminating from the body of each rule all atoms that arein B.Lemma 2.6 Let P be a propositional Horn program over a denumerable set of atomsU . Let P 0 be a subset of P and B be a set of atoms such that1. for every rule c 2 P n P 0, body(c) 6� head(P 0) [B, and2. there is an enumeration fct: 1 � t < ng, where n is a non-negative integer orn = !, of the rules in P 0 such that for every t, 1 � t < n,body(ct) � head(fcq: 1 � q < tg) [B:Then, LM(P jB) = head(fct: 1 � t < ng). 2Lemma 2.7 Let P be a propositional Horn program over a denumerable set of atomsU . Let B be a set of atoms and let P 0 be a subset of P such that (P jB)u = P 0jB. Thereexists an enumeration fck: 1 � k < ng of P 0, where n is a non-negative integer or n = !,such that 9

1. for every rule c 2 P n P 0, body(c) 6� head(P 0) [B, and2. for every k, 1 � k < n, body(ck) � head(fcq: 1 � q < kg) [B. 2In the paper, we will use the notation introduced above as well as Lemmas 2.5, 2.6and 2.7 for revision programs treated as propositional Horn programs.The second key concept is that of the inertia set. Let P be a revision program.Consider an initial database I. Assume that R is a revision of I by P . Clearly, P mustprovide justi�cation for the insertions of the elements in R n I and the deletions of theelements in I nR. Since the status of all the other elements remains the same, no otherjusti�cations are needed. In fact, we will use the elements whose status does not change(formally described by the inertia set), in combination with the program P , to providejusti�cation for all the changes necessary to transform I into R.Let us de�ne the inertia set for the pair (I;R) as follows:I(I;R) = fin(a): a 2 I \Rg [fout(a): a =2 I [Rg:The following lemma gathers several simple properties of the inertia set.Lemma 2.8 Let I, I 0 and R be databases, let L be a set of literals and let � be a literal.1. � 2 I(I;R) if and only if I j= � and R j= �,2. I(I;R) � I(I 0;R) if and only if R� I 0 � R� I,3. If I(I;R) � I(I 0;R), L is coherent and R = I � L, then R = I 0 � L. 2Part (1) of the lemma expresses a basic intuition behind the inertia set. It consistsof those literals that are satis�ed by both I and R. Part (2) shows that the larger theinertia set the \closer" the two databases are (and conversely). Finally, part (3) showsthat if R is obtained by revising I by L and if I 0 is \closer" to R than I, then revisingI 0 by L also yields R.We will use the literals in I(I;R) to simplify P (they need not to be justi�ed by P ,as they are satis�ed by both I and R and can be assumed to hold). By the reduct ofP with respect to (I;R), denoted by PI;R, we mean the revision program obtained fromP by eliminating from the body of each rule in P all literals in I(I;R). That is, in thenotation introduced earlier for the Horn programs,PI;R = P jI(I;R):The necessary change of the program PI;R provides a justi�cation for some insertionsand deletions. These are exactly the changes that are justi�ed by P in the context ofthe pair of databases (I;R).
10

De�nition 2.9 (Justi�ed Revision) Let P be a revision program and let I and Rbe databases. If NC(PI;R) is coherent andR = I � NC(PI;R)then R is called a P -justi�ed revision of I.For every revision program P and every database B, by JRP (B) we denote the setof all P -justi�ed revisions of B. We propose the operator JR as a semantics for revisionprograms. At this point it is not at all clear that JRP (B) � MODP (B) (that is, thatJR indeed de�nes a semantics for revision programming). We will later show that it isthe case (Theorem 3.1).We will now illustrate the notions of necessary change, inertia set, reduct and P -justi�ed revision.Example 2.10 Consider the program P = fin(a) out(b); in(b) out(a)g. Assumethat I = ; and R = fa; bg. Clearly, I(I;R) = ;:Consequently, PI;R = P and NC(PI;R) = ;:Hence, P does not justify any changes in the context of (I;R). Therefore, R 6= I �NC(PI;R) and, consequently, R is not a P -justi�ed revision of I.Assume now that I is as before and that R = fag. Now,I(I;R) = fout(b)g and PI;R = fin(a) ; in(b) out(a)g:Clearly, NC(PI;R) = fin(a)g:Since NC(PI;R) is coherent and R = I � NC(PI;R), R is a P -justi�ed revision of I.The same reasoning shows that R = fbg is a P -justi�ed revision of I and that R = ;is not a P -justi�ed revision of I.Example 2.11 Let U = fa; bg. Let P = fout(a) in(a)g. Consider a databaseI = fag. Then, no set of atoms is a P -justi�ed revision of fag. For example, let R = ;.Then, I(I;R) = ;, PI;R = P and NC(PI;R) = ;. Clearly, NC(PI;R) is coherent butR 6= I � NC(PI;R). Similarly, we show that none of the remaining subsets of U (fag,fbg and fa; bg) is a P -justi�ed revision of I.In the same time, if I = ;, then R = ; is the only P justi�ed revision of I.These two examples show that given a revision program P , a database B can haveno, exactly one, or many justi�ed revisions. Especially important, from the point ofview of practical database applications are those revision programs that, for every input11

database, uniquely determine its revision. We exhibit two classes of such programs laterin this paper.We will now provide an alternative de�nition of P -justi�ed revisions. It is basedon a di�erent notion of reduct | a counterpart of Gelfond-Lifschitz reduct in logicprogramming [GL88].Let P be a revision program and let I and R be two databases. The GL-reduct ofP with respect to (I;R) is de�ned in two stages:Stage 1: Eliminate from P every rule whose body is not satis�ed by R. Denote theresulting program by PR.Stage 2: From the body of each rule in PR eliminate each literal that is satis�ed by I.Denote the resulting program by PRjI (this is the GL-reduct of P with respect to(I;R)).(Observe that PRjI = PRjI(I;R).)A comment is warranted here. In the original paper by Gelfond and Lifschitz, the�rst stage of the reduction is di�erent from the one described here. Namely, Gelfond andLifschitz eliminate from P only those rules that have at least one negative literal in thebody not satis�ed by a hypothetical stable model (a counterpart ofR). In our approach,we eliminate all those rules that have at least one literal, positive or negative, not satis�edby R. This is an important point. As we will see there is a high degree of symmetry inrevision programming | positive and negative literals are treated in the same way. Theoriginal de�nition of the Gelfond-Lifschitz reduct, which treats positive and negativeatoms di�erently, was not suitable as a template for a reduct of revision programs.However, the �rst step in the construction of Gelfond and Lifschitz can be modi�ed.One can eliminate all those rules whose body is not satis�ed by the hypothetical stablemodel. The notion of the reduct changes but the notion of the stable model remains thesame! It is this approach that is generalized here to the case of revision programs.The following theorem ties together the notions of reduct and GL-reduct for revisionprograms, and shows that each can be used to de�ne the notion of P -justi�ed revision.Theorem 2.12 Let P be a revision program and let I and R be two databases. Thefollowing two conditions are equivalent:(R1) NC(PI;R) is coherent and R = I � NC(PI;R),(R2) NC(PRjI) is coherent and R = I � NC(PRjI).Proof: Assume (R1). We will �rst show thatP uI;R = PRjI: (6)Consider a rule c � �1; : : : ; �n12

