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This second-order avor of default logic makes it especially useful in knowledge repre-sentation. An important question is, then, to characterize those families of sets that canbe represented as the set of extensions of a certain default theory. This is the topic of ourpaper.There is a constraint on the family T of extensions of a default theory �. Namely thatsuch a family must be non-including [Rei80]. In this paper we exhibit several classes offamilies of non-including theories that can be represented by default theories. We also showthat there are non-representable families of non-including theories. The existential prooffollows easily from a cardinality argument. There are continuum-many default theories ina given (denumerable) language, while there is more than continuum-many families of non-including theories. In the paper, we actually construct a family of non-including theoriesthat can not be represented by a default theory. Moreover, our family is denumerable(the cardinality argument mentioned above does not guarantee the existence of a non-representable denumerable family of non-including theories). However, as one of our results,we prove that �nite non-including families are always representable. Moreover, if each theoryin such family is �nitely generated over the intersection of the family, one can select a defaultrepresentation with a �nite set of defaults.The family of extensions of a normal default theory is not only non-including, but all itsmembers are pairwise inconsistent [Rei80]. In this paper, we fully characterize these familiesof theories which are of the form ext(�), for a normal default theory �. In addition, weconstruct examples of denumerable families of pairwise inconsistent theories which are notrepresentable by normal default theories.Let T = ext(�), for some default theory �. Clearly, there are other default theories�0 such that ext(�0) = T . In other words, � is not uniquely determined by T . Thus,it is natural to search for alternative default theories �0 with the same set of extensionsas �. Let us call �0 equivalent to � if ext(�) = ext(�0). We show that for every � wecan e�ectively (without constructing extensions of �) �nd an equivalent theory �0 with alldefaults in D0 prerequisite-free (this result was obtained independently by Schaub [Sch92],and Bonatti and Eiter [BE95]). An important feature of our approach is that it shows thatwhen � is normal, we can construct a normal prerequisite-free default theory �0 equivalent2



to �.We prove that every normal default theory (D;W ), such that W is consistent, is equiv-alent to a normal default theory with empty objective part. An alternative construction isprovided for the case when W is �nite. When applied to a �nite, prerequisite-free normaldefault theory with consistent objective part, it yields an equivalent normal default theorywith empty objective part. Moreover, the size of this theory is polynomial in the size of theoriginal theory.We discuss yet another (weaker) form of equivalence and prove that every normal defaulttheory is equivalent to a theory expressing circumscription (see [McC80, Lif88]).This paper sheds some light on the issue of expressibility of default logic and, in par-ticular, on expressibility of normal default logic. We �rmly believe that the success ofdefault logic as a knowledge representation mechanism depends on a deeper understandingof expressibility issues.2 PreliminariesIn this paper, by L we denote a language of propositional logic with a denumerable set ofatoms At. By a theory we always mean a subset of L closed under propositional provability.Let B be a set of standard monotone inference rules. The formal system obtained byextending propositional calculus with the rules from B will be denoted by PC + B. By aproof in the system PC + B we mean any sequence of formulas '1; : : : ; 'n such that forevery i = 1; : : : ; n,1. 'i belongs to W , is a tautology, or is obtained from formulas 'j and 'k, with j; k < i,by means of modus ponens, or2. there is a rule �� in B such that � = 'j , for some j < i and � = 'i.The corresponding provability operator will be denoted by `B and the consequence operatorby CnB(�) [MT93].A default is an expression d of the form �:�� , where � and � are formulas from L and �is a �nite list of formulas from L. The formula � is called the prerequisite, formulas in �| the justi�cations, and � | the consequent of d. The prerequisite, the set of justi�cations3



