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Abstract

Default logic can be regarded as a mechanism to represent families of belief sets of a reasoning agent.
As such, it is inherently second-order. In this paper, we study the problem of representability of a
family of theories as the set of extensions of a default theory. We give a complete solution to the
problem of representability by means of default theories with finite set of defaults, and by means
of normal default theories. We obtain partial results on representability by arbitrary (infinite, non-
normal) default theories. We construct examples of denumerable families of non-including theories
that are not representable. We also study the concept of equivalence between default theories.

1 Introduction

In this paper we investigate the issues related to the expressibility of default logic, a knowl-
edge representation formalism introduced by Reiter [Rei80] and extensively investigated by
the researchers of logical foundations of Artificial Intelligence [Eth88, Bes89, Bre9l]. A
default theory A describes a family (possibly empty) of belief sets of an agent reasoning
with A. In that, default logic is inherently second-order, but in a sense different from that
used by logicians. Whereas a logical theory S describes a subset of the set of all formulas
(specifically, the set Cn(S) of logical consequences of S), a default theory A describes a
collection of subsets of the set of all formulas, namely the family of all extensions of A,
ext(A). Hence, default theories can be viewed as encodings of families of subsets of some
universe described by a propositional language. Examples of encodings describing families

of colorings, kernels, and hamilton cycles in graphs are given in [CMMT95].
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This second-order flavor of default logic makes it especially useful in knowledge repre-
sentation. An important question is, then, to characterize those families of sets that can
be represented as the set of extensions of a certain default theory. This is the topic of our
paper.

There is a constraint on the family T of extensions of a default theory A. Namely that
such a family must be non-including [Rei80]. In this paper we exhibit several classes of
families of non-including theories that can be represented by default theories. We also show
that there are non-representable families of non-including theories. The existential proof
follows easily from a cardinality argument. There are continuum-many default theories in
a given (denumerable) language, while there is more than continuum-many families of non-
including theories. In the paper, we actually construct a family of non-including theories
that can not be represented by a default theory. Moreover, our family is denumerable
(the cardinality argument mentioned above does not guarantee the existence of a non-
representable denumerable family of non-including theories). However, as one of our results,
we prove that finite non-including families are always representable. Moreover, if each theory
in such family is finitely generated over the intersection of the family, one can select a default
representation with a finite set of defaults.

The family of extensions of a normal default theory is not only non-including, but all its
members are pairwise inconsistent [Rei80]. In this paper, we fully characterize these families
of theories which are of the form ezt(A), for a normal default theory A. In addition, we
construct examples of denumerable families of pairwise inconsistent theories which are not
representable by normal default theories.

Let T = ext(A), for some default theory A. Clearly, there are other default theories
A’ such that ezt(A’) = T. In other words, A is not uniquely determined by 7. Thus,
it is natural to search for alternative default theories A’ with the same set of extensions
as A. Let us call A’ equivalent to A if ext(A) = ext(A’). We show that for every A we
can effectively (without constructing extensions of A) find an equivalent theory A’ with all
defaults in D' prerequisite-free (this result was obtained independently by Schaub [Sch92],
and Bonatti and Eiter [BE95]). An important feature of our approach is that it shows that

when A is normal, we can construct a normal prerequisite-free default theory A’ equivalent



to A.

We prove that every normal default theory (D, W), such that W is consistent, is equiv-
alent to a normal default theory with empty objective part. An alternative construction is
provided for the case when W is finite. When applied to a finite, prerequisite-free normal
default theory with consistent objective part, it yields an equivalent normal default theory
with empty objective part. Moreover, the size of this theory is polynomial in the size of the
original theory.

We discuss yet another (weaker) form of equivalence and prove that every normal default
theory is equivalent to a theory expressing circumscription (see [McC80, Lif88]).

This paper sheds some light on the issue of expressibility of default logic and, in par-
ticular, on expressibility of normal default logic. We firmly believe that the success of
default logic as a knowledge representation mechanism depends on a deeper understanding

of expressibility issues.