from P uI;R. By the de�nition of P uI;R,�1; : : : ; �n 2 NC(PI;R):Since R = I � NC(PI;R), Lemma 2.2 implies thatR j= �1; : : : ; �n: (7)By the de�nition of PI;R, none of the literals �j is in I(I;R). Hence, by Lemma 2.8and (7), for every j, 1 � j � n, I 6j= �j: (8)Since c 2 PI;R, there are literals �1; : : : ; �k 2 I(I;R) such that the rule c0, of theform � �1; : : : ; �n; �1; : : : ; �k;is in P . By Lemma 2.8, R j= �1; : : : ; �k. Hence, by (7), c0 2 PR. Moreover, also byLemma 2.8, we have that I j= �1; : : : ; �k. Hence, by (8), � �1; : : : ; �n is in PRjI.This proves that P uI;R � PRjI.To prove the converse inclusion, consider a rule c� �1; : : : ; �nfrom PRjI.By the de�nition of PRjI, for every j, 1 � j � n, R j= �j and I 6j= �j. Hence, noneof �j is in I(I;R). Moreover, there are literals �1; : : : ; �k such that I j= �j, 1 � j � k,and the rule c0, of the form � �1; : : : ; �n; �1; : : : ; �k;is in PR. It follows that R j= �j, 1 � j � k.Now, it is easy to see that �j, 1 � j � k, are the only literals in the body of c0 thatbelong to I(I;R). Consequently, c 2 PI;R. Recall that R = I � NC(PI;R), and thatfor every j, 1 � j � n, R j= �j and I 6j= �j. By Lemma 2.2, for every j, 1 � j � n,�j 2 NC(PI;R). Consequently, c 2 P uI;R.Thus, we have proved (6). It follows thatNC(PI;R) = NC(P uI;R) = NC(PRjI):Consequently, NC(PRjI) is coherent and R = I � NC(PRjI).Assume now that (R2) holds. We will prove (R1). We will show that also in thiscase the identity (6) holds. First, recall that PRjI is obtained from PR by eliminatingfrom the body of each rule all literals satis�ed by I. Since all literals in the body of eachrule of PR are satis�ed by R, the result is the same when we eliminate from the bodyof each rule in PR the literals satis�ed both by I and R, that is, the literals in I(I;R).It follows that PRjI = (PR)I;R � PI;R:13

Hence, NC(PRjI) � NC(PI;R).Consider a rule c � �1; : : : ; �nfrom PRjI. Then, for every j, 1 � j � n, R j= �j and I 6j= �j. SinceR = I�NC(PRjI),�j 2 NC(PRjI) (Lemma 2.2). Consequently, (PRjI)u = PRjI.Observe now that every rule from PI;R n (PRjI) has at least one literal in the bodythat is not satis�ed by R. Since, R = I � NC(PRjI), by Lemma 2.2 it follows thatevery rule from PI;R n (PRjI) has at least one literal in the body that does not belongto NC(PRjI). By Lemma 2.5, it follows that P uI;R = PRjI. That is, (6) holds.The rest of the proof is almost as before. We have NC(PI;R) = NC(P uI;R) =NC(PRjI). Hence, NC(PI;R) is coherent and, therefore, R = I � NC(PI;R). 2The analysis of the proof of Theorem 2.12 implies another important result. It willbe used frequently throughout the paper.Theorem 2.13 Let P be a revision program and let R be a P -justi�ed revision of I.Then, P uI;R = PRjI and NC(PI;R) = NC(PRjI) = head(PR). 2Finally, we will state yet another characterization of justi�ed revisions.Theorem 2.14 The following conditions are equivalent:1. A database R is a P -justi�ed revision of a database I,2. NC(P [f� :� 2 I(I;R)g) = Rc,3. NC(PI;R) [I(I;R) = Rc.Proof: It is easy to see thatNC(P [f� :� 2 I(I;R)g) = NC(PI;R) [I(I;R):Hence, to prove the theorem, one only has to show the equivalence of (1) and (3).Assume (3). Since Rc is coherent, NC(PI;R) is coherent, too. We will now show thatR = I�NC(PI;R). Let a 2 R. Then in(a) 2 Rc and, consequently, in(a) 2 NC(PI;R)[I(I;R). If in(a) 2 NC(PI;R), then a 2 I �NC(PI;R). So, assume that in(a) 2 I(I;R).It follows that a 2 I. Since out(a) =2 NC(PI;R) (recall that out(a) =2 Rc), it follows thata 2 I � NC(PI;R). Hence, R � I � NC(PI;R). The converse inclusion can be provedsimilarly. Hence, (1) follows. The proof that (1) implies (3) is similar and is left to thereader. 2
14

3 Basic resultsIn this section we present a number of fundamental properties of revision programming.All these results are very natural and indicate that the notion of P -justi�ed revisioncorresponds to the intuitions normally associated with the process of change.Our �rst result shows that the notion of a P -justi�ed revision indeed speci�es asemantics for revision programming, that is, that P -justi�ed revisions are models of aprogram P . In the terminology of Section 2, we show that JRP (B) �MOD(P).Theorem 3.1 Let P be a revision program and let I be a database. If a database R isa P -justi�ed revision of I, then R is a model of P .Proof: Since R is a P -justi�ed revision of I, R = I � NC(PRjI). By Lemma 2.2 andTheorem 2.13, it follows that R j= head(PR). Consequently, R j= PR. Since for everyrule c 2 P n PR, R 6j= body(c), R j= c. Hence, R j= P . 2A common feature of knowledge representation formalisms is the con�rmation ofevidence property. If a belief set is selected on the basis of some data and if additionaldata, consistent with this belief set is received, then there is no need to change the beliefset (although new belief sets may become possible at this point). This new evidence cancome as new facts already present in the belief set, and as new rules that are satis�edby the belief set. The �rst of these possibilities was studied in the case of default logicand logic programming [Rei80, MT93a]. The second one has not been explicitly studiedin the literature so far. We will now prove two versions of con�rmation of evidenceproperty for revision programming.In the next result, the assumption R � B � R � I means that B is \closer" to Rthan I. That is, it contains additional con�rmation for the choice of R as the revisionof I.Theorem 3.2 Let R be a P -justi�ed revision of I and let B be a database such thatR�B � R� I. Then, R is a P -justi�ed revision of B.Proof: Consider a rule c 2 PR. Let � be a literal in the body of c. Assume thatB 6j= �. Since R j= � (recall that c 2 PR), it follows that � =2 I(B;R). By Lemma2.8, � =2 I(I;R). Since R j= �, it follows that I 6j= �. Consequently, for every rulec 2 PRjB, its body is a subset of the body of the corresponding rule in PRjI. Hence,NC(PRjI) � NC(PRjB) � head(PR):By Theorem 2.13, NC(PRjI) = NC(PRjB). Hence, NC(PRjB) is coherent. By Lemma2.8(3), R = B � NC(PRjB). 2The next result deals with the situation when additional evidence comes in the formof new revision rules.Theorem 3.3 Let R be a P -justi�ed revision of I. Assume that P 0 is a revision programsuch that R j= P 0. Then, R is a (P [P 0)-justi�ed revision of I.15

Proof: De�ne P 00 = P [P 0. ThenP 00RjI = (PRjI) [(P 0RjI):By Theorem 2.13, NC(PRjI) = head(PR). Hence,head(PR) � NC(P 00RjI) � head(PR) [head(P 0R):Since R is a model of P , R j= head(PR). Since R j= P 0, R j= head(P 0R). Consequently,R j= NC(P 00RjI). Thus, NC(P 00RjI) is coherent andR = I � NC(PRjI) = I � NC(P 00RjI)(by Lemma 2.2). 2Theorem 3.3 implies the following corollary.Corollary 3.4 Let P be a revision program. A database R is a PR-justi�ed revision ofI if and only if R is a P -justi�ed revision of I. 2Another intuitive principle of revision is that if the current database satis�es alldesired constraints then no change is necessary. The next result shows that under thesemantics of justi�ed revisions not only no change is necessary but, if there are no otherconstraints, no change can be justi�ed.Theorem 3.5 If a database B satis�es a revision program P then B is a unique P -justi�ed revision of B.Proof: Observe �rst that NC(PBjB) � head(PB). Since B is a model of P , we haveB j= head(PB). Consequently, NC(PBjB) is coherent and B = B � NC(PBjB) (Lemma2.2). Hence, B is its own P -justi�ed revision.Consider now a P -justi�ed revision B0 of B. Consider a rule c 2 PB0 given by� in(a1); : : : ; in(am); out(b1); : : : ; out(bn):There are two possibilities.Case 1. B satis�es the body of c. Since B is a model of P , B satis�es �. In addition,� belongs to PB0jB.Case 2. B does not satisfy the body of c. Then, the rule c0 that c contributes to PB0 jB(that is, the rule obtained from c by eliminating from its body all literals satis�ed by B)has a nonempty body. In fact, none of the elements in the body of c0 is satis�ed by B.Hence, PB0jB consists of rules of two types: (1) rules with the empty body and withthe head satis�ed by B, and (2) rules with a nonempty body in which no element issatis�ed by B. It follows that B j= NC(PB0jB). Hence, by Lemma 2.2, B�NC(PB0jB) =B. Since B0 is a P -justi�ed revision of B, B0 = B � NC(PB0jB). Hence, B = B0 and B isa unique P -justi�ed revision of B. 216