and the consequent of a default d are denoted by p(d), j(d) and c(d), respectively. If p(d)is a tautology, d is called prerequisite-free (p(d) is then usually omitted from the notationof d). This terminology is naturally extended to a set of defaults D.By a default theory we mean a pair � = (D;W ), where D is a set of defaults and Wis a set of formulas. The set W is called the objective part of (D;W ). A default theory� = (D;W ) is called �nite if both D and W are �nite.For a set of defaults D, de�neMon(D) = �p(d)c(d) : d 2 D� :A default d (a set of defaults D) is applicable with respect to a theory S (is S-applicable) ifS 6` : for every  2 j(d) (j(D), respectively). Let D be a set of defaults. By the reductDS of D with respect to S we mean the set of monotone inference rules:DS =Mon(fd 2 D: d is S-applicableg):When E is a set of monotonic rules then by PC+E we mean a logical system extending therules of proof of propositional logic by rules of E. The corresponding provability relation isdenoted by `E. Notice that the proofs in PC +E are �nite. The di�erence with the usualpropositional proofs is that the rules of E can be used in such proofs.A theory S is an extension4 of a default theory (D;W ) if and only ifS = CnDS(W ):The family of all extensions of (D;W ) is denoted by ext(D;W ).By a quasi-proof of a fromula ' from a default theory (D;W ) we mean any sequence offormulas '1; : : : ; 'n such that ' = 'n and for every i = 1; : : : ; n,1. 'i belongs to W , is a tautology, or is obtained from formulas 'j and 'k, with j; k < i,by means of modus ponens, or2. there is a default d = �:�� in D such that � = 'j , for some j < i and � = 'i4Our de�nition of extension is di�erent from but equivalent to the original de�nition by Reiter. See[MT93] for details. 4



For a quasi-proof �, by D� we denote a set of defaults used to justify derivations of type(2) in �. (such set may not be unique). Clearly, if ' has a quasi-proof � from (D;W ), thenW [ c(D�) ` '.A family T of theories in L is non-including if:T is an antichain (that is, for every T; T 0 2 T , if T � T 0 then T = T 0).Let S be a theory. A default d is generating for S if d is S-applicable and p(d) 2 S. Theset of all defaults in D generating for S is denoted by GD(D;S). It is well-known [MT93]that(P1) If S is an extension of (D;W ) then S = Cn(W [ c(GD(D;S))),(P2) If all defaults in D are prerequisite-free then S is an extension of (D;W ) if and onlyif S = Cn(W [ c(GD(D;S))).We will de�ne now the key concepts of the paper.De�nition 2.1 Default theories � and �0 are equivalent if ext(�) = ext(�0).De�nition 2.2 Let � be a default theory over a language L and let �0 be a defaulttheory over a language L0 such that L � L0. The theory � is semi-equivalent to �0 ifext(�) = fT \ L:T 2 ext(�0)g.De�nition 2.3 Let T be a family of theories contained in L. The family T is representableby a default theory � if ext(�) = T .3 Representability by general default theoriesWe start with the result that allows us to replace any default theory with an equivalentdefault theory in which all defaults are prerequisite-free. As mentioned, this result wasknown before. However, our argument shows that if we start with a normal default theory,its prerequisite-free equivalent replacement can also be chosen to be normal.Theorem 3.1 For every default theory � there is a prerequisite-free default theory �0 equiv-alent to �. Moreover, if � is normal then �0 can be chosen to be normal, too.5



Proof: Let � = (D;W ). For each quasi-proof � from (D;W ), de�ned� = : j(D�)V cons(D�) :Next, de�ne E = fd�: � is a quasi-proof from Wg:Each default in E is prerequisite-free. Put �0 = (E;W ). We will show that �0 has exactlythe same extensions as (D;W ). To this end, we will show that for every theory S and forevery formula ', W `DS ' i� W `ES ': (1)Assume �rst that W `DS '. Then, there is a quasi-proof � of ' such that all defaults in D�are applicable with respect to S. In particular, W [ c(D�) ` '. Observe that c(d�) ` c(D�).Since d� is prerequisite-free and S-applicable, W `ES W [ c(D�). Hence, W `ES '.To prove the converse implication, observe that since all defaults in E are prerequisite-free, f':W `ES 'g = Cn(W [ c(ES)):Hence, it is enough to show that W `DS W [ c(ES):Clearly, for every ' 2 W , W `DS '. Consider then ' 2 c(ES). It follows that thereis a quasi-proof � such that d� is S-applicable and c(d�) = '. Consequently, all defaultsoccurring in � are S-applicable. Thus, for every default d 2 D�,W `DS c(d):Since ' = V c(D�), W `DS ':To prove the claim for normal default theories, for every quasi-proof � de�ned0� = :V j(D�)V cons(D�)6