2 Preliminaries

In this paper, by £ we denote a language of propositional logic with a denumerable set of
atoms At. By a theory we always mean a subset of L closed under propositional provability.
Let B be a set of standard monotone inference rules. The formal system obtained by
extending propositional calculus with the rules from B will be denoted by PC + B. By a
proof in the system PC' + B we mean any sequence of formulas 1, ..., ¢, such that for

every 1t =1,...,n,

1. ¢; belongs to W, is a tautology, or is obtained from formulas ¢; and ¢, with 7,k <1,

by means of modus ponens, or
2. there is a rule % in B such that a = ¢;, for some j < i and 8 = ;.

The corresponding provability operator will be denoted by Fp and the consequence operator
by CnB(-) [MT93].

A default is an expression d of the form ""%F, where a and 8 are formulas from £ and I’
is a finite list of formulas from £. The formula « is called the prerequisite, formulas in I’

— the justifications, and 8 — the consequent of d. The prerequisite, the set of justifications



and the consequent of a default d are denoted by p(d), j(d) and ¢(d), respectively. If p(d)
is a tautology, d is called prerequisite-free (p(d) is then usually omitted from the notation
of d). This terminology is naturally extended to a set of defaults D.

By a default theory we mean a pair A = (D, W), where D is a set of defaults and W
is a set of formulas. The set W is called the objective part of (D,W). A default theory
A = (D, W) is called finite if both D and W are finite.

For a set of defaults D, define

Mon(D) = {%:d € D} .

A default d (a set of defaults D) is applicable with respect to a theory S (is S-applicable) if

S B —y for every v € j(d) (j(D), respectively). Let D be a set of defaults. By the reduct

Dg of D with respect to S we mean the set of monotone inference rules:
Dg = Mon({d € D:d is S-applicable}).

When E is a set of monotonic rules then by PC'+ E we mean a logical system extending the
rules of proof of propositional logic by rules of E. The corresponding provability relation is
denoted by Fg. Notice that the proofs in PC + E are finite. The difference with the usual
propositional proofs is that the rules of £ can be used in such proofs.

A theory S is an extension® of a default theory (D, W) if and only if
S =CnPs(W).

The family of all extensions of (D, W) is denoted by ext(D, W).
By a quasi-proof of a fromula ¢ from a default theory (D, W) we mean any sequence of

formulas ¢1, ..., e, such that ¢ = ¢, and for every i =1,...,n,

1. ¢; belongs to W, is a tautology, or is obtained from formulas ¢; and ¢, with 7,k <1,

by means of modus ponens, or

2. there is a default d = % in D such that a = ¢;, for some j < ¢ and 8 = ;

“Our definition of extension is different from but equivalent to the original definition by Reiter. See
[MT93] for details.



For a quasi-proof €, by D, we denote a set of defaults used to justify derivations of type
(2) in e. (such set may not be unique). Clearly, if ¢ has a quasi-proof € from (D, W), then
W Uce(De) F .

A family T of theories in £ is non-including if:
T is an antichain (that is, for every T, 7" € T, it T C T" then T = T").

Let S be a theory. A default d is generating for S if d is S-applicable and p(d) € S. The
set of all defaults in D generating for S is denoted by GD(D, S). It is well-known [MT93]
that

(P1) If S is an extension of (D, W) then S = Cn(W U ¢(GD(D, S))),

(P2) If all defaults in D are prerequisite-free then S is an extension of (D, W) if and only
if S =Cn(WUc(GD(D,S))).

We will define now the key concepts of the paper.

Definition 2.1 Default theories A and A’ are equivalent if ext(A) = ext(A').

Definition 2.2 Let A be a default theory over a language £ and let A’ be a default
theory over a language £’ such that £ C £'. The theory A is semi-equivalent to A if
ext(A) ={T NL:T € ext(A")}.