Major nonmonotonic reasoning systems and several theories of belief revision anddatabase update satisfy some version of the minimality (parsimony) principle. For ex-ample, stable models of a logic program P are minimal models of P and extensions ofa default theory (D;W) are minimal theories closed under (D;W) (see [MT93b]). Ina modal nonmonotonic logic S, S-expansions can be characterized in terms of Kripkemodels satisfying some minimality criteria ([Sch92, MT93b]). Similarly, in the case oftheories of belief revision and database update, we require that theories (databases) afterrevision or update di�er from the initial ones by \as little as possible".The process of change described by P -justi�ed revisions has a strong proof-theoreticavor (we have an a posteriori valid justi�cation of any change in status of every el-ement). Consequently, the notion of a justi�ed revision also satis�es certain naturalminimality criterion. Given two sets R and I, one can describe how much they di�erby means of their symmetric di�erence R � I or, equivalently, by means of the corre-sponding inertia set (Lemma 2.8). Intuitively, P -justi�ed revisions of a database shoulddi�er from the database by as little as possible. Our next result formally describes aminimality condition satis�ed by justi�ed revisions.Theorem 3.6 Let P be a revision program and let I be a database. If R is a P -justi�edrevision of I, then R� I is minimal in the family fB � I:B is a model of Pg.Proof: Assume that B is a model of P and that B � I � R � I. It follows thatR� B � R � I. By Theorem 3.2, R is a P -justi�ed revision of B. Since B is a modelof P , by Theorem 3.5, R = B. 2Theorem 3.6 has a corollary which generalizes a well-known property that all stablemodels (extensions) of a logic program (default theory) form an antichain.Corollary 3.7 Let P be a revision program and let I be a database. If R and R0 areP -justi�ed revisions of I and R� I � R0 � I, then R = R0. 2We will now study the notion of a dual revision program. Each database B uniquelydetermines its complement B = U n B. We will now show that the chain of transitionsI 7! I P7! R 7! Rcan be performed directly by a single transformationI P 07! Rfor a suitably constructed program P 0.For a literal in(a), its dual is the literal out(a). Similarly, the dual of out(a) isin(a). The dual of a literal � is denoted by �D. For a set of literals L, we de�neLD = f�D:� 2 Lg. Given a revision program P , let us de�ne the dual of P (PD insymbols) to be the revision program obtained form P by simultaneously replacing alloccurrences of all literals by their duals. It is easy to see that whatever has to be added17

to I according to revisions speci�ed by P has to be removed from I according to PD.Similarly, whatever has to be removed from I according to P has to be added to Iaccording to PD. Hence, in revision programming there is duality between in and outoperators.Theorem 3.8 (Duality Theorem) Let P be a revision program and let I be a data-base. Then, R is a P -justi�ed revision of I if and only if R is a PD-justi�ed revisionof I.Proof: Observe that for every database BBc = (Bc)D:Observe also that for every two databases I and R,I(I;R) = I(I;R)D:Finally, notice that for every revision program P ,NC(PD) = (NC(P))D:All these observations and Theorem 2.14 imply the assertion. 2Finally, we will discuss some properties of necessary change and the notion of coher-ence. The next result shows that updates implied by the necessary change of a programP are consistent with the models of P .Theorem 3.9 Let P be a revision program. For every model M of P , NC+(P) � Mand NC�(P) \M = ;.Proof: A setM of atoms is a model of a revision program if and only ifMc is a model ofa (Horn) logic program obtained from P by regarding each revision literal as a distinctpropositional atom. LetM be a model of P . By the de�nition of NC(P), NC(P) �Mc.Hence, the assertion follows. 2Corollary 3.10 If a revision program P has a model then NC(P) is coherent. 2The converse to Corollary 3.10 fails. For example, consider a program P = fin(a) out(a); out(a) in(a)g. Clearly, P has no models. In the same time, NC(P) = ;.Hence, it is coherent. However, the notion of coherence can be given a complete charac-terization in terms of 3-valued models of revision programs. A three-valued interpretationis a pair of sets of atoms hD1; D2i such that D1 \ D2 = ;. Consider a three-valued in-terpretation V = hD1; D2i. We say that V 3-satis�es in(a) if a 2 D1. Similarly, V3-satis�es out(a) if a 2 D2. We say that V 3-satis�es a revision rule c if V 3-satis�esthe head of c whenever V 3-satis�es all literals in the body of c. Finally, V is a three-valued model of a revision program P if P 3-satis�es all rules in P . It is easy to showthat a revision program is coherent if and only if P has a three-valued model.We conclude this section by introducing another semantics for revision programs |the semantics of supported revisions. It is based on similar ideas as the semantics ofsupported models for logic programs [Cla78, MT93a].18

De�nition 3.11 A set of atoms R is a P -supported revision of I if head(PR) is coherentand R = I � head(PR).We will now present several properties of supported revisions. Our results generalizetwo well-known results on logic programming: (1) each supported model of a logicprogram P is a model of P , and (2) each stable model of a logic program P is a supportedmodel of P .Theorem 3.12 Let P be a revision program and let I be a database. If a database Ris a P -supported revision of I then R is a model of P .Proof: Clearly, R j= head(PR) (Lemma 2.2). Consequently, R j= PR. If c 2 P n PR,then R 6j= body(c) and, consequently, R j= c. Hence, R j= P . 2Theorem 3.13 Let P be a revision program and let I be a database. If a database Ris a P -justi�ed revision of I, then R is a P -supported revision of I.Proof: By Theorem 2.13, head(PR) = NC(PI;R). Hence, by the de�nition of P -justi�edrevisions, head(PR) is coherent and R = I � head(PR). 24 Relation to logic programmingIn Section 2 we proved that P -justi�ed revisions can be de�ned similarly to stablemodels for logic programs [GL88]. We will now study the relationship between revisionprogramming and logic programming in more detail. In particular, we will propose aninterpretation of logic programs as revision programs.Given a logic program clause cp q1; : : : ; qm;not(s1); : : : ;not(sn) (9)we de�ne the revision rule rp(c) asin(p) in(q1); : : : ; in(qm); out(s1); : : : ; out(sn): (10)In addition, for a logic program P , we de�ne the corresponding revision program rp(P)by rp(P) = frp(c): c 2 Pg: (11)Under this interpretation, several concepts in logic programming such as models,stable models and supported models of logic programs can faithfully be represented interms of revision programs. (Recall thatM is a supported model of a logic program PifM = head(PM), where PM is the set of those clauses in P whose bodies are satis�edbyM [MT93a]).Theorem 4.1 Let P be a logic program. 19