(recall that D� denotes the set of defaults used in �). Obviously, since we are dealing withnormal defaults now, V j(D�) = V cons(D�). Next, de�neE0 = fd0�: � is a quasi-proof from Wg:We will show that a theory S is an extension of (E0;W ) if and only if S is an extensionof (D;W ). Since all defaults in (E0;W ) are normal and prerequisite-free, the proof will becomplete. The case of inconsistent W is easy. Hence, in what follows we will assume thatW is consistent.For every theory S and every �nite set of formulas A, if S 6` :VA, then for every ' 2 Awe have S 6` :'. It follows that if d0� is applicable with respect to S, then d� is applicablewith respect to S. Consequently, for every theory S and every formula ',W `E0S ' implies W `ES ':By (1), CnE0S(W ) � CnDS(W ): (2)Assume now that S is an extension of (D;W ) (since W is consistent, S is consistent,too). Then S = CnDS(W ). Hence, S � CnE0S(W ). Consider ' 2 S. Since S is anextension of (D;W ), W `DS '. Let F be the set of defaults whose monotone parts areused in one such proof and let � be the corresponding quasi-proof. Clearly, for each d 2 F ,W `DS cons(d). Hence, cons(d) 2 S. Consequently, V j(F ) = V cons(F ) 2 S. Since Sis consistent, d0� is S-applicable and W `E0S V cons(F ). It follows that W `E0S '. Thus,S � CnE0S(W ) and, consequently, S = CnE0S(W ). Hence, S is an extension of (E0;W ).Next, assume that S is an extension of (E0;W ). By (2), S � CnDS(W ). To prove theconverse inclusion, consider ' 2 CnDS(W ). Then W `DS '. Let '1; : : : ; 'n = ' be a proofof ' in PC + DS . By induction on n we will now show that ' 2 S. If ' is in W , is atautology, or follows from 'i and 'j , i; j < n, by modus ponens, then the claim is evident.So, assume that 'n is the consequent of a default d0 2 D. Then S 6` :j(d0). Let F bethe set of all defaults whose monotone parts are used in the proof '1; : : : ; 'n, other than d0.Clearly, for every d 2 F , W `DS cons(d). Hence, by induction, cons(d) 2 S. Consequently,S ` V cons(F )(= V j(F )). Since S 6` :j(d0), it follows that S 6` :(V j(F )^ j(d0)). Observe7



that the default :V j(F ) ^ j(d0)V j(F ) ^ j(d0)is in E0. Hence, W `E0S V j(F ) ^ j(d0). Thus, W `E0S j(d0)(= 'n = ') and , ' 2CnE0S(W ) = S. It follows that S is an extension of (D;W ). 2The next result fully characterizes families of theories representable by default theorieswith a �nite set of defaults.Theorem 3.2 The following statements are equivalent:(i) T is representable by a default theory (D;W ) with �nite D(ii) T is a �nite set of non-including theories, �nitely generated over the intersection ofTProof: Assume (i). Since every extension of (D;W ) is of the form Cn(W [ c(D0)), for someD0 � D, it follows that ext(D;W ) is �nite. It is also well-known ([Rei80, MT93]) thatext(D;W ) is non-including. Let U be the intersection of all theories in ext(D;W ). ThenW � U . Consequently, each extension in ext(D;W ) is of the form Cn(U [ c(D0)). Hence,each extension is �nitely generated over the intersection of ext(D;W ).Now, assume (ii). Let U be the intersection of all theories in T . It follows that thereis a positive integer k and formulas '1; : : : ; 'k such that T = fT1; : : : ; Tkg and each Ti =Cn(U [ f'ig).Assume �rst that k = 1. Then, it is evident that T is the family of extensions of thedefault theory (;; T1). Hence, assume that k � 2. Since the theories in T are non-including,for every j 6= i we have U [ f'ig 6` 'j: (3)In particular, each theory in T is consistent and so is U . Moreover, it follows from (3) thatfor every j = 1; : : : ; k, U 6` 'j : (4)De�ne di = ::'1; : : : ;:'i�1;:'i+1; : : : ;:'k'i ;8