Definition 2.3 Let 7 be a family of theories contained in £. The family 7 is representable
by a default theory A if ext(A) =T.

3 Representability by general default theories

We start with the result that allows us to replace any default theory with an equivalent
default theory in which all defaults are prerequisite-free. As mentioned, this result was
known before. However, our argument shows that if we start with a normal default theory,

its prerequisite-free equivalent replacement can also be chosen to be normal.

Theorem 3.1 For every default theory A there is a prerequisite-free default theory A equiv-

alent to A. Moreover, if A is normal then A' can be chosen to be normal, too.



Proof: Let A = (D,W). For each quasi-proof € from (D, W), define
_ :§(De)
" Acons(D,)’

Next, define

E = {d.: € is a quasi-proof from W}.

Each default in E is prerequisite-free. Put A’ = (E, W). We will show that A’ has exactly
the same extensions as (D,W). To this end, we will show that for every theory S and for

every formula ¢,

Wkps @ it Whgg . (1)

Assume first that W Fpg . Then, there is a quasi-proof € of ¢ such that all defaults in D,
are applicable with respect to S. In particular, W Uc¢(D,) F . Observe that c(d¢) F ¢(D,).
Since d. is prerequisite-free and S-applicable, W Fg; W Uc¢(D,). Hence, W Fgg ¢.

To prove the converse implication, observe that since all defaults in E are prerequisite-

free,

{p:W FEgg o} = Cn(W U c(Es)).

Hence, it is enough to show that
W Fpg W Uc(Es).

Clearly, for every ¢ € W, W Fp, . Consider then ¢ € ¢(Eg). It follows that there
is a quasi-proof € such that d. is S-applicable and ¢(d¢) = ¢. Consequently, all defaults

occurring in € are S-applicable. Thus, for every default d € D,
W Fpg c(d).
Since ¢ = A ¢(D.),
W Fpg .

To prove the claim for normal default theories, for every quasi-proof € define

d — N J(De)
¢ Acons(D,)



(recall that D, denotes the set of defaults used in €). Obviously, since we are dealing with

normal defaults now, A j(D.) = A cons(D.). Next, define
E' = {d.: € is a quasi-proof from W}.

We will show that a theory S is an extension of (E', W) if and only if S is an extension
of (D,W). Since all defaults in (E', W) are normal and prerequisite-free, the proof will be
complete. The case of inconsistent W is easy. Hence, in what follows we will assume that
W is consistent.

For every theory S and every finite set of formulas A, if St/ = A\ A, then for every p € A
we have S I/ —p. It follows that if d, is applicable with respect to S, then d. is applicable

with respect to S. Consequently, for every theory S and every formula ¢,
w I—E/S ¢ implies W kg @.

By (1),
CnPs(W) C CnPs(W). (2)

Assume now that S is an extension of (D, W) (since W is consistent, S is consistent,
too). Then S = CnPs(W). Hence, S O Cnfs(W). Consider ¢ € S. Since S is an
extension of (D, W), W Fpg ¢. Let F be the set of defaults whose monotone parts are
used in one such proof and let € be the corresponding quasi-proof. Clearly, for each d € F,
W Fpg cons(d). Hence, cons(d) € S. Consequently, Aj(F) = Acons(F) € S. Since S
is consistent, d. is S-applicable and W F o8 N cons(F). It follows that W F wy, - Thus,
S C Cn¥s(W) and, consequently, S = Cns(W). Hence, S is an extension of (E', W).

Next, assume that S is an extension of (E',W). By (2), S C CnPs(W). To prove the
converse inclusion, consider ¢ € Cn?s(W). Then W Fp, ¢. Let ¢1,..., ¢, = ¢ be a proof
of ¢ in PC' + Dg. By induction on n we will now show that o € §. If p isin W, is a
tautology, or follows from ¢; and ¢;, 2,7 < n, by modus ponens, then the claim is evident.