1. A set of atoms M is a model of P if and only if M is a model of rp(P).2. A set of atoms M is a stable model of P if and only if M is an rp(P)-justi�edrevision of ;.3. A set of atoms M is a supported model of P if and only if P if and only of M isan rp(P)-supported revision of ;.Proof: (1) We leave to the reader proving this part of the assertion.(2) First, notice that for every R the inertia I(;;R) consists of negative literals only.Speci�cally, I(;;R) = fout(a) : a =2 Rg:Second, since the image of the logic program consists of in-rules only, the necessarychange NC(P;;M) consists of positive literals only.Now, let P be a logic program and rp(P) its revision programming translation. ThenM is a stable model of P if and only ifM coincides with the least model of the Gelfond-Lifschitz reduct of P with respect toM, GL(P;M) (see [GL88]). Notice that rp(P);;Mis obtained from rp(P) by eliminating from the bodies of rules in rp(P) all the literals inI(;;M). But, as observed above, this inertia set consists of negative literals only. Sincethe reduced program consists of in-rules, we can now apply Lemma 2.5 and eliminateall rules which have negative literals in the body, since they will not be usable. It iseasy to see that the resulting program is precisely the image of the original Gelfond-Lifschitz reduct1 of P under the embedding rp. This implies that the necessary changeof rp(P);;M is fin(a) : a 2 Mg. But thenM is a P -justi�ed revision of ;.It is easy to see that we used only equivalences, and so the converse implication holdsas well.(3) Since P is a logic program, it is easy to see thatM = ;� head(rp(P)M) if and onlyifM = head(PM). This yields the assertion. 2Theorem 4.1 implies that every characterization of justi�ed revisions has its coun-terpart | a characterization of stable models of logic programs. In particular, Theorem2.12 implies a characterization of stable models in terms of a \symmetric" version ofGelfond-Lifschitz reduct. Similarly, Theorem 2.14 implies a characterization of stablemodels equivalent to the one provided in [BTK93] in terms of the assumption-basedframework.The second con�rmation of evidence property (Theorem 3.3) together with the trans-lation result (Theorem 4.1) imply the following con�rmation property for stable modelsof logic programs.Corollary 4.2 Let P and P 0 be logic programs. Let M be a stable model of P . IfM j= P 0 then M is a stable model of P [P 0.1In Section 2 we used modi�ed Gelfond-Lifschitz reduct.20

Notice that under the assumptions of Corollary 4.2, althoughM remains the stablemodel of P [P 0, the class of stable models of P is not, in general, preserved. That is,some of the stable models of P may no longer be stable models of P [P 0, and new stablemodels of the larger program may appear.We have just argued that logic programs can be regarded as special revision programs.In fact, the relationship between logic and revision programming is even more interesting.Przymusinski and Turner [PT95] discovered an encoding of revision programs in termsof logic programs which expresses justi�ed revisions in terms of stable models. Thus,revision programs can be viewed as special logic programs. A natural question to ask isthen: why to study revision programs at all?In our view there are several reasons. The language of revision programming istailored directly to situations in which we need to state and enforce constraints onpresence and absence of elements in sets. Such features are important in the areas ofdatabase update and belief revision. Consequently, revision programming is a formalismwhich allows us to state problems of importance in these areas in an explicit and directmanner.As shown by Przymusinski and Turner, revision programming can be embedded intologic programming with stable model semantics but, in the process, new symbols haveto be introduced, the size of a program grows, justi�ed revisions are not just stablemodels but have to be decoded from stable models, and �nally, clear intuitions behindin and out operators become obscure. In addition, the embedding described in [PT95],while mapping justi�ed revisions to stable models, does not map supported revisionsto supported models, despite the existing natural correspondence between these twoconcepts, evident from the results presented in this section.On the other hand, the embedding of logic programming into revision programmingdiscussed in our paper is as simple as it can be. Up to a simple renaming of literals,it is an identity embedding. Consequently, results on revision programming directlyand literally imply speci�cations that apply to logic programs. In particular, notions ofmodels, supported models and stable models are uniformly mapped to the correspondingconcepts in revision programming.Next, as we discuss in more detail in Section 6, the existence of the encoding ofrevision programs as logic programs allows us to identify classes of logic programs withinteresting arithmetic complexity properties. These programs and corresponding resultsare easy to describe in terms of revision programs while direct descriptions are lessobvious.Finally, from the vintage point of revision programs, it becomes clear that the realmof "programs" goes beyond just logic programs. There are programs which compute byadding new facts to the initially empty database (logic programs), programs that com-pute by deleting facts from a Herbrand base (revision programs dual to logic programs)and all combinations of these two cases.
21

5 Sequential revision processOur de�nition of P -justi�ed revisions has a certain \global" character. It is based ontwo operators that are applied to programs rather than to individual rules. The �rst ofthese operators assigns the reduct to a revision program, the other one assigns to thereduct the necessary change it implies. Hence, P -justi�ed revisions of I can be viewedas the results of applying all rules of P to I \in parallel". In this section, we will presenta di�erent description of P -justi�ed revisions. We will show that P -justi�ed revisionsof I are exactly those databases R which can be obtained from I by executing all rulesof P one by one according to some enumeration of the rules in P . This property of thesemantics of P -justi�ed revisions is similar to the notion of serializability in transactionmanagement.For every rule c 2 PB, B j= body(c). Hence, we will call all rules in PB | B-applicable.For example, the rule in(c) in(a); out(b) is not B-applicable for B = fa; bg and it isB-applicable for B = fa; dg.If a rule c is B-applicable then its conclusion can be executed on the database B and,according to the head of c, an atom will be inserted to or deleted from B. Assume thata certain well-ordering (enumeration) � of the rules of P is given. Then, the followingsequential revision process can be considered: in each step select the �rst rule accordingto � which has not been selected before and which is applicable with respect to thecurrent state of the database. Modify the database according to the head of the selectedrule. Stop when selection of a rule, according to these principles, is no longer possible.The question that we deal with in this section is: how the results of such revision processrelate to P -justi�ed revisions?Example 5.1 Let B = ; and let P consist of the following two rules:(1) in(c) out(b) (2) in(b) in(c).Let us process the rules in the order they are listed. Rule (1) is applicable with respect toB = ;. Hence, the update in(c) is executed and we get a new database B1 = fcg. Now,the second rule is the �rst B1-applicable rule not applied yet. Hence, the update in(b)is executed. Consequently, the next database B2 = fb; cg is obtained. Since there are noother rules left, the process stops. Notice, however, that rule (1) is not B2-applicable.Hence, the justi�cation for inserting c is lost and B2 should not be regarded as a revisionof B. Observe that B2 is not a P -justi�ed revision of B.Example 5.1 shows that there are cases when processing rules sequentially does notlead to a P -justi�ed revision. The problem is that some of the rules applied at thebeginning of the process may be rendered inapplicable by subsequent updates. Butthere is yet another source of problems.Example 5.2 Let B = fag and let P consist of the following three rules:22

(1) in(c) out(b) (2) in(d) in(a) (3) out(c) in(d).Let us process the rules in the order they are listed. After using rule (1) we get anew database: B1 = fa; cg. Then, rule (2) is B1-applicable and after the update weobtain the database B2 = fa; c; dg. Finally, we apply rule (3) and produce the databaseB3 = fa; dg. Notice that all the rules applied in the process are B3-applicable. But B3is not a model of the program P . The reason is that the set of literals produced in theprocess is not coherent. Hence, B3 cannot be regarded as a possible revised version ofB. Observe also that, since B3 is not a model of P it is not a P -justi�ed revision of B.It turns out that Examples 5.1 and 5.2 capture all such cases when processing rulesof the program according to some ordering does not yield a P -justi�ed revision.We will now formally de�ne the sequential revision process and provide a preciseformulation of the statement above. The approach we take is similar to our earlierresult in which default extensions (and, hence, also stable models of logic programs)are characterized as results of some sequential computation by means of default rules(program clauses) [MT93a].Let I be a set of atoms (a database) and let P be a revision program. Both I and Pmay be in�nite. Let fctgt<n be an enumeration of rules in P . Here n stands for a naturalnumber or an in�nite ordinal (if the revision program P is in�nite). Our argument issuitable for both �nite and in�nite case. For simplicity we assume that n is �nite. Areader familiar with induction arguments will have no problem extending the argumentto the trans�nite case.We de�ne an integer n�, a sequence of integers ftqg1�q<n� and a sequence of setsfLqgq<n� as follows. First, we set L0 = ;:Let p � 1 be an integer. Assume that we have already de�ned coherent sets Lq of literals,for q < p, and integers tq, for 1 � q < p. SetL<p = [q<pLq:Observe that L<p is coherent and de�neB<p = I � L<p:Set L<p represents all updates produced by the process so far and B<p is the result ofrevising I by L<p. Next, de�neA<p = PB<p n fctq : 1 � q < pg:The set A<p consists of all rules that are applicable with respect to the database B<pand have not been applied in the process yet.If A<p = ; then we stop the construction and set n� = p. Otherwise, we de�netp = minft: ct 2 A<pg23