i = 1; : : : ; k. Next, de�ne D = fd1; : : : ; dkg. We will show that ext(D;U) = T .Let T be an extension of (D;U). Then, there is a subset � of f'1; : : : ; 'kg such thatT = Cn(U[�). Assume that j�j = 0. Then, by (4), DT = f :'i : i = 1; : : : ; kg. Consequently,U = T = CnDT (U) = Cn(U[f'1; : : : ; 'kg). Hence, for every i, U ` 'i, a contradiction with(4). Hence, j�j > 0. Assume that j�j > 1. By the de�nition of D, DT = ;. Consequently,T = Cn(U [ �) = CnDT (U) = Cn(U). Let ' 2 � (recall that � 6= ;). Then, U ` ', acontradiction. Hence, every extension T of (D;W ) is of the form Cn(U [ f'ig) for some i,1 � i � k.To complete the proof, consider an arbitrary i, 1 � i � k. We will show that Ti is anextension of (D;W ). First, observe that, by (3), DTi = f :'i g. Consequently, CnDTi (U) =Cn(U [ f'ig) = Ti. Hence, Ti is an extension of (D;U). 2Let us observe that in the construction of the defaults di, we could replace justi�cations:'j by any formulas : j such that  j 2 Ti n Tj and the argument would remain valid.This observation allows us to show that any �nite non-including family T = fT1; : : : ; Tkgof theories is representable. Namely, for every distinct i; j, let  i;j 2 Ti n Tj. Then, de�neDi = � ::'i;1; : : : ;:'i;i�1;:'i;i+1; : : : ;:'i;k� :� 2 Ti�and D = n[i=1Di:Following the argument of Theorem 3.2, it is easy to show that fT1; : : : ; Tkg is exactly thefamily of extensions of (D; ;). Hence, we obtain the following result.Proposition 3.3 Let T be a �nite non-including family of theories. Then T is repre-sentable by a default theory (possibly with in�nite set of defaults)Theorem 3.2 and its argument provide the following corollary, which gives a completecharacterization of families of theories representable by �nite default theories, that is, the-ories (D;W ) with both D and W �nite.Corollary 3.4 The following statements are equivalent:1. T is representable by a �nite default theory9



2. T is a �nite set of �nitely generated non-including theoriesAs pointed out in the introduction, the cardinality argument implies the existence of non-representable families of non-including theories. However, it does not imply the existence ofdenumerable non-representable families. We will now show two examples of such families.The �rst family consists of non-including �nitely generated theories. The second one consistsof mutually inconsistent theories.Theorem 3.5 There exists a countable family of �nitely generated non-including theoriesT such that T is not representable by a default theory.Proof: Let fp0; p1; : : :g be a set of propositional atoms. De�ne Ti = Cn(fpig), i = 0; 1; : : :,and T = fTi: i = 0; 1; : : :g. It is clear that T is countable and consists of non-includingtheories. We will show that T is not representable by a default theory.Assume that T is represented by a default theory (D;W ). By Theorem 3.1, we mayassume that all defaults in D are prerequisite-free. We can also assume that no default inD contains a justi�cation which is contradictory (such defaults are never used to constructextensions).Consider a default d 2 D. Since j(d) is �nite, there is k such that for all m > k, allformulas in j(d) are consistent with Tm. Since Tm is an extension of (D;W ), c(d) 2 Tm, form > k. Since \m>k Tm = Cn(;);c(d) is a tautology. Since d was arbitrary, it follows that (D;W ) possesses only one exten-sion, namely Cn(W ), a contradiction. 2Theorem 3.6 There exists a countable family of mutually inconsistent theories T such thatT is not representable by a default theory. In particular T is not representable by a normaldefault theory.Proof: Let fp0; p1; : : :g be a set of propositional atoms. De�neTi = Cn(f:pi; pi+1; : : :g);10



for i = 0; 1; : : :, and T = fTi: i = 0; 1; : : :g. It is clear that T is countable and consists ofpairwise inconsistent theories. Now, we apply precisely the same argument as in the proofof Theorem 3.5. 2Our counterexamples have an additional property that their in�nite subsets and allsupersets are also counterexamples.4 Eliminating extensionsIn this section, we consider the problem of representability of subfamilies of a representablefamily. We present a technique for constructing default theories representing some subfam-ilies of a family of extensions of a given default theory �. Such techniques are importantwhen we have to redesign the default theory to exclude extensions containing a speci�cformula and preserve all the remaining extensions unchanged.Let ' 2 L. De�ne d' = ' :? :Theorem 4.1 Let E � L be consistent and let (D;W ) be a default theory. Then, E is anextension of (D [ fd'g;W ) if and only if ' =2 E and E is an extension of (D;W ).Proof: Since E is consistent, (D [ fd'g)E = DE [ f' :? g:Assume that ' =2 E and that E is an extension of (D;W ). ThenE = CnDE(W )and ' =2 CnDE(W ). Consequently,E = CnDE(W ) = CnDE[f '?g(W ) = Cn(D[fd'g)E (W ):Hence, E is an extension of (D [ fd'g;W ).Conversely, assume that E is an extension of (D [ fd'g;W ). Then,E = Cn(D[fd'g)E (W ) = CnDE[f '?g(W ):11