So, assume that (,, is the consequent of a default dy € D. Then S I/ —j(dp). Let F be
the set of all defaults whose monotone parts are used in the proof o1, ..., @,, other than dy.
Clearly, for every d € F', W pg cons(d). Hence, by induction, cons(d) € S. Consequently,
St Acons(F)(= N\j(F)). Since S I/ —j(dp), it follows that St (A 7(#) Aj(dp)). Observe



that the default
:\J(F) A jldo)
NJI(F) A j(do)
is in E'. Hence, W i, ANJ(F) A j(dy). Thus, W i, Jj(do)(= on = @) and , ¢ €

CnPs(W) = 8. Tt follows that S is an extension of (D, W). O

The next result fully characterizes families of theories representable by default theories

with a finite set of defaults.

Theorem 3.2 The following statements are equivalent:

(i) T is representable by a default theory (D, W) with finite D

(1) T is a finite set of non-including theories, finitely generated over the intersection of

T

Proof: Assume (i). Since every extension of (D, W) is of the form Cn(W Uc(D')), for some
D' C D, it follows that ext(D,W) is finite. It is also well-known ([Rei80, MT93]) that
ext(D, W) is non-including. Let U be the intersection of all theories in ext(D,W). Then
W C U. Consequently, each extension in ezt(D,W) is of the form Cn(U U ¢(D')). Hence,
each extension is finitely generated over the intersection of ext(D, W).

Now, assume (ii). Let U be the intersection of all theories in 7. It follows that there
is a positive integer k and formulas ¢y, ..., ¢ such that 7 = {T1,..., T} and each T; =
Cn(U U {gi}).

Assume first that k¥ = 1. Then, it is evident that 7 is the family of extensions of the
default theory (0, 77). Hence, assume that k& > 2. Since the theories in 7 are non-including,

for every j # i we have
UU{pi} 7 ¢;. (3)
In particular, each theory in 7 is consistent and so is U. Moreover, it follows from (3) that
forevery j =1,...,k,
Ut/ ¢j. (4)

Define
d: — TPy e TPI—1 TP - PR
i_
Pi

?



i=1,...,k Next, define D = {d;,...,d;}. We will show that ext(D,U) =T.

Let T be an extension of (D,U). Then, there is a subset ® of {¢1,...,pr} such that
T = Cn(UU®). Assume that |®| = 0. Then, by (4), Dy = {EZ =1,...,k}. Consequently,
U=T=CnPr(U)=Cn(UU{p1,...,0}). Hence, for every i, U - ¢;, a contradiction with
(4). Hence, |®| > 0. Assume that |®| > 1. By the definition of D, Dy = (). Consequently,
T =Cn(UU®) =CnPr(U) = Cn(U). Let ¢ € ® (recall that ® # (). Then, U F ¢, a
contradiction. Hence, every extension T" of (D, W) is of the form Cn(U U {y;}) for some 7,
1< <k

To complete the proof, consider an arbitrary 4, 1 < ¢ < k. We will show that 7; is an
extension of (D, W). First, observe that, by (3), Dr, = {-}. Consequently, CnPTi(U) =
Cn(U U {y;}) = T;. Hence, T; is an extension of (D,U). O

Let us observe that in the construction of the defaults d;, we could replace justifications
—p; by any formulas —p; such that +; € T; \ Tj and the argument would remain valid.
This observation allows us to show that any finite non-including family 7 = {T1,...,T;}

of theories is representable. Namely, for every distinct i, j, let 1; ; € T; \ Tj. Then, define

D, = { 1—'<Pz',1,---ﬁ90i,i71ﬂ, _'Soz',z'+17---7_'801',k:/6 c Tz}

and

Following the argument of Theorem 3.2, it is easy to show that {7171,...,T}} is exactly the

family of extensions of (D, ()). Hence, we obtain the following result.