and Lp = L<p [fhead(ctp)g:If Lp is incoherent, de�ne n� = p + 1 and stop. Otherwise, continue. The cardinalityargument ensures that the construction terminates.After the construction terminates, de�ne L = Sq<n� Lq. If L is coherent, we alsode�ne R = I � L. In such case, R = B<n�.Note that n� and the sequences fLqgq<n�, and ftqg1�q<n� depend on the enumeration� of P . We suppressed � in the notation in order to simplify it.The process described above is called the sequential revision process for the enumer-ation � and a database I. A well-ordering (enumeration) of a revision program P iscalled a posteriori consistent for I if all the rules of P that were applied in the cor-responding sequential revision process (fctq : 1 � q < n�g) are applicable with respectto the resulting database R. It is called sound for a database I if L is coherent. Theordering considered in Example 5.1 is not a posteriori consistent for I = ;, The orderinggiven in Example 5.2 is not sound for I = fag.Theorem 5.3 Let P be a revision program and let I be a database. A database R isa P -justi�ed revision of I if and only if there exists an enumeration of P which is aposteriori consistent and sound for I and such that R = I � L, where L is the set ofliterals produced by the corresponding sequential revision process.Proof: We will use in the proof the notation introduced in the de�nition of the sequentialrevision process. Let � be an ordering of P , a posteriori consistent and sound for I.Let L be the set of literals produced by the corresponding sequential revision process.It follows that L = L<n�. We will prove that the database R = I � L is a P -justi�edrevision of I.Since the ordering � is a posteriori consistent, it follows that for every q, 1 � q < n�,R j= body(ctq). Hence, fctq : 1 � q < n�g � PR:Since R = B<n�, by the de�nition of the sequential revision process, PR n fctq : 1 � q <n�g = ; (otherwise, the sequential revision process would not terminate on the integern�). Hence, PR = fctq : 1 � q < n�g: (12)In particular, L = head(PR): (13)Next, notice that for every p, 1 � p < n�,body(ctp) � head(fctq : 1 < q < pg) [I(I;R): (14)Indeed, let � 2 body(ctp). Then B<p j= �. Since ctp 2 PR, R j= �. If I j= �, then� 2 I(BI ;R) (Lemma 2.8). So, assume that I 6j= �, Since B<p = I � L<p, by Lemma2.2 it follows that � 2 L<p. Since, L<p = fhead(ctq): 1 � q < pg, (14) follows.24

Now, by (13), (14) and Lemma 2.6,L = head(PR) = LM(PRjI(I;R)) = NC(PRjI(I;R)) = NC((PR)I;R):Hence, R is a PR-justi�ed revision of I (recall that L is coherent). By Corollary 3.4, Ris a P -justi�ed revision of I.Conversely, let us assume that R is a P -justi�ed revision of I. Let fck: 1 � k < ngbe an enumeration of the rules of PR such that for every k � 1,body(ck) � head(fcm: 1 < m < kg) [I(I;R):Existence of such enumeration is guaranteed by Lemma 2.7. Indeed, by Theorem 2.13,PRjI(I;R) = PRjI = (PI;R)u = (P jI(I;R))u:Let �1 be the enumeration of PR consistent with the enumeration fck: 1 � k < ngand let �2 be any enumeration of P n PR. For c; c0 2 P , de�ne c � c0 precisely in one ofthe following three cases:1. c 2 PR and c0 2 P n PR2. c; c0 2 PR and c �1 c03. c; c0 2 P n PR and c �2 c0.Clearly, � is an enumeration of P . It is easy to show by induction that for every k,1 � k < n, tk = k:Since R = B<n, An = ;. Hence, n� = n and the sequential revision process terminateswith B = R. Consequently, � is a posteriori consistent and sound. 2Theorem 5.3 states that P -justi�ed revisions correspond to a class of orderings ofthe revision program P . It allows us to construct a P -justi�ed revision of I by meansof a process in which rules are applied sequentially one-by-one, assuming an a posterioriconsistent and sound ordering of P can be found.6 Safe programsGiven a database B and a revision program P , there is no guarantee that there is adatabase B0 such that B0 is a P -justi�ed revision of B. Moreover, if such revision exists,there is no guarantee that this revision is unique. This may be considered a drawbackof revision programming as a proposal for the formalism to describe database revisionsand updates. The goal of this section is to exhibit classes of revision programs whichhave a property that is highly desirable from the point of view of any practical databaseapplications: to every initial database they assign a unique justi�ed revision.25

The problem outlined here appears also in other domains. For example, a logicprogram can have no, one or many stable models. This was of concern to the logicprogramming community and two important classes of logic programs were exhibitedwith exactly one stable model. These are the class of all Horn programs and the classof all strati�ed programs [ABW88]. We will now extend these concepts to the caseof revision programming. We will �rst introduce the notion of a safe program. Safeprograms generalize Horn programs to the domain of revision programming.Let us observe that for any coherent set of literals L, the program f� :� 2 Lghas the desired property that every initial database admits exactly one revision. Thenotion of safeness, introduced below, can be viewed as a generalization of the notion ofa coherent set of literals.De�nition 6.1 A revision program P is safe if for every literal � 2 head(P), �D =2var(P).For example, the programP1 = fin(a) out(b)gis safe. Similarly,P2 = fin(a) out(b); in(e); out(c) out(e); out(d) in(a); out(b) gis also safe. However, the programP3 = fin(a) out(b); in(b) out(a)gis not safe. In the context of logic programming safeness is the requirement that if theatom appears negated in the body of a logic program clause, then it does not appearamong the heads of the clauses of the program. It is well known that each such logicprogram possesses a unique stable model.Safeness is a syntactic condition and, more importantly, it can be checked in lineartime. In addition, safe revision programs have several other desirable properties all es-sentially amounting to the fact that safe revision programs uniquely determine a revisionof any initial database.Theorem 6.2 Let P be a safe revision program. Then, for every database I:1. There is a unique R such that R is a P -justi�ed revision of I.2. For every enumeration � of P , the result of the sequential revision process for �and I is the unique P -justi�ed revision of I.3. The unique P -justi�ed revision for I can be computed in time proportional to thetotal size of I and P . 26

Proof: We will �rst prove (1). Let L be a set of literals such that L � head(P). Bysafeness of P , L is coherent. De�ne B0 = B � L. We will �rst show thatP jB = PB;B0: (15)Indeed, let � be a literal in a body of a rule c 2 P . Assume that B j= �. Since �D =2 L(safeness), B0 j= �. Consequently, � 2 I(B;B0). Conversely, assume that � 2 I(B;B0).If � = in(a), then a 2 B \ B0. If � = out(a), then a =2 B [B0. In each case, B j= �.It follows that a literal is removed from the body of a rule in the construction of P jBif and only if it is removed during the construction of P jI(B;B0) = PB;B0. Hence, (15)follows.Let D = B�NC(P jB). Clearly, NC(P jB) is coherent (by safeness of P). In addition,by (15), D = B � NC(P jB) = B � NC(PB;D):Hence, D is a P -justi�ed revision of B. Uniqueness of D follows directly from (15).Indeed, if D and D0 are P -justi�ed revisions of B, thenD = B � NC(PB;D) = B � NC(P jB) = B � NC(PB;D0) = D0:(2) Observe that safeness implies that no rule has in its body a literal whose dual ap-pears in head(P). Consequently, when the sequential revision process terminates, all therules that were applied in the process, remain applicable with respect to the resultingdatabase. In other words, � is a posteriori consistent. Moreover, since head(P) is co-herent, � is sound. Hence, for every enumeration �, the result of the sequential revisionprocess is a P -justi�ed revision of B (and it is unique by (1)).(3) Notice the following facts. First, the reduction process of P with respect to B canbe performed in time proportional to the total size of P and B. Next, we �nd theleast model of reduced program. This can be done in time proportional to its size (see[DG84]), which is bound by the size of the original program. Finally, the database Bhas to be updated by the computed set of literals (necessary change). This again canbe accomplished in time proportional to the total size of B and P . 2Property (1) in Theorem 6.2 generalizes a well-known property of Horn programsthat states that every Horn program has a unique least model. Property (3) and itsproof imply a deterministic, linear-time algorithm for computing justi�ed revisions forsafe programs.As in logic programming, some of useful properties of safe programs can be extendedto a wider class of programs.De�nition 6.3 Let P be a revision program and let fPtg0<t<n be a partition of P . Wesay that fPtg0<t<n is a strati�cation of P if for every 0 < t < n:1. Pt is safe, and 27