Since E is consistent, it follows that ' =2 CnDE(W ). Consequently,CnDE(W ) = CnDE[f '?g(W ) = E:Hence, ' =2 E and E is an extension of (D;W ). 2We say that a family F of theories ( recall that a theory is closed under propositionalconsequence) has a strong system of distinct representatives (SSDR, for short) if for everyT 2 F there is a formula 'T 2 F which does not belong to any other theory in F .Theorem 4.2 If F is representable by a default theory and has an SSDR, then every familyG � F is representable by a default theory.Proof: The claim is obvious if F = fLg. So, assume that all members of F are consistent(since F is an antichain, there are no other possibilities). Let (D;W ) be a default theorysuch that ext(D;W ) = F . De�neD = D0 [ fd'T :T 2 F n Gg:Since all theories in F are consistent, the assertion follows from the de�nition of an SSDRand from the argument of Theorem 4.1. 2Let us conclude this section with two observations. First, there are families of theoriesclosed under propositional consequence which possess SSDRs but which are not repre-sentable by a default theory (the second example presented above possesses this property).Second, in general not every subfamily of a representable family is representable. It fol-lows by the cardinality argument from the the fact that there are representable families ofcardinality continuum.5 Normal default theoriesOur �rst result in this section completely describes the family of extensions of an arbitraryprerequisite-free normal default theory.Theorem 5.1 Let W;	 � L. Let D = f :'' :' 2 	g. If W is inconsistent then ext(D;W ) =fLg. Otherwise, ext(D;W ) is exactly the family of all theories of the form Cn(W[�), where� is a maximal subset of 	 such that W [ � is consistent.12



Proof: The case of inconsistent W is evident. Hence, let us assume that W is consistent.Let T be an extension of (D;W ). Since W is consistent, T is consistent, too. Let � = f' 2	:T 6` :'g. Clearly, � = c(GD(D;T )). By (P2), T = Cn(W [ �). Moreover, since T isconsistent, W [ � is consistent. We will show that � is a maximal subset of 	 with thisproperty. Let �0 be such that � � �0 � 	. Assume that W [�0 is consistent. Then, T [�0is consistent. Hence, �0 � � and, consequently, � = �0.Assume next that T = Cn(W [�), where � is a maximal subset of 	 such that W [�is consistent. Then, it is easy to see thatGD(D;T ) = � :'' :' 2 �� :Hence, � = c(GD(D;T )) and T = Cn(W [ c(GD(D;T ))). Since all defaults in D areprerequisite-free, it follows by the property (P2) that T is an extension of (D;W ). 2As a corollary, we obtain a full characterization of families of theories that are repre-sentable by normal default theories. A similar but stronger result is given as a corollary toTheorem 5.4 at the end of this section.Corollary 5.2 A family T of theories in L is representable by a normal default theory ifand only if T = fLg or there is a consistent set of formulas W and a set of formulas 	such that T = fCn(W [ �) : � � 	 and � is maximal so that W [ � is consistentg.Proof: By Theorem 3.1, T is representable by a normal default theory if and only if itis representable by a normal default theory with all defaults prerequisite-free. Hence, theassertion follows from Theorem 5.1. 2We will next study the issue of equivalence between normal default theories. We havealready seen that we can replace every normal default theory with an equivalent normalprerequisite-free one (Theorem 3.1). The problem of interest now will be to establish whena normal default theory can be replaced by an equivalent normal default theory with emptyobjective part.First, consider a normal default theory (D;W ) such that W is inconsistent. Thenext(D;W ) = fLg. On the other hand, for every set of normal defaults D0, ext(D0; ;)13