Proposition 3.3 Let 7 be a finite non-including family of theories. Then T is repre-
sentable by a default theory (possibly with infinite set of defaults)

Theorem 3.2 and its argument provide the following corollary, which gives a complete
characterization of families of theories representable by finite default theories, that is, the-

ories (D, W) with both D and W finite.

Corollary 3.4 The following statements are equivalent:

1. T is representable by a finite default theory



2. T is a finite set of finitely generated non-including theories

As pointed out in the introduction, the cardinality argument implies the existence of non-
representable families of non-including theories. However, it does not imply the existence of
denumerable non-representable families. We will now show two examples of such families.
The first family consists of non-including finitely generated theories. The second one consists

of mutually inconsistent theories.

Theorem 3.5 There exists a countable family of finitely generated non-including theories

T such that T is not representable by a default theory.

Proof: Let {po,p1,...} be a set of propositional atoms. Define T; = Cn({p;}), i =0,1,...,
and 7 = {T;:¢ = 0,1,...}. It is clear that 7 is countable and consists of non-including
theories. We will show that 7 is not representable by a default theory.

Assume that 7 is represented by a default theory (D, W). By Theorem 3.1, we may
assume that all defaults in D are prerequisite-free. We can also assume that no default in
D contains a justification which is contradictory (such defaults are never used to construct
extensions).

Consider a default d € D. Since j(d) is finite, there is k& such that for all m > k, all
formulas in j(d) are consistent with 75,,. Since T}, is an extension of (D, W), ¢(d) € T,,, for

m > k. Since

T = Cn(0),

m>k

c(d) is a tautology. Since d was arbitrary, it follows that (D, W) possesses only one exten-

sion, namely Cn(W), a contradiction. O

Theorem 3.6 There exists a countable family of mutually inconsistent theories T such that
T is not representable by a default theory. In particular T is not representable by a normal

default theory.

Proof: Let {pg,p1,...} be a set of propositional atoms. Define

T; = Cn({—pi, pi+1,---})s

10



fori =0,1,..., and 7 = {T;:¢ = 0,1,...}. It is clear that 7 is countable and counsists of
pairwise inconsistent theories. Now, we apply precisely the same argument as in the proof

of Theorem 3.5. |

Our counterexamples have an additional property that their infinite subsets and all

supersets are also counterexamples.

4 Eliminating extensions

In this section, we consider the problem of representability of subfamilies of a representable
family. We present a technique for constructing default theories representing some subfam-
ilies of a family of extensions of a given default theory A. Such techniques are important
when we have to redesign the default theory to exclude extensions containing a specific
formula and preserve all the remaining extensions unchanged.

Let ¢ € L. Define

(720
d(p:T.

Theorem 4.1 Let E C L be consistent and let (D, W) be a default theory. Then, E is an
extension of (DU {dy,}, W) if and only if o ¢ E and E is an extension of (D,W).

Proof: Since E is consistent,
(DU{d,})p = DpU ).
Assume that ¢ ¢ E and that E is an extension of (D, W). Then
E = CnPE(W)
and ¢ ¢ CnP#(W). Consequently,
E = CnPE(W) = CnPeU (W) = onPeDe (W),

Hence, E is an extension of (D U {d,}, W).
Conversely, assume that F is an extension of (D U {d,}, W). Then,

E = CnPUle (W) = cnPrATH ).

11



Since E is consistent, it follows that ¢ ¢ Cn?#(W). Consequently,
cnPe(w) = enPe T (w) = E.

Hence, ¢ ¢ E and FE is an extension of (D, W). O
We say that a family F of theories ( recall that a theory is closed under propositional
consequence) has a strong system of distinct representatives (SSDR, for short) if for every

T € F there is a formula ¢7 € F' which does not belong to any other theory in F.

Theorem 4.2 If F is representable by a default theory and has an SSDR, then every family

G C F is representable by a default theory.