2. if � 2 head(Pt) then �; �D =2 Sq<t var(Pq).Clearly, each safe program is strati�ed. Notice also that revision programs obtainedfrom locally strati�ed logic programs under the interpretation described in Section 2 arestrati�ed according to De�nition 6.3.To test if a �nite revision program P is strati�ed and, if so, to �nd a partition of Pinto strata, one can use a modi�ed version of the algorithm of Apt, Blair and Walker[ABW88]. It takes linear time in the size of a revision program P .Several important properties of safe revision programs can be extended to the classof strati�ed programs. In particular, we have the following generalization of Theorem6.2(1).Theorem 6.4 Let P be a strati�ed revision program. For every database B there existsa unique database D such that D is a P -justi�ed revision of B.Proof (sketch): Let fPtg0<t<n be a strati�cation of P . For every t, 0 < t < n, de�neBt = fa 2 B : in(a) 2 head(Pt) or out(a) 2 head(Pt)g:Intuitively, Bt is this part of B that can be a�ected by revisions implied by the programPt. Next, de�ne B0 = B n S0<t<n Bt. Clearly, fBtgt<n is a partition of B.Now, we proceed as follows. First, we de�ne D0 = B0, and we put Dt to be a uniquePt-justi�ed revision of the database Bt [D<t, where D<t = Sr<tDr. Then, we de�neD = [t<nDt:Here is an informal account of what happens during the construction. Since B0cannot be revised by means of P at all, it is put into D at once. Subsequently, at eachstage t we revise Bt [D<t. Observe that D<t is the result of revisions at earlier stages.Due to strati�cation of P , the program Pt cannot modify D<t. Hence, it will remainunchanged. What will change is Bt. However, since the rules of Pt may contain in theirbodies literals whose status is established in earlier stages of the construction, D<t mustbe explicitly used as input. At the end we output the union of constructed layers.We need to show that B � NC(PB;D) = D. To this end, we observe (the proof is leftto the reader) that by strati�cationNC(PB;D) = [0<t<n NC(Ptj(Bt [D<t)):Hence B � NC(PB;D) = [t<nBt!� [0<t<n NC(Ptj(Bt [D<t))! :It is easy to see that the latter set coincides withB0 [[0<t<nBt � NC(Ptj(Bt [D<t))! = D0 [[0<t<nDt = D:28

Hence, the existence of a P -justi�ed revision of B follows.The uniqueness part follows the usual line of strati�cation arguments, see [MT93a].We leave the task of checking this to the reader. 2Let us consider a strati�cation fPtg0<t<n of a strati�ed program P . An enumeration� of P agrees with the the strati�cation fPtg0<t<n if for every t1 < t2 < n, and for everyrules c1 2 Pt1 and c2 2 Pt2 , c1 � c2. It is easy to see that such orderings exist. Now, wecan generalize Theorem 6.2(2).Theorem 6.5 Let P be a strati�ed revision program and let I be a database. Then forevery strati�cation fPtg0<t<n of P and for every enumeration � of P which agrees withthe strati�cation fPtg0<t<n, the result of the sequential revision process for � and I isthe unique P -justi�ed revision of I. 2It should be clear that the argument of Theorem 6.4 yields an algorithm for com-putation of the unique P -justi�ed revision of database B whenever P is strati�ed. Thealgorithm computes the revision in stages and, in each stage, a di�erent stratum Pt isused. Since Pt is safe, the revision can be computed in time linear in the total the sizeof Pt, Bt and D<t. If we maintain the set of literals from D computed up to stage t (thatis, the set D<t) as a characteristic array, then the computation of Ptj(Bt [D<t) can beperformed in time linear in the size of Pt and Bt. Consequently, the computation of aunique revision of a �nite database B by a �nite strati�ed revision program P can beaccomplished in time linear in the total size of P and B. Hence, we have the followinggeneralization of Theorem 6.2(3).Theorem 6.6 Let P be a �nite strati�ed revision program and let I be a �nite database.Then a unique P -justi�ed revision of I can be computed in time proportional to the totalsize of P and I. In particular, the assertion holds for safe programs. 2We will conclude this section with a discussion of complexity issues for in�nite safeprograms. Apt and Blair [AB90] proved that �nite strati�ed predicate programs andin�nite recursive propositional programs with at most n strata compute precisely �0nsets of natural numbers (for n = 1 this result was proved by Smullyan [Smu68]; see also[AN78]). This result provides an insight in the relationship between the complexity ofstrati�ed logic programs, measured in terms of the number of strata, and the complexityof sets that these programs compute. Revision programming allows for a subtler studyby explicitly allowing for deletions and by providing two control parameters: the com-plexity of an initial database and the complexity of a revision program (expressed in thenumber of strata). We will illustrate this thesis with one example, in which the com-plexity of justi�ed revisions of recursive databases by means of recursive safe programsis determined.De�nition 6.7 [EHK81]1. A subset A � ! is called a d.r.e. set (di�erence of r.e. sets) if there are r.e. setsB;C such that A = B n C. 29

2. A subset A � ! is weakly d.r.e. if both A and ! n A are d.r.e. sets.The class of d.r.e. sets is not closed under complements in the very same way as r.e.sets are not closed under complements. However, the class of weakly d.r.e. sets is closedunder complement. In some sense, weakly d.r.e sets play the role of \recursive" sets withrespect to d.r.e. sets. More on d.r.e. sets can be found in [EHK81]. The relationship ofweakly d.r.e. sets to revision programming is explained in the following theorem.Theorem 6.8 Let B be a recursive database and P be a recursive safe program. Thenthe result of P -justi�ed revision of B is a weakly d.r.e. set.Proof: Let B be a recursive database and P a recursive and safe program. First, observethat P jB is recursively enumerable. Indeed, let P be a range of a recursive functionf . We de�ne a function g as follows. On input n, function g �rst computes the rulef(n) = � �1; : : : ; �k. When this is done, function g checks if for all j, 1 � j � k,B j= �j (recall that B is recursive). If so, �j is eliminated from the body of f(n),otherwise it is left there. Clearly, the function g so de�ned is recursive and its range isP jB. Therefore P jB is recursively enumerable.Next, notice that since P jB is recursively enumerable, so is its least model NC(P jB).This in turn implies that NC+(P jB) and NC�(P jB) are recursively enumerable. More-over, P being safe, NC(P jB) is guaranteed to be coherent. It is easy to see that a uniqueP -justi�ed revision B0 of B can be written as:B0 = (B [fa : in(a) 2 NC+(P jB)g) n fb : out(b) 2 NC�(P jB)g:Since, fa : in(a) 2 NC+(P jB)g and fb : out(b) 2 NC�(P jB)g are recursively enumerableand B is recursive, we see that B0 is a d.r.e. set.Finally, notice that since B is recursive then so is B. Similarly, since P is recursivethen so is PD (recall that PD stands for the dual program for P , described in the proofof Theorem 3.8). In addition, it is easy to see that if a revision program P is safe, PDis safe, too. Consequently, by the Duality Theorem (Theorem 3.8) and the �rst part ofour argument, B0 is also a d.r.e. set. Thus, B0 is a weakly d.r.e. set, as claimed. 2Let us discuss the role of Theorem 6.8. It implies that recursive safe revision programson recursive inputs compute strictly less than strati�ed logic programs with two strata.Indeed, it is well known [EHK81] that the class of weakly d.r.e. sets is strictly smallerthan the class �02 and, consequently, than the class �02; which is computed by strati�edprograms with two strata. In the same time, recursive safe revision programs on recursiveinputs compute strictly more than Horn programs. For, instance, it is easy to constructrecursive safe revision programs computing co-r.e. sets on recursive inputs. Hence,revision programs give rise to a �ner classi�cation of logic programs with respect totheir expressibility.
30