contains only consistent extensions. Hence, (D;W ) is not equivalent to any normal defaulttheory with empty objective part. From now on we will focus on normal default theories(D;W ) for which W is consistent and we will show that each such theory is is equivalentto a default theory with empty objective part.To prove our results, we need to introduce some notation. Given a formula ', de�ne:�' = ( ' if � = 1:' if � = 0:Now let 	 be a set of formulas, 	 = f'1; '2; : : :g (if 	 is �nite, the last formula of its �niteenumeration is repeated in�nitely many times) and let � � 	. De�ne��i = ( 1 if 'i 2 �0 if 'i =2 �:Finally, for � � 	 de�ne ~� as~� = f��1 '1 ^ : : : ^ ��n'n : n = 1; 2; : : :gGiven sets of formulas 	 and W , de�ne a collection M as follows:M = f� � 	 : � is maximal such that � [W is consistentgWe �rst state and prove a lemma describing maximal consistent subsets of S�2M ~� [W .Lemma 5.3 Maximal consistent subsets of S�2M ~� [W are exactly the sets of the form~� [W , where � is a maximal subset of 	 such that � [W is consistent (that is, � 2M).Proof: We shall make a number of observations which together entail the lemma.1. Let � 2M. Then Cn(� [W ) = Cn(~� [W ).Indeed, if ' 2 (	 n �) then, by maximality of �, � [W ` :'. This implies that � [W `~� [W . The converse property, ~� [W ` � [W , is obvious, as ~� ` �.2. If � 2M then ~� [W is consistent.This observation follows from (1) and the fact that � [W is consistent.3. If � 2M then ~� [W is a maximal consistent subset of S�2M ~� [W .Consider  = �1'1 ^ : : : ^ �k'k =2 ~�. Then there is i, 1 � i � k, such that �i 6= ��i . Hence~� ` : or, in other words, ~� [ f g is inconsistent. Thus ~� [W [ f g is inconsistent.14



4. Finally, let � be a maximal consistent subset of S�2M ~� [W . Then there is � 2 Msuch that � = ~� [W .Notice that if two formulas �1'1 ^ : : :^ �k'k and �01'1 ^ : : :^ �0k0'k0 belong to � then eitherh�1; : : : ; �ki is a su�x of h�01; : : : ; �0k0i or conversely. Therefore, there is � 2M such that� \ [�2M ~� � ~�:But then we have � � ~� [W . Since both � and ~� [W are maximal consistent subsets ofS�2M ~� [W , it follows that � = ~� [W . 2De�ne now DW = � :   :  2W�and, for every � 2M, D� = ( : ��1 �1 ^ : : : ^ ��n'n��1 �1 ^ : : : ^ ��n'n : n = 1; 2; : : :)Theorem 5.4 For every normal default theory (D;W ) with W consistent there exists aprerequisite-free normal default theory (D0; ;) equivalent to (D;W ).Proof: By Theorem 3.1, without loss of generality we can assume that each default in D isprerequisite-free. Set 	 = c(D). LetD0 = DW [ [�2MD�By Theorem 5.1, E is an extension of (D0; ;) if and only if E = Cn(�) for some maximalconsistent subset of c(D0). Since c(D0) = S�2M ~� [W , therefore, by Lemma 5.3, E is anextension of (D0; ;) if and only if E = Cn(� [W ) for some � 2M. Thus by Theorem 5.1again, E is an extension of (D0; ;) if and only if E is an extension of (D;W ). 2In the case when W is �nite, we have an alternative construction which can be used toreplace a normal default theory (D;W ) with an equivalent normal default theory (D0; ;).By Theorem 3.1, without loss of generality we can assume that each default in D isprerequisite-free. De�ne ! = VW .First, assume that the justi�cation of every default in D is inconsistent with !. Then,ext(D;W ) = fCn(W )g. Let D0 = f :!! g. Clearly, ext(D0; ;) = ext(D;W ).15