Proof: The claim is obvious if 7 = {£}. So, assume that all members of F are consistent
(since F is an antichain, there are no other possibilities). Let (D, W) be a default theory
such that ext(D, W) = F. Define

D =D U{dy:T € F\G}.

Since all theories in F are consistent, the assertion follows from the definition of an SSDR
and from the argument of Theorem 4.1. O

Let us conclude this section with two observations. First, there are families of theories
closed under propositional consequence which possess SSDRs but which are not repre-
sentable by a default theory (the second example presented above possesses this property).
Second, in general not every subfamily of a representable family is representable. It fol-
lows by the cardinality argument from the the fact that there are representable families of

cardinality continuum.

5 Normal default theories

Our first result in this section completely describes the family of extensions of an arbitrary

prerequisite-free normal default theory.

Theorem 5.1 Let W,V C L. Let D = {%: w € W}, If W is inconsistent then ext(D, W) =
{L}. Otherwise, ext(D, W) is exactly the family of all theories of the form Cn(WU®), where

® is a mazimal subset of U such that W U @ is consistent.

12



Proof: The case of inconsistent W is evident. Hence, let us assume that W is consistent.
Let T be an extension of (D, W). Since W is consistent, T is consistent, too. Let & = {¢ €
U:T i/ =p}. Clearly, ® = ¢(GD(D,T)). By (P2), T = Cn(W U ®). Moreover, since T is
consistent, W U @ is consistent. We will show that ® is a maximal subset of ¥ with this
property. Let ® be such that ® C & C U. Assume that W U®' is consistent. Then, T'U &’
is consistent. Hence, ®' C ® and, consequently, ® = @',

Assume next that ' = Cn(W U ®), where ® is a maximal subset of ¥ such that W U &

is consistent. Then, it is easy to see that
S
GD(D,T) = {—.(p € @}.
2

Hence, ® = ¢(GD(D,T)) and T = Cn(W U c¢(GD(D,T))). Since all defaults in D are

prerequisite-free, it follows by the property (P2) that 7' is an extension of (D, W). O

As a corollary, we obtain a full characterization of families of theories that are repre-
sentable by normal default theories. A similar but stronger result is given as a corollary to

Theorem 5.4 at the end of this section.

Corollary 5.2 A family T of theories in L is representable by a normal default theory if
and only if T = {L} or there is a consistent set of formulas W and a set of formulas ¥
such that T = {Cn(WU®) : ® C U and ® is mazimal so that W U @ is consistent}.

Proof: By Theorem 3.1, T is representable by a normal default theory if and only if it
is representable by a normal default theory with all defaults prerequisite-free. Hence, the
assertion follows from Theorem 5.1. O

We will next study the issue of equivalence between normal default theories. We have
already seen that we can replace every normal default theory with an equivalent normal
prerequisite-free one (Theorem 3.1). The problem of interest now will be to establish when
a normal default theory can be replaced by an equivalent normal default theory with empty
objective part.

First, consider a normal default theory (D, W) such that W is inconsistent. Then
ext(D,W) = {L}. On the other hand, for every set of normal defaults D', exzt(D’',0)

13



contains only consistent extensions. Hence, (D, W) is not equivalent to any normal default
theory with empty objective part. From now on we will focus on normal default theories
(D, W) for which W is consistent and we will show that each such theory is is equivalent
to a default theory with empty objective part.

To prove our results, we need to introduce some notation. Given a formula ¢, define:
_J e ife=1
E(p—{ -~ ife=0.
Now let ¥ be a set of formulas, ¥ = {1, ¢2,...} (if ¥ is finite, the last formula of its finite

enumeration is repeated infinitely many times) and let ® C W. Define

o_[1ifpce
i 0 ify; ¢ ®.

Finally, for @ C W define ® as
S={Po1A...N€2p,:n=12_.}
Given sets of formulas ¥ and W, define a collection M as follows:
M ={® C ¥ : ¢ is maximal such that ® UW is consistent}

We first state and prove a lemma describing maximal consistent subsets of Jgpe g SUW.