7 Complexity and algorithmsWe will now study the complexity of problems involving justi�ed revisions. Relatedresults concerning logic programming with stable and supported models can be found in[MT91, Sch95]. We will also present algorithms for computing justi�ed revisions, givena �nite revision program and a �nite initial database.Problems we are interested in can be be grouped into three broad categories:Existence: Does a justi�ed revision exist?Membership in some: Does an atom a belong to some justi�ed revision?Membership in all: Does an atom a belong to all justi�ed revisions?To study the complexity of these problems we will need simple auxiliary facts.Theorem 7.1 Let P be a revision program.1. There exist databases I and R such that R 2 JRP (I) if and only if P has a model.2. If a database R is a P -justi�ed revision of a database I then there is a coherentset of literals L � head(P) such that R = I � L.Proof: If R 2 JRP (I), then R is a model of P (Theorem 3.1). Conversely, if B is amodel of P , then B 2 JRP (B) (Theorem 3.5). The second part of the theorem is adirect consequence of the de�nition of P -justi�ed revisions. 2Let us also observe that the following algorithm Check correctly veri�es whether adatabase R is a P -justi�ed revision of a database I.Check(P; I;R)(1) Compute the program PI;R(2) Compute NC(PI;R)(3) if NC(PI;R) is incoherent then returnffalseg(4) if R = I � NC(PI;R) then returnftrueg else returnffalsegIt is clear that algorithm Check can be implemented to run in polynomial time (infact, a linear-time implementation is also possible) in the size of P , I and R.We are ready to investigate the complexity of decision problems associated with re-vision programming. We will consider several versions and specializations of the threebroad problems, Existence, Membership in some and Membership in all, that are men-tioned above. They are described in Table 7.1. In this table, P stands for a �nite revisionprogram, � for a literal, a for an atom, and I and R for �nite databases.
31

Problem Input QuestionE1 P ?9 I, R such that R 2 JRP (I)E2 P , I ?9 R such that R R 2 JRP (I)E3 P , R ?9 I such that R R 2 JRP (I)MS1 P , � ?9 I, R such that R 2 JRP (I) and � 2 I(I;R)MS2 P , � ?9 I, R such that R 2 JRP (I) and � =2 I(I;R)MS3 P , a, I ?9 R such that R 2 JRP (I) and a 2 RMS4 P , a, R ?9 I such that R 2 JRP (I) and a 2 IMS5 P , a, I ?9 R such that R 2 JRP (I) and a =2 RMS6 P , a, R ?9 I such that R 2 JRP (I) and a =2 IMA1 P , � ?8 I, R such that R 2 JRP (I), � =2 I(I;R)MA2 P , � ?8 I, R such that R 2 JRP (I), � 2 I(I;R)MA3 P , a, I ?8 R such that R 2 JRP (I), a =2 RMA4 P , a, R ?8 I such that R 2 JRP (I), a 2 IMS5 P , a, I ?8 R such that R 2 JRP (I), a 2 RMS6 P , a, R ?8 I such that R 2 JRP (I) and a 2 ITable 7.1 Decision problems in revision programmingFor these problems, we have the following result.Theorem 7.2 (1) Problems E1 and E2 are NP-complete. Problem E3 can be decidedin time linear in the size of P and R.(2) Problems MS1 - MS3 and MS5 are NP-complete. Problems MS4 and MS6 are in P.(3) Problems MA1 - MA3 and MA5 are coNP-complete. Problems MA4 and MA6 arein P.Proof: (1) Consider a nondeterministic algorithm that, given P , �rst guesses a databaseB consisting of some atoms occurring in P and, then, checks whether B is a model of P .This last task can be accomplished in polynomial time. By Theorem 7.1(1), problemE1 is in NP. We will now show that E1 is NP-complete by describing a polynomial-timereduction of the propositional satis�ability problem to E1. Let C = fc1; : : : ; ckg be acollection of clauses. Assume that each clause is in the forma1 ^ a2 ^ : : : ^ ak ! ak+1;where each ai is a literal. For each such clause C de�ne a revision rule rp(c)�k+1 �1; �2; : : : ; �k;where �i = in(ai), if ai is an atom, and �i = out(a0i), if ai is the negation of an atom a0i.It is easy to see that B is a model of C if and only if B is a model of a revision programfrp(c): c 2 Cg. Hence, by Theorem 7.1(1), C is satis�able if and only if problem E1 hasanswer YES for the revision program frp(c): c 2 Cg.32

By Theorem 7.1 it follows that the problem E2 is in NP. Indeed, to decide (nonde-terministically) whether there is a P -justi�ed revision of a database I, it is enough toguess a subset L of head(P), check that it is coherent, compute R = I � L and, �nally,use algorithm Check(P; I;R) to verify that R is a P -justi�ed revision of I.Furthermore, problem E2 is NP-complete. It follows from the observation that underthe restriction to programs consisting of in-rules only and to the case I = ;, problemE2 becomes equivalent to the question whether a logic program has a stable model(Theorem 4.1), which is known to be NP-complete [MT91].Finally, problem E3 is equivalent to the problem whether R is a model of P . Hence,E3 can be decided in linear time.(2) We will start with problem MS4. Consider the following algorithm.1. If R is not a model of P then return NO and stop.2. If R is a model of P and a 2 R then return YES and stop.3. if R is a model of P and a =2 R then, if R is a P -justi�ed revision of R[fag thenreturn YES and stop, otherwise, return NO and stop.This algorithm can be implemented to run in polynomial time (using algorithmCheck described earlier). It is also correct. Indeed, if R is not a model of P there isno I such that R is a P -justi�ed revision of I (Theorem 3.1). If R is a model of P anda 2 R, the answer is YES since R is a P -justi�ed revision of R (Theorem 3.5). Finally,if R is a model of P and a =2 R then, by Theorem 3.2, there is a database I such thata 2 I and R is a P -justi�ed revision of I if and only if R is a P -justi�ed revision ofR [fag. It follows that MS4 is in P.In a similar way, one can show that MS6 is in P. The key observation (again impliedby Theorem 3.2) is that if R is a model of P and a 2 R, then there exists a databaseI such that R is a P -justi�ed revision of I and a =2 I if and only if R is a P -justi�edrevision of R n fag.Next, we will deal with problems MS1, MS2, MS3 and MS5, All of them are inNP. For example, an algorithm to decide MS1 �rst nondeterministically guesses twodatabases I an R. Then, it checks that R is a P -justi�ed revision of I (using algorithmCheck). Finally, it checks that � 2 I(I;R). It is clear that this nondeterministicalgorithm runs in polynomial time.NP-completeness of MS3 and MS5 follows from the fact that their restricted versions(when P consists of in-rules only and I = ;) are equivalent to the problems to decidewhether a given element belongs (does not belong, respectively) to a stable model of alogic program, which is known to be NP-complete ([MT91, Sch95]).Let us consider now problem MS1. It is easy to see that problem E1 can be polyno-mially reduced to MS1. Let P be a �nite revision program. Let x be an atom not in U .De�ne P 0 = P [fin(x) in(x)g. It is easy to see that R is a P -justi�ed revision ofI if and only if R [fxg is a P 0-justi�ed revision of I [fxg. Hence, any algorithm forMS1, when used for P 0 and x, decides problem E1. It follows that MS1 is NP-complete.33