Hence, assume that there are defaults in D whose justi�cations are consistent with !.For every default d = :�� in D, de�ne d! = :�^!�^! . Finally, de�ne D0 = fd!: d 2 Dg. UsingTheorem 5.1, one can show that (D0; ;) is equivalent to (D;W ).In the case when D consists of prerequisite-free defaults only, the size of the theory(D0; ;) is polynomial in the size of (D;W ). This is not, in general, true for the constructiondescribed earlier.We conclude this section with a corollary to Theorem 5.4 which strengthens the charac-terization of families of theories representable by normal default theories given in Corollary5.2.Corollary 5.5 A family T of theories in L is representable by a normal default theory ifand only if T = fLg or there is a set of formulas 	 such that T = fCn(�) : � � 	 ismaximal so that � is consistentg.6 Representability with circumscriptionNext, we explore the connections of normal default logic with circumscription [McC80, Lif88]and the Closed World Assumption [Rei78]. Consider a set of atoms P . De�ne the set ofdefaults DCWAP = � ::p:p : p 2 P� :Informally, a default ::p:p allows us to derive :p if p is not derivable. This has the avor ofthe Closed World Assumption. At the same time, such defaults can be viewed as minimizingP . The exact connection with CWA and circumscription is given by the following results[MT93]:1. If P = At then W is CWA-consistent if and only if (DCWAP ;W ) possesses a uniqueconsistent extension ([MT93], Corollary 4.25).2. If P = At and W is consistent, then extensions of (DCWAP ;W ) are complete andconsistent theories containing W , and minimal with respect to P . Hence, they are inone-to-one correspondence to minimal models of W ([MT93], Corollary 4.22).The result of this section shows that all normal default theories can be represented, ata cost of adding new constants, by means of default theories of the form (DCWAP ;W ). In16



particular, it follows that circumscription can be used to express families of extensions ofnormal default theories.Theorem 6.1 For every normal default theory (D;W ) in L there exists a language L0 � L,a set of atoms P in L0, and W 0 � L0 such that (D;W ) is semi-equivalent to a default theory(DCWAP ;W 0).Proof: By Theorem 3.1 we can assume that all defaults in D are prerequisite-free. Let 	be the set of consequents of defaults in D. For each  2 	 select a new atom not belongingto At (recall that At is the set of atoms in L). This atom is denoted by p and the set Pis de�ned as fp :  2 	g. De�ne now L0 to be the language generated by the set of atomsAt0 = At [ P . Next, de�ne V as this set of formulas:f:p ,  : 2 	g:We notice the following fact:(F1) Let � � 	. Then W [ � is consistent if and only if W [ V [ f:p :  2 �g isconsistent.Indeed, for a model v of W [ �, de�ne v0 as follows:v0(p) = ( v(p) if p 2 At1� v( ) if p = p It is clear that v0 is a model of W [ V [ f:p :  2 �g. Conversely, when a valuation v0 ofAt0 is a model of W [ V [ f:p :  2 �g then v = v0jAt is a model of W [ f :  2 �g.Hence, (F1) follows.Observation (F1) implies that � is a maximal subset of 	 consistent withW if and onlyif f:p :  2 �g is a maximal subset of f:p :  2 	g which is consistent with W [ V .Next, observe that if � is a maximal set of formulas contained in 	 and consistent withW then for all � 2 	 n � W [ V [ f:p :  2 �g ` p�:We are now ready to construct the desired default theory. We put W 0 = W [ V andD0 = f ::p :p :  2 	g. Clearly, D0 = CWAP . Using the observations given above, one cannow show that the theory (D0;W 0) is semi-equivalent to ext(D;W ). 217



Theorems 5.4 and 6.1 can be viewed as \normal form" results for normal default logic.The main di�erence is the class of default theories used for representation. Theorem 5.4allows us to replace normal default theories (with consistentW ) by normal prerequisite-freedefault theories with empty objective part. Theorem 6.1 shows that every normal defaulttheory can be replaced by a normal default theory with especially simple defaults of theform ::p:p .7 ConclusionsThe concepts studied in this paper, representability and equivalence, are of key importancefor default logic and its applications. Representability provides insights into the expressivepower of default logic, while equivalence provides normal form results for default logic,allowing the user to �nd simpler representations for his/her default theories.In this paper we characterized those families of theories that can be represented bydefault theories with a �nite set of defaults (Theorem 3.2 and Corollary 3.4). We alsopresented some su�cient conditions for representability for in�nite families of theories. Weconstructed several countable families that are not representable. However, we have notfound a complete characterization of families of theories that are representable by defaulttheories with an in�nite set of defaults. This problem seems to be much more di�cult andremains open. Topological methods used in [Fer94] may lead to the solution to this problem.We also studied representability by means of normal default theories. Here, our resultsare complete. Corollary 5.2 provides a full description of families of theories that arecollections of extensions of normal default theories.Another notion studied in the paper was equivalence of default theories. We showed(Theorem 3.1) that for every normal default theory there exists a normal default theoryconsisting of prerequisite-free defaults and having exactly the same extensions as the originalone. Moreover, we can �nd an equivalent normal, prerequisite free default theory with emptyobjective part.
18
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