Lemma 5.3 Mazimal consistent subsets of Ugpe g SUW are exactly the sets of the form

U W, where ® is a maximal subset of U such that ® UW is consistent (that is, ® € M).

Proof: We shall make a number of observations which together entail the lemma.

1. Let ® € M. Then Cn(®UW) = Cn(®UW).

Indeed, if ¢ € (¥ \ @) then, by maximality of &, ® UW F —¢. This implies that ® U W F
& UW. The converse property, SUW QU W, is obvious, as o+ .

2. If ® € M then ® UW is consistent.

This observation follows from (1) and the fact that ® U W is consistent.

3. If ® € M then ® UW is a maximal consistent subset of Uset SUW.

Consider ¢ = €11 A ... N eppy & ®. Then there is i, 1 <i <k, such that ¢; # €°. Hence
® + =) or, in other words, ® U {#} is inconsistent. Thus dUW U {%} is inconsistent.

14



4. Finally, let ¥ be a maximal consistent subset of Jge ® UW. Then there is ® € M
such that & =& U W.
Notice that if two formulas €11 A... Aeppy and €1 A... A€}, g belong to X then either

(€1,...,€k) is a suffix of (€],...,€.) or conversely. Therefore, there is & € M such that
un |J ¢ca.

But then we have X C ® U W. Since both ¥ and ® UW are maximal consistent subsets of
User @ UW, it follows that 3 = & U W. O

Define now
= {5f:ven]

and, for every ® € M,

Do = :6(11)92')1/\.../\5&0,1.”:12
eChLN ... N2y, o

Theorem 5.4 For every normal default theory (D, W) with W consistent there exists a
prerequisite-free normal default theory (D', () equivalent to (D, W).

Proof: By Theorem 3.1, without loss of generality we can assume that each default in D is
prerequisite-free. Set U = ¢(D). Let
D'=DyU |J Do
deM

By Theorem 5.1, E is an extension of (D’,0) if and only if E = Cn(X) for some maximal
consistent subset of ¢(D'). Since ¢(D') = Upe s & U W, therefore, by Lemma 5.3, E is an
extension of (D', () if and only if E = Cn(® U W) for some ® € M. Thus by Theorem 5.1
again, E is an extension of (D', () if and only if F is an extension of (D, W). 0

In the case when W is finite, we have an alternative construction which can be used to
replace a normal default theory (D, W) with an equivalent normal default theory (D', ).

By Theorem 3.1, without loss of generality we can assume that each default in D is
prerequisite-free. Define w = A W.

First, assume that the justification of every default in D is inconsistent with w. Then,

ext(D, W) = {Cn(W)}. Let D' = {2}, Clearly, ext(D',0) = ext(D, W).
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Hence, assume that there are defaults in D whose justifications are consistent with w.

For every default d = ?ﬂ in D, define d,, = :ﬂﬁ/\/zu“’. Finally, define D" = {d,:d € D}. Using

Theorem 5.1, one can show that (D', () is equivalent to (D, W).

In the case when D consists of prerequisite-free defaults only, the size of the theory
(D', D) is polynomial in the size of (D, W). This is not, in general, true for the construction
described earlier.

We conclude this section with a corollary to Theorem 5.4 which strengthens the charac-
terization of families of theories representable by normal default theories given in Corollary

5.2.

Corollary 5.5 A family T of theories in L is representable by a normal default theory if
and only if T = {L} or there is a set of formulas ¥ such that T = {Cn(®) : & C U is

mazimal so that ® is consistent}.

6 Representability with circumscription

Next, we explore the connections of normal default logic with circumscription [McC80, Lif88]

and the Closed World Assumption [Rei78]. Consider a set of atoms P. Define the set of

defaults
peWAP _ {ﬂ;p c p}_
-p
Informally, a default ;;pp allows us to derive —p if p is not derivable. This has the flavor of

the Closed World Assumption. At the same time, such defaults can be viewed as minimizing
P. The exact connection with CWA and circumscription is given by the following results
[MT93]:

1. If P = At then W is CWA-consistent if and only if (DCWAP, W) possesses a unique

consistent extension ([MT93], Corollary 4.25).