A similar argument works for problem MS2. As before, let P be a �nite revisionprogram and let x be an atom not in U . De�ne P 0 = P [fin(x) g. One cannow show that R is a P -justi�ed revision of I if and only if R [fxg is a P 0-justi�edrevision of I. Hence, E1 can be polynomially reduced to MS2, which implies that MS2is NP-complete.(3) Observe that problem MAi is the complement of problem MSi, 1 � i � 6. Conse-quently, the result follows from Theorem 7.2. 2We will conclude this section with two straightforward algorithms for computing allP -justi�ed revisions for a given database I. The �rst of these algorithms,Guess and Check,is based directly on the de�nition of justi�ed revisions and on Theorem 7.1.Guess and Check(P; I)(1) for every coherent subset L of head(P) do(2) B := I � L(3) if Check(P; I;B) then output B as a P -justi�ed revision of I.The next algorithm is based on the sequential revision process idea. Namely, it isbased on Theorem 5.3 which states that all P -justi�ed revisions of I can be found ifall possible orderings of rules in P are considered. In the description given below, Lstands for the set of literals produced so far in the construction, B stands for the currentdatabase, R consists of all the rules that were already used and A stands for the rulesthat can be applied in a current stage. If the algorithm does not generate any output,I has no P -justi�ed revisions.Sequential Revision Process(P; I)(1) for all total orderings � of P do(2) L := ;(3) B := I(4) R := ;(5) A := PB(6) while L is coherent and A 6= ; do(7) c:= �-�rst rule in A(8) L := L [fhead(c)g(9) R := R [fcg(10) if L is coherent then(11) B := I � L(12) A := PB nR(13) if L is coherent and PB = R then report \B is a P -justi�ed revision of I"Checking coherence of L in line (13) veri�es that � is sound, and checking thatPB = R decides a posteriori consistency.As stated, this algorithm is more complex than the previous one (the main loop has to34

be repeated jP j! times). However, it can be improved. In fact, to insure its completeness,it is enough to consider only a subset of the set of all orderings of cardinality at most2jP j.These algorithms can only be regarded as the departure point for any serious studyof algorithms for computing justi�ed revisions. Speci�cally, as in the case of stablemodel computation, search space pruning techniques have to be developed to makethese algorithms practical. This is the subject of a work in progress.High complexity of computing justi�ed revisions is a serious problem. Fortunately,there are wide classes of programs (safe and strati�ed) whose computational propertiesare much better. We have discussed them in Section 6.8 ConclusionsIn this paper we introduced revision programming | a logic-based framework for de-scribing constraints on databases and providing a computational mechanism to enforcethem.Revision programming has an elegant theory. The change (revisions performed) isminimal and justi�ed by the revision program based on the inertia set | a collectionof literals that do not change status during the revision. There is a natural notion ofduality, which allows us to treat positive and negative literals uniformly. Complexity ofreasoning with revision programs is well understood and algorithms to compute justi�edrevisions are known. In general, a revision program does not guarantee a unique revisionfor every initial database. However, we found two wide classes of logic programs whichdo have this desirable property.Revision programming is closely related to logic programming. There is a simpleembedding of logic programs in revision programming under which such concepts asmodel, stable model and supported model of a program are preserved. Looking at logicprogramming from the perspective of revision programming explains why positive andnegative literals cannot be treated as dual notions in logic programming. In the sametime, there are recent results that show that revision programs can be embedded in logicprograms [PT95].Several important questions remain open. First, connections with logic programminghave to be further explored, especially, a possibility of developing a revision programmingversion of well-founded semantics. Another interesting avenue of research is to study theexact relationship of revision programming to theories of update and belief revision byAlchourr�on, G�ardenfors and Makinson [AGM85], and Katsuno and Mendelzon [KM91].AcknowledgmentsThis work was partially supported by the National Science Foundation under the grantIRI-9400568. 35

References[AV91] S. Abiteboul and V. Vianu. Datalog extensions for database queries andupdates. Journal of Computer and System Sciences, 43:62{124, 1991.[AGM85] C. E. Alchourr�on, P. G�ardenfors, and D. Makinson. On the logic of theorychange: Partial meet contraction and revision functions. Journal of SymbolicLogic, 50:510{530, 1985.[AN78] H. Andreka and I. Nemeti. The generalized completeness of Horn predicatelogic as a programming language. Acta Cybernetica, 4:3{10, 1978.[Apt90] K. Apt. Logic programming. In J. van Leeuven, editor, Handbook of theoreticalcomputer science, pages 493{574. MIT Press, Cambridge, MA, 1990.[AB90] K. Apt and H.A. Blair, Arithmetical classi�cation of perfect models of strat-i�ed programs. Fundamenta Informaticae, 12:1{17, 1990.[ABW88] K. Apt, H.A. Blair, and A. Walker. Towards a theory of declarative knowledge.In J. Minker, editor, Foundations of deductive databases and logic program-ming, pages 89{142, Los Altos, CA, 1988. Morgan Kaufmann.[BF91] N. Bidoit and C. Froidevaux. Negation by default and unstrati�able logicprograms. Theoretical Computer Science, 78:85{112, 1991.[BTK93] A. Bondarenko, F. Toni and R.A. Kowalski. An assumption-based frame-work for non-monotonic reasoning. In A. Nerode and L. Pereira, editors,Logic programming and non-monotonic reasoning. Proceedings of the SecondInternational Workshop, pages 171{189. MIT Press, 1993.[Cla78] K.L. Clark. Negation as failure. In H. Gallaire and J. Minker, editors, Logicand data bases, pages 293{322. Plenum Press, 1978.[DG84] W.F. Dowling and J.H. Gallier. Linear-time algorithms for testing the sat-is�ability of propositional Horn formulae. Journal of Logic Programming,3:267{284, 1984.[EHK81] R.L. Epstein, R. Haas, and R.L. Kramer. Hierarchies of sets and degreesbelow 00. In M. Lerman, J.H. Schmerl, and R.I. Soare, editors, Logic Year1979-80, pages 32{48. Springer Verlag, 1981. S.L.N. in Mathematics 859.[GL88] M. Gelfond and V. Lifschitz. The stable semantics for logic programs. InR. Kowalski and K. Bowen, editors, Proceedings of the 5th international sym-posium on logic programming, pages 1070{1080, Cambridge, MA, 1988. MITPress. 36

[KM91] H. Katsuno and A.O. Mendelzon. Propositional knowledge base revision andminimal change. Arti�cial Intelligence Journal, 52:263 { 294, 1991.[Llo84] J. Lloyd. Foundations of logic programming. Berlin: Springer-Verlag, 1984.[MT89] W. Marek and M. Truszczy�nski. Stable semantics for logic programs anddefault theories. In E.Lusk and R. Overbeek, editors, Proceedings of the NorthAmerican conference on logic programming, pages 243{256, Cambridge, MA,1989. MIT Press.[MT91] W. Marek and M. Truszczy�nski. Autoepistemic logic. Journal of the ACM,38:588{619, 1991.[MT93a] W. Marek and M. Truszczy�nski. Nonmonotonic logics; context-dependent rea-soning. Berlin: Springer-Verlag, 1993.[MT93b] W. Marek and M. Truszczy�nski. Reexive autoepistemic logic and logic pro-gramming. In A. Nerode and L. Pereira, editors, Logic programming andnon-monotonic reasoning. MIT Press, 1993.[MT94] W. Marek and M. Truszczy�nski. Revision speci�cations by means of revi-sion programs. In Logics in AI. Proceedings of JELIA '94. Lecture Notes inArti�cial Intelligence. Springer-Verlag, 1994.[MT95] W. Marek and M. Truszczy�nski. Revision programming, database updatesand integrity constraints. In Proceedings of the 5th International Conferenceon Database Theory | ICDT 95, pages 368{382. Berlin: Springer-Verlag,1995. Lecture Notes in Computer Science 893.[PT95] T.C. Przymusi�nski and H. Turner. Update by means of inference rules. In Pro-ceedings of LPNMR'95, pages 156{174. Berlin: Springer-Verlag, 1995. LectureNotes in Computer Science 928.[Rei80] R. Reiter. A logic for default reasoning. Arti�cial Intelligence, 13:81{132,1980.[Sch95] J. Schlipf. The expressive powers of the logic programming semantics. Journalof the Computer Systems and Science, 51:64 { 86, 1995.[Sch92] G.F. Schwarz. Minimal model semantics for nonmonotonic modal logics. InProceedings of LICS-92, 1992.[Smu68] R.M. Smullyan. First-order logic. Berlin: Springer-Verlag, 1968.[Ull88] J.D. Ullman. Principles of Database and Knowledge-Base Systems. ComputerScience Press, Rockville, MD, 1988.37

[vEK76] M.H. van Emden and R.A. Kowalski. The semantics of predicate logic as aprogramming language. Journal of the ACM, 23(4):733{742, 1976.

38