2. If P = At and W is consistent, then extensions of (DCWAP, W) are complete and
consistent theories containing W, and minimal with respect to P. Hence, they are in

one-to-one correspondence to minimal models of W ([MT93], Corollary 4.22).

The result of this section shows that all normal default theories can be represented, at

a cost of adding new constants, by means of default theories of the form (DCWAP, W). In
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particular, it follows that circumscription can be used to express families of extensions of

normal default theories.

Theorem 6.1 For every normal default theory (D, W) in L there exists a language L' D L,
a set of atoms P in L', and W' C L' such that (D, W) is semi-equivalent to a default theory
( pewar w').

Proof: By Theorem 3.1 we can assume that all defaults in D are prerequisite-free. Let ¥
be the set of consequents of defaults in D. For each ¢ € U select a new atom not belonging
to At (recall that At is the set of atoms in £). This atom is denoted by p, and the set P
is defined as {py : 1) € ¥}. Define now L' to be the language generated by the set of atoms
At' = At U P. Next, define V as this set of formulas:

{-wy &y € W}
We notice the following fact:

(F1) Let ® C W. Then W U @ is consistent if and only if W UV U {-py : ¢ € ®} is

consistent.

Indeed, for a model v of W U @, define v’ as follows:

=11 e
It is clear that v’ is a model of WUV U {—-py, : 9 € ®}. Conversely, when a valuation v’ of
At" is a model of W UV U {=py : ¢ € @} then v = v'|4; is a model of W U {4 : ¢p € D}.
Hence, (F1) follows.
Observation (F1) implies that ® is a maximal subset of ¥ consistent with W if and only
if {-py : ¢ € @} is a maximal subset of {—py : 9 € U} which is consistent with W U V.
Next, observe that if ® is a maximal set of formulas contained in ¥ and consistent with
W then for all§ € U\ &
WUV U{=py:9 € P} py.

We are now ready to construct the desired default theory. We put W’ = W UV and
D = {::TT :4p € U}, Clearly, D' = CWA". Using the observations given above, one can
now show that the theory (D', W') is semi-equivalent to ext(D, W). O
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Theorems 5.4 and 6.1 can be viewed as “normal form” results for normal default logic.
The main difference is the class of default theories used for representation. Theorem 5.4
allows us to replace normal default theories (with consistent ') by normal prerequisite-free
default theories with empty objective part. Theorem 6.1 shows that every normal default
theory can be replaced by a normal default theory with especially simple defaults of the

—p

form 2.
—p

7 Conclusions

The concepts studied in this paper, representability and equivalence, are of key importance
for default logic and its applications. Representability provides insights into the expressive
power of default logic, while equivalence provides normal form results for default logic,
allowing the user to find simpler representations for his/her default theories.

In this paper we characterized those families of theories that can be represented by
default theories with a finite set of defaults (Theorem 3.2 and Corollary 3.4). We also
presented some sufficient conditions for representability for infinite families of theories. We
constructed several countable families that are not representable. However, we have not
found a complete characterization of families of theories that are representable by default
theories with an infinite set of defaults. This problem seems to be much more difficult and
remains open. Topological methods used in [Fer94] may lead to the solution to this problem.

We also studied representability by means of normal default theories. Here, our results
are complete. Corollary 5.2 provides a full description of families of theories that are
collections of extensions of normal default theories.

Another notion studied in the paper was equivalence of default theories. We showed
(Theorem 3.1) that for every normal default theory there exists a normal default theory
consisting of prerequisite-free defaults and having exactly the same extensions as the original
one. Moreover, we can find an equivalent normal, prerequisite free default theory with empty

objective part.
